1
|
Kerti L, Frecer V. Design of inhibitors of SARS-CoV-2 papain-like protease deriving from GRL0617: Structure-activity relationships. Bioorg Med Chem 2024; 113:117909. [PMID: 39288705 DOI: 10.1016/j.bmc.2024.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The unique and complex structure of papain-like protease (PLpro) of the SARS-CoV-2 virus represents a difficult challenge for antiviral development, yet it offers a compelling validated target for effective therapy of COVID-19. The surge in scientific interest in inhibiting this cysteine protease emerged after its demonstrated connection to the cytokine storm in patients with COVID-19 disease. Furthermore, the development of new inhibitors against PLpro may also be beneficial for the treatment of respiratory infections caused by emerging coronavirus variants of concern. This review article provides a comprehensive overview of PLpro inhibitors, focusing on the structural framework of the known inhibitor GRL0617 and its analogs. We categorize PLpro inhibitors on the basis of their structures and binding site: Glu167 containing site, BL2 groove, Val70Ub site, and Cys111 containing catalytic site. We summarize and evaluate the majority of GRL0617-like inhibitors synthesized so far, highlighting their published biochemical parameters, which reflect their efficacy. Published research has shown that strategic modifications to GRL0617, such as decorating the naphthalene ring, extending the aromatic amino group or the orthomethyl group, can substantially decrease the IC50 from micromolar up to nanomolar concentration range. Some advantageous modifications significantly enhance inhibitory activity, paving the way for the development of new potent compounds. Our review places special emphasis on structures that involve direct modifications to the GRL0617 scaffold, including piperidine carboxamides and modified benzylmethylnaphthylethanamines (Jun9 scaffold). All these compounds are believed to inhibit the proteolytic, deubiquitination, and deISGylation activity of PLpro, biochemical processes linked to the severe progression of COVID-19. Finally, we summarize the development efforts for SARS-CoV-2 PLpro inhibitors, in detailed structure-activity relationships diagrams. This aims to inform and inspire future research in the search for potent antiviral agents against PLpro of current and emerging coronavirus threats.
Collapse
Affiliation(s)
- Lukas Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, SK-83232 Bratislava, Slovakia
| | - Vladimir Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, SK-83232 Bratislava, Slovakia.
| |
Collapse
|
2
|
Soleimani Asl S, Roozbahani MH. A novel robust inhibitor of papain-like protease (PLpro) as a COVID-19 drug. J Biomol Struct Dyn 2024; 42:6863-6870. [PMID: 37578047 DOI: 10.1080/07391102.2023.2245474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Regarding the significance of SARS-CoV-2, scientists have shown considerable interest in developing effective drugs. Inhibitors for PLpro are the primary strategies for locating suitable COVID-19 drugs. Natural compounds comprise the majority of COVID-19 drugs. Due to limitations on the safety of clinical trials in cases of COVID, computational methods are typically utilized for inhibition studies. Whereas papain is highly similar to PLpro and is entirely safe, the current study aimed to examine several plant secondary metabolites to identify the most effective papain inhibitor and validate the results using molecular dynamics and docking. This simulation was conducted identically for PLpro and the optimal inhibitor. The results indicated that the experimental results are comparable to those obtained In-Silico, and the inhibition effects of Chlorogenic acid (CGA) on papain attained in the experiment were validated (IC50=0.54 mM). CGA as an inhibitor was located in the active site of PLpro and papain (total energy -2009410 and -456069 kJ/mol, respectively) at the desired location and distance. The study revealed that CGA and its derivatives are effective PLpro inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Soleimani Asl
- Iran Digital Twin Laboratory (IDT-Lab)- Incubator Center, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|
3
|
Qin B, Wu C, Zhao B, Li G, Wang B, Ou M, Li Z, Lang X, Li P, Liu J, Cui S, Huang H. Design, Synthesis, and Biological Evaluation of 1,2,4-Oxadiazole Derivatives Containing an Aryl Carboxylic Acid Moiety as Potent Sarbecovirus Papain-like Protease Inhibitors. J Med Chem 2024; 67:10211-10232. [PMID: 38871484 DOI: 10.1021/acs.jmedchem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 μM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 μM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.
Collapse
Affiliation(s)
- Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Chengwei Wu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Binbin Zhao
- National Center of Technology Innovation for Animal Models, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, P. R. China
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Baolian Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Mengdie Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xuli Lang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Peng Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Jiangning Liu
- National Center of Technology Innovation for Animal Models, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, P. R. China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
4
|
Valdés-Albuernes JL, Díaz-Pico E, Alfaro S, Caballero J. Modeling of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 considering the protein flexibility by using molecular dynamics and cross-docking. Front Mol Biosci 2024; 11:1374364. [PMID: 38601323 PMCID: PMC11004324 DOI: 10.3389/fmolb.2024.1374364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
The papain-like protease (PLpro) found in coronaviruses that can be transmitted from animals to humans is a critical target in respiratory diseases linked to Severe Acute Respiratory Syndrome (SARS-CoV). Researchers have proposed designing PLpro inhibitors. In this study, a set of 89 compounds, including recently reported 2-phenylthiophenes with nanomolar inhibitory potency, were investigated as PLpro noncovalent inhibitors using advanced molecular modeling techniques. To develop the work with these inhibitors, multiple structures of the SARS-CoV-2 PLpro binding site were generated using a molecular sampling method. These structures were then clustered to select a group that represents the flexibility of the site. Subsequently, models of the protein-ligand complexes were created for the set of inhibitors within the chosen conformations. The quality of the complex models was assessed using LigRMSD software to verify similarities in the orientations of the congeneric series and interaction fingerprints to determine the recurrence of chemical interactions. With the multiple models constructed, a protocol was established to choose one per ligand, optimizing the correlation between the calculated docking energy values and the biological activities while incorporating the effect of the binding site's flexibility. A strong correlation (R2 = 0.922) was found when employing this flexible docking protocol.
Collapse
Affiliation(s)
| | | | | | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
5
|
Kralj S, Jukič M, Bahun M, Kranjc L, Kolarič A, Hodošček M, Ulrih NP, Bren U. Identification of Triazolopyrimidinyl Scaffold SARS-CoV-2 Papain-Like Protease (PL pro) Inhibitor. Pharmaceutics 2024; 16:169. [PMID: 38399230 PMCID: PMC10893172 DOI: 10.3390/pharmaceutics16020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its companion disease, COVID-19, has reminded us of the importance of basic coronaviral research. In this study, a comprehensive approach using molecular docking, in vitro assays, and molecular dynamics simulations was applied to identify potential inhibitors for SARS-CoV-2 papain-like protease (PLpro), a key and underexplored viral enzyme target. A focused protease inhibitor library was initially created and molecular docking was performed using CmDock software (v0.2.0), resulting in the selection of hit compounds for in vitro testing on the isolated enzyme. Among them, compound 372 exhibited promising inhibitory properties against PLpro, with an IC50 value of 82 ± 34 μM. The compound also displayed a new triazolopyrimidinyl scaffold not yet represented within protease inhibitors. Molecular dynamics simulations demonstrated the favorable binding properties of compound 372. Structural analysis highlighted its key interactions with PLpro, and we stress its potential for further optimization. Moreover, besides compound 372 as a candidate for PLpro inhibitor development, this study elaborates on the PLpro binding site dynamics and provides a valuable contribution for further efforts in pan-coronaviral PLpro inhibitor development.
Collapse
Affiliation(s)
- Sebastjan Kralj
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Miha Bahun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Luka Kranjc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | - Anja Kolarič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
6
|
Cockram PE, Walters BT, Lictao A, Shanahan F, Wertz IE, Foster SA, Rudolph J. Allosteric Inhibitors of the SARS-COV-2 Papain-like Protease Domain Induce Proteasomal Degradation of Its Parent Protein NSP3. ACS Chem Biol 2024; 19:22-36. [PMID: 38150587 DOI: 10.1021/acschembio.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The papain-like protease of SARS-COV-2 is essential for viral replication and pathogenesis. Its location within a much larger multifunctional protein, NSP3, makes it an ideal candidate for a targeted degradation approach capable of eliminating multiple functions with a single-molecule treatment. In this work, we have developed a HiBiT-based cellular model to study NSP3 degradation and used this platform for the discovery of monovalent NSP3 degraders. We present previously unreported degradation activity of published papain-like protease inhibitors. Follow-up exploration of structure-activity relationships and mechanism-of-action studies points to the recruitment of the ubiquitin-proteasome machinery that is solely driven by site occupancy, regardless of molecular features of the ligand. Supported by HDX data, we hypothesize that binding-induced structural changes in NSP3 trigger the recruitment of an E3 ligase and lead to proteasomal degradation.
Collapse
Affiliation(s)
- Peter E Cockram
- Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
- Discovery Oncology, Genentech, South San Francisco, California 94080, United States
| | - Benjamin T Walters
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Aaron Lictao
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Frances Shanahan
- Discovery Oncology, Genentech, South San Francisco, California 94080, United States
| | - Ingrid E Wertz
- Discovery Oncology, Genentech, South San Francisco, California 94080, United States
| | - Scott A Foster
- Discovery Oncology, Genentech, South San Francisco, California 94080, United States
| | - Joachim Rudolph
- Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Zargari F, Mohammadi M, Nowroozi A, Morowvat MH, Nakhaei E, Rezagholi F. The Inhibitory Effects of the Herbals Secondary Metabolites (7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol) on COVID-19: A Molecular Docking Study. Recent Pat Biotechnol 2024; 18:316-331. [PMID: 38817009 DOI: 10.2174/0118722083246773231108045238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 06/01/2024]
Abstract
BACKGROUND Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field. AIMS In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study. METHODS The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed. RESULTS These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity. CONCLUSION The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.
Collapse
Affiliation(s)
- Farshid Zargari
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), P.O.Box 98135- 674, Zahedan, Iran
| | - Mehdi Mohammadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Box 71468-64685, Shiraz, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), P.O.Box 98135- 674, Zahedan, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Box 71468-64685, Shiraz, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), P.O.Box 98135- 674, Zahedan, Iran
| | - Fatemeh Rezagholi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Box 71468-64685, Shiraz, Iran
| |
Collapse
|
8
|
Li X, Song Y. Targeting SARS-CoV-2 nonstructural protein 3: Function, structure, inhibition, and perspective in drug discovery. Drug Discov Today 2024; 29:103832. [PMID: 37977285 PMCID: PMC10872262 DOI: 10.1016/j.drudis.2023.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
As a highly contagious human pathogen, severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) has infected billions of people worldwide with more than 6 million deaths. With several effective vaccines and antiviral drugs now available, the SARS-CoV-2 pandemic been brought under control. However, a new pathogenic coronavirus could emerge in the future, given the zoonotic nature of this virus. Natural evolution and drug-induced mutations of SARS-CoV-2 also require continued efforts for new anti-coronavirus drugs. Nonstructural protein (nsp) 3 of CoVs is a large, multifunctional protein, containing a papain-like protease (PLpro) and a macrodomain (Mac1), which are essential for viral replication. Here, we provide a comprehensive review of the function, structure, and inhibition of SARS-CoV/-CoV-2 PLpro and Mac1. We also discuss advances in, and challenges to, the discovery of drugs against these targets.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Ghosh AK, Shahabi D, Imhoff MEC, Kovela S, Sharma A, Hattori SI, Higashi-Kuwata N, Mitsuya H, Mesecar AD. SARS-CoV-2 papain-like protease (PLpro) inhibitory and antiviral activity of small molecule derivatives for drug leads. Bioorg Med Chem Lett 2023; 96:129489. [PMID: 37770002 PMCID: PMC10842477 DOI: 10.1016/j.bmcl.2023.129489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
We report here the synthesis and biological evaluation of a series of small molecule SARS-CoV-2 PLpro inhibitors. We compared the activity of selected compounds in both SARS-CoV-1 and SARS-CoV-2 PLpro inhibitory and antiviral assays. We have synthesized and evaluated several new structural variants of previous leads against SARS-CoV-2 PLpro. The replacement of the carboxamide functionality with sulfonamide derivatives resulted in PLpro inhibitors with potent PLpro inhibitory and antiviral activity in VeroE6 cells similar to GRL0617. To obtain molecular insight, we created an optimized model of a potent sulfonamide derivative in the SARS-CoV-2 PLpro active site.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA.
| | - Dana Shahabi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | | | - Satish Kovela
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Ashish Sharma
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655 Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655 Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655 Japan; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556 Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch National Cancer Institute, Bethesda, MD 20892 USA
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
10
|
Brian Chia CS, Pheng Lim S. A Patent Review on SARS Coronavirus Papain-Like Protease (PL pro ) Inhibitors. ChemMedChem 2023; 18:e202300216. [PMID: 37248169 DOI: 10.1002/cmdc.202300216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an unprecedented global health emergency causing more than 6.6 million fatalities by 31 December 2022. So far, only three antiviral drugs have been granted emergency use authorisation or approved by the FDA. The SARS-CoV-2 papain-like protease (PLpro ) is deemed an attractive drug target as it plays an essential role in viral polyprotein processing and pathogenesis although no inhibitors have yet been approved. This patent review discusses coronavirus PLpro inhibitors reported in patents published between 1 January 2003 to 2 March 2023, giving an overview on the inhibitors that have generated commercial interest, especially amongst drug companies.
Collapse
Affiliation(s)
- C S Brian Chia
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| | - Siew Pheng Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| |
Collapse
|
11
|
Puhl AC, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Oliva G, Ekins S. Discovery of PL pro and M pro Inhibitors for SARS-CoV-2. ACS OMEGA 2023; 8:22603-22612. [PMID: 37387790 PMCID: PMC10275482 DOI: 10.1021/acsomega.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
There are very few small-molecule antivirals for SARS-CoV-2 that are either currently approved (or emergency authorized) in the US or globally, including remdesivir, molnupiravir, and paxlovid. The increasing number of SARS-CoV-2 variants that have appeared since the outbreak began over three years ago raises the need for continual development of updated vaccines and orally available antivirals in order to fully protect or treat the population. The viral main protease (Mpro) and the papain-like protease (PLpro) are key for viral replication; therefore, they represent valuable targets for antiviral therapy. We herein describe an in vitro screen performed using the 2560 compounds from the Microsource Spectrum library against Mpro and PLpro in an attempt to identify additional small-molecule hits that could be repurposed for SARS-CoV-2. We subsequently identified 2 hits for Mpro and 8 hits for PLpro. One of these hits was the quaternary ammonium compound cetylpyridinium chloride with dual activity (IC50 = 2.72 ± 0.09 μM for PLpro and IC50 = 7.25 ± 0.15 μM for Mpro). A second inhibitor of PLpro was the selective estrogen receptor modulator raloxifene (IC50 = 3.28 ± 0.29 μM for PLpro and IC50 = 42.8 ± 6.7 μM for Mpro). We additionally tested several kinase inhibitors and identified olmutinib (IC50 = 0.54 ± 0.04 μM), bosutinib (IC50 = 4.23 ± 0.28 μM), crizotinib (IC50 = 3.81 ± 0.04 μM), and dacominitinib (IC50 = IC50 3.33 ± 0.06 μM) as PLpro inhibitors for the first time. In some cases, these molecules have also been tested by others for antiviral activity for this virus, or we have used Calu-3 cells infected with SARS-CoV-2. The results suggest that approved drugs can be identified with promising activity against these proteases, and in several cases we or others have validated their antiviral activity. The additional identification of known kinase inhibitors as molecules targeting PLpro may provide new repurposing opportunities or starting points for chemical optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Andre S. Godoy
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Glaucius Oliva
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Castillo-Campos L, Velázquez-Libera JL, Caballero J. Computational study of the binding orientation and affinity of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-1 considering the protein flexibility by using molecular dynamics and cross-docking. Front Mol Biosci 2023; 10:1215499. [PMID: 37426421 PMCID: PMC10326900 DOI: 10.3389/fmolb.2023.1215499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The papain-like protease (PLpro) from zoonotic coronaviruses (CoVs) has been identified as a target with an essential role in viral respiratory diseases caused by Severe Acute Respiratory Syndrome-associated coronaviruses (SARS-CoVs). The design of PLpro inhibitors has been proposed as an alternative to developing potential drugs against this disease. In this work, 67 naphthalene-derived compounds as noncovalent PLpro inhibitors were studied using molecular modeling methods. Structural characteristics of the bioactive conformations of these inhibitors and their interactions at the SARS-CoV-1 PLpro binding site were reported here in detail, taking into account the flexibility of the protein residues. Firstly, a molecular docking protocol was used to obtain the orientations of the inhibitors. After this, the orientations were compared, and the recurrent interactions between the PLpro residues and ligand chemical groups were described (with LigRMSD and interaction fingerprints methods). In addition, efforts were made to find correlations between docking energy values and experimentally determined binding affinities. For this, the PLpro was sampled by using Gaussian Accelerated Molecular Dynamics (GaMD), generating multiple conformations of the binding site. Diverse protein conformations were selected and a cross-docking experiment was performed, yielding models of the 67 naphthalene-derived compounds adopting different binding modes. Representative complexes for each ligand were selected to obtain the highest correlation between docking energies and activities. A good correlation (R 2 = 0.948) was found when this flexible docking protocol was performed.
Collapse
Affiliation(s)
| | | | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
13
|
Zhao H, Brånalt J, Perry M, Tyrchan C. The Role of Allylic Strain for Conformational Control in Medicinal Chemistry. J Med Chem 2023. [PMID: 37285219 DOI: 10.1021/acs.jmedchem.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is axiomatic in medicinal chemistry that optimization of the potency of a small molecule at a macromolecular target requires complementarity between the ligand and target. In order to minimize the conformational penalty on binding, both enthalpically and entropically, it is therefore preferred to have the ligand preorganized in the bound conformation. In this Perspective, we highlight the role of allylic strain in controlling conformational preferences. Allylic strain was originally described for carbon-based allylic systems, but the same principles apply to other types of structure with sp2 or pseudo-sp2 arrangements. These systems include benzylic (including heteroaryl methyl) positions, amides, N-aryl groups, aryl ethers, and nucleotides. We have derived torsion profiles from small molecule X-ray structures for these systems. Through multiple examples, we show how these effects have been applied in drug discovery and how they can be used prospectively to influence conformation in the design process.
Collapse
Affiliation(s)
- Hongtao Zhao
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Jonas Brånalt
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Matthew Perry
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| |
Collapse
|
14
|
Sanders BC, Pokhrel S, Labbe AD, Mathews II, Cooper CJ, Davidson RB, Phillips G, Weiss KL, Zhang Q, O'Neill H, Kaur M, Schmidt JG, Reichard W, Surendranathan S, Parvathareddy J, Phillips L, Rainville C, Sterner DE, Kumaran D, Andi B, Babnigg G, Moriarty NW, Adams PD, Joachimiak A, Hurst BL, Kumar S, Butt TR, Jonsson CB, Ferrins L, Wakatsuki S, Galanie S, Head MS, Parks JM. Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2. Nat Commun 2023; 14:1733. [PMID: 36977673 PMCID: PMC10044120 DOI: 10.1038/s41467-023-37254-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-μM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 μM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
Collapse
Affiliation(s)
- Brian C Sanders
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Audrey D Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Connor J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manat Kaur
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jurgen G Schmidt
- B-11 Bioenergy and Biome Sciences, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Walter Reichard
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Surekha Surendranathan
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lexi Phillips
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Babak Andi
- Center for BioMolecular Structure, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Soichi Wakatsuki
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Martha S Head
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Computational and Data Sciences, Center for Research Acceleration by Digital Innovation, Amgen, Inc., Thosand Oaks, CA, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
15
|
Li PJ, Yan Y, Wu N, Yang YH, An L, Tian GM, Bao XP. Design, synthesis, crystal structure, and antimicrobial activities of new quinazoline derivatives containing both the sulfonate ester and piperidinylamide moieties. PEST MANAGEMENT SCIENCE 2023. [PMID: 36924250 DOI: 10.1002/ps.7459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To discover more efficient antimicrobial agents in agriculture, a series of new quinazoline derivatives bearing both sulfonate ester and piperidine-4-carboxamide moieties were synthesized and assessed for their antimicrobial effects. RESULTS All of the target compounds were fully characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, and high-resolution mass spectroscopy (HRMS), and compound III-6 containing a 3-bromophenyl substituent was clearly confirmed via single-crystal X-ray diffraction analysis. The bioassay results indicated that some compounds displayed noticeable inhibitory effects in vitro against Xanthomonas oryzae pv. oryzicola (Xoc). Further measurements of median effective concentration (EC50 ) values showed that compound III-17 bearing a 4-methoxyphenyl group had the best anti-Xoc efficacy (EC50 = 12.4 μg mL-1 ), far better than the commercialized bismerthiazol (77.5 μg mL-1 ). Moreover, this compound also demonstrated good protection and curative activities in vivo against rice bacterial leaf streak caused by Xoc. CONCLUSION Compound III-17 had a good potential for further development as a new bactericide for controlling Xoc. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Jia Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Ya Yan
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Nan Wu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Ye-Hui Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lian An
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Guang-Min Tian
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao-Ping Bao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
16
|
Gao H, Dai R, Su R. Computer-aided drug design for the pain-like protease (PL pro) inhibitors against SARS-CoV-2. Biomed Pharmacother 2023; 159:114247. [PMID: 36689835 PMCID: PMC9841087 DOI: 10.1016/j.biopha.2023.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A new coronavirus, known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a highly contagious virus and has caused a massive worldwide health crisis. While large-scale vaccination efforts are underway, the management of population health, economic impact and asof-yet unknown long-term effects on physical and mental health will be a key challenge for the next decade. The papain-like protease (PLpro) of SARS-CoV-2 is a promising target for antiviral drugs. This report used pharmacophore-based drug design technology to identify potential compounds as PLpro inhibitors against SARS-CoV-2. The optimal pharmacophore model was fully validated using different strategies and then was employed to virtually screen out 10 compounds with inhibitory. Molecular docking and non-bonding interactions between the targeted protein PLpro and compounds showed that UKR1129266 was the best compound. These results provided a theoretical foundation for future studies of PLpro inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | | | | |
Collapse
|
17
|
Cho H, Kim YJ, Chae JW, Meyer MR, Kim SK, Ryu CS. In vitro metabolic characterization of the SARS-CoV-2 papain-like protease inhibitors GRL0617 and HY-17542. Front Pharmacol 2023; 14:1067408. [PMID: 36874001 PMCID: PMC9975351 DOI: 10.3389/fphar.2023.1067408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The SARS-CoV-2 pandemic requires a new therapeutic target for viral infection, and papain-like protease (Plpro) has been suggested as a druggable target. This in-vitro study was conducted to examine the drug metabolism of the GRL0617 and HY-17542, Plpro inhibitors. Metabolism of these inhibitors was studied to predict the pharmacokinetics in human liver microsomes. The hepatic cytochrome P450 (CYP) isoforms responsible for their metabolism were identified using recombinant enzymes. The drug-drug interaction potential mediated by cytochrome P450 inhibition was estimated. In human liver microsomes, the Plpro inhibitors had phase I and phase I + II metabolism with half-lives of 26.35 and 29.53 min, respectively. Hydroxylation (M1) and desaturation (-H2, M3) of the para-amino toluene side chain were the predominant reactions mediated with CYP3A4 and CYP3A5. CYP2D6 is responsible for the hydroxylation of the naphthalene side ring. GRL0617 inhibits major drug-metabolizing enzymes, including CYP2C9 and CYP3A4. HY-17542 is structural analog of GRL0617 and it is metabolized to GRL0617 through non-cytochrome P450 reactions in human liver microsomes without NADPH. Like GRL0617 and HY-17542 undergoes additional hepatic metabolism. The in-vitro hepatic metabolism of the Plpro inhibitors featured short half-lives; preclinical metabolism studies are needed to determine therapeutic doses for these inhibitors.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National Univerisity, Daejeon, Republic of Korea
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National Univerisity, Daejeon, Republic of Korea
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| |
Collapse
|
18
|
Valipour M. Recruitment of chalcone's potential in drug discovery of anti-SARS-CoV-2 agents. Phytother Res 2022; 36:4477-4490. [PMID: 36208000 PMCID: PMC9874432 DOI: 10.1002/ptr.7651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023]
Abstract
Chalcone is an interesting scaffold found in the structure of many naturally occurring molecules. Medicinal chemists are commonly interested in designing new chalcone-based structures because of having the α, β-unsaturated ketone functional group, which allows these compounds to participate in Michael's reaction and create strong covalent bonds at the active sites of the targets. Some studies have identified several natural chalcone-based compounds with the ability to inhibit the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus proteases. A few years after the advent of the coronavirus disease 2019 pandemic and the publication of many findings in this regard, there is some evidence that suggests chalcone scaffolding has great potential for use in the design and development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitors. Artificial placement of this scaffold in the structure of optimized anti-SARS-CoV-2 compounds can potentially provide irreversible inhibition of the viral cysteine proteases 3-chymotrypsin-like protease and papain-like protease by creating Michael interaction. Despite having remarkable capabilities, the use of chalcone scaffold in drug design and discovery of SARS-CoV-2 inhibitors seems to have been largely neglected. This review addresses issues that could lead to further consideration of chalcone scaffolding in the structure of SARS-CoV-2 protease inhibitors in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Qayed WS, Ferreira RS, Silva JRA. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022; 27:molecules27185988. [PMID: 36144718 PMCID: PMC9505381 DOI: 10.3390/molecules27185988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins—papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)—in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Wesam S. Qayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (W.S.Q.); (J.R.A.S.)
| | - Rafaela S. Ferreira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence: (W.S.Q.); (J.R.A.S.)
| |
Collapse
|
20
|
Schwake C, McKay L, Griffiths A, Scartelli C, Flaumenhaft R, Chishti AH. BDA-410 inhibits SARS-CoV-2 main protease activity and viral replication in mammalian cells. J Cell Mol Med 2022; 26:5095-5098. [PMID: 36082511 PMCID: PMC9537889 DOI: 10.1111/jcmm.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Christopher Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Lindsay McKay
- National Emerging Infectious Diseases Laboratories (NEIDL), Department of Microbiology, Boston University, Boston, Massachusetts, USA
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories (NEIDL), Department of Microbiology, Boston University, Boston, Massachusetts, USA
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Ding M, Wu N, Lin Q, Yan Y, Yang Y, Tian G, An L, Bao X. Discovery of Novel Quinazoline-2-Aminothiazole Hybrids Containing a 4-Piperidinylamide Linker as Potential Fungicides against the Phytopathogenic Fungus Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10100-10110. [PMID: 35960511 DOI: 10.1021/acs.jafc.1c07706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A total of 29 novel quinazoline-2-aminothiazole hybrids containing a 4-piperidinylamide linker were designed, synthesized, and evaluated for their anti-microbial properties against phytopathogenic fungi and bacteria of agricultural importance. The anti-fungal assays indicated that some of the target compounds exhibited excellent inhibitory effects in vitro against Rhizoctonia solani. For example, 11 compounds within this series (including 4a, 4g, 4h, 4j, 4o, 4s, 4t, 4u, 4v, 4y, and 4b') were found to possess EC50 values (effective concentration for 50% activity) ranging from 0.42 to 2.05 μg/mL against this pathogen. In particular, compound 4y with a 2-chloro-6-fluorophenyl substituent displayed a potent anti-R. solani efficacy with EC50 = 0.42 μg/mL, nearly threefold more effective than the commercialized fungicide Chlorothalonil (EC50 = 1.20 μg/mL) and also slightly superior to the other fungicide Carbendazim (EC50 = 0.53 μg/mL). Moreover, compound 4y could efficiently inhibit the growth of R. solani in vivo on the potted rice plants, displaying an impressive protection efficacy of 82.3% at 200 μg/mL, better than those of the fungicides Carbendazim (69.8%) and Chlorothalonil (48.9%). Finally, the mechanistic studies showed that compound 4y exerted its anti-fungal effects by altering the mycelial morphology, increasing the cell membrane permeability, and destroying the cell membrane integrity. On the other hand, some compounds demonstrated good anti-bacterial effects in vitro against Xanthomonas oryzae pv. oryzae (Xoo). Overall, the presented results implied that 4-piperidinylamide-bridged quinazoline-2-aminothiazole hybrids held the promise of acting as lead compounds for developing more efficient fungicides to control R. solani.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qiao Lin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
22
|
Gheshlaghi SZ, Nakhaei E, Ebrahimi A, Jafari M, Shahraki A, Rezazadeh S, Saberinasab E, Nowroozi A, Hosseini SS. Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19. J Biomol Struct Dyn 2022:1-11. [PMID: 35993530 DOI: 10.1080/07391102.2022.2112977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Apart from chemical and allopathic drugs, several medicinal plants contain phytochemicals that are potentially useful to counter the COVID-19 pandemic. Withania somnifera (Ashwagandha), which has a good effect on some viral infections, can be considered as a candidate against the virus. In the present study, thirty-nine natural compounds of Ashwagandha were investigated in terms of their binding to the important drug targets to treat the COVID-19. Although the molecular docking calculations reveal the binding affinities of the compounds to Mpro, TMPRSS2, NSP15, PLpro, Spike RBD + ACE2, RdRp and NSP12 as targets in controlling the coronavirus enzymes, Withanoside II is expected to be the most effective compound due to the high affinity in binding with many of considered targets. Furthermore, the Withanoside III, IV, V, X, and XI have favorable binding affinities as ligands with respect to the MM/GBSA calculations. The molecular dynamics simulations MD explore a stable hydrogen bond network between ligands and the active sites residues. Also, the dynamic fluctuations of the binding site residues verify their tight binding to ligands. Moreover, the stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for all mentioned complexes. The TMPRSS2-Withanolide Q and Mpro-Withanoside IV complexes are the most stable pairs using the MM/GBSA calculations and MD simulation.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, College of Agriculture
| | - Asiyeh Shahraki
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shiva Rezazadeh
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Erfan Saberinasab
- School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
23
|
Sanders B, Pokhrel S, Labbe A, Mathews I, Cooper C, Davidson R, Phillips G, Weiss K, Zhang Q, O'Neill H, Kaur M, Ferrins L, Schmidt J, Reichard W, Surendranathan S, Parvathareddy J, Phillips L, Rainville C, Sterner D, Kumaran D, Andi B, Babnigg G, Moriarrty N, Adams P, Joachimiak A, Hurst B, Kumar S, Butt T, Jonsson C, Wakatsuki S, Galanie S, Head M, Parks J. Potent and Selective Covalent Inhibition of the Papain-like Protease from SARS-CoV-2. RESEARCH SQUARE 2022:rs.3.rs-906621. [PMID: 34642689 PMCID: PMC8509099 DOI: 10.21203/rs.3.rs-906621/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-μM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 μM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Brett Hurst
- Institute for Antiviral Research, Utah State University
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sanders B, Pokhrel S, Labbe A, Mathews I, Cooper C, Davidson R, Phillips G, Weiss K, Zhang Q, O'Neill H, Kaur M, Ferrins L, Schmidt J, Reichard W, Surendranathan S, Parvathareddy J, Phillips L, Rainville C, Sterner D, Kumaran D, Andi B, Babnigg G, Moriarty N, Adams P, Joachimiak A, Hurst B, Kumar S, Butt T, Jonsson C, Wakatsuki S, Galanie S, Head M, Parks J. Potent and Selective Covalent Inhibition of the Papain-like Protease from SARS-CoV-2. RESEARCH SQUARE 2022:rs.3.rs-1840200. [PMID: 35898342 PMCID: PMC9327629 DOI: 10.21203/rs.3.rs-1840200/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
Collapse
|
25
|
Chalcone-amide, a privileged backbone for the design and development of selective SARS-CoV/SARS-CoV-2 papain-like protease inhibitors. Eur J Med Chem 2022; 240:114572. [PMID: 35797899 PMCID: PMC9250826 DOI: 10.1016/j.ejmech.2022.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
The newly emerged coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic, is the closest relative of SARS-CoV with high genetic similarity. The papain-like protease (PLpro) is an important SARS-CoV/SARS-CoV-2 nonstructural protein that plays a critical role in some infection processes such as the generation of the functional replication complex, maturation of crude polyproteins, and regulation of the host antiviral immune responses. Therefore, the research to discover SARS-CoV-2 PLpro inhibitors could be a sensible strategy to obtain therapeutic agents for the treatment of COVID-19. Aiming to find SARS-CoV/SARS-CoV-2 PLpro inhibitors, various high throughput screenings (HTS) have been performed over the past two decades. Interestingly, the result of these efforts is the identification of hit/lead compounds whose structures have one important feature in common, namely having a chalcone-amide (N-benzylbenzamide) backbone. Structure-activity relationship (SAR) studies have shown that placing an (R)-configurated methyl group on the middle carbon adjacent to the amide group creates a unique backbone called (R)-methyl chalcone-amide, which dramatically increases PLpro inhibitory potency. Although this scaffold has not yet been introduced by medicinal chemists as a specific skeleton for the design of PLpro inhibitors, structural considerations show that the most reported PLpro inhibitors have this skeleton. This review suggests the (R)-methyl chalcone-amide scaffold as a key backbone for the design and development of selective SARS-CoV-2 PLpro inhibitors. Understanding the SAR and binding mode of these inhibitors in the active site of SARS-CoV-2 PLpro can aid the future development of anti-COVID-19 agents.
Collapse
|
26
|
Pospelov E, Boyko Y, Ioffe SL, Sukhorukov A. Synthesis of Bis(β‐oximinoalkyl)malonates and Their Catalytic Reductive Cyclization to Piperidines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evgeny Pospelov
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
27
|
Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022; 8:1147-1160. [PMID: 35609344 PMCID: PMC9159503 DOI: 10.1021/acsinfecdis.2c00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
There are currently relatively few small-molecule antiviral drugs that are either approved or emergency-approved for use against severe acute respiratory coronavirus 2 (SARS-CoV-2). One of these is remdesivir, which was originally repurposed from its use against Ebola. We evaluated three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg and identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. The in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS-CoV-2-infected mice, reducing lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 μM) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Andre S. Godoy
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Natalia Monakhova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Olga Riabova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Thomas R. Lane
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Vadim Makarov
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Flavio P. Veras
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Glaucius Oliva
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - José C. Alves-Filho
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| |
Collapse
|
28
|
Tan H, Hu Y, Jadhav P, Tan B, Wang J. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. J Med Chem 2022; 65:7561-7580. [PMID: 35620927 PMCID: PMC9159073 DOI: 10.1021/acs.jmedchem.2c00303] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The approval of vaccines and small-molecule antivirals is vital in combating the pandemic. The viral polymerase inhibitors remdesivir and molnupiravir and the viral main protease inhibitor nirmatrelvir/ritonavir have been approved by the U.S. FDA. However, the emergence of variants of concern/interest calls for additional antivirals with novel mechanisms of action. The SARS-CoV-2 papain-like protease (PLpro) mediates the cleavage of viral polyprotein and modulates the host's innate immune response upon viral infection, rendering it a promising antiviral drug target. This Perspective highlights major achievements in structure-based design and high-throughput screening of SARS-CoV-2 PLpro inhibitors since the beginning of the pandemic. Encouraging progress includes the design of non-covalent PLpro inhibitors with favorable pharmacokinetic properties and the first-in-class covalent PLpro inhibitors. In addition, we offer our opinion on the knowledge gaps that need to be filled to advance PLpro inhibitors to the clinic.
Collapse
Affiliation(s)
- Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
29
|
Ng TI, Correia I, Seagal J, DeGoey DA, Schrimpf MR, Hardee DJ, Noey EL, Kati WM. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses 2022; 14:961. [PMID: 35632703 PMCID: PMC9143071 DOI: 10.3390/v14050961] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recently emerged human coronavirus. COVID-19 vaccines have proven to be successful in protecting the vaccinated from infection, reducing the severity of disease, and deterring the transmission of infection. However, COVID-19 vaccination faces many challenges, such as the decline in vaccine-induced immunity over time, and the decrease in potency against some SARS-CoV-2 variants including the recently emerged Omicron variant, resulting in breakthrough infections. The challenges that COVID-19 vaccination is facing highlight the importance of the discovery of antivirals to serve as another means to tackle the pandemic. To date, neutralizing antibodies that block viral entry by targeting the viral spike protein make up the largest class of antivirals that has received US FDA emergency use authorization (EUA) for COVID-19 treatment. In addition to the spike protein, other key targets for the discovery of direct-acting antivirals include viral enzymes that are essential for SARS-CoV-2 replication, such as RNA-dependent RNA polymerase and proteases, as judged by US FDA approval for remdesivir, and EUA for Paxlovid (nirmatrelvir + ritonavir) for treating COVID-19 infections. This review presents an overview of the current status and future direction of antiviral drug discovery for treating SARS-CoV-2 infections, covering important antiviral targets such as the viral spike protein, non-structural protein (nsp) 3 papain-like protease, nsp5 main protease, and the nsp12/nsp7/nsp8 RNA-dependent RNA polymerase complex.
Collapse
Affiliation(s)
- Teresa I. Ng
- Virology Drug Discovery, AbbVie Inc., North Chicago, IL 60064, USA;
| | - Ivan Correia
- Department of Cell and Protein Sciences, Drug Discovery Science and Technology, AbbVie Inc., Worcester, MA 01605, USA;
| | - Jane Seagal
- Department of Biologics Discovery, Drug Discovery Science and Technology, AbbVie Inc., Worcester, MA 01605, USA;
| | - David A. DeGoey
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - Michael R. Schrimpf
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - David J. Hardee
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - Elizabeth L. Noey
- Department of Structural Biology, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA;
| | - Warren M. Kati
- Virology Drug Discovery, AbbVie Inc., North Chicago, IL 60064, USA;
| |
Collapse
|
30
|
Calleja DJ, Lessene G, Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem 2022; 10:876212. [PMID: 35559224 PMCID: PMC9086436 DOI: 10.3389/fchem.2022.876212] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of SARS-CoV-2 causing the COVID-19 pandemic, has highlighted how a combination of urgency, collaboration and building on existing research can enable rapid vaccine development to fight disease outbreaks. However, even countries with high vaccination rates still see surges in case numbers and high numbers of hospitalized patients. The development of antiviral treatments hence remains a top priority in preventing hospitalization and death of COVID-19 patients, and eventually bringing an end to the SARS-CoV-2 pandemic. The SARS-CoV-2 proteome contains several essential enzymatic activities embedded within its non-structural proteins (nsps). We here focus on nsp3, that harbours an essential papain-like protease (PLpro) domain responsible for cleaving the viral polyprotein as part of viral processing. Moreover, nsp3/PLpro also cleaves ubiquitin and ISG15 modifications within the host cell, derailing innate immune responses. Small molecule inhibition of the PLpro protease domain significantly reduces viral loads in SARS-CoV-2 infection models, suggesting that PLpro is an excellent drug target for next generation antivirals. In this review we discuss the conserved structure and function of PLpro and the ongoing efforts to design small molecule PLpro inhibitors that exploit this knowledge. We first discuss the many drug repurposing attempts, concluding that it is unlikely that PLpro-targeting drugs already exist. We next discuss the wealth of structural information on SARS-CoV-2 PLpro inhibition, for which there are now ∼30 distinct crystal structures with small molecule inhibitors bound in a surprising number of distinct crystallographic settings. We focus on optimisation of an existing compound class, based on SARS-CoV PLpro inhibitor GRL-0617, and recapitulate how new GRL-0617 derivatives exploit different features of PLpro, to overcome some compound liabilities.
Collapse
Affiliation(s)
- Dale J. Calleja
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Calleja DJ, Kuchel N, Lu BGC, Birkinshaw RW, Klemm T, Doerflinger M, Cooney JP, Mackiewicz L, Au AE, Yap YQ, Blackmore TR, Katneni K, Crighton E, Newman J, Jarman KE, Call MJ, Lechtenberg BC, Czabotar PE, Pellegrini M, Charman SA, Lowes KN, Mitchell JP, Nachbur U, Lessene G, Komander D. Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Front Chem 2022; 10:861209. [PMID: 35494659 PMCID: PMC9039177 DOI: 10.3389/fchem.2022.861209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.
Collapse
Affiliation(s)
- Dale J. Calleja
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Nathan Kuchel
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernadine G. C. Lu
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Richard W. Birkinshaw
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Theresa Klemm
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda E. Au
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Yu Q. Yap
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy R Blackmore
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biomedical Program, Parkville, VIC, Australia
| | - Kate E. Jarman
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J. Call
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernhard C. Lechtenberg
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Peter E. Czabotar
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kym N. Lowes
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey P. Mitchell
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Ueli Nachbur
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Chan WKB, Olson KM, Wotring JW, Sexton JZ, Carlson HA, Traynor JR. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci Rep 2022; 12:5320. [PMID: 35351926 PMCID: PMC8963407 DOI: 10.1038/s41598-022-08320-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins. We compared drugs between binding sites and filtered out compounds that had no reported activity in an in vitro screen against SARS-CoV-2 infection of human liver (Huh-7) cells. This identified 17 "high-confidence", and 97 "medium-confidence" drug-site pairs. The "high-confidence" group was subjected to molecular dynamics simulations to yield six compounds with stable binding poses at their optimal target proteins. Three drugs-amprenavir, levomefolic acid, and calcipotriol-were predicted to bind to 3 different sites on the spike protein, domperidone to the Mac1 domain of the non-structural protein (Nsp) 3, avanafil to Nsp15, and nintedanib to the nucleocapsid protein involved in packaging the viral RNA. Our "two-way" virtual docking screen also provides a framework to prioritize drugs for testing in future emergencies requiring rapidly available clinical drugs and/or treating diseases where a moderate number of targets are known.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Keith M Olson
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA.
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA.
| |
Collapse
|
33
|
Freitas BT, Ahiadorme DA, Bagul RS, Durie IA, Ghosh S, Hill J, Kramer NE, Murray J, O’Boyle BM, Onobun E, Pirrone MG, Shepard JD, Enos S, Subedi YP, Upadhyaya K, Tripp RA, Cummings BS, Crich D, Pegan SD. Exploring Noncovalent Protease Inhibitors for the Treatment of Severe Acute Respiratory Syndrome and Severe Acute Respiratory Syndrome-Like Coronaviruses. ACS Infect Dis 2022; 8:596-611. [PMID: 35199517 PMCID: PMC8887654 DOI: 10.1021/acsinfecdis.1c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/21/2022]
Abstract
Over the last 20 years, both severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 have transmitted from animal hosts to humans causing zoonotic outbreaks of severe disease. Both viruses originate from a group of betacoronaviruses known as subgroup 2b. The emergence of two dangerous human pathogens from this group along with previous studies illustrating the potential of other subgroup 2b members to transmit to humans has underscored the need for antiviral development against them. Coronaviruses modify the host innate immune response in part through the reversal of ubiquitination and ISGylation with their papain-like protease (PLpro). To identify unique or overarching subgroup 2b structural features or enzymatic biases, the PLpro from a subgroup 2b bat coronavirus, BtSCoV-Rf1.2004, was biochemically and structurally evaluated. This evaluation revealed that PLpros from subgroup 2b coronaviruses have narrow substrate specificity for K48 polyubiquitin and ISG15 originating from certain species. The PLpro of BtSCoV-Rf1.2004 was used as a tool alongside PLpro of CoV-1 and CoV-2 to design 30 novel noncovalent drug-like pan subgroup 2b PLpro inhibitors that included determining the effects of using previously unexplored core linkers within these compounds. Two crystal structures of BtSCoV-Rf1.2004 PLpro bound to these inhibitors aided in compound design as well as shared structural features among subgroup 2b proteases. Screening of these three subgroup 2b PLpros against this novel set of inhibitors along with cytotoxicity studies provide new directions for pan-coronavirus subgroup 2b antiviral development of PLpro inhibitors.
Collapse
Affiliation(s)
- Brendan T. Freitas
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Daniil A. Ahiadorme
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Rahul S. Bagul
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Ian A. Durie
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Samir Ghosh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Jarvis Hill
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Naomi E. Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602, United States
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Brady M. O’Boyle
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Emmanuel Onobun
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Michael G. Pirrone
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Justin D. Shepard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Suzanne Enos
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Yagya P. Subedi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia 120 W. Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Scott D. Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, 92521, United States
| |
Collapse
|
34
|
Shen Z, Ratia K, Cooper L, Kong D, Lee H, Kwon Y, Li Y, Alqarni S, Huang F, Dubrovskyi O, Rong L, Thatcher G, Xiong R. Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. J Med Chem 2022; 65:2940-2955. [PMID: 34665619 PMCID: PMC8547495 DOI: 10.1021/acs.jmedchem.1c01307] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.
Collapse
Affiliation(s)
- Zhengnan Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Laura Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Microbiology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Deyu Kong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Youngjin Kwon
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Saad Alqarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Fei Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Oleksii Dubrovskyi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Gregory Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| |
Collapse
|
35
|
Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Front Chem 2022; 9:819165. [PMID: 35186898 PMCID: PMC8850931 DOI: 10.3389/fchem.2021.819165] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of severe acute respiratory syndrome (SARS-CoV-2) in 2019 marked the third occurrence of a highly pathogenic coronavirus in the human population since 2003. As the death toll surpasses 5 million globally and economic losses continue, designing drugs that could curtail infection and disease progression is critical. In the US, three highly effective Food and Drug Administration (FDA)-authorized vaccines are currently available, and Remdesivir is approved for the treatment of hospitalized patients. However, moderate vaccination rates and the sustained evolution of new viral variants necessitate the ongoing search for new antivirals. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation, and suppression of host innate immune responses. Knowledge of inhibitors and assays for viruses were quickly adopted for SARS-CoV-2 protease research. Potential candidates have been identified to show inhibitory effects against PLpro and Mpro, both in biochemical assays and viral replication in cells. These results encourage further optimizations to improve prophylactic and therapeutic efficacy. In this review, we examine the latest developments of potential small-molecule inhibitors and peptide inhibitors for PLpro and Mpro, and how structural biology greatly facilitates this process.
Collapse
Affiliation(s)
- Zongyang Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kristin E. Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lijia Jia
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shaun K. Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
36
|
Bao X, Li P, Yang Y, Wu N, Yan Y, An L, Tian G. Design, Synthesis, and Biological Activity Analysis of Novel Quinazolinyl Ether Derivatives Containing Piperidinamide Structure. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Marciniec K, Beberok A, Boryczka S, Wrześniok D. The application of in silico experimental model in the assessment of ciprofloxacin and levofloxacin interaction with main SARS-CoV-2 targets: S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLpro)-preliminary molecular docking analysis. Pharmacol Rep 2021; 73:1765-1780. [PMID: 34052981 PMCID: PMC8164684 DOI: 10.1007/s43440-021-00282-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified at the end of 2019. Despite growing understanding of SARS-CoV-2 in virology as well as many molecular studies, except remdesivir, no specific anti-SARS-CoV-2 drug has been officially approved. METHODS In the present study molecular docking technique was applied to test binding affinity of ciprofloxacin and levofloxacin-two commercially available fluoroquinolones, to SARS-CoV-2 S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLPRO). Chloroquine and dexamethasone were used as reference positive controls. RESULTS When analyzing the molecular docking data it was noticed that ciprofloxacin and levofloxacin possess lower binding energy with S protein as compared to the references. In the case of TMPRSS2 protein and PLPRO protease the best docked ligand was levofloxacin and in the case of E proteins and RNA-dependent RNA polymerase the best docked ligands were levofloxacin and dexamethasone. Moreover, a molecular dynamics study also reveals that ciprofloxacin and levofloxacin form a stable complex with E- and TMPRSS2 proteins, RNA polymerase and papain-like protease (PLPRO). CONCLUSIONS The revealed data indicate that ciprofloxacin and levofloxacin could interact and potentially inhibit crucial SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
38
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
39
|
Ghosh AK, Raghavaiah J, Shahabi D, Yadav M, Anson BJ, Lendy EK, Hattori SI, Higashi-Kuwata N, Mitsuya H, Mesecar AD. Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure-Activity Relationship, and X-ray Structural Studies. J Med Chem 2021; 64:14702-14714. [PMID: 34528437 PMCID: PMC8457330 DOI: 10.1021/acs.jmedchem.1c01214] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/31/2022]
Abstract
Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 μM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 μM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jakka Raghavaiah
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dana Shahabi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Monika Yadav
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brandon J. Anson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Emma K. Lendy
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shin-ichiro Hattori
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Nobuyo Higashi-Kuwata
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Hiroaki Mitsuya
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo 162-8655, Japan
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Algethami FK, Cherif M, Jlizi S, Ben Hamadi N, Romdhane A, Elamin MR, Alghamdi MA, Ben Jannet H. Design, Microwave-Assisted Synthesis and In Silico Prediction Study of Novel Isoxazole Linked Pyranopyrimidinone Conjugates as New Targets for Searching Potential Anti-SARS-CoV-2 Agents. Molecules 2021; 26:molecules26206103. [PMID: 34684683 PMCID: PMC8537412 DOI: 10.3390/molecules26206103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
A series of novel naphthopyrano[2,3-d]pyrimidin-11(12H)-one containing isoxazole nucleus 4 was synthesized under microwave irradiation and classical conditions in moderate to excellent yields upon 1,3-dipolar cycloaddition reaction using various arylnitrile oxides under copper(I) catalyst. A one-pot, three-component reaction, N-propargylation and Dimroth rearrangement were used as the key steps for the preparation of the dipolarophiles3. The structures of the synthesized compounds were established by 1H NMR, 13C NMR and HRMS-ES means. The present study aims to also predict the theoretical assembly of the COVID-19 protease (SARS-CoV-2 Mpro) and to discover in advance whether this protein can be targeted by the compounds 4a–1 and thus be synthesized. The docking scores of these compounds were compared to those of the co-crystallized native ligand inhibitor (N3) which was used as a reference standard. The results showed that all the synthesized compounds (4a–l) gave interesting binding scores compared to those of N3 inhibitor. It was found that compounds 4a, 4e and 4i achieved greatly similar binding scores and modes of interaction than N3, indicating promising affinity towards SARS-CoV-2 Mpro. On the other hand, the derivatives 4k, 4h and 4j showed binding energy scores (−8.9, −8.5 and −8.4 kcal/mol, respectively) higher than the Mpro N3 inhibitor (−7.0 kcal/mol), revealing, in their turn, a strong interaction with the target protease, although their interactions were not entirely comparable to that of the reference N3.
Collapse
Affiliation(s)
- Faisal K. Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (N.B.H.); (M.R.E.); (M.A.A.)
- Correspondence: (F.K.A.); (H.B.J.)
| | - Maher Cherif
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.C.); (S.J.); (A.R.)
| | - Salma Jlizi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.C.); (S.J.); (A.R.)
| | - Naoufel Ben Hamadi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (N.B.H.); (M.R.E.); (M.A.A.)
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.C.); (S.J.); (A.R.)
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.C.); (S.J.); (A.R.)
| | - Mohamed R. Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (N.B.H.); (M.R.E.); (M.A.A.)
| | - Mashael A. Alghamdi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (N.B.H.); (M.R.E.); (M.A.A.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.C.); (S.J.); (A.R.)
- Correspondence: (F.K.A.); (H.B.J.)
| |
Collapse
|
41
|
Alabbas AB, Alamri MA. Analyzing the Effect of Mutations in SARS-CoV2 Papain-Like Protease from Saudi Isolates on Protein Structure and Drug-Protein Binding: Molecular Modelling and Dynamics Studies. Saudi J Biol Sci 2021; 29:526-533. [PMID: 34548835 PMCID: PMC8447498 DOI: 10.1016/j.sjbs.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/09/2023] Open
Abstract
The continuous and rapid development of the severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) virus remains a health concern
especially with the emergence of numerous variants and mutations worldwide. As
with other RNA viruses, SARS-CoV-2 has a genetically high mutation rate. These
mutations have an impact on the virus characteristics, including
transmissibility, antigenicity and development of drug and vaccine resistance.
This work was pursued to identify the differences that exist in the papain-like
protease (PLPro) from 58 Saudi isolates in comparison to the
first reported sequence from Wuhan, China and determine their implications on
protein structure and the inhibitor binding. PLpro is a key
protease enzyme for the host cells invasion and viral proteolytic cleavage,
hence, it emerges as a valuable antiviral therapeutic target. Two mutations were
identified including D108G and A249V and shown to increase the molecular
flexibility of PLPro protein and alter the protein stability,
particularly with D108G mutation. The effect of these mutations on the stability
and dynamic behavior of PLPro structures as well as their
effect on the binding of a known inhibitor; GRL0617 were further investigated by
molecular docking and dynamic simulation.
Collapse
Affiliation(s)
- Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
42
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
43
|
Ghosh K, Amin SA, Gayen S, Jha T. Unmasking of crucial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. J Mol Struct 2021; 1237:130366. [PMID: 33814612 PMCID: PMC7997030 DOI: 10.1016/j.molstruc.2021.130366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022]
Abstract
Fragment based drug discovery (FBDD) by the aid of different modelling techniques have been emerged as a key drug discovery tool in the area of pharmaceutical science and technology. The merits of employing these methods, in place of other conventional molecular modelling techniques, endorsed clear detection of the possible structural fragments present in diverse set of investigated compounds and can create alternate possibilities of lead optimization in drug discovery. In this work, two fragment identification tools namely SARpy and Laplacian-corrected Bayesian analysis were used for previous SARS-CoV PLpro and 3CLpro inhibitors. A robust and predictive SARpy based fragments identification was performed which have been validated further by Laplacian-corrected Bayesian model. These comprehensive approaches have advantages since fragments are straight forward to interpret. Moreover, distinguishing the key molecular features (with respect to ECFP_6 fingerprint) revealed good or bad influences for the SARS-CoV protease inhibitory activities. Furthermore, the identified fragments could be implemented in the medicinal chemistry endeavors of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
44
|
Srivastava V, Ahmad A. New perspective towards therapeutic regimen against SARS-CoV-2 infection. J Infect Public Health 2021; 14:852-862. [PMID: 34118735 PMCID: PMC8152204 DOI: 10.1016/j.jiph.2021.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing enormous loss of human life owing to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has led to a global crisis ranging from the collapse of health - care systems to socio-economic instability. As SARS-CoV-2 is a novel virus, very little information is available from researchers and therefore, a rigorous effort is required to decode its pathogenicity. There are no licenced treatment options available for treating SARS-CoV-2 infections and the development of a new antiviral drug targeting coronavirus cannot happen soon. Consequently, drug repurposing is a promising solution for combating the present pandemic. In this review, we have thoroughly discussed all the proteins encoded by the SARS-CoV-2 genome; their importance in pathogenicity and their potential role in drug discovery. Also, the budding threat of co-infections by other pathogenic microbes has been highlighted. Furthermore, the advances made in the medicinal field for the treatment and prevention of this viral infection is explained. Altogether, this review will provide some insightful discussions about this infectious disease and will meet certain of the knowledge gaps which exist by presenting an exhaustive and extensive scientific report on the ongoing mission for COVID-19 drug discovery.
Collapse
Affiliation(s)
- Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| |
Collapse
|
45
|
Small molecules as tools for functional assessment of deubiquitinating enzyme function. Cell Chem Biol 2021; 28:1090-1100. [PMID: 34089649 DOI: 10.1016/j.chembiol.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Deubiquitinating enzymes (DUBs) are a largely understudied and untapped resource in the toolkit of protein degradation functionalities. They comprise a large repertoire of enzymes that remove ubiquitin from substrates in a variety of cellular and pathophysiological contexts, and have enormous potential for research and clinical use. It is only within the last 5 years that potent, selective, and well-characterized small-molecule inhibitors of DUBs have been described. These compounds are now being used to study the biological roles of DUBs. Here, we describe downstream applications of small-molecule inhibitors for studying DUBs and provide a framework for future studies. We highlight recent examples of using these inhibitors to confirm and explore the role of these enzymes in both normal and pathological contexts. These studies represent the first steps in the burgeoning field of pharmacological and chemoproteomic studies of DUBs, which will be critical for the continued advancement of DUB field.
Collapse
|
46
|
Kim CH. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front Pharmacol 2021; 12:590509. [PMID: 34122058 PMCID: PMC8194829 DOI: 10.3389/fphar.2021.590509] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), a β-coronavirus, is the cause of the recently emerged pandemic and worldwide outbreak of respiratory disease. Researchers exchange information on COVID-19 to enable collaborative searches. Although there is as yet no effective antiviral agent, like tamiflu against influenza, to block SARS-CoV-2 infection to its host cells, various candidates to mitigate or treat the disease are currently being investigated. Several drugs are being screened for the ability to block virus entry on cell surfaces and/or block intracellular replication in host cells. Vaccine development is being pursued, invoking a better elucidation of the life cycle of the virus. SARS-CoV-2 recognizes O-acetylated neuraminic acids and also several membrane proteins, such as ACE2, as the result of evolutionary switches of O-Ac SA recognition specificities. To provide information related to the current development of possible anti-SARS-COV-2 viral agents, the current review deals with the known inhibitory compounds with low molecular weight. The molecules are mainly derived from natural products of plant sources by screening or chemical synthesis via molecular simulations. Artificial intelligence-based computational simulation for drug designation and large-scale inhibitor screening have recently been performed. Structure-activity relationship of the anti-SARS-CoV-2 natural compounds is discussed.
Collapse
Affiliation(s)
- Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkhwan University, Suwon, South Korea
| |
Collapse
|
47
|
Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021; 93:2722-2734. [PMID: 33475167 PMCID: PMC8014870 DOI: 10.1002/jmv.26814] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, spreads rapidly and since the discovery of the first COVID-19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS-CoV and SARS-CoV-2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID-19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C-like protease (3CLpro ) or papain-like protease (PLpro ).
Collapse
Affiliation(s)
- Varada Anirudhan
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, Biophysics Core at Research Resources CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Han Cheng
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Laura Cooper
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Lijun Rong
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
48
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|
49
|
Wang R, Stephen P, Tao Y, Zhang W, Lin SX. Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic. Biomed Pharmacother 2021; 137:111232. [PMID: 33486202 PMCID: PMC7834004 DOI: 10.1016/j.biopha.2021.111232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
The global spread of COVID-19 constitutes the most dangerous pandemic to emerge during the last one hundred years. About seventy-nine million infections and more than 1.7 million death have been reported to date, along with destruction of the global economy. With the uncertainty evolved by alarming level of genome mutations, coupled with likelihood of generating only a short lived immune response by the vaccine injections, the identification of antiviral drugs for direct therapy is the need of the hour. Strategies to inhibit virus infection and replication focus on targets such as the spike protein and non-structural proteins including the highly conserved RNA-dependent-RNA-polymerase, nucleotidyl-transferases, main protease and papain-like proteases. There is also an indirect option to target the host cell recognition systems such as angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2, host cell expressed CD147, and the host furin. A drug search strategy consensus in tandem with analysis of currently available information is extremely important for the rapid identification of anti-viral. An unprecedented display of cooperation among the scientific community regarding SARS-CoV-2 research has resulted in the accumulation of an enormous amount of literature that requires curation. Drug repurposing and drug combinations have drawn tremendous attention for rapid therapeutic application, while high throughput screening and virtual searches support de novo drug identification. Here, we examine how certain approved drugs targeting different viruses can play a role in combating this new virus and analyze how they demonstrate efficacy under clinical assessment. Suggestions on repurposing and de novo strategies are proposed to facilitate the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ruixuan Wang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Laval University, Quebec City, Quebec, G1V 4G2, Canada
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Laval University, Quebec City, Quebec, G1V 4G2, Canada
| | - Yi Tao
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Laval University, Quebec City, Quebec, G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Laval University, Quebec City, Quebec, G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Laval University, Quebec City, Quebec, G1V 4G2, Canada.
| |
Collapse
|
50
|
Hammerschmidt SJ, Müller P, Schirmeister T. SARS-CoV-PLpro-Inhibitoren als mögliche Breitspektrum-Virostatika. BIOSPEKTRUM 2021; 27:254-256. [PMID: 33994673 PMCID: PMC8111366 DOI: 10.1007/s12268-021-1576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe SARS-CoV-encoded papain-like cysteine protease (PLpro) plays crucial roles in viral replication and maturation processes. It is required to cleave the precursor polyproteins into functional proteins. Thus, it is considered to be a promising target for developing specific drugs. For rational optimization of hit compounds, information about the structure-activity relationship (SAR) is fundamental. Herein, we characterize isoindolines as a new class of PLpro inhibitors.
Collapse
Affiliation(s)
- Stefan Josef Hammerschmidt
- Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, D-55128 Mainz, Deutschland
| | - Patrick Müller
- Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, D-55128 Mainz, Deutschland
| | - Tanja Schirmeister
- Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, D-55128 Mainz, Deutschland
| |
Collapse
|