1
|
Chen H, Xu H, Yuan F, Li H, Sheng L, Liu C, Chen W, Li X. Pharmacokinetics and Safety of Linezolid Tablets of 2 Different Manufacturers in Healthy Chinese Subjects in Fasting and Fed States. Clin Pharmacol Drug Dev 2024; 13:1239-1244. [PMID: 39158152 DOI: 10.1002/cpdd.1462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to evaluate the pharmacokinetics (PKs) and safety of a generic drug, linezolid, compared to those of a reference drug in healthy Chinese subjects under both fasting and fed conditions. This was a randomized, open-label, 2-period, 2-sequence crossover study. The subjects received a single dose of the test or reference drug, linezolid (600 mg), in each period. The PK parameters were calculated using a non-compartmental method and compared between the 2 drugs. Bioequivalence was analyzed using geometric mean ratios (GMRs) of the 2 formulations and their corresponding 90% confidence intervals (CIs). The safety of the 2 formulations was assessed under both fasting and fed conditions. Forty-eight subjects completed the study, 24 each in the fasting and feeding groups. The average plasma concentration-time patterns of linezolid were similar for both medications under both conditions. The GMR and 90% CIs of the maximum plasma concentration and the area under the plasma concentration-time curve of linezolid were ranged from 0.80 to 1.25. Both drugs were well tolerated with a similar incidence of adverse drug reactions. In conclusion, the PK and safety profiles of the 2 formulations were comparable. Food intake did not influence the PK profiles of linezolid. These results suggest that the test drug can be used as an alternative to reference drugs.
Collapse
Affiliation(s)
- Hanjing Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongrong Xu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Sheng
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weili Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lee JB, Lim JH, Park JH, Lee GY, Park KT, Yang SJ. Genetic characteristics and antimicrobial resistance of Staphylococcus aureus isolates from pig farms in Korea: emergence of cfr-positive CC398 lineage. BMC Vet Res 2024; 20:503. [PMID: 39487420 PMCID: PMC11529005 DOI: 10.1186/s12917-024-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Livestock-associated Staphylococcus aureus (LA-SA) has gained global attention because of its ability to colonize farm animals and transmit to the environment and humans, leading to symptomatic infections and the spread of antimicrobial resistance (AMR). In the last decade, numerous studies have reported a high prevalence of S. aureus clonal complex (CC) 398 in pig farms. RESULTS In this study, 163 S. aureus isolates were collected from healthy pigs (n = 110), farm environments (n = 42), and farm workers (n = 11), and their AMR profiles and epidemiological characteristics were analyzed. We identified 51 (31.3%) methicillin-resistant S. aureus (MRSA) and 112 (68.7%) methicillin-susceptible S. aureus (MSSA), with 161 (98.8%) isolates belonging to the CC398 lineage. The highest prevalence of spa type t571 was observed among the CC398 isolates. All 47 sequence type (ST) 398 MRSA isolates carried staphylococcal cassette chromosome mec (SCCmec) V, while four ST541 isolates carried SCCmec IV. High levels of resistance to commonly used antibiotics, including phenicols, quinolones, lincosamides, macrolides, aminoglycosides, and tetracyclines, have been observed on Korean pig farms. Notably, 21 cfr-positive CC398 isolates (four ST541-SCCmec IV MRSA and 17 ST398 MSSA) displaying increased resistance to linezolid were identified in healthy pigs. CONCLUSIONS In summary, these findings suggest that the multidrug-resistant CC398 S. aureus lineage predominantly colonizes healthy pigs and farm environments in Korea. The emergence of cfr-positive S. aureus at human-animal interfaces presents a significant threat to food safety and public health.
Collapse
Affiliation(s)
- Jun Bong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Hyun Lim
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Heon Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Gi Yong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kun Taek Park
- Department of Biotechnology, Inje University, Gimhae, 50834, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Lu H, Han X, Qin D, Sheng L, Du C, Wang B, Zhao H, Lu Y, Liu Y, Hu HY, Liu Y, Zhang D. Tricyclic Benzo[1,3]oxazinyloxazolidinones as Potent Antibacterial Agents against Drug-Resistant Pathogens. J Med Chem 2024; 67:16088-16106. [PMID: 39236219 DOI: 10.1021/acs.jmedchem.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we developed a series of benzo[1,3]oxazinyloxazolidinones as potent antibacterial agents. Some of the compounds exhibited potent antibacterial activity against a range of clinical drug-resistant pathogens, including Mtb, MRSA, MRSE, VISA, and VRE. Notably, compound 16d inhibited protein synthesis and displayed potent activity against linezolid-resistant Enterococcus faecalis. Although 16d showed cross-resistance to linezolid-resistant MRSA, the frequency of resistance development of MRSA against 16d was lower compared to that of linezolid. Additionally, 16d exhibited excellent pharmacokinetic properties and superior in vivo efficacy compared to linezolid. Furthermore, compound 16d modulated cytokine levels and ameliorated histopathological changes in major organs of bacterially infected mice. Hoechst-PI double staining and scanning electron microscopy analyses revealed that 16d exhibited some similarities with linezolid in its effects while also demonstrating a distinct mechanism characterized by cell membrane damage. Moreover, 16d significantly disrupted the MRSA biofilms. The antibacterial agent 16d represents a promising candidate for the treatment of serious infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Haijia Lu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaowan Han
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Chen Du
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Yishuang Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Hai-Yu Hu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
4
|
Bellenger J, Koos MRM, Avery M, Bundesmann M, Ciszewski G, Khunte B, Leverett C, Ostner G, Ryder TF, Farley KA. An Automated Purification Workflow Coupled with Material-Sparing High-Throughput 1H NMR for Parallel Medicinal Chemistry. ACS Med Chem Lett 2024; 15:1635-1644. [PMID: 39291006 PMCID: PMC11403749 DOI: 10.1021/acsmedchemlett.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/19/2024] Open
Abstract
In medicinal chemistry, purification and characterization of organic compounds is an ever-growing challenge, with an increasing number of compounds being synthesized at a decreased scale of preparation. In response to this trend, we developed a parallel medicinal chemistry (PMC)-tailored platform, coupling automated purification to mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) on a range of synthetic scales (∼3.0-75.0 μmol). Here, the generation and acquisition of 1.7 mm NMR samples is fully integrated into a high-throughput automated workflow, processing 36 000 compounds yearly. Utilizing dead volume, which is inaccessible in conventional liquid handling, NMR samples are generated on as little as 10 μg without consuming material prioritized for biological assays. As miniaturized PMC synthesis becomes the industry standard, we can now obtain quality NMR spectra from limited material. Paired with automated structure verification, this platform has the potential to allow NMR to become as important for high-throughput analysis as ultrahigh performance liquid chromatography (UPLC)-MS.
Collapse
Affiliation(s)
- Justin Bellenger
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Martin R M Koos
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Melissa Avery
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Mark Bundesmann
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gregory Ciszewski
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Bhagyashree Khunte
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Carolyn Leverett
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gregory Ostner
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Tim F Ryder
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Kathleen A Farley
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Rueedi G, Panchaud P, Friedli A, Specklin JL, Hubschwerlen C, Blumstein AC, Caspers P, Enderlin-Paput M, Jacob L, Kohl C, Locher HH, Pfaff P, Schmitt C, Seiler P, Ritz D. Discovery and Structure-Activity Relationship of Cadazolid: A First-In-Class Quinoxolidinone Antibiotic for the Treatment of Clostridioides difficile Infection. J Med Chem 2024; 67:9465-9484. [PMID: 38753983 DOI: 10.1021/acs.jmedchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Clostridioides difficile (C. difficile) is one of the leading causes of healthcare-associated infections worldwide. The increasing incidence of strains resistant to currently available therapies highlights the need for alternative treatment options with a novel mode of action. Oxazolidinones that are connected to a quinolone moiety with a pyrrolidine linker, such as compound 1, are reported to exhibit potent broadspectrum antibacterial activity. In an effort to optimize this class of compounds for the treatment of C. difficile infection (CDI), we have identified cadazolid (9), a first-in-class quinoxolidinone antibiotic, which is a potent inhibitor of C. difficile protein synthesis. In order to achieve narrow-spectrum coverage of clinically most relevant strains without affecting the gut microbiota, an emphasis was placed on abolishing activity against commensals of the intestinal microbiome while retaining good coverage of pathogenic C. difficile, including hypervirulent and epidemic strains.
Collapse
Affiliation(s)
- Georg Rueedi
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Astrid Friedli
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | | | | | | | | | - Loïc Jacob
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Hans H Locher
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | - Philippe Pfaff
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Peter Seiler
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| |
Collapse
|
7
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
8
|
Heidary M, Dashtbin S, Asadi A, Asadollahi P, Khatib A, Ebrahimi MA, Ghanbari Z, Darbandi A, Ghanavati R, Pakzad R. Prevalence of linezolid resistance in Streptococcus pneumoniae isolates: a systematic review and meta-analysis. Future Microbiol 2024; 19:449-459. [PMID: 38497912 DOI: 10.2217/fmb-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024] Open
Abstract
Aim: This study aimed to understand the current level of linezolid (LNZ) resistance in Streptococcus pneumoniae isolates reported over the past 10 years. Material & methods: An electronic search was conducted for the following keywords: ((Streptococcus pneumoniae [title/abstract]) OR (Pneumococcus [title/abstract]) OR (Pneumococci [title/abstract]) AND (linezolid [title/abstract]) OR (Zyvox [title/abstract])) OR (Zyvoxid [title/abstract])). Result: Out of all the studies, 80 had a cross-sectional design, while 11 followed a cohort approach. The prevalence of LNZ resistance among S. pneumoniae isolates ranged from 0% to 4.86%. Discussion: Urgent, high-powered, randomized, controlled trials with participants from endemic regions are needed to gain a comprehensive understanding of the impact on and significance of LNZ treatment to patients.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular & Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology & Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Parisa Asadollahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Khatib
- Department of Nursing, School of Medical Sciences, Yazd branch, Islamic Azad University, Yazd, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Zahra Ghanbari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
9
|
Panda S, Nanda A, Saha R, Ghosh R, Bagh B. Cobalt-Catalyzed Chemodivergent Synthesis of Cyclic Amines and Lactams from Ketoacids and Anilines Using Hydrosilylation. J Org Chem 2023. [PMID: 38031391 DOI: 10.1021/acs.joc.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Here, commercially available Co2(CO)8 was utilized as an efficient catalyst for chemodivergent synthesis of pyrrolidines and pyrrolidones from levulinic acid and aromatic amines under slightly different hydrosilylation conditions. 1.5 and 3 equiv of phenylsilane selectively yielded pyrrolidone and pyrrolidine, respectively. Various ketoacids and amines were successfully tested. Plausible mechanism involves the condensation of levulinic acid and amine to form an imine, which cyclizes to 3-pyrrolidin-2-one followed by reduction to pyrrolidone. The final reduction of pyrrolidone gave pyrrolidine.
Collapse
Affiliation(s)
- Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
10
|
Liu P, Jiang Y, Jiao L, Luo Y, Wang X, Yang T. Strategies for the Discovery of Oxazolidinone Antibacterial Agents: Development and Future Perspectives. J Med Chem 2023; 66:13860-13873. [PMID: 37807849 DOI: 10.1021/acs.jmedchem.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Oxazolidinones represent a significant class of synthetic bacterial protein synthesis inhibitors that are primarily effective against Gram-positive bacteria. The commercial success of linezolid, the first FDA-approved oxazolidinone antibiotic, has motivated researchers to develop more potent oxazolidinones by employing various drug development strategies to fight against antimicrobial resistance, some of which have shown promising results. Thus, this Perspective aims to discuss the strategies employed in constructing oxazolidinone-based antibacterial agents and summarize recent advances in discovering oxazolidinone antibiotics to provide valuable insights for potentially developing next-generation oxazolidinone antibacterial agents or other pharmaceuticals.
Collapse
Affiliation(s)
- Pingxian Liu
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Jiao
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Wang
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
12
|
Garvin KL, Kildow BJ, Hewlett AL, Hartman CW, Fey PD. The Challenge of Emerging Resistant Gram-Positive Pathogens in Hip and Knee Periprosthetic Joint Infections. J Bone Joint Surg Am 2023:00004623-990000000-00781. [PMID: 37053296 DOI: 10.2106/jbjs.22.00792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
➤ An increase in resistant bacterial pathogens has occurred over the last 4 decades. ➤ Careful patient selection and improving or correcting risk factors for periprosthetic joint infection (PJI) before elective surgical treatment are strongly recommended. ➤ Appropriate microbiological methods, including those used to detect and grow Cutibacterium acnes, are recommended. ➤ Antimicrobial agents used in the prevention or management of infection should be selected appropriately and the duration of therapy should be carefully considered in order to mitigate the risk of developing bacterial resistance. ➤ Molecular methods including rapid polymerase chain reaction (PCR) diagnostics, 16S sequencing, and/or shotgun and/or targeted whole-genome sequencing are recommended in culture-negative cases of PJI. ➤ Expert consultation with an infectious diseases specialist (if available) is recommended to assist with the appropriate antimicrobial management and monitoring of patients with PJI.
Collapse
Affiliation(s)
- Kevin L Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Beau J Kildow
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Angela L Hewlett
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Curtis W Hartman
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
13
|
Bhat AA, Tandon N, Singh I, Tandon R. Structure-activity relationship (SAR) and antibacterial activity of pyrrolidine based hybrids: A review. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine derivatives as antibacterial agents, current status and future prospects: a patent review. Pharm Pat Anal 2022; 11:187-198. [PMID: 36366974 DOI: 10.4155/ppa-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacterial infections are increasingly epitomizing major global health concerns, with rising death rates. Since the most complete assessment of the worldwide impact of antimicrobial resistance to date, with over 1.2 million people dead in 2019 as a direct result of antibiotic-resistant bacterial infections. The majority of antimicrobial drugs have been associated with a multitude of adverse effects including financial costs as well. Pyrrolidine derivatives have sparked the interest of researchers to create novel synthetic molecules with minimal side effect and drawbacks. To close the research gap, the current review discusses the synthetic compounds with active pyrrolidine scaffolds, critical findings and most crucially the structure-activity relationship that affects the activity of the ring over the last one and half decade.
Collapse
Affiliation(s)
- Aeyaz A Bhat
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| | - Nitin Tandon
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| | - Runjhun Tandon
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| |
Collapse
|
15
|
Wang J, Wu Y, Li Y. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2 H)-yl)benzoate, C 14H 12F 3NO 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H12F3NO3, monoclinic, P21/n (no. 14), a = 14.4583(12) Å, b = 6.6553(5) Å, c = 14.8395(11) Å, β = 113.733(3)°, V = 1307.16(18) Å3, Z = 4, Rgt
(F) = 0.0479, wRref
(F
2) = 0.1235, T = 170 K.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Student Affairs , Ningbo Polytechnic , No. 388, Lushan East Road, Ningbo Economic and Technological Development Zone, Beilun District , Ningbo City 315806 , Zhejiang Province , P. R. China
| | - Yundeng Wu
- Technique Center , Jinling Pharmaceutical Company Limited , Nanjing 210046 , Jiangsu Province , P. R. China
| | - Yong Li
- School of Chemical Engineering , Ningbo Polytechnic , No. 388, Lushan East Road, Ningbo Economic and Technological Development Zone, Beilun District , Ningbo City 315806 , Zhejiang Province , P. R. China
| |
Collapse
|
16
|
Perlaza-Jiménez L, Tan KS, Piper SJ, Johnson RM, Bamert RS, Stubenrauch CJ, Wright A, Lupton D, Lithgow T, Belousoff MJ. A Structurally Characterized Staphylococcus aureus Evolutionary Escape Route from Treatment with the Antibiotic Linezolid. Microbiol Spectr 2022; 10:e0058322. [PMID: 35736238 PMCID: PMC9431193 DOI: 10.1128/spectrum.00583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Kher-Shing Tan
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah J. Piper
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rachel M. Johnson
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca S. Bamert
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Christopher J. Stubenrauch
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alexander Wright
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Lupton
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Belousoff
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Han X, Zou G, Liu J, Yang C, Du X, Chen G, Sun Z, Zhang X, Sun Y, Zhang W, Jiang X. Mechanisms of linezolid resistance in Staphylococcus capitis with the novel mutation C2128T in the 23S rRNA gene in China. BMC Microbiol 2022; 22:203. [PMID: 35987607 PMCID: PMC9392311 DOI: 10.1186/s12866-022-02616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose The objective of this study was to investigate the molecular characteristics and potential resistance mechanisms of linezolid-resistant (LZR) Staphylococcus capitis isolates from a tertiary hospital in China. Methods S. capitis isolates were obtained from clinical patient specimens; three of the isolates came from blood cultures and one from the hydrothorax. The agar dilution and E-test methods were used to identify antibiotic resistance. The chloramphenicol-florfenicol resistance (cfr) gene carrier status of the strains was determined by PCR. Whole-genome sequencing (WGS) was used to identify point mutations and L3, L4, and L22 mutations and to study the genetic environment of the cfr gene and the relationships between strains. Results The 4 isolates obtained in this study were all linezolid-resistant Staphylococcus strains. A similar of susceptibility profile pattern was observed in all four S. capitis strains, each of which exhibited a multidrug-resistant phenotype. A potentially novel mutation, C2128T, was identified, and the cfr genes of S. capitis strains were all positive. Additionally, the same mutations (C2128T and G2600T) were identified in all 23S rRNA sequences of the isolates, whereas mutations were lacking in the L3, L4, and L22 ribosomal proteins. The genetic environments surrounding cfr were identical in all four isolates. A schematic diagram of the phylogenetic tree showed that they were closely related to AYP1020, CR01, and TW2795, and a total of seven drug resistance genes were identified in these strains. Conclusions The study indicated that the resistance of the Staphylococcus capitis strains to linezolid was caused by multiple mechanisms, and a potential novel mutation, C2128T, that may have an impact on bacterial resistance was identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02616-9.
Collapse
|
18
|
Dolui P, Tiwari V, Saini P, Karmakar T, Makhal K, Goel H, Elias AJ. A Catalyst and Solvent Free Route for the Synthesis of N-Substituted Pyrrolidones from Levulinic Acid. Chemistry 2022; 28:e202200829. [PMID: 35579503 DOI: 10.1002/chem.202200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/11/2022]
Abstract
An efficient, metal-free, catalyst-free and solvent-free methodology for the reductive amination of levulinic acid with different anilines has been developed using HBpin as the reducing reagent. This protocol offers an excellent method to avoid solvents and added catalysts on the synthesis of different kinds of N-substituted pyrrolidones under metal free conditions. It is also the first report for the synthesis of different pyrrolidones by solvent-free as well as catalyst-free methods. The proposed mechanism for the formation of pyrrolidone has been supported by DFT calculations and control experiments.
Collapse
Affiliation(s)
- Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Parul Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Koushik Makhal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Harshita Goel
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil J Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
19
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
20
|
Bokhtia RM, Girgis AS, Ibrahim TS, Rasslan F, Nossier ES, Barghash RF, Sakhuja R, Abdel-Aal EH, Panda SS, Al-Mahmoudy AMM. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals (Basel) 2022; 15:191. [PMID: 35215303 PMCID: PMC8880098 DOI: 10.3390/ph15020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new antibiotics to treat multidrug-resistant (MDR) bacteria or possess broad-spectrum activity is one of the challenging tasks. Unfortunately, there are not many new antibiotics in clinical trials. So, the molecular hybridization approach could be an effective strategy to develop potential drug candidates using the known scaffolds. We synthesized a total of 31 diverse linezolid conjugates 3, 5, 7, 9, 11, 13, and 15 using our established benzotriazole chemistry with good yield and purity. Some of the synthesized conjugates exhibited promising antibacterial properties against different strains of bacteria. Among all the synthesized compounds, 5d is the most promising antibacterial agent with MIC 4.5 µM against S. aureus and 2.25 µM against B. subtilis. Using our experimental data pool, we developed a robust QSAR (R2 = 0.926, 0.935; R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models, respectively) and 3D-pharmacophore models. We have also determined the drug-like properties of the synthesized conjugates using computational tools. Our findings provide valuable insight into the possible linezolid-based antibiotic drug candidates.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| |
Collapse
|
21
|
Tomar R, Bhattacharya D, Arulananda Babu S. Direct lactamization of β‐arylated δ‐aminopentanoic acid carboxamides: En route to 4‐aryl‐ 2‐piperidones, piperidines, antituberculosis molecule Q203 (Telacebec) and its analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
22
|
A comprehensive theoretical analysis of Curtius rearrangement of syn-syn and syn-anti conformers of oxalyl diazide. J Mol Graph Model 2021; 109:108012. [PMID: 34478927 DOI: 10.1016/j.jmgm.2021.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
The complete theoretical study of thermal Curtius rearrangement of syn-syn and syn-anti conformers of oxalyl diazide, in the gas phase and in solution has been established for the first time. The inexplicit solvent effect was taken into account via the self-consistent reaction field (SCRF) method. The gas and solution phases of all optimized geometries of the mentioned conformers associated with the Curtius rearrangement along the concerted and stepwise pathways were reported using the polarized continuum model and non-electrostatic terms from the SMD universal solvation model. The Curtius rearrangement of syn-syn and syn-anti conformers was taken place via concerted and stepwise pathways, respectively. The syn-syn conformer of oxalyl diazide is more stable than the syn-anti conformer in the gas phase and solution, and rearranged to syn-carbonyl azide isocyanate via an exergonic concerted mechanism with a single transition state. Nevertheless, the rearrangement of syn-anti conformer occurred through the two transition states and an intermediate, which the first and second steps are endergonic and exergonic, respectively. Theoretical results point out that the concerted pathway is predominant with 102-106 and 104-105 times faster than the stepwise mechanism in gas phase and solution, respectively. Topological analysis of the electron localization function at the B3LYP/6-311++G (2d,d,p) level of theory indicate that the catastrophe sequence 1-6-C†TSC†F C†C-0 begins with the N4-N5 bond breaking, elimination of nitrogen molecule and increasing of non-bonding monosynaptic attractor on N4 atom, and then changing of topological signature of C2-N4 bond, breaking of C1-C2 bond, and formation of pseudo-radical centers on C1 and C2 atoms. Subsequently, annihilation of pseudo-radical centers on the C1 atom, change of topological signature of C2-N4 and formation of C1-N4 bond were executed. The obtained results of ELF calculations show that the reaction takes place via a concerted mechanism but highly asynchronous process.
Collapse
|
23
|
Amina M, Hamza K, Malki F, Hamdi A, Aboul-Enein HY. Method Development and Validation for the Determination of Linezolid Drug in Human Plasma by Reversed-Phase High-Performance Liquid Chromatography. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412917666210823092454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Linezolid is a significant antibiotic used against severe infections initiated by multi-resistant bacterial pathogens.
Method:
Linezolid extraction from plasma is obtained using methanol. Chromatographic separation is achieved isocratically on a C18 column [Zorbax C18, 5 µm particle size, 150 mm ˟ 4.6 mm] making use of a mobile phase of acetonitrile / 0.05 M phosphate buffer, pH = 4.5 (30 : 70 v/v) at a flow rate of 1.2 mL/min with photodiode array detector DAD, at a wavelength of 256 nm.
Method:
Linezolid extraction from plasma is obtained using methanol. Chromatographic separation is achieved isocratically on a C18 column [Zorbax C18, 5 µm particle size, 150 mm ˟ 4.6 mm] making use of a mobile phase of acetonitrile / 0.05 M phosphate buffer, pH = 4.5 (30 : 70 v/v) at a flow rate of 1.2 mL/min with photodiode array detector DAD, at a wavelength of 256 nm.
Results :
The retention time of linezolid was 2.5 min. The analytical method was linear (r2 > 0.998) over the calibration range of 0.30 to 50.0 µg/mL. The extraction recoveries of linezolid range from 71.03 to 91.93 %. The limit of quantification and the limit of detection were 0.112 µg and 0.037 µg, respectively. The RSDs for intraday and interday assays were < 7.77 and 4.32 %, respectively. The intraday and interday accuracies were in the range 80.6-112 % and 77.44-104.85 %, respectively.
Conclusion:
The applied method is precise, accurate and appropriate for pharmacokinetic studies and therapeutic drug monitoring of linezolid in routine clinical practice.
Collapse
Affiliation(s)
- Missoum Amina
- Department Research Laboratory on Bioactive Products and Biomass Valorization, Higher normal School Cheikh Mohamed El-Bachir El- Ibrahimi, Vieux-Kouba – Algiers 16308, Algeria
| | - Kahina Hamza
- Department of Chemistry, Faculty of Sciences, Saad Dahlab University, Soumaa – Blida 09000, Algeria
| | - Fatiha Malki
- Department Research Laboratory on Bioactive Products and Biomass Valorization, Higher normal School Cheikh Mohamed El-Bachir El- Ibrahimi, Vieux-Kouba – Algiers 16308, Algeria
| | - Abderrezak Hamdi
- Faculty of Chemistry, Houari Boumediene University of Science and Technology, Bab ezzouar – Algiers 16111, Algeria
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
24
|
Zeouk I, Ouedrhiri W, Sifaoui I, Bazzocchi IL, Piñero JE, Jiménez IA, Lorenzo-Morales J, Bekhti K. Bioguided Isolation of Active Compounds from Rhamnus alaternus against Methicillin-Resistant Staphylococcus aureus (MRSA) and Panton-Valentine Leucocidin Positive Strains (MSSA-PVL). Molecules 2021; 26:molecules26144352. [PMID: 34299627 PMCID: PMC8306708 DOI: 10.3390/molecules26144352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/24/2023] Open
Abstract
Despite intensified efforts to develop an effective antibiotic, S. aureus is still a major cause of mortality and morbidity worldwide. The multidrug resistance of bacteria has considerably increased the difficulties of scientific research and the concomitant emergence of resistance is to be expected. In this study we have investigated the in vitro activity of 15 ethanol extracts prepared from Moroccan medicinal plants traditionally used for treatment of skin infections. Among the tested species I. viscosa, C. oxyacantha, R. tinctorum, A. herba alba, and B. hispanica showed moderate anti-staphylococcal activity. However, R. alaternus showed promising growth-inhibitory effects against specific pathogenic bacteria especially methicillin-susceptible Staphylococcus aureus Panton-Valentine leucocidin positive (MSSA-PVL) and methicillin-resistant S. aureus (MRSA). The bioguided fractionation of this plant using successive chromatographic separations followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) including EIMS and HREIMS analysis yielded the emodin (1) and kaempferol (2). Emodin being the most active with MICs ranging between 15.62 and 1.95 µg/mL and showing higher activity against the tested strains in comparison with the crude extract, its mechanism of action and the structure-activity relationship were interestingly discussed. The active compound has not displayed toxicity toward murine macrophage cells. The results obtained in the current study support the traditional uses of R. alaternus and suggest that this species could be a good source for the development of new anti-staphylococcal agents.
Collapse
Affiliation(s)
- Ikrame Zeouk
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Wessal Ouedrhiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Department of Chemistry, Faculty of Science, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
| | - Ines Sifaoui
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel L. Bazzocchi
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (I.L.B.); (I.A.J.)
| | - José E. Piñero
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Ignacio A. Jiménez
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (I.L.B.); (I.A.J.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Khadija Bekhti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
| |
Collapse
|
25
|
Dejoies L, Boukthir S, Péan de Ponfilly G, Le Guen R, Zouari A, Potrel S, Collet A, Auger G, Jacquier H, Fihman V, Dortet L, Cattoir V. Performance of commercial methods for linezolid susceptibility testing of Enterococcus faecium and Enterococcus faecalis. J Antimicrob Chemother 2021; 75:2587-2593. [PMID: 32449911 DOI: 10.1093/jac/dkaa180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Linezolid-resistant enterococci (LRE) causing infections that are challenging to treat are rising, highlighting the need for reliable screening of LRE clinical isolates. OBJECTIVES To evaluate the ability of the broth microdilution (BMD) method for LRE detection and to assess the performance of seven commercially available techniques for linezolid susceptibility testing. METHODS A collection of 100 clinical isolates (80 Enterococcus faecium and 20 Enterococcus faecalis), including 20 optrA-positive isolates, 17 poxtA-positive isolates and 1 optrA/poxtA-positive E. faecium isolate, were studied. MICs were determined after 18 h [Day 1 (D1)] and 42 h [Day 2 (D2)] of incubation and interpreted following EUCAST and CLSI guidelines, which currently provide different interpretative breakpoints. Performance of commercial techniques was compared with BMD results. RESULTS MIC50/D1 and MIC50/D2 were both 8 mg/L, while MIC90/D1 and MIC90/D2 were 16 and 32 mg/L, respectively. MICD1 values for poxtA-positive isolates were lower than those for optrA-positive isolates. Proportions of susceptible isolates at D1 and D2 were 48% and 41%, respectively, according to EUCAST breakpoints and 35% and 13%, respectively, according to CLSI criteria (the proportions of isolates categorized as intermediate following CLSI recommendations were 13% and 28% at D1 and D2, respectively). Percentage susceptibility assessed by the commercially available techniques was always higher. The four commercial methods allowing MIC determination provided an overall essential agreement of ≥90% at D1. Categorical agreement and error rates were generally improved at D2. CONCLUSIONS Non-automated methods (Sensititre and UMIC) and, to a lesser extent, gradient strip Etest appear to show an acceptable correlation with the BMD reference method for the detection of isolates with low MICs of linezolid after prolonged incubation.
Collapse
Affiliation(s)
- Loren Dejoies
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,U1230 'ARN régulateurs Bactériens et Médecine', Université Rennes 1, Rennes, France
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France
| | | | - Ronan Le Guen
- Hôpitaux Universitaires Henri Mondor, Unité de Bactériologie-Hygiène, Créteil, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Sophie Potrel
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Anaïs Collet
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Gabriel Auger
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Hervé Jacquier
- Hôpital Lariboisière, Service de Bactériologie-Virologie, Paris, France
| | - Vincent Fihman
- Hôpitaux Universitaires Henri Mondor, Unité de Bactériologie-Hygiène, Créteil, France.,EA 7380 Dynamyc, EnvA, UPEC, Paris-Est University, Créteil, France
| | - Laurent Dortet
- CHU de Bicêtre, service de Bactériologie-Hygiène, Le Kremlin-Bicêtre, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, France.,U1230 'ARN régulateurs Bactériens et Médecine', Université Rennes 1, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| |
Collapse
|
26
|
Zhang SH, Wei SS, Zhu ZY, Chen Y, Cai HL, Zhang BK. Physicochemical Assessment of Branded and Generic Linezolid Injection from Different Pharmaceutical Manufacturers. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200224104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Up to date, generic linezolid injections produced by Chinese manufacturers
were not widely used in clinics in China. Quality evaluation of linezolid injections produced in China
is a prerequisite, which has rarely been performed.
Objective:
This study aimed to evaluate the quality of branded and generic injections from different
manufacturers and to provide a basis for quality control.
Methods:
In this study, the content of linezolid, related impurities and enantiomer of linezolid were
determined by high-performance liquid chromatography. The content of glucose was determined by the
iodine method. The insoluble particles and visible and sub-visible particles were determined by light
blockage and lamp test, respectively. Osmotic pressure was determined by the freezing point depression
method. The standard solution control method was used to check the color of the injection. Linezolid
injections from different manufacturers were evaluated uniformly.
Results:
No significant difference was found in the content of linezolid, glucose, related impurities,
visible particles, insoluble particles, pH value, and solution color between branded and generic drugs
from different manufacturers in China.
Conclusion:
The quality of samples from different manufacturers is consistent. Although the physicochemical
similarity does not guarantee the bioequivalence of studied branded and generic linezolid injections,
the results provide references for further bioequivalence study. Generic injections offer more
affordable treatment options for patients with infections than expensive branded drugs.
Collapse
Affiliation(s)
- Su-hua Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| | - Shan-shan Wei
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| | - Zhen-yu Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| | - Ying Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| | - Hua-lin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| | - Bi-kui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011,China
| |
Collapse
|
27
|
Wang W, Voss KM, Liu J, Gordeev MF. Nonclinical Evaluation of Antibacterial Oxazolidinones Contezolid and Contezolid Acefosamil with Low Serotonergic Neurotoxicity. Chem Res Toxicol 2021; 34:1348-1354. [PMID: 33913699 DOI: 10.1021/acs.chemrestox.0c00524] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linezolid, the principal oxazolidinone antibiotic for therapy of Gram-positive infections, is limited by its myelosuppression and monoamine oxidase (MAO) inhibition, with the latter manifested as serotonergic neurotoxicity. The oral oxazolidinone contezolid and its injectable prodrug contezolid acefosamil are developed to overcome the above limitations. Serotonergic profiles for contezolid in vitro and for orally administered contezolid acefosamil in rodents are reported. Contezolid exhibited 2- and 148-fold reduction over linezolid reversible inhibition of MAO-A and MAO-B human enzyme isoforms. In the mouse head-twitch model, contezolid acefosamil was devoid of neurotoxicity at supratherapeutic oral doses of 40, 80, and 120 mg/kg. In the rat tyramine challenge model, no significant increase in arterial blood pressure was observed for contezolid acefosamil up to 120 mg/kg oral dosing. In these tests, the comparator linezolid has elicited serotonergic responses. Thus, contezolid and contezolid acefosamil exhibited an attenuated propensity to induce MAO-related serotonergic neurotoxicity. The data support a continued clinical evaluation of these agents, with potential to expand oxazolidinone therapies to patient populations on concurrent selective serotonin reuptake inhibitor medications or where MAO inhibitors are contraindicated.
Collapse
Affiliation(s)
- Wen Wang
- MicuRx Pharmaceuticals Inc., Foster City, California 94404, United States
| | - Kate M Voss
- Charles River Laboratories, Ashland, Ohio 44805, United States
| | - Jinqian Liu
- MicuRx Pharmaceuticals Inc., Foster City, California 94404, United States
| | - Mikhail F Gordeev
- MicuRx Pharmaceuticals Inc., Foster City, California 94404, United States
| |
Collapse
|
28
|
Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog 2021; 156:104915. [PMID: 33930416 DOI: 10.1016/j.micpath.2021.104915] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is one of the leading hospital-associated and community-associated pathogens, which has caused a global public health concern. The emergence of methicillin-resistant S. aureus (MRSA) along with the widespread use of different classes of antibiotics has become a significant therapeutic challenge. Antibiotic resistance is a disturbing problem that poses a threat to humans. Treatment options for S. aureus resistant to β-lactam antibiotics include glycopeptide antibiotic, cyclic lipopeptide antibiotic, cephalosporins and oxazolidinone antibiotic. The most representative types of these antibiotics are vancomycin, daptomycin, ceftaroline and linezolid. The frequent use of the first-line drug vancomycin for MRSA treatment has increased the number of resistant strains, namely vancomycin intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). A systematic literature review of relevant published studies in PubMed before 2020 was conducted. In recent years, there have been some reports on the relevant resistant mechanisms of vancomycin, daptomycin, ceftaroline and linezolid. In this review, we have summarized the antibiotic molecular modes of action and different gene mutants at the whole-genome level, which will aid in further development on new drugs for effective MRSA treatment based on describing different resistance mechanisms of classic antibiotics.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163, USA; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
29
|
Kushwaha B, Kushwaha ND, Parish T, Guzman J, Kajee A, Shaikh MS, Kehinde I, Obakachi VA, Pathan TK, Shinde SR, Karpoormath R. A New Class of Linezolid‐Based Molecules as Potential Antimicrobial and Antitubercular Agents: A Rational Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Babita Kushwaha
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Tanya Parish
- Infectious Disease Research Institute Seattle Washington United States of America
- Center for Global Infectious Disease Research, Seattle Children's Research Institute Seattle Washington USA
| | - Junitta Guzman
- Infectious Disease Research Institute Seattle Washington United States of America
| | - Afsana Kajee
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
- Department of Microbiology National Health Laboratory Services (NHLS) Inkosi Albert Luthuli Central Hospital Durban South Africa
| | - Mahamadhanif S. Shaikh
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Idowu Kehinde
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP)/Genomics Unit School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R Mandela School of Medicine University of KwaZulu-Natal Medical Campus Durban 4001 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| |
Collapse
|
30
|
Sharma N, Chhillar AK, Dahiya S, Punia A, Choudhary P, Gulia P, Behl A, Dangi M. Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections. Mini Rev Med Chem 2021; 22:26-42. [PMID: 33797362 DOI: 10.2174/1389557521666210402150325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen that causes nosocomial and community acquired infections. The accelerating emergence and prevalence of staphylococcal infections have grotesque health consequences which are mostly due to its anomalous capability to acquire drug resistance and scarcity of novel classes of antibacterials. Many combating therapies are centered on primary targets of S. aureus which are cell envelope, ribosomes and nucleic acids. This review describes various chemotherapeutic strategies for combating S. aureus infections which includes monotherapy, combination drug therapy, phage endolysin therapy, lysostaphins and antibacterial drones. Monotherapy has dwindled in due course of time but combination therapy, endolysin therapy, lysostaphin and antibacterial drones are emerging alternatives which efficiently conquer the shortcomings of monotherapy. Combinations of more than one antibiotic agents or combination of adjuvant with antibiotics provide a synergistic approach to combat infections causing pathogenic strains. Phage endolysin therapy and lysostaphin are also presents as possible alternatives to conventional antibiotic therapies. Antibacterial Drones goes a step further by specifically targeting the virulence genes in bacteria giving them a certain advantage over existing antibacterial strategies. But the challenge remains on the better understanding of these strategies for executing and implementing them in health sector. In this day and age, most of the S. aureus strains are resistant to ample number of antibiotics, so there is an urgent need to overcome such multidrug resistant strains for the welfare of our community.
Collapse
Affiliation(s)
| | | | | | - Aruna Punia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Prity Gulia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Mehak Dangi
- Centre for Bioinformatics, MDU, Rohtak 124001. India
| |
Collapse
|
31
|
Liu T, Hu C, Wu J, Liu M, Que Y, Wang J, Fang X, Xu G, Li H. Incidence and Associated Risk Factors for Lactic Acidosis Induced by Linezolid Therapy in a Case-Control Study in Patients Older Than 85 Years. Front Med (Lausanne) 2021; 8:604680. [PMID: 33732712 PMCID: PMC7959744 DOI: 10.3389/fmed.2021.604680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Serum lactic acid is considered a prognostic indicator in critically ill patients. However, studies on linezolid-induced lactic acidosis (LILA) are still limited. Individuals older than 85 years old (very elderly) have limited capacity for organ compensation, and LILA data from these patients are lacking. In this study, we evaluated the risk factors for LILA in patients older than 85 years and established a risk prediction model for geriatric practice. Methods: In this retrospective cohort study, blood gas analysis data and arterial lactate levels were monitored in patients older than 85 years during the use of teicoplanin or linezolid. After propensity score matching analyses, we compared the incidence of lactic acidosis between the teicoplanin and linezolid therapy groups and identified the risk factors of LILA. Results: The incidence of lactic acidosis was found to be much lower in the group receiving teicoplanin than those receiving linezolid therapy (0 vs. 35.7%; p < 0.0001). A duration of linezolid therapy ≥ 9 days [odds ratio (OR), 3.541; 95% confidence interval (CI), 1.161–10.793; p = 0.026], an arterial blood glucose level ≥ 8 mmol/L (OR, 4.548; 95% CI, 1.507–13.725; p = 0.007), and a high sequential organ failure assessment score (OR, 1.429; 95% CI, 1.213–1.685; p < 0.0001) were risk factors for LILA. The constructed risk model could be used to predict LILA (area under the curve, 0.849; specificity, 65.1%; sensitivity, 91.4%, with a negative predictive value of 93.2% and a positive predictive value of 59.3%). Conclusions: LILA can occur in patients older than 85 years after a relatively shorter duration of linezolid therapy. Therefore, close monitoring of blood gas and arterial lactate levels during linezolid therapy in the very elderly population is necessary.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chao Hu
- The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jionghe Wu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Miao Liu
- Second Medical Centre, Institute of Gerontology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yifan Que
- The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiang Wang
- Centre of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiangqun Fang
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guogang Xu
- The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongxia Li
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
32
|
Fang X, Tan Y, Gu L, Ackermann L, Ma W. para
‐Selective Palladium‐Catalyzed C−H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem 2021. [DOI: 10.1002/cctc.202002056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universitaet Goettingen Tammannstraße 2 37077 Goettingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| |
Collapse
|
33
|
Alatorre-Barajas JA, Alcántar-Zavala E, Gil-Rivas MG, Estrada-Zavala E, Ochoa-Terán A, Gochi-Ponce Y, Montes-Ávila J, Cabrera A, Trujillo-Navarrete B, Rivera-Lugo YY, Alonso-Núñez G, Reynoso-Soto EA, Medina-Franco JL. Synthesis of covalent bonding MWCNT-oligoethylene linezolid conjugates and their antibacterial activity against bacterial strains. RSC Adv 2021; 11:28912-28924. [PMID: 35478546 PMCID: PMC9038137 DOI: 10.1039/d1ra04691h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, infectious diseases caused by drug-resistant bacteria have become especially important. Linezolid is an antibacterial drug active against clinically important Gram positive strains; however, resistance showed by these bacteria has been reported. Nanotechnology has improved a broad area of science, such as medicine, developing new drug delivery and transport systems. In this work, several covalently bounded conjugated nanomaterials were synthesized from multiwalled carbon nanotubes (MWCNTs), a different length oligoethylene chain (Sn), and two linezolid precursors (4 and 7), and they were evaluated in antibacterial assays. Interestingly, due to the intrinsic antibacterial activity of the amino-oligoethylene linezolid analogues, these conjugated nanomaterials showed significant antibacterial activity against various tested bacterial strains in a radial diffusion assay and microdilution method, including Gram negative strains as Escherichia coli (11 mm, 6.25 μg mL−1) and Salmonella typhi (14 mm, ≤0.78 μg mL−1), which are not inhibited by linezolid. The results show a significant effect of the oligoethylene chain length over the antibacterial activity. Molecular docking of amino-oligoethylene linezolid analogs shows a more favorable interaction of the S2-7 analog in the PTC of E. coli. New MWCNTs amino-oligoethylene linezolid conjugates having outstanding activity against Gram negative strains.![]()
Collapse
Affiliation(s)
- José A. Alatorre-Barajas
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Eleazar Alcántar-Zavala
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - M. Graciela Gil-Rivas
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Edgar Estrada-Zavala
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin, Mexico
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Y. Gochi-Ponce
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Julio Montes-Ávila
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin, Mexico
| | - Alberto Cabrera
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Balter Trujillo-Navarrete
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Yazmin Yorely Rivera-Lugo
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Gabriel Alonso-Núñez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B. C, Mexico
| | - Edgar A. Reynoso-Soto
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - J. L. Medina-Franco
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
34
|
Tall YA, Al-Rawashdeh B, Abualhaijaa A, Almaaytah A, Masadeh M, Alzoubi KH. Functional Characterization of a Novel Hybrid Peptide with High Potency against Gram-negative Bacteria. Curr Pharm Des 2020; 26:376-385. [PMID: 32003660 DOI: 10.2174/1381612826666200128090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug resistant infections are a growing worldwide health concern. There is an urgent need to produce alternative antimicrobial agents. OBJECTIVE The study aimed to design a new hybrid antimicrobial peptide, and to evaluate its antimicrobial activity alone and in combination with traditional antibiotics. METHODS Herein, we designed a novel hybrid peptide (BMR-1) using the primary sequences of the parent peptides Frog Esculentin-1a and Monkey Rhesus cathelicidin (RL-37). The positive net charge was increased, and other physicochemical parameters were optimized. The antimicrobial activities of BMR-1 were tested against control and multi-drug resistant gram-negative bacteria. RESULTS BMR-1 adopted a bactericidal behavior with MIC values of 25-30 µM. These values reduced by over 75% upon combination with conventional antibiotics (levofloxacin, chloramphenicol, ampicillin, and rifampicin). The combination showed strong synergistic activities in most cases and particularly against multi-drug resistance P. aeruginosa and E. coli. BMR-1 showed similar potency against all tested strains regardless of their resistant mechanisms. BMR-1 exhibited no hemolytic effect on human red blood cells with the effective MIC values against the tested strains. CONCLUSION BMR-1 hybrid peptide is a promising candidate to treat resistant infectious diseases caused by gramnegative bacteria.
Collapse
Affiliation(s)
- Yara Al Tall
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Baha'a Al-Rawashdeh
- Department of Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmad Abualhaijaa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
35
|
Masila VM, Ndakala AJ, Midiwo JO, Byamukama R, Kamau RW, Kumarihamy M, Muhammad I. Synthesis of a pyrrolidine derivative of a carvotacetone and monoterpenes for anti-methicillin-resistant Staphylococcus aureus and anti-cryptococcal properties. Nat Prod Res 2020; 36:2321-2328. [PMID: 33103456 DOI: 10.1080/14786419.2020.1833201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monoterpene derivatives are of great biological relevance in the pharmaceutical industry. In the present study, pyrrolidine derivative of a carvotacetone, 3-O-benzylcarvotacetone (1), and selected monoterpenes (3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone (3) and cis-piperitol (5)) were prepared to provide (R)-1-(4-(benzyloxy)-5-isopropyl-2-methylcyclohexa-1,3-dien-1-yl)-pyrrolidine (2), 2-isopropyl-5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl acetate (4), cis-3-hydroxypiperitone (6) and carvacrol (7). Structure of 2 was determined based on NMR and HRMS spectral data. Compound 4 exhibited activity against fungi Cryptococcus neoformans with an IC50 value of < 0.8 µg/mL. In addition, this compound 4 had an IC50 value of 14.97 µg/mL against methicillin resistant Staphylococcus aureus bacteria. Previous to the current study, both compound 6 and 7 had been reported to have anti-microbial and anti-fungal activities.
Collapse
Affiliation(s)
- Veronica M Masila
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Albert J Ndakala
- Department of Chemistry, School of Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Jacob O Midiwo
- Department of Chemistry, School of Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Robert Byamukama
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Rahab W Kamau
- Department of Chemistry, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Mallika Kumarihamy
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, USA
| | - Ilias Muhammad
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
36
|
Ding L, Li P, Yang Y, Lin D, Xu X. The epidemiology and molecular characteristics of linezolid-resistant Staphylococcus capitis in Huashan Hospital, Shanghai. J Med Microbiol 2020; 69:1079-1088. [PMID: 32729813 DOI: 10.1099/jmm.0.001234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Linezolid-resistant (LZR) Staphylococcus capitis has recently emerged in our hospital, and its potential resistance mechanisms are still not clear.Aim. This study aimed to investigate the epidemiology, clinical and genetic characteristics, resistance mechanisms and biofilm formation capacity of LZR S. capitis isolated from patients at Huashan Hospital, Shanghai, PR China between 2012 and 2018.Methodology. Strains were subjected to antimicrobial susceptibility testing (AST) with antibiotics using the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The presence of cfr, optrA and poxtA, as well as mutations in the 23S ribosomal (r)RNA and ribosomal proteins, was investigated using PCR and sequencing techniques. The genetic relationship between isolates was analysed using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). Biofilm biomasses were detected by using crystal violet staining.Results. Twenty-one LZR S. capitis strains displayed MICs of 32-512 μg ml-1. All LZR strains showed G2576T and C2104T mutations in the 23S rRNA V region. Besides G2576T and C2104T, no base mutations were detected in the V region. The cfr was detected in 12 strains, while optrA and poxtA were not amplified in 21 S. capitis strains. PFGE showed that the LZR S. capitis strains belonged to a single clone. The phylogenetic tree showed that 20 LZR S. capitis strains were highly similar to LNZR-1, isolated from Harbin (located in the north of China) in 2013, which showed resistance to linezolid.Conclusions. In this research, cfr-negative strains displayed linezolid MICs of 32 μg ml-1. In comparison, cfr-positive strains exhibited linezolid MICs of 128-512 μg ml-1, indicating that high levels of linezolid resistance appear to be related to the presence of cfr. The outbreak of LZR S. capitis in our hospital needs to be monitored closely.
Collapse
Affiliation(s)
- Li Ding
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China.,Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Pei Li
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China.,Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yang Yang
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China.,Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Dongfang Lin
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China.,Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaogang Xu
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China.,Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Wright A, Deane-Alder K, Marschall E, Bamert R, Venugopal H, Lithgow T, Lupton DW, Belousoff MJ. Characterization of the Core Ribosomal Binding Region for the Oxazolidone Family of Antibiotics Using Cryo-EM. ACS Pharmacol Transl Sci 2020; 3:425-432. [PMID: 32566908 DOI: 10.1021/acsptsci.0c00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 01/02/2023]
Abstract
Linezolid and tedizolid are oxazolidinones with established clinical utility for the treatment of Gram-positive pathogens. Over time it has become apparent that even modest structural changes to the core phenyl oxazolidinone leads to drastic changes in biological activity. Consequently, the structure-activity relationship around the core oxazolidinone is constantly evolving, often reflected with new structural motifs present in nascent oxazolidinones. Herein we describe the use of cryo-electron microscopy to examine the differences in binding of several functionally different oxazolidinones in the hopes of enhanced understanding of their SAR. Tedizolid, radezolid, T145, and contezolid have been examined within the peptidyl transferase center (PTC) of the 50S ribosomal subunit from methicillin resistant Staphylococcus aureus. The ribosome-antibiotic complexes were resolved to a resolution of around 3 Å enabling unambiguous assignment of how each antibiotic interacts with the PTC.
Collapse
Affiliation(s)
- Alexander Wright
- School of Chemistry, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - Kieran Deane-Alder
- Drug and Development Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052 Victoria, Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - Rebecca Bamert
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Center for Cryo-Electron Microscopy, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Wellington Road, Clayton, 3800 Victoria, Australia
| | - Matthew J Belousoff
- Drug and Development Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052 Victoria, Australia
| |
Collapse
|
38
|
Bell AC, Boomsma AB, Flikweert NE, Hohlman RM, Zhang S, Blankespoor RL, Biros SM, Staples RJ, Brickner SJ, Barbachyn MR. The Synthesis of Functionalized 3-Aryl- and 3-Heteroaryloxazolidin-2-ones and Tetrahydro-3-aryl-1,3-oxazin-2-ones via the Iodocyclocarbamation Reaction: Access to Privileged Chemical Structures and Scope and Limitations of the Method. J Org Chem 2020; 85:6323-6337. [PMID: 32316722 DOI: 10.1021/acs.joc.9b03400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aryl- and 3-heteroaryloxazolidin-2-ones, by virtue of the diverse pharmacologic activities exhibited by them after subtle changes to their appended substituents, are becoming increasingly important and should be considered privileged chemical structures. The iodocyclocarbamation reaction has been extensively used to make many 3-alkyl-5-(halomethyl)oxazolidin-2-ones, but the corresponding aromatic congeners have been relatively underexplored. We suggest that racemic 3-aryl- and 3-heteroaryl-5-(iodomethyl)oxazolidin-2-ones, readily prepared by the iodocyclocarbamation reaction of N-allylated N-aryl or N-heteroaryl carbamates, may be useful intermediates for the rapid preparation of potential lead compounds with biological activity. We exemplify this point by using this approach to prepare racemic linezolid, an antibacterial agent. Herein, we report the results of our systematic investigation into the scope and limitations of this process and have identified some distinguishing characteristics within the aryl/heteroaryl series. We also describe the first preparation of 3-aryloxazolidin-2-ones bearing new functionalized C-5 substituents derived from conjugated 1,3-dienyl and cumulated 1,2-dienyl carbamate precursors. Finally, we describe the utility of the iodocyclocarbamation reaction for making six-membered tetrahydro-3-aryl-1,3-oxazin-2-ones.
Collapse
Affiliation(s)
- Abbegail C Bell
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Alex B Boomsma
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Niecia E Flikweert
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Robert M Hohlman
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Shiyuan Zhang
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Ronald L Blankespoor
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | - Shannon M Biros
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Richard J Staples
- Center for Crystallographic Research, Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Steven J Brickner
- SJ Brickner Consulting, LLC, 9 Fargo Drive, Ledyard, Connecticut 06339, United States
| | - Michael R Barbachyn
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| |
Collapse
|
39
|
Cui DY, Kong HT, Yang Y, Cai J, Shen BY, Yan DC, Zhang XJ, Qu YL, Bai MM, Zhang E. Asymmetric synthesis of linezolid thiazolidine-2-thione derivatives via CS2 mediated decarboxylation cyclization. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Cui DX, Li YD, Huang P, Tian Z, Jia YY, Wang PA. Bifunctional phase-transfer catalysts for synthesis of 2-oxazolidinones from isocyanates and epoxides. RSC Adv 2020; 10:12360-12364. [PMID: 35497599 PMCID: PMC9050849 DOI: 10.1039/d0ra00693a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
A series of bifunctional phase-transfer catalysts (PTCs) were synthesized to catalyze the [3 + 2] coupling reaction of isocyanates and epoxides to afford 2-oxazolidinones in good to high yields (up to 92% yield) using PhCl as a solvent at 100 °C within 12 h. These bifunctional PTCs were easily prepared from commercially available tertiary-primary diamines and isocyanates (or isothiocyanates, mono-squaramides, respectively) in two simple steps with good modularity and demonstrated high efficiency (2.5 mol% catalyst-loading). The synergistic interaction of the quaternary ammonium salt center and hydrogen-bond donor group in the catalyst with the substrate is crucial to this atom-economic reaction.
Collapse
Affiliation(s)
- Dong-Xiao Cui
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle West Road 169 Xi'an 710032 P. R. China .,Department of Pharmacy, Xijing Hospital, Fourth Military Medical University Changle West Road 15 Xi'an 710032 P. R. China
| | - Yue-Dan Li
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle West Road 169 Xi'an 710032 P. R. China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle West Road 169 Xi'an 710032 P. R. China
| | - Zhuang Tian
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle West Road 169 Xi'an 710032 P. R. China
| | - Yan-Yan Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University Changle West Road 15 Xi'an 710032 P. R. China
| | - Ping-An Wang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle West Road 169 Xi'an 710032 P. R. China
| |
Collapse
|
41
|
Wu Y, Ding X, Yang Y, Li Y, Qi Y, Hu F, Qin M, Liu Y, Sun L, Zhao Y. Optimization of biaryloxazolidinone as promising antibacterial agents against antibiotic-susceptible and antibiotic-resistant gram-positive bacteria. Eur J Med Chem 2020; 185:111781. [DOI: 10.1016/j.ejmech.2019.111781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/01/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
42
|
Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat Chem Biol 2019; 16:310-317. [PMID: 31844301 PMCID: PMC7036023 DOI: 10.1038/s41589-019-0423-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
Chloramphenicol (CHL) and linezolid (LZD) are antibiotics that inhibit translation. Both were thought to block peptide bond formation between all combinations of amino acids. Yet recently, a strong nascent peptide context-dependency of CHL- and LZD-induced translation arrest was discovered. Here, we probed the mechanism of action of CHL and LZD by using single-molecule Förster resonance energy transfer spectroscopy (smFRET) to monitor translation arrest induced by antibiotics. The presence of CHL or LZD does not significantly alter dynamics of protein synthesis until the arrest-motif of the nascent peptide is generated. Inhibition of peptide-bond formation compels the fully accommodated A-site tRNA to undergo repeated rounds of dissociation and non-productive rebinding. The glycyl amino-acid moiety on the A-site Gly-tRNA manages to overcome the arrest by CHL. Our results illuminate the mechanism of CHL and LZD action through their interactions with the ribosome, the nascent peptide and the incoming amino acid, perturbing elongation dynamics.
Collapse
|
43
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 2019; 18:17-25. [PMID: 31800331 DOI: 10.1080/14787210.2020.1701436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Antimicrobial resistance (AMR) played an important role in the initial outbreaks of Clostridium difficile infection (CDI) in the 1970s. C. difficile ribotype (RT) 017 has emerged as the major strain of C. difficile in Asia, where antimicrobial use is poorly regulated. This strain has also caused CDI outbreaks around the world for almost 30 years. Many of these outbreaks were associated with clindamycin and fluoroquinolone resistance. AMR and selective pressure is likely to be responsible for the success of this RT and may drive future outbreaks.Areas covered: This narrative review summarizes the prevalence and mechanisms of AMR in C. difficile RT 017 and transmission of these AMR mechanisms. To address these topics, reports of outbreaks due to C. difficile RT 017, epidemiologic studies with antimicrobial susceptibility results, studies on resistance mechanisms found in C. difficile and related publications available through Pubmed until September 2019 were collated and the findings discussed.Expert opinion: Primary prevention is the key to control CDI. This should be achieved by developing antimicrobial stewardship in medical, veterinary and agricultural practices. AMR is the key factor that drives CDI outbreaks, and methods for the early detection of AMR can facilitate the control of outbreaks.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
44
|
Xu S, Jiang J, Qi Y, Ding X, Wu Y, Lei H, Zhao Y. Design and synthesis of biaryloxazolidinone derivatives containing amide or acrylamide moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg Med Chem Lett 2019; 29:126747. [PMID: 31668973 DOI: 10.1016/j.bmcl.2019.126747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
A series of novel biaryloxazolidinone derivatives containing amide and acrylamide structure were designed, synthesized and evaluated for their antibacterial activity. Most compounds generally exhibited potent antibacterial activity with MIC values of 1 μg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as positive controls. Compound 17 exhibited good antibacterial activity with MIC values of 0.5 μg/mL against S. aureus, MRSA, MSSA and VRE and 0.25 μg/mL against LREF. The results indicated that compound 17 might serve as a potential hit-compound for further investigation.
Collapse
Affiliation(s)
- Sicong Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jia Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yinliang Qi
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiudong Ding
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Yachuang Wu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hong Lei
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China.
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
45
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
46
|
Chen H, Wang X, Yin Y, Li S, Zhang Y, Wang Q, Wang H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol 2019; 19:162. [PMID: 31299904 PMCID: PMC6626368 DOI: 10.1186/s12866-019-1537-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/30/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of linezolid-resistant enterococci. RESULTS The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant (MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86, ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr. Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain. The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in 13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage. CONCLUSION Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in clinical practice.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| |
Collapse
|
47
|
Ironing out pyoverdine's chromophore structure: serendipity or design? J Biol Inorg Chem 2019; 24:659-673. [PMID: 31214860 DOI: 10.1007/s00775-019-01678-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Pyoverdines are Pseudomonas aeruginosa's primary siderophores. These molecules, composed of a fluorescent chromophore attached to a peptide chain of 6-14 amino acids, are synthesized by the bacterium to scavenge iron (essential to its survival and growth) from its environment. Hijacking the siderophore pathway to use pyoverdine-antibiotic compounds in a Trojan horse approach has shown promise but remains very challenging because of the synthetic efforts involved. Indeed, both possible approaches (grafting an antibiotic on pyoverdine harvested from Pseudomonas or designing a total synthesis route) are costly, time-consuming and low-yield tasks. Designing comparatively simple analogs featuring the salient properties of the original siderophore is thus crucial for the conception of novel antibiotics to fight bacterial resistance. In this work, we focus on the replacement of the pyoverdine chromophore, a major roadblock on the synthetic pathway. We propose three simpler analogs and evaluate their ability to complex iron and interact with the FpvA transporter using molecular modeling techniques. Based on these results, we discuss the role of the native chromophore's main features (polycyclicity, positive charge, flexibility) on pyoverdine's ability to bind iron and be recognized by membrane transporter FpvA and propose guidelines for the design of effective synthetic siderophores.
Collapse
|
48
|
Bender JK, Fleige C, Klare I, Werner G. Development of a multiplex-PCR to simultaneously detect acquired linezolid resistance genes cfr, optrA and poxtA in enterococci of clinical origin. J Microbiol Methods 2019; 160:101-103. [PMID: 30940534 DOI: 10.1016/j.mimet.2019.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Linezolid-resistant enterococcus spp. are increasingly recognized by diagnostic laboratories. Resistance can be mediated by the expression of cfr, optrA or poxtA. We developed a multiplex-PCR to simultaneously detect all three genes. The PCR is suitable for microbiological diagnostics in order to restrict further spread of resistances in enterococci.
Collapse
Affiliation(s)
- Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany.
| | - Carola Fleige
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Ingo Klare
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
49
|
Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking Outside the Bug: Molecular Targets and Strategies to Overcome Antibiotic Resistance. Int J Mol Sci 2019; 20:E1255. [PMID: 30871132 PMCID: PMC6470534 DOI: 10.3390/ijms20061255] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.
Collapse
Affiliation(s)
- Ana Monserrat-Martinez
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Yann Gambin
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Emma Sierecki
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
50
|
Wu Y, Ding X, Xu S, Yang Y, Zhang X, Wang C, Lei H, Zhao Y. Design and synthesis of biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg Med Chem Lett 2019; 29:496-502. [DOI: 10.1016/j.bmcl.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
|