1
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. A bitopic agonist bound to the dopamine 3 receptor reveals a selectivity site. Nat Commun 2024; 15:7759. [PMID: 39237617 PMCID: PMC11377762 DOI: 10.1038/s41467-024-51993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R:GαOβγ complex bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Antonina L Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
2
|
Lee KH, Shi L. Unraveling Activation-Related Rearrangements and Intrinsic Divergence from Ligand-Specific Conformational Changes of the Dopamine D3 and D2 Receptors. J Chem Inf Model 2024; 64:1778-1793. [PMID: 38454785 DOI: 10.1021/acs.jcim.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
3
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. Structure of the dopamine D3 receptor bound to a bitopic agonist reveals a new specificity site in an expanded allosteric pocket. RESEARCH SQUARE 2023:rs.3.rs-3433207. [PMID: 38196573 PMCID: PMC10775388 DOI: 10.21203/rs.3.rs-3433207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R coupled to a GO heterotrimer and bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide new insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
4
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Tian GL, Hsieh CJ, Taylor M, Lee JY, Riad AA, Luedtke RR, Mach RH. Synthesis of bitopic ligands based on fallypride and evaluation of their affinity and selectivity towards dopamine D 2 and D 3 receptors. Eur J Med Chem 2023; 261:115751. [PMID: 37688938 PMCID: PMC10841072 DOI: 10.1016/j.ejmech.2023.115751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the β-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.
Collapse
Affiliation(s)
- Gui-Long Tian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aladdin A Riad
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Robert H Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Lee KH, Shi L. Unraveling activation-related rearrangements and intrinsic divergence from ligand-induced conformational changes of the dopamine D3 and D2 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566699. [PMID: 38014309 PMCID: PMC10680602 DOI: 10.1101/2023.11.11.566699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Effective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors including TM5e and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found pronounced outward tilting of TM6e in the D2R compared to the D3R in both experimental structures and simulations with ligands in different scaffolds. This tilting was drastically reduced in the simulations of the receptors bound with nonselective full agonist quinpirole, suggesting a misleading impact of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may obscure intrinsic divergence. In addition, our analysis showed that the impact of the nonconserved TM1 propagated to conserved Trp7.40 and Glu2.65, both are ligand binding residues. We also found that the D2R exhibited heightened flexibility compared to the D3R in the extracellular portions of TMs 5, 6, and 7, potentially associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting D2R or D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Hetzler B, Donthamsetti P, Peitsinis Z, Stanley C, Trauner D, Isacoff EY. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. J Am Chem Soc 2023; 145:18778-18788. [PMID: 37586061 PMCID: PMC10472511 DOI: 10.1021/jacs.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.
Collapse
Affiliation(s)
- Belinda
E. Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant Donthamsetti
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zisis Peitsinis
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Cherise Stanley
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry and Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ehud Y. Isacoff
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Lee KH, Manning JJ, Javitch J, Shi L. A Novel "Activation Switch" Motif Common to All Aminergic Receptors. J Chem Inf Model 2023; 63:5001-5017. [PMID: 37540602 PMCID: PMC10695015 DOI: 10.1021/acs.jcim.3c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aminergic receptors are G protein-coupled receptors (GPCRs) that transduce signals from small endogenous biogenic amines to regulate intracellular signaling pathways. Agonist binding in the ligand binding pocket on the extracellular side opens and prepares a cavity on the intracellular face of the receptors to interact with and activate G proteins and β-arrestins. Here, by reviewing and analyzing all available aminergic receptor structures, we seek to identify activation-related conformational changes that are independent of the specific scaffold of the bound agonist, which we define as "activation conformational changes" (ACCs). While some common intracellular ACCs have been well-documented, identifying common extracellular ACCs, including those in the ligand binding pocket, is complicated by local adjustments to different ligand scaffolds. Our analysis shows no common ACCs at the extracellular ends of the transmembrane helices. Furthermore, the restricted access to the ligand binding pocket identified previously in some receptors is not universal. Notably, the Trp6.48 toggle switch and the Pro5.50-Ile3.40-Phe6.44 (PIF) motif at the bottom of the ligand binding pocket have previously been proposed to mediate the conformational consequences of ligand binding to the intracellular side of the receptors. Our analysis shows that common ACCs in the ligand binding pocket are associated with the PIF motif and nearby residues, including Trp6.48, but fails to support a shared rotamer toggle associated with activation. However, we identify two common rearrangements between the extracellular and middle subsegments, and propose a novel "activation switch" motif common to all aminergic receptors. This motif includes the middle subsegments of transmembrane helices 3, 5, and 6 and integrates both the PIF motif and Trp6.48.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jamie J. Manning
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jonathan Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Bonifazi A, Saab E, Sanchez J, Nazarova AL, Zaidi SA, Jahan K, Katritch V, Canals M, Lane JR, Newman AH. Pharmacological and Physicochemical Properties Optimization for Dual-Target Dopamine D 3 (D 3R) and μ-Opioid (MOR) Receptor Ligands as Potentially Safer Analgesics. J Med Chem 2023; 66:10304-10341. [PMID: 37467430 PMCID: PMC11091828 DOI: 10.1021/acs.jmedchem.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A new generation of dual-target μ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood-brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Saheem A. Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Khorshada Jahan
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
10
|
Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM, Felder CC, Valant C, Dror RO. Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol 2023; 19:805-814. [PMID: 36782010 PMCID: PMC10299909 DOI: 10.1038/s41589-022-01247-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/21/2022] [Indexed: 02/15/2023]
Abstract
A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yianni Laloudakis
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Nicholas W Barnes
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Center, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
12
|
Aranha CMSQ, Reiner-Link D, Leitzbach LR, Lopes FB, Stark H, Fernandes JPS. Multitargeting approaches to cognitive impairment: Synthesis of aryl-alkylpiperazines and assessment at cholinesterases, histamine H 3 and dopamine D 3 receptors. Bioorg Med Chem 2023; 78:117132. [PMID: 36542960 DOI: 10.1016/j.bmc.2022.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Multitargeting ligands on enzymes and receptors may generate a profile for a potential treatment of cognitive impairment. Considering this, a set of 21 substituted aryl-alkyl-piperazines were designed, prepared and tested for their binding affinities at histamine H3 and dopamine D3 receptors (H3R and D3R, respectively) as well as acetyl- and butyrylcholinesterases (AChE/BChE) as potentially synergistic profile. Initial screening of the compounds at H3R and D3R was done at 1 or 10 µM and 100 µM at AChE and BChE assays. The most promising compounds were then evaluated in full concentration-response curves to estimate the Ki and IC50 values. Results showed that several compounds were ligands at H3R (n = 10), D3R (n = 6), AChE (n = 3), and BChE (n = 9). Compounds LINS05006 (Ki H3R 2.8 µM; D3R 0.7 µM; IC50 BChE 26.3 µM) and LINS05015 (Ki H3R 1.1 µM; D3R 3.1 µM; IC50 AChE 97.8 µM; BChE 43.7 µM) are highlighted since presented affinity in three different. These results suggest that methylpiperazine moiety led to balanced activity at all three classes of targets, and longer linker provided the best affinities. These compounds presented high ligand efficiency values (LE > 0.3) and may have adequate pharmacokinetic profile as suggested by calculated physicochemical properties.
Collapse
Affiliation(s)
- Cecília M S Q Aranha
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - David Reiner-Link
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Luisa R Leitzbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Flavia B Lopes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
13
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Zhao N, Wu W, Wang Y, Song K, Chen G, Chen Y, Wang R, Xu J, Cui K, Chen H, Tan W, Zhang J, Xiao Z. DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Kim HY, Lee JY, Hsieh CJ, Taylor M, Luedtke RR, Mach RH. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D 3-Selective Antagonists. Int J Mol Sci 2022; 24:432. [PMID: 36613875 PMCID: PMC9820167 DOI: 10.3390/ijms24010432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Previous studies have confirmed that the binding of D3 receptor antagonists is competitively inhibited by endogenous dopamine despite excellent binding affinity for D3 receptors. This result urges the development of an alternative scaffold that is capable of competing with dopamine for binding to the D3 receptor. Herein, an SAR study was conducted on metoclopramide that incorporated a flexible scaffold for interaction with the secondary binding site of the D3 receptor. The alteration of benzamide substituents and secondary binding fragments with aryl carboxamides resulted in excellent D3 receptor affinities (Ki = 0.8-13.2 nM) with subtype selectivity to the D2 receptor ranging from 22- to 180-fold. The β-arrestin recruitment assay revealed that 21c with 4-(pyridine-4-yl)benzamide can compete well against dopamine with the highest potency (IC50 = 1.3 nM). Computational studies demonstrated that the high potency of 21c and its analogs was the result of interactions with the secondary binding site of the D3 receptor. These compounds also displayed minimal effects for other GPCRs except moderate affinity for 5-HT3 receptors and TSPO. The results of this study revealed that a new class of selective D3 receptor antagonists should be useful in behavioral pharmacology studies and as lead compounds for PET radiotracer development.
Collapse
Affiliation(s)
- Ho Young Kim
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Ji Youn Lee
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Chia-Ju Hsieh
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Kaczor AA, Wróbel TM, Bartuzi D. Allosteric Modulators of Dopamine D 2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022; 28:molecules28010178. [PMID: 36615372 PMCID: PMC9822192 DOI: 10.3390/molecules28010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topologically distinct from orthosteric sites, exhibit a number of advantages. They are more selective, safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as schizophrenia and Parkinson's disease. In this review, an insightful summary of current research on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of ligand-receptor interactions to their synthesis.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence: ; Tel.: +48-81-448-72-73
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
17
|
Legros C, Rojas A, Dupré C, Brasseur C, Riest‐Fery I, Muller O, Ortuno J, Nosjean O, Guenin S, Ferry G, Boutin JA. Approach to the specificity and selectivity between D2 and D3 receptors by mutagenesis and binding experiments part I: Expression and characterization of D2 and D3 receptor mutants. Protein Sci 2022; 31:e4459. [PMID: 36177735 PMCID: PMC9667827 DOI: 10.1002/pro.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Rojas
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Isabelle Riest‐Fery
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Muller
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | | | - Olivier Nosjean
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Sophie‐Pénélope Guenin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Jean A. Boutin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Laboratory of Neuronal and Neuroendocrine Differentiation and CommunicationUniversity of NormandyRouenFrance
| |
Collapse
|
18
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Di Martino RMC, Cavalli A, Bottegoni G. Dopamine D3 receptor ligands: a patent review (2014-2020). Expert Opin Ther Pat 2022; 32:605-627. [PMID: 35235753 DOI: 10.1080/13543776.2022.2049240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Compelling evidence identified D3 dopamine receptor (D3R) as a suitable target for therapeutic intervention on CNS-associated disorders, cancer and other conditions. Several efforts have been made toward developing potent and selective ligands for modulating signalling pathways operated by these GPCRs. The rational design of D3R ligands endowed with a pharmacologically relevant profile has traditionally not encountered much support from computational methods due to a very limited knowledge of the receptor structure and of its conformational dynamics. We believe that recent progress in structural biology will change this state of affairs in the next decade. AREAS COVERED This review provides an overview of the recent (2014-2020) patent literature on novel classes of D3R ligands developed within the framework of CNS-related diseases, cancer and additional conditions. When possible, an in-depth description of both in vitro and in vivo generated data is presented. New therapeutic applications of known molecules with activity at D3R are discussed. EXPERT OPINION Building on current knowledge, future D3R-focused drug discovery campaigns will be propelled by a combination of unprecedented availability of structural information with advanced computational and analytical methods. The design of D3R ligands with the sought activity, efficacy and selectivity profile will become increasingly more streamlined.
Collapse
Affiliation(s)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, Urbino University "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy.,Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
20
|
Cai J, Wang Y, Chen X, Ji M. A new class of Benzothiophene morpholine analogues with high selectivity and affinity were designed and evaluated for anti-drug addiction. Chem Biol Drug Des 2022; 99:634-649. [PMID: 35148466 DOI: 10.1111/cbdd.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
Abstract
To probe the mechanism of dopamine receptors in drug addiction and look for potential new methods for treating this disease, we have designed and synthesized benzothiophene morpholine analogues that were considered as dopamine D3 receptor selective ligands. Radioligand binding assay was used to determine the binding affinity of target compounds. Members of this class have great selectivity and binding affinity in D3 receptor. In addition, the ability of these compounds to mitigate the symptoms of addiction from opioids was investigated in animal behavior patterns, and we have found that two compounds (18a and 18d) have good affinity in the D3R and exhibit the efficacy of anti-drug addiction in morphine dependent mice induced by naloxone.
Collapse
Affiliation(s)
- Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Yuhong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Xixi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
21
|
Juza R, Vojtechova I, Stefkova-Mazochova K, Dehaen W, Petrasek T, Prchal L, Kobrlova T, Janousek J, Vlcek P, Mezeiova E, Svozil D, Karasova JZ, Pejchal J, Stark H, Satala G, Bojarski AJ, Kubacka M, Mogilski S, Randakova A, Musilek K, Soukup O, Korabecny J. Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment. Eur J Med Chem 2022; 232:114193. [DOI: 10.1016/j.ejmech.2022.114193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022]
|
22
|
Allosteric modulation of dopamine D 2L receptor in complex with G i1 and G i2 proteins: the effect of subtle structural and stereochemical ligand modifications. Pharmacol Rep 2022; 74:406-424. [PMID: 35064921 PMCID: PMC8964653 DOI: 10.1007/s43440-021-00352-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Background Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson’s disease. Methods To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. Results Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. Conclusions Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00352-x.
Collapse
|
23
|
Oh T, Daadi ES, Kim J, Daadi EW, Chen PJ, Roy-Choudhury G, Bohmann J, Blass BE, Daadi MM. Dopamine D3 receptor ligand suppresses the expression of levodopa-induced dyskinesia in nonhuman primate model of parkinson's disease. Exp Neurol 2022; 347:113920. [PMID: 34762921 DOI: 10.1016/j.expneurol.2021.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022]
Abstract
Parkinson's disease (PD) is a complex multisystem, chronic and so far incurable disease with significant unmet medical needs. The incidence of PD increases with aging and the expected burden will continue to escalate with our aging population. Since its discovery in the 1961 levodopa has remained the gold standard pharmacotherapy for PD. However, the progressive nature of the neurodegenerative process in and beyond the nigrostriatal system causes a multitude of side effects, including levodopa-induced dyskinesia within 5 years of therapy. Attenuating dyskinesia has been a significant challenge in the clinical management of PD. We report on a small molecule that eliminates the expression of levodopa-induced dyskinesia and significantly improves PD-like symptoms. The lead compound PD13R we discovered is a dopamine D3 receptor partial agonist with high affinity and selectivity, orally active and with desirable drug-like properties. Future studies are aimed at developing this lead compound for treating PD patients with dyskinesia.
Collapse
Affiliation(s)
- Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elyas S Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Etienne W Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Gourav Roy-Choudhury
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA; Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
24
|
Battiti FO, Zaidi SA, Katritch V, Newman AH, Bonifazi A. Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D 2 or D 3 Receptor Agonists. J Med Chem 2021; 64:16088-16105. [PMID: 34699207 PMCID: PMC11091832 DOI: 10.1021/acs.jmedchem.1c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Linkers are emerging as a key component in regulating the pharmacology of bitopic ligands directed toward G-protein coupled receptors (GPCRs). In this study, the role of regio- and stereochemistry in cyclic aliphatic linkers tethering well-characterized primary and secondary pharmacophores targeting dopamine D2 and D3 receptor subtypes (D2R and D3R, respectively) is described. We introduce several potent and selective D2R (rel-trans-16b; D2R Ki = 4.58 nM) and D3R (rel-cis-14a; D3R Ki = 5.72 nM) agonists while modulating subtype selectivity in a stereospecific fashion, transferring D2R selectivity toward D3R via inversion of the stereochemistry around these cyclic aliphatic linkers [e.g., (-)-(1S,2R)-43 and (+)-(1R,2S)-42]. Pharmacological observations were supported with extensive molecular docking studies. Thus, not only is it an innovative approach to modulate the pharmacology of dopaminergic ligands described, but a new class of optically active cyclic linkers are also introduced, which can be used to expand the bitopic drug design approach toward other GPCRs.
Collapse
Affiliation(s)
- Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Saheem A. Zaidi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Vsevolod Katritch
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
25
|
Shaik AB, Boateng CA, Battiti FO, Bonifazi A, Cao J, Chen L, Chitsazi R, Ravi S, Lee KH, Shi L, Newman AH. Structure Activity Relationships for a Series of Eticlopride-Based Dopamine D 2/D 3 Receptor Bitopic Ligands. J Med Chem 2021; 64:15313-15333. [PMID: 34636551 PMCID: PMC9617622 DOI: 10.1021/acs.jmedchem.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Comfort A. Boateng
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jianjing Cao
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Rezvan Chitsazi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Saiprasad Ravi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
26
|
Chevillard F, Kelemen Á, Baker JG, Aranyodi VA, Balzer F, Kolb P, Keserű GM. Fragment evolution for GPCRs: the role of secondary binding sites in optimization. Chem Commun (Camb) 2021; 57:10516-10519. [PMID: 34550124 DOI: 10.1039/d1cc04636e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a docking-based fragment evolution approach that extends orthosteric fragments towards a less conserved secondary binding pocket of GPCRs. Evaluating 13 000 extensions for the β1- and β2-adrenergic receptors we synthesized and tested 112 bitopic molecules. Our results confirmed the positive contribution of the secondary binding pocket to both potency and selectivity optimizations.
Collapse
Affiliation(s)
- Florent Chevillard
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - Ádám Kelemen
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| | - Jillian G Baker
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vivien A Aranyodi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| | - Frank Balzer
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - Peter Kolb
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| |
Collapse
|
27
|
Design, synthesis and preliminary bioactivity evaluation of bitopic benzopyranomorpholine analogues as selective dopamine D3 receptor ligands as anti-drug addiction therapeutic agents. Bioorg Med Chem Lett 2021; 48:128269. [PMID: 34284107 DOI: 10.1016/j.bmcl.2021.128269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Three series of bitopic benzopyranomorpholine analogues were designed, synthesized, and evaluated as a novel class of selective ligands for the dopamine D3 receptor. Binding affinities of target compounds were determined using the method of radioligand binding assay. Most compounds demonstrated considerable binding affinities and selectivity for D3 receptor. Besides, the compounds were screened for their ability to alleviate withdrawal symptoms of opioid addiction in animal behavioral models. The results showed that compound 20h displayed nanomolar affinity for the D3R, and exhibited anti-drug addiction efficacy in the animal model of of naloxone-induced withdrawal symptoms in morphine-dependent mice.
Collapse
|
28
|
Cordone P, Namballa HK, Muniz B, Pal RK, Gallicchio E, Harding WW. New tetrahydroisoquinoline-based D 3R ligands with an o-xylenyl linker motif. Bioorg Med Chem Lett 2021; 42:128047. [PMID: 33882273 DOI: 10.1016/j.bmcl.2021.128047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
The effect of rigidification of the n-butyl linker region of tetrahydroisoquinoline-containing D3R ligands via inclusion of an o-xylenyl motif was examined in this study. Generally, rigidification with an o-xylenyl linker group reduces D3R affinity and negatively impacts selectivity versus D2R for compounds possessing a 6-methoxy-1,2,3,4,-tetrahydroisoquinolin-7-ol primary pharmacophore group. However, D3R affinity appears to be regulated by the primary pharmacophore group and high affinity D3R ligands with 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline primary pharmacophore groups were identified. The results of this study also indicate that D3R selectivity versus the σ2R is dictated by the benzamide secondary pharmacophore group, this being facilitated with 4-substituted benzamides. Compounds 5s and 5t were identified as high affinity (Ki < 4 nM) D3R ligands. Docking studies revealed that the added phenyl ring moiety interacts with the Cys181 in D3R which partially accounts for the strong D3R affinity of the ligands.
Collapse
Affiliation(s)
- Pierpaolo Cordone
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Bryant Muniz
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Rajat K Pal
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Emilio Gallicchio
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States.
| |
Collapse
|
29
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
30
|
Hayatshahi HS, Luedtke RR, Taylor M, Chen PJ, Blass BE, Liu J. Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. J Chem Inf Model 2021; 61:2829-2843. [PMID: 33988991 DOI: 10.1021/acs.jcim.1c00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the D3 dopamine receptor (D3R) is a promising pharmacotherapeutic strategy for the treatment of many disorders. The structure of the D3R is similar to the D2 dopamine receptor (D2R), especially in the transmembrane spanning regions that form the orthosteric binding site, making it difficult to identify D3R selective pharmacotherapeutic agents. Here, we examine the molecular basis for the high affinity D3R binding and D3R vs D2R binding selectivity of substituted phenylpiperazine thiopheneamides. We show that removing the thiophenearylamide portion of the ligand consistently decreases the affinity of these ligands at D3R, while not affecting their affinity at the D2R. Our long (>10 μs) molecular dynamics simulations demonstrated that both dopamine receptor subtypes adopt two major conformations that we refer to as closed or open conformations, with D3R sampling the open conformation more frequently than D2R. The binding of ligands with conjoined orthosteric-allosteric binding moieties causes the closed conformation to populate more often in the trajectories. Also, significant differences were observed in the extracellular loops (ECL) of these two receptor subtypes leading to the identification of several residues that contribute differently to the ligand binding for the two receptors that could potentially contribute to ligand binding selectivity. Our observations also suggest that the displacement of ordered water in the binding pocket of D3R contributes to the affinity of the compounds containing an allosteric binding motif. These studies provide a better understanding of how a bitopic mode of engagement can determine ligands that bind selectively to D2 and D3 dopamine receptor subtypes.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Peng-Jen Chen
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| |
Collapse
|
31
|
Chirality of Novel Bitopic Agonists Determines Unique Pharmacology at the Dopamine D3 Receptor. Biomolecules 2021; 11:biom11040570. [PMID: 33924613 PMCID: PMC8069330 DOI: 10.3390/biom11040570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The dopamine D2/D3 receptor (D2R/D3R) agonists are used as therapeutics for Parkinson's disease (PD) and other motor disorders. Selective targeting of D3R over D2R is attractive because of D3R's restricted tissue distribution with potentially fewer side-effects and its putative neuroprotective effect. However, the high sequence homology between the D2R and D3R poses a challenge in the development of D3R selective agonists. To address the ligand selectivity, bitopic ligands were designed and synthesized previously based on a potent D3R-preferential agonist PF592,379 as the primary pharmacophore (PP). This PP was attached to various secondary pharmacophores (SPs) using chemically different linkers. Here, we characterize some of these novel bitopic ligands at both D3R and D2R using BRET-based functional assays. The bitopic ligands showed varying differences in potencies and efficacies. In addition, the chirality of the PP was key to conferring improved D3R potency, selectivity, and G protein signaling bias. In particular, compound AB04-88 exhibited significant D3R over D2R selectivity, and G protein bias at D3R. This bias was consistently observed at various time-points ranging from 8 to 46 min. Together, the structure-activity relationships derived from these functional studies reveal unique pharmacology at D3R and support further evaluation of functionally biased D3R agonists for their therapeutic potential.
Collapse
|
32
|
Egyed A, Kelemen ÁA, Vass M, Visegrády A, Thee SA, Wang Z, de Graaf C, Brea J, Loza MI, Leurs R, Keserű GM. Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorg Chem 2021; 111:104832. [PMID: 33826962 DOI: 10.1016/j.bioorg.2021.104832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
In addition to the orthosteric binding pocket (OBP) of GPCRs, recent structural studies have revealed that there are several allosteric sites available for pharmacological intervention. The secondary binding pocket (SBP) of aminergic GPCRs is located in the extracellular vestibule of these receptors, and it has been suggested to be a potential selectivity pocket for bitopic ligands. Here, we applied a virtual screening protocol based on fragment docking to the SBP of the orthosteric ligand-receptor complex. This strategy was employed for a number of aminergic receptors. First, we designed dopamine D3 preferring bitopic compounds from a D2 selective orthosteric ligand. Next, we designed 5-HT2B selective bitopic compounds starting from the 5-HT1B preferring ergoline core of LSD. Comparing the serotonergic profiles of the new derivatives to that of LSD, we found that these derivatives became significantly biased towards the desired 5-HT2B receptor target. Finally, addressing the known limitations of H1 antihistamines, our protocol was successfully used to eliminate the well-known side effects related to the muscarinic M1 activity of amitriptyline while preserving H1 potency in some of the designed bitopic compounds. These applications highlight the usefulness of our new virtual screening protocol and offer a powerful strategy towards bitopic GPCR ligands with designed receptor profiles.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Ádám A Kelemen
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Márton Vass
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary; Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | | | - Stephanie A Thee
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Zhiyong Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Granta Park, Great Abington, Cambridge CB21 6DG, UK
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary.
| |
Collapse
|
33
|
Elek M, Djokovic N, Frank A, Oljacic S, Zivkovic A, Nikolic K, Stark H. Synthesis, in silico, and in vitro studies of novel dopamine D 2 and D 3 receptor ligands. Arch Pharm (Weinheim) 2021; 354:e2000486. [PMID: 33615541 DOI: 10.1002/ardp.202000486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Dopamine is an important neurotransmitter in the human brain and its altered concentrations can lead to various neurological diseases. We studied the binding of novel compounds at the dopamine D2 (D2 R) and D3 (D3 R) receptor subtypes, which belong to the D2 -like receptor family. The synthesis, in silico, and in vitro characterization of 10 dopamine receptor ligands were performed. Novel ligands were docked into the D2 R and D3 R crystal structures to examine the precise binding mode. A quantum mechanics/molecular mechanics study was performed to gain insights into the nature of the intermolecular interactions between the newly introduced pentafluorosulfanyl (SF5 ) moiety and D2 R and D3 R. A radioligand displacement assay determined that all of the ligands showed moderate-to-low nanomolar affinities at D2 R and D3 R, with a slight preference for D3 R, which was confirmed in the in silico studies. N-{4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl}-4-(pentafluoro-λ6-sulfanyl)benzamide (7i) showed the highest D3 R affinity and selectivity (pKi values of 7.14 [D2 R] and 8.42 [D3 R]).
Collapse
Affiliation(s)
- Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| |
Collapse
|
34
|
Appiah-Kubi P, Olotu FA, Soliman MES. Exploring the structural basis and atomistic binding mechanistic of the selective antagonist blockade at D 3 dopamine receptor over D 2 dopamine receptor. J Mol Recognit 2021; 34:e2885. [PMID: 33401335 DOI: 10.1002/jmr.2885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
More recently, there has been a paradigm shift toward selective drug targeting in the treatment of neurological disorders, including drug addiction, schizophrenia, and Parkinson's disease mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for D3 dopamine receptor (D3DR) over D2 dopamine receptor (D2DR) have been shown to attenuate drug-seeking behavior and associated side effects compared to non-subtype selective antagonists. However, high conservations among constituent residues of both proteins, particularly at the ligand-binding pockets, remain a challenge to therapeutic drug design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-QA31 which substantially inhibited D3DR with >180-fold selectivity over D2DR. Therefore, in this study, we seek to provide molecular and structural insights into these differential binding mechanistic using meta-analytic computational simulation methods. Findings revealed that R-VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, two non-conserved residues; Tyr361.39 and Ser18245.51 were identified in D3DR, based on their crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while van der Waals energies contributed majorly to their binding and stability. Structural analyses also revealed the distinct stabilizing effects of both compounds on D3DR secondary architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic of selectivity of the compounds, which may assist in the rational design of potential small molecules of the D2 -like dopamine family receptor subtype with improved potency and selectivity.
Collapse
Affiliation(s)
- Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo Andrew Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Novel Positive Allosteric Modulators of µ Opioid Receptor-Insight from In Silico and In Vivo Studies. Int J Mol Sci 2020; 21:ijms21228463. [PMID: 33187107 PMCID: PMC7697543 DOI: 10.3390/ijms21228463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Opioids are the drugs of choice in severe pain management. Unfortunately, their use involves serious, potentially lethal side effects. Therefore, efforts in opioid drug design turn toward safer and more effective mechanisms, including allosteric modulation. In this study, molecular dynamics simulations in silico and ‘writhing’ tests in vivo were used to characterize potential allosteric mechanism of two previously reported compounds. The results suggest that investigated compounds bind to μ opioid receptor in an allosteric site, augmenting action of morphine at subeffective doses, and exerting antinociceptive effect alone at higher doses. Detailed analysis of in silico calculations suggests that first of the compounds behaves more like allosteric agonist, while the second compound acts mainly as a positive allosteric modulator.
Collapse
|
36
|
Prabhakant A, Panigrahi A, Krishnan M. Allosteric Response of DNA Recognition Helices of Catabolite Activator Protein to cAMP and DNA Binding. J Chem Inf Model 2020; 60:6366-6376. [PMID: 33108170 DOI: 10.1021/acs.jcim.0c00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric catabolite activator protein (CAP) regulates the transcription of several bacterial genes based on the cellular concentration of cyclic adenosine monophosphate (cAMP). The binding of cAMP to CAP triggers allosteric communication between the cAMP binding domains (CBD) and DNA binding domains (DBD) of CAP, which entails repositioning of DNA recognition helices (F-helices) in the DBD to dock favorably to the target DNA. Despite considerable progress, much remains to be understood about the mechanistic details of DNA recognition by CAP and about the map of allosteric pathways involved in CAP-mediated gene transcription. The present study uses molecular dynamics and umbrella sampling simulations to investigate the mechanism of cAMP- and DNA-induced changes in the conformation and energetics of F-helices observed during the allosteric regulation of CAP by cAMP and the subsequent binding to the DNA promoter region. Using novel collective variables, the free energy profiles associated with the orientation and dynamics of F-helices in the unliganded, cAMP-bound, and cAMP-DNA-bound states of CAP are calculated and compared. The binding-induced alterations in the resultant free energy profiles reveal important flexibility constraints imposed on DBD upon cAMP and DNA binding. A comprehensive analysis of residue-wise interaction maps reveals potential allosteric pathways between CBD and DBD that facilitate the allosteric transduction of regulatory signals in CAP. The revelation that the predicted allosteric pathways crisscross the intersubunit interface offers important clues on the microscopic origin of the intersubunit cooperativity and dimer stability of CAP.
Collapse
Affiliation(s)
- Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhinandan Panigrahi
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
37
|
Moritz AE, Bonifazi A, Guerrero AM, Kumar V, Free RB, Lane JR, Verma RK, Shi L, Newman AH, Sibley DR. Evidence for a Stereoselective Mechanism for Bitopic Activity by Extended-Length Antagonists of the D 3 Dopamine Receptor. ACS Chem Neurosci 2020; 11:3309-3320. [PMID: 32969645 PMCID: PMC8262072 DOI: 10.1021/acschemneuro.0c00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The D3 dopamine receptor (D3R) has been suggested as a drug target for the treatment of a number of neuropsychiatric disorders, including substance use disorders (SUD). Many D3R-selective antagonists are bivalent in nature in that they engage two distinct sites on the receptor-a primary pharmacophore binds to the orthosteric site, where dopamine binds, whereas a secondary pharmacophore interacts with a unique secondary binding pocket (SBP). When engagement of the secondary pocket exerts allosteric activity, the compound is said to be bitopic. We recently reported the synthesis and characterization of two bitopic antagonists of the D3R, (±)-VK04-87 and (±)-VK05-95, which incorporated a racemic trans-cyclopropylmethyl linking chain. To gain a better understanding of the role of chirality in determining the pharmacology of such compounds, we resolved the enantiomers of (±)-VK04-87. We found that the (+)-isomer displays higher affinity for the D3R and exhibits greater selectivity versus the D2R than the (-)-isomer. Strikingly, using functional assays, we found that (+)-VK04-87 inhibits the D3R in a noncompetitive manner, while (-)-VK04-87 behaves as a purely competitive antagonist, indicating that the apparent allosteric activity of the racemate is due to the (+)-isomer. Molecular dynamic simulations of (+)-VK04-87 and (-)-VK04-87 binding to the D3R suggest that the (+)-isomer is able to interact with the SBP of the receptor whereas the (-)-isomer bends away from this pocket, thus potentially explaining their differing pharmacology. These results emphasize the importance of the linker, and its isomeric conformations, within extended-length molecules for their positioning and engagement within GPCR binding pockets.
Collapse
Affiliation(s)
- Amy E. Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD, 20892-3723
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224
| | - Adrian M. Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224
| | - Vivek Kumar
- Medicinal Chemistry Section, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD, 20892-3723
| | - J. Robert Lane
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, 333 Cassell Drive, Baltimore, MD 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, 333 Cassell Drive, Baltimore, MD 21224
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD, 20892-3723
| |
Collapse
|
38
|
Egyed A, Domány-Kovács K, Koványi B, Horti F, Kurkó D, Kiss DJ, Pándy-Szekeres G, Greiner I, Keserű GM. Controlling receptor function from the extracellular vestibule of G-protein coupled receptors. Chem Commun (Camb) 2020; 56:14167-14170. [PMID: 33079104 DOI: 10.1039/d0cc05532h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, Magyar Tudósok krt. 2, Budapest, H-1117, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Battiti FO, Newman AH, Bonifazi A. Exception That Proves the Rule: Investigation of Privileged Stereochemistry in Designing Dopamine D 3R Bitopic Agonists. ACS Med Chem Lett 2020; 11:1956-1964. [PMID: 33062179 DOI: 10.1021/acsmedchemlett.9b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 01/11/2023] Open
Abstract
In this study, starting from our selective D3R agonist FOB02-04A (5), we investigated the chemical space around the linker portion of the molecule via insertion of a hydroxyl substituent and ring-expansion of the trans-cyclopropyl moiety into a trans-cyclohexyl scaffold. Moreover, to further elucidate the importance of the primary pharmacophore stereochemistry in the design of bitopic ligands, we investigated the chiral requirements of (+)-PD128907 ((+)-(4a R ,10b R )-2)) by synthesizing and resolving bitopic analogues in all the cis and trans combinations of its 9-methoxy-3,4,4a,10b-tetrahydro-2H,5H-chromeno[4,3-b][1,4] oxazine scaffold. Despite the lack of success in obtaining new analogues with improved biological profiles, in comparison to our current leads, a "negative" result due to a poor or simply not improved biological profile is fundamental toward better understanding chemical space and optimal stereochemistry for target recognition. Herein, we identified essential structural information to understand the differences between orthosteric and bitopic ligand-receptor binding interactions, discriminate D3R active and inactive states, and assist multitarget receptor recognition. Exploring stereochemical complexity and developing extended D3R SAR from this new library complements previously described SAR and inspires future structural and computational biology investigation. Moreover, the expansion of chemical space characterization for D3R agonism may be utilized in machine learning and artificial intelligence (AI)-based drug design, in the future.
Collapse
Affiliation(s)
- Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
40
|
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry 2020; 25:2070-2085. [PMID: 30626912 PMCID: PMC6616020 DOI: 10.1038/s41380-018-0344-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic β-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic β-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in β-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in β-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which β-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, β-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Alain J. De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Pattama Wiriyasermkul
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Collaborative Research, Nara Medical University, Kashihara, Nara, Japan
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise Sorisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin P. Inbar
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Schmauss
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Moritz AE, Free RB, Weiner WS, Akano EO, Gandhi D, Abramyan A, Keck TM, Ferrer M, Hu X, Southall N, Steiner J, Aubé J, Shi L, Frankowski KJ, Sibley DR. Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D 3 Dopamine Receptor Agonist. J Med Chem 2020; 63:5526-5567. [PMID: 32342685 DOI: 10.1021/acs.jmedchem.0c00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To identify novel D3 dopamine receptor (D3R) agonists, we conducted a high-throughput screen using a β-arrestin recruitment assay. Counterscreening of the hit compounds provided an assessment of their selectivity, efficacy, and potency. The most promising scaffold was optimized through medicinal chemistry resulting in enhanced potency and selectivity. The optimized compound, ML417 (20), potently promotes D3R-mediated β-arrestin translocation, G protein activation, and ERK1/2 phosphorylation (pERK) while lacking activity at other dopamine receptors. Screening of ML417 against multiple G protein-coupled receptors revealed exceptional global selectivity. Molecular modeling suggests that ML417 interacts with the D3R in a unique manner, possibly explaining its remarkable selectivity. ML417 was also found to protect against neurodegeneration of dopaminergic neurons derived from iPSCs. Together with promising pharmacokinetics and toxicology profiles, these results suggest that ML417 is a novel and uniquely selective D3R agonist that may serve as both a research tool and a therapeutic lead for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland 20892-3723, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland 20892-3723, United States
| | - Warren S Weiner
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Emmanuel O Akano
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland 20892-3723, United States
| | - Disha Gandhi
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Ara Abramyan
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Thomas M Keck
- Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Marc Ferrer
- NIH Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- NIH Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Noel Southall
- NIH Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Joseph Steiner
- NeuroTherapeutics Development Unit, National Institute for Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States.,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Kevin J Frankowski
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States.,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland 20892-3723, United States
| |
Collapse
|
42
|
Zhu C, Li X, Zhao B, Peng W, Li W, Fu W. Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy. Eur J Med Chem 2020; 193:112214. [DOI: 10.1016/j.ejmech.2020.112214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
|
43
|
Di Martino RMC, Bottegoni G, Seghetti F, Russo D, Penna I, De Simone A, Ottonello G, Mandrup Bertozzi S, Armirotti A, Bandiera T, Belluti F, Cavalli A. Multitarget Compounds for Bipolar Disorder: From Rational Design to Preliminary Pharmacokinetic Evaluation. ChemMedChem 2020; 15:949-954. [PMID: 32267999 DOI: 10.1002/cmdc.202000210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Due to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation. Two compounds (7 and 10) emerged as promising D3R/GSK-3β multitarget-directed ligands with nanomolar activity at D3R and low-micromolar inhibition of GSK-3β, thereby confirming, albeit preliminarily, the feasibility of our strategy. Furthermore, 7 showed promising drug-like properties in stability and pharmacokinetic studies.
Collapse
Affiliation(s)
| | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham Sir Robert Aitken Institute for Clinical Research Edgbaston, Birmingham, B15 2TT, UK
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Debora Russo
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Ilaria Penna
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | | | - Giuliana Ottonello
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
44
|
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, Ruda-Kucerova J, D'Addario C, Kratka L, Pekarik V, Piscitelli F, Babinska Z, Fedotova J, Giurdanella G, Salomone S, Sulcova A, Bucolo C, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol 2020; 177:114004. [PMID: 32360362 DOI: 10.1016/j.bcp.2020.114004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RASci., St. Petersburg, Russian Federation; Lobachevsky State University of Nizhny Novgorod, Institute of Biology and Biomedicine, Nizhny Novgorod, Russian Federation
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alexandra Sulcova
- ICCI - International Cannabis and Cannabinoid Institute, Praha, Czech Republic
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
45
|
Tan L, Zhou Q, Yan W, Sun J, Kozikowski AP, Zhao S, Huang XP, Cheng J. Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands. J Med Chem 2020; 63:4579-4602. [PMID: 32282200 DOI: 10.1021/acs.jmedchem.9b01835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2-Phenylcyclopropylmethylamine (PCPMA) analogues have been reported as selective serotonin 2C agonists. On the basis of the same scaffold, we designed and synthesized a series of bitopic derivatives as dopamine D3R ligands. A number of these new compounds show a high binding affinity for D3R with excellent selectivity. Compound (1R,2R)-22e and its enantiomer (1S,2S)-22e show a comparable binding affinity for the D3R, but the former is a potent D3R agonist, while the latter acts as an antagonist. Molecular docking studies revealed different binding poses of the PCPMA moiety within the orthosteric binding pocket of the D3R, which might explain the different functional profiles of the enantiomers. Compound (1R,2R)-30q shows a high binding affinity for the D3R (Ki = 2.2 nM) along with good selectivity, as well as good bioavailability and brain penetration properties in mice. These results reveal that the PCPMA scaffold may serve as a privileged scaffold for the design of aminergic GPCR ligands.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Jian Sun
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Alan P Kozikowski
- StarWise Therapeutics LLC, 2020 North Lincoln Park West, Chicago Illinois 60614, United States
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| | - Xi-Ping Huang
- Department of Pharmacology, National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, United States
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai 201210, China
| |
Collapse
|
46
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
47
|
Peytam F, Adib M, Shourgeshty R, Firoozpour L, Rahmanian-Jazi M, Jahani M, Moghimi S, Divsalar K, Faramarzi MA, Mojtabavi S, Safari F, Mahdavi M, Foroumadi A. An efficient and targeted synthetic approach towards new highly substituted 6-amino-pyrazolo[1,5-a]pyrimidines with α-glucosidase inhibitory activity. Sci Rep 2020; 10:2595. [PMID: 32054916 PMCID: PMC7018746 DOI: 10.1038/s41598-020-59079-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023] Open
Abstract
In an attempt to find novel α-glucosidase inhibitors, an efficient, straightforward reaction to synthesize a library of fully substituted 6-amino-pyrazolo[1,5-a]pyrimidines 3 has been investigated. Heating a mixture of α-azidochalcones 1 and 3-aminopyrazoles 2 under the mild condition afforded desired compounds with a large substrate scope in good to excellent yields. All obtained products were evaluated as α-glucosidase inhibitors and exhibited excellent potency with IC50 values ranging from 15.2 ± 0.4 µM to 201.3 ± 4.2 µM. Among them, compound 3d was around 50-fold more potent than acarbose (IC50 = 750.0 ± 1.5 µM) as standard inhibitor. Regarding product structures, kinetic study and molecular docking were carried out for two of the most potent ones.
Collapse
Affiliation(s)
- Fariba Peytam
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Reihaneh Shourgeshty
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rahmanian-Jazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Jahani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Setareh Moghimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Kouros Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
48
|
Lane JR, Abramyan AM, Adhikari P, Keen AC, Lee KH, Sanchez J, Verma RK, Lim HD, Yano H, Javitch JA, Shi L. Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism. eLife 2020; 9:e52189. [PMID: 31985399 PMCID: PMC7053997 DOI: 10.7554/elife.52189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
By analyzing and simulating inactive conformations of the highly homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands.
Collapse
Affiliation(s)
- J Robert Lane
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamNottinghamUnited Kingdom
| | - Ara M Abramyan
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Pramisha Adhikari
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Alastair C Keen
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamNottinghamUnited Kingdom
- Drug Discovery Biology, Department of Pharmacology and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Kuo-Hao Lee
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Julie Sanchez
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamNottinghamUnited Kingdom
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Herman D Lim
- Drug Discovery Biology, Department of Pharmacology and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
- Department of PharmacologyVagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
49
|
Hu X, Maffucci I, Contini A. Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations. Curr Med Chem 2020; 26:7598-7622. [DOI: 10.2174/0929867325666180514110824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Background:
The inclusion of direct effects mediated by water during the ligandreceptor
recognition is a hot-topic of modern computational chemistry applied to drug discovery
and development. Docking or virtual screening with explicit hydration is still debatable,
despite the successful cases that have been presented in the last years. Indeed, how to select
the water molecules that will be included in the docking process or how the included waters
should be treated remain open questions.
Objective:
In this review, we will discuss some of the most recent methods that can be used in
computational drug discovery and drug development when the effect of a single water, or of a
small network of interacting waters, needs to be explicitly considered.
Results:
Here, we analyse the software to aid the selection, or to predict the position, of water
molecules that are going to be explicitly considered in later docking studies. We also present
software and protocols able to efficiently treat flexible water molecules during docking, including
examples of applications. Finally, we discuss methods based on molecular dynamics
simulations that can be used to integrate docking studies or to reliably and efficiently compute
binding energies of ligands in presence of interfacial or bridging water molecules.
Conclusions:
Software applications aiding the design of new drugs that exploit water molecules,
either as displaceable residues or as bridges to the receptor, are constantly being developed.
Although further validation is needed, workflows that explicitly consider water will
probably become a standard for computational drug discovery soon.
Collapse
Affiliation(s)
- Xiao Hu
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| | - Irene Maffucci
- Pasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - Alessandro Contini
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| |
Collapse
|
50
|
Shaik AB, Kumar V, Bonifazi A, Guerrero AM, Cemaj SL, Gadiano A, Lam J, Xi ZX, Rais R, Slusher BS, Newman AH. Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D 3 Receptor Antagonists and Partial Agonists. J Med Chem 2019; 62:9061-9077. [PMID: 31526003 PMCID: PMC8830247 DOI: 10.1021/acs.jmedchem.9b00607] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dopamine D3 receptors (D3R) play a critical role in neuropsychiatric conditions including substance use disorders (SUD). Recently, we reported a series of N-(3-hydroxy-4-(4-phenylpiperazin-1-yl)butyl)-1H-indole-2-carboxamide analogues as high affinity and selective D3R lead molecules for the treatment of opioid use disorders (OUD). Further optimization led to a series of analogues that replaced the 3-OH with a 3-F in the linker between the primary pharmacophore (PP) and secondary pharmacophore (SP). Among the 3-F-compounds, 9b demonstrated the highest D3R binding affinity (Ki = 0.756 nM) and was 327-fold selective for D3R over D2R. In addition, modification of the PP or SP with a 3,4-(methylenedioxy)phenyl group was also examined. Further, an enantioselective synthesis as well as chiral HPLC methods were developed to give enantiopure R- and S-enantiomers of the four lead compounds. Off-target binding affinities, functional efficacies, and metabolic profiles revealed critical structural components for D3R selectivity as well as drug-like features required for development as pharmacotherapeutics.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M. Guerrero
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Sophie L. Cemaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alexandra Gadiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse−Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|