1
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Sahoo PR, Kathuria I, Kumar S. The structural arrangement of the ligand-metal complex with centered zinc and nickel atoms and their optical features. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Turhan ZŞ, Tenlįk F. Theoretical investigation of some 1,2,4-triazole-based molecules synthetized. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In this study, theoretical calculations were made and interpreted to obtain chemical, nonlinear optical properties and antibacterial activity parameters of 14 registered heterocyclic 4, 5-dihydro-1H-1, 2, 4-triazole-5-one derivatives in the literature. For this purpose, first of all, 14 compounds registered in the literature and two main structures were optimized to find the minimum energy and the most stable structure by using the “B3LYP/6-311++G (d, p)” methods. HOMO–LUMO energies calculated from these optimized structures, energy differences and chemical parameters derived from HOMO–LUMO energies (I; Ionization potential, A; electron affinity, ΔE; Energy Gap, χ; electronegative σ; molecular softness, ω; Electrophilic Index, ε; Nucleophilic Index, μ; Chemical Potential) values were determined. In addition to chemical parameters, polar calculations were made for nonlinear optical properties, and it was evaluated whether the compounds could be optical materials. Finally, the antimicrobial properties of the molecules were calculated theoretically and compared with the experimental results by calculating the volume.
Collapse
Affiliation(s)
- Zeynep Şilan Turhan
- Department of Biochemistry , Faculty of Science and Literature Igdır University , 76000 , Igdır , Turkey
| | - Figen Tenlįk
- Department of Biochemistry , Faculty of Science and Literature Igdır University , 76000 , Igdır , Turkey
| |
Collapse
|
4
|
Ribaudo G, Bortoli M, Witt CE, Parke B, Mena S, Oselladore E, Zagotto G, Hashemi P, Orian L. ROS-Scavenging Selenofluoxetine Derivatives Inhibit In Vivo Serotonin Reuptake. ACS OMEGA 2022; 7:8314-8322. [PMID: 35309454 PMCID: PMC8928538 DOI: 10.1021/acsomega.1c05567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
While the neurochemistry that underpins the behavioral phenotypes of depression is the subject of many studies, oxidative stress caused by the inflammation comorbid with depression has not adequately been addressed. In this study, we described novel antidepressant-antioxidant agents consisting of selenium-modified fluoxetine derivatives to simultaneously target serotonin reuptake (antidepressant action) and oxidative stress. Excitingly, we show that one of these agents (1-F) carries the ability to inhibit serotonin reuptake in vivo in mice. We therefore present a frontier dual strategy that paves the way for the future of antidepressant therapies.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento
di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Bortoli
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova Via Marzolo 1, 35131 Padova, Italy
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Colby E. Witt
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia South Carolina 29201, United States
| | - Brenna Parke
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Sergio Mena
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Erika Oselladore
- Dipartimento
di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Dipartimento
di Scienze del Farmaco, Università
degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Parastoo Hashemi
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia South Carolina 29201, United States
| | - Laura Orian
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
6
|
Singh B, Chetia D, Kumawat MK. Synthesis and In Vitro Antimalarial Activity Evaluation of Some New 1,2-Diaminopropane Side-Chain-Modified 4-Aminoquinoline Mannich Bases. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Mbaba M, Golding TM, Smith GS. Recent Advances in the Biological Investigation of Organometallic Platinum-Group Metal (Ir, Ru, Rh, Os, Pd, Pt) Complexes as Antimalarial Agents. Molecules 2020; 25:molecules25225276. [PMID: 33198217 PMCID: PMC7698227 DOI: 10.3390/molecules25225276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
In the face of the recent pandemic and emergence of infectious diseases of viral origin, research on parasitic diseases such as malaria continues to remain critical and innovative methods are required to target the rising widespread resistance that renders conventional therapies unusable. The prolific use of auxiliary metallo-fragments has augmented the search for novel drug regimens in an attempt to combat rising resistance. The development of organometallic compounds (those containing metal-carbon bonds) as antimalarial drugs has been exemplified by the clinical development of ferroquine in the nascent field of Bioorganometallic Chemistry. With their inherent physicochemical properties, organometallic complexes can modulate the discipline of chemical biology by proffering different modes of action and targeting various enzymes. With the beneficiation of platinum group metals (PGMs) in mind, this review aims to describe recent studies on the antimalarial activity of PGM-based organometallic complexes. This review does not provide an exhaustive coverage of the literature but focusses on recent advances of bioorganometallic antimalarial drug leads, including a brief mention of recent trends comprising interactions with biomolecules such as heme and intracellular catalysis. This resource can be used in parallel with complementary reviews on metal-based complexes tested against malaria.
Collapse
|
8
|
Abu-Hashem AA, Al-Hussain SA, Zaki MEA. Synthesis of Novel Benzodifuranyl; 1,3,5-Triazines; 1,3,5-Oxadiazepines; and Thiazolopyrimidines Derived from Visnaginone and Khellinone as Anti-Inflammatory and Analgesic Agents. Molecules 2020; 25:molecules25010220. [PMID: 31948127 PMCID: PMC6982876 DOI: 10.3390/molecules25010220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Novel (4-methoxy or 4,8-dimethoxy)-3-methyl-N-(6-oxo-2-thioxo-1,2,3, 6-tetrahydro- pyrimidin-4-yl) benzo [1,2-b: 5, 4-b'] difuran-2-carboxamide (5a-b) has been synthesized by the reaction of visnagenone-ethylacetate (2a) or khellinone-ethylacetate (2b) with 6-aminothiouracil in dimethylformamide or refluxing of benzofuran-oxy-N-(2-thioxopyrimidine) acetamide (4a-b) in sodium ethoxide to give the same products (5a,b) in good yields. Thus, compounds 5a-b are used as an initiative to prepare many new heterocyclic compounds such as 2-(4-(3-methylbenzodifuran- 2-carbox-amido) pyrimidine) acetic acid (6a-b), N-(thiazolo[3, 2-a]pyrimidine)-3-methylbenzo- difuran-2-carboxamide (7a-b), N-(2-thioxopyrimidine)-methylbenzodifuran-2-carbimidoylchloride (8a-b), N-(2-(methyl-thio) pyrimidine)-3-methylbenzodifuran-2-carbimidoylchloride (9a-b), N-(2, 6 -di(piperazine or morpholine)pyrimidine)-1-(3-methylbenzodifuran)-1-(piperazine or morpholine) methanimine(10a-d), 8-(methylbenzodifuran)-thiazolopyrimido[1,6-a][1,3,5]triazine-3,5-dione (11a -b), 8-(3-methyl benzodifuran)-thiazolopyrimido[6,1-d][1,3,5]oxadiazepine-trione (12a-b), and 2,10 -di(sub-benzylidene)-8-(3-methylbenzodifuran)-thiazolopyrimido[6,1-d][1,3,5]oxadiazepine-3,5,11- trione (13a-f). All new chemical structures were illustrated on the basis of elemental and spectral analysis (IR, NMR, and MS). The new compounds were screened as cyclooxygenase-1/ cyclooxygenase-2 (COX-1/COX-2) inhibitors and had analgesic and anti-inflammatory activities. The compounds 10a-d and 13a-f had the highest inhibitory activity on COX-2 selectivity, with indices of 99-90, analgesic activity of 51-42% protection, and anti-inflammatory activity of 68%-59%. The inhibition of edema for the same compounds, 10a-d and 13a-f, was compared with sodium diclofenac as a standard drug.
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Photochemistry Department, Heterocyclic Unit, National Research Centre, Dokki, Giza12622, Egypt;
- Chemistry Department, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia
- Correspondence: ; Tel.: +2-01225211700 or +966-591363915; Fax: +202-33370931
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Magdi E. A. Zaki
- Photochemistry Department, Heterocyclic Unit, National Research Centre, Dokki, Giza12622, Egypt;
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| |
Collapse
|
9
|
Ribaudo G, Bortoli M, Ongaro A, Oselladore E, Gianoncelli A, Zagotto G, Orian L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv 2020; 10:18583-18593. [PMID: 35518299 PMCID: PMC9053872 DOI: 10.1039/d0ra03509b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fluoxetine finds application in the treatment of depression and mood disorders. This selective serotonin-reuptake inhibitor (SSRI) also contrasts oxidative stress by direct ROS scavenging, modulation of the endogenous antioxidant defense system, and/or enhancement of the serotonin antioxidant capacity. We synthesised some fluoxetine analogues incorporating a selenium nucleus, thus expanding its antioxidant potential by enabling a hydroperoxides-inactivating, glutathione peroxidase (GPx)-like activity. Radical scavenging and peroxidatic activity were combined in a water-soluble, drug-like, tandem antioxidant molecule. Selenofluoxetine derivatives were reacted with H2O2 in water, and the mechanistic details of the reaction were unravelled combining nuclear magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and quantum chemistry calculations. The observed oxidation–elimination process led to the formation of seleninic acid and cinnamylamine in a trans-selective manner. This mechanism is likely to be extended to other substrates for the preparation of unsaturated cinnamylamines. We modified fluoxetine by incorporating a selenium nucleus enabling a hydroperoxide-inactivating, glutathione peroxidase (GPx)-like activity and paving the way for its use as green catalyst.![]()
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Erika Oselladore
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
10
|
Mbaba M, Dingle LMK, Cash D, Mare JADL, Laming D, Taylor D, Hoppe HC, Edkins AL, Khanye SD. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur J Med Chem 2019; 187:111924. [PMID: 31855792 DOI: 10.1016/j.ejmech.2019.111924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/12/2023]
Abstract
Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis. The resultant ferrocenyl 1,3-benzoxazine compounds displayed high potency and selectivity against the investigated diseases, with IC50 values in the low and sub-micromolar range against both chloroquine-sensitive (3D7) and resistant (Dd2) strains of the Plasmodium falciparum parasite. On the other hand, antitrypanosomal (Trypanosoma brucei brucei) potencies were observed between 0.15 and 38.6 μM. The majority of the compounds were not active against breast cancer cells (HCC70), however, for the toxic compounds, IC50 values ranged from 11.0 to 30.5 μM. Preliminary structure-activity relationships revealed the basic oxazine sub-ring and lipophilic benzene substituents to be conducive for biological efficacy of the ferrocenyl 1,3-benzoxazines reported in the study. DNA interaction studies performed on the most promising compound 4c suggested that DNA damage may be one possible mode of action of this class of compounds.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology, Faculty of Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa; Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
11
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
12
|
Xiao J, Sun Z, Kong F, Gao F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur J Med Chem 2019; 185:111791. [PMID: 31669852 DOI: 10.1016/j.ejmech.2019.111791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Hybrid molecules have the potential to enhance the efficacy against both drug-sensitive and drug-resistant organisms, and Ferroquine, a ferrocene hybrid, has demonstrated great potency in clinical trials against both drug-sensitive and drug-resistant malaria. Accordingly, hybridization of ferrocene with other antimalarial pharmacophores represents a promising strategy to develop novel antimalarial candidates. This work attempts to systematically review the recent study of ferrocene hybrids in the design and development of antimalarial agents, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational design of more effective antibacterial candidates.
Collapse
Affiliation(s)
- Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
13
|
Logun MT, Wynens KE, Simchick G, Zhao W, Mao L, Zhao Q, Mukherjee S, Brat DJ, Karumbaiah L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J 2019; 33:11973-11992. [PMID: 31398290 DOI: 10.1096/fj.201802610rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Kallie E Wynens
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Gregory Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Leidong Mao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Abu-Hashem AA. Synthesis of New Furothiazolo Pyrimido Quinazolinones from Visnagenone or Khellinone and Antimicrobial Activity. Molecules 2018; 23:molecules23112793. [PMID: 30373270 PMCID: PMC6278323 DOI: 10.3390/molecules23112793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Substituted-6-methyl-1-thioxo-1,2-dihydro-3H-furo[3,2-g]pyrimido[1,6-a]quinazolin-3-ones (5a,b) were synthesized from condensation of visnagenone (2a) or khellinone (2b) with 6-amino-thiouracil (3) in dimethylformamide or refluxing of (4a) or (4b) in dimethylformamide. Hence, compounds (5a,b) were used as the starting materials for preparing many new heterocyclic compounds such as; furo[3,2-g]pyrimido[1,6-a]quinazoline (6a,b), furo[3,2-g]thiazolo[2',3':2,3]pyrimido[1,6-a]quinazolinone (7a,b), substituted-benzylidene-furo[3,2-g]thiazolo[2',3':2,3]pyrimido[1,6-a]quinazoline-3,5-dione (8a⁻f), 3-oxo-furo[3,2-g]pyrimido[1,6-a]quinazoline-pentane-2,4-dione (9a,b), 1-(pyrazole)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (10a,b), 2-(oxo or thioxo)-pyrimidine-furo[3,2-g]pyrimido[1,6-a]quinazolinone (11a⁻d), 1-(methylthio)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (12a,b), 1-(methyl-sulfonyl)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (13a,b) and 6-methyl-1-((piperazine) or morpholino)-3H-furo[3,2-g]pyrimido[1,6-a]quinazolin-3-one (14a⁻d). The structures of the prepared compounds were elucidated on the basis of spectral data (IR, ¹H-NMR, 13C-NMR, MS) and elemental analysis. Antimicrobial activity was evaluated for the synthesized compounds against Gram-positive, Gram-negative bacteria and fungi. The new compounds, furothiazolo pyrimido quinazolines 8a⁻f and 11a⁻d displayed results excellent for growth inhibition of bacteria and fungi.
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza1 2622, Egypt.
- Chemistry Department, Faculty of Science, Jazan University, 2097 Jazan, Saudi Arabia.
| |
Collapse
|
15
|
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther 2018; 191:43-49. [PMID: 29932886 DOI: 10.1016/j.pharmthera.2018.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically approved cancer therapies include small molecules, antibodies, and nanoparticles. There has been major progress in the treatment of several cancer types over recent decades. However, many challenges remain for optimal use of conventional and nanoparticle-based therapies in oncology including poor drug delivery, rapid clearance, and drug resistance. The antimalarial agent chloroquine has been found to mitigate some of these challenges by modulating cancer cells and the tissue microenvironment. Particularly, chloroquine was recently found to reduce immunological clearance of nanoparticles by resident macrophages in the liver, leading to increased tumor accumulation of nanodrugs. Additionally, chloroquine has been shown to improve drug delivery and efficacy through normalization of tumor vasculature and suppression of several oncogenic and stress-tolerance pathways, such as autophagy, that protect cancer cells from cytotoxic agents. This review will discuss the use of chloroquine as combination therapy to improve cancer treatment.
Collapse
Affiliation(s)
- Joe Pelt
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Florida State University, Tallahassee, FL 32306, USA
| | - Sara Busatto
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25133, Italy.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic Cancer Center, Mayo Clinic Florida, Jacksonville, FL 32224, USA.
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
16
|
Shi W, Zhang J, Bao N, Guan F, Chen L, Sun J. Design, synthesis, and cytotoxic evaluation of novel scopoletin derivatives. Chem Biol Drug Des 2017; 91:641-646. [DOI: 10.1111/cbdd.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/08/2017] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Shi
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Jinlu Zhang
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Na Bao
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Fuqin Guan
- Institute of Botany; Jiangsu Province and Chinese Academy of Science; Nanjing China
| | - Li Chen
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Jianbo Sun
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| |
Collapse
|
17
|
Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017; 139:22-47. [DOI: 10.1016/j.ejmech.2017.07.061] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
18
|
The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5146-58. [PMID: 27297478 DOI: 10.1128/aac.02975-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/27/2016] [Indexed: 01/16/2023] Open
Abstract
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents.
Collapse
|
19
|
Shaveta, Mishra S, Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur J Med Chem 2016; 124:500-536. [PMID: 27598238 DOI: 10.1016/j.ejmech.2016.08.039] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
The practice of polypharmacology is not a new concept but the approaches which are being adopted for administering the two or more drugs together are varied from time to time. Taking two or more drugs simultaneously, co-formulation of two or more active agents in a single tablet and development of hybrid molecular entities capable to modulate multiple targets are the three popular approaches for multidrug therapy. The simultaneous use of more than one drug for the chemotherapy of a single disease demands a lot of patient compliance. Hence the present form of polypharmacology is gaining popularity in the form of hybrid molecules (multiple ligand approach). From the last 1-2 decades, the synthesis of hybrid molecules by the combination of different biologically relevant moieties has been under constant escalation along with their evaluation as diverse range of pharmacological agents and as potent drugs. This review is focused on the biological potential of hybrid molecules with particular mention of those exhibiting anti-fungal, anti-tuberculosis, anti-malarial, anti-inflammatory and anti-cancer activities. A comparison of the drug potency of the hybrid molecules with their individual counterparts is discussed for quantifying the significance of the concept of molecular hybridisation.
Collapse
Affiliation(s)
- Shaveta
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sahil Mishra
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Palwinder Singh
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
20
|
|
21
|
In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids. Molecules 2016; 21:molecules21070853. [PMID: 27367660 PMCID: PMC6273176 DOI: 10.3390/molecules21070853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 11/17/2022] Open
Abstract
Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.
Collapse
|
22
|
Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK. 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur J Med Chem 2016; 122:394-407. [PMID: 27394399 DOI: 10.1016/j.ejmech.2016.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 12/29/2022]
Abstract
Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax.
Collapse
Affiliation(s)
- Shailja Singh
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Drishti Agarwal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Kumkum Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Manish Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Morten A Nielsen
- Centre for Medical Parasitology, Institute of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Institute of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ashok K Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rinkoo D Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
23
|
Abosede OO, Vyas NA, Singh SB, Kumbhar AS, Kate A, Kumbhar AA, Khan A, Erxleben A, Smith P, de Kock C, Hoffmann F, Obaleye JA. Copper(ii) mixed-ligand polypyridyl complexes with doxycycline – structures and biological evaluation. Dalton Trans 2016; 45:3003-12. [DOI: 10.1039/c5dt04405g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structures and biological evaluation of Cu(ii) mixed-ligand polypyridyl complexes with doxycycline of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, L = 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4).
Collapse
Affiliation(s)
- Olufunso O. Abosede
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
- Department of Chemistry
| | - Nilima A. Vyas
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Sushma B. Singh
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | | | - Anup Kate
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Anupa A. Kumbhar
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Ayesha Khan
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Andrea Erxleben
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Peter Smith
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Carmen de Kock
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Frank Hoffmann
- Institute of Inorganic and Applied Chemistry
- Martin-Luther-King-Platz 6
- 20146 Hamburg
- Germany
| | | |
Collapse
|
24
|
Synthesis of New 4-Aminoquinolines and Evaluation of Their In Vitro Activity against Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum. PLoS One 2015; 10:e0140878. [PMID: 26473363 PMCID: PMC4608832 DOI: 10.1371/journal.pone.0140878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.
Collapse
|
25
|
Asnaashari S, Heshmati Afshar F, Ebrahimi A, Bamdad Moghadam S, Delazar A. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch. ACTA ACUST UNITED AC 2015; 5:135-40. [PMID: 26457251 PMCID: PMC4597161 DOI: 10.15171/bi.2015.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/05/2015] [Accepted: 04/19/2015] [Indexed: 11/18/2022]
Abstract
![]()
Introduction:The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin.
Methods:In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free β-hematin formation assay.
Results: Dichloromethane (DCM) extracts of both parts of plant showed significant antimalarial activities with IC50 values of 0.797 ± 0.016 mg/mL in aerial parts and 0.324 ± 0.039 mg/mL in rhizomes compared to positive control (Chloroquine, IC50 = 0.014 ± 0.003 mg/mL, IC90 = 0.163 ± 0.004 mg/mL). Bioactivity-guided fractionation of the most potent part (DCM extract of rhizomes) by vacuum liquid chromatography (VLC) afforded seven fractions. Sixty percent ethyl acetate/n-hexane fraction showed considerable antimalarial activity with IC50 value of 0.047 ± 0.0003 mg/mL.
Conclusion: From 6 extracts with different polarity of E. macrophylla,s aerial parts and rhizomes, the DCM extract of both parts were the most active extract in this assay. The preliminary phytochemical study on the VLC fractions of the most potent part persuades us to focus on purifying the active components of these extracts and to conduct further investigation towards in vivo evaluation.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Heshmati Afshar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Ebrahimi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Delazar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Srivastava V, Lee H. Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. Eur J Pharmacol 2015; 762:472-86. [PMID: 25959387 DOI: 10.1016/j.ejphar.2015.04.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Chloroquine (CQ) has a broad spectrum of pharmacological activities including anticancer and anti-inflammatory, in addition to its well-known antimalarial activity. This very useful property of CQ may be rendered through a variety of different molecular and cellular mechanisms, including the induction of apoptosis, necrosis and lysosomal dysfunction. CQ alone may not be as effective as many well-known anticancer drugs; however, it often shows synergisticts when combined with other anticancer agents, without causing substantial ill-effects. To increase its pharmacological activity, scientists synthesized many different chloroquine derivatives by a repositioning approach, some of which show higher activities than the parental CQ. To further improve anticancer activity, medicinal chemists have recently been focusing on generating CQ hybrid molecules by joining, directly or through a linker, 4-aminoquinoline and other pharmacologically active phamarcophore(s). Indeed, some CQ hybrid molecules substantially improved anticancer activity while maintaining desirable CQ property, providing an excellent opportunity of developing effective and safe novel anticancer agents. Since the approach of developing CQ hybrid molecules has advanced much more in the antimalarial drug research, it can provide an excellent template for anticancer drug development. This review provides an overview of CQ-based hybrid molecules by focusing on: (1) the potential advantage of the hybrid approach in developing effective and safe anticancer agents; (2) what we can learn from the CQ hybrid approach used in the development of effective antimalarial agents; and (3) CQ hybrid molecules as potential anticancer agents in different categories classified based on their chemical compositions.
Collapse
Affiliation(s)
- Vandana Srivastava
- Advanced Medical Research Institute of Canada, Health Sciences North, 41 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 5J1; Division of Medical Sciences, Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
| | - Hoyun Lee
- Advanced Medical Research Institute of Canada, Health Sciences North, 41 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 5J1; Division of Medical Sciences, Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6.
| |
Collapse
|
27
|
From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg Med Chem 2015; 23:5120-30. [PMID: 25913864 DOI: 10.1016/j.bmc.2015.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented.
Collapse
|
28
|
Evaluation of α,β-unsaturated ketones as antileishmanial agents. Antimicrob Agents Chemother 2015; 59:3598-601. [PMID: 25801571 DOI: 10.1128/aac.04056-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we assessed the antileishmanial activity of 126 α,β-unsaturated ketones. The compounds NC901, NC884, and NC2459 showed high leishmanicidal activity for both the extracellular (50% effective concentration [EC50], 456 nM, 1,122 nM, and 20 nM, respectively) and intracellular (EC50, 1,870 nM, 937 nM, and 625 nM, respectively) forms of Leishmania major propagated in macrophages, with little or no toxicity to mammalian cells. Bioluminescent imaging of parasite replication showed that all three compounds reduced the parasite burden in the murine model, with no apparent toxicity.
Collapse
|
29
|
de Souza NB, Carmo AML, da Silva AD, França TCC, Krettli AU. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. Malar J 2014; 13:469. [PMID: 25440372 PMCID: PMC4265395 DOI: 10.1186/1475-2875-13-469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Given the threat of resistance of human malaria parasites, including to artemisinin derivatives, new agents are needed. Chloroquine (CQ) has been the most widely used anti-malarial, and new analogs (CQAns) presenting alkynes and side chain variations with high antiplasmodial activity were evaluated. METHODS Six diaminealkyne and diaminedialkyne CQAns were evaluated against CQ-resistant (CQ-R) (W2) and CQ-sensitive (CQ-S) (3D7) Plasmodium falciparum parasites in culture. Drug cytotoxicity to a human hepatoma cell line (HepG2) evaluated, allowed to calculate the drug selectivity index (SI), a ratio of drug toxicity to activity in vitro. The CQAns were re-evaluated against CQ-resistant and -sensitive P. berghei parasites in mice using the suppressive test. Docking studies with the CQAns and the human (HssLDH) or plasmodial lactate dehydrogenase (PfLDH) enzymes, and, a β-haematin formation assay were performed using a lipid as a catalyst to promote crystallization in vitro. RESULTS All tested CQAns were highly active against CQ-R P. falciparum parasites, exhibiting half-maximal inhibitory concentration (IC(50)) values below 1 μΜ. CQAn33 and CQAn37 had the highest SIs. Docking studies revealed the best conformation of CQAn33 inside the binding pocket of PfLDH; specificity between the residues involved in H-bonds of the PfLDH with CQAn37. CQAn33 and CQAn37 were also shown to be weak inhibitors of PfLDH. CQAn33 and CQAn37 inhibited β-haematin formation with either a similar or a 2-fold higher IC(50) value, respectively, compared with CQ. CQAn37 was active in mice with P. berghei, reducing parasitaemia by 100%. CQAn33, -39 and -45 also inhibited CQ-resistant P. berghei parasites in mice, whereas high doses of CQ were inactive. CONCLUSIONS The presence of an alkyne group and the size of the side chain affected anti-P. falciparum activity in vitro. Docking studies suggested a mechanism of action other than PfLDH inhibition. The β-haematin assay suggested the presence of an additional mechanism of action of CQAn33 and CQAn37. Tests with CQAn34, CQAn37, CQAn39 and CQAn45 confirmed previous results against P. berghei malaria in mice, and CQAn33, 39 and 45 were active against CQ-resistant parasites, but CQAn28 and CQAn34 were not. The result likely reflects structure-activity relationships related to the resistant phenotype.
Collapse
Affiliation(s)
- Nicolli B de Souza
- />Centro de Pesquisas René Rachou, FIOCRUZ Minas, Av. Augusto de Lima 1715, Belo Horizonte, 30190-002 MG Brazil
| | - Arturene ML Carmo
- />Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Juiz de Fora, 36036-900 MG Brazil
| | - Adilson D da Silva
- />Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Juiz de Fora, 36036-900 MG Brazil
| | - Tanos CC França
- />Laboratório de Modelagem Molecular Aplicada à Defesa Química e Biológica, Instituto Militar de Engenharia, Praça General Tibúrcio 80, Rio de Janeiro, 22290-270 RJ Brazil
| | - Antoniana U Krettli
- />Centro de Pesquisas René Rachou, FIOCRUZ Minas, Av. Augusto de Lima 1715, Belo Horizonte, 30190-002 MG Brazil
| |
Collapse
|
30
|
Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review. Eur J Med Chem 2014; 90:280-95. [PMID: 25461328 DOI: 10.1016/j.ejmech.2014.11.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Amongst several communicable diseases (CDs), malaria is one of the deadliest parasitic disease all over the world, particularly in African and Asian countries. To curb this menace, numbers of antimalarial agents are being sold as over the counter (OTC) drugs. Chloroquine (CQ) is one of them and is one of the oldest, cheapest, and easily available synthetic agents used to curb malaria. Unfortunately, after the reports of CQ-resistance against different strains of malarial parasite strains worldwide, scientist are continuously modifying the core structure of CQ to get an efficient drug. Interestingly, several new drugs have been emerged in due course having unique and enhanced properties (like dual stage inhibitors, resistance reversing ability etc.) and are ready to enter into the clinical trial. In this course, some new agents have also been discovered which are; though inactive against CQS strain, highly active against CQR strains. The present article describes the role of modification of the core structure of CQ and its effects on the biological activities. Moreover, the attempt has also been made to predict the future prospects of such drugs to reemerge as antimalarial agents.
Collapse
|
31
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
32
|
Jiang D, Zheng X, Shao G, Ling Z, Xu H. Discovery of a novel series of phenyl pyrazole inner salts based on fipronil as potential dual-target insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3577-3583. [PMID: 24689457 DOI: 10.1021/jf405512e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of novel phenyl pyrazole inner salt derivatives based on fipronil were designed and synthesized in the search for dual-target insecticides. These compounds were designed to target two families of nicotinic acetylcholine receptors and γ-aminobutyric acid receptors. The insecticidal activities of the new compounds against diamondback moth (Plutella xylostella) were evaluated. The results of bioassays indicated that most of the inner salts showed moderate to high activities, of which the phenyl pyrazole inner salts containing quinoline had excellent biological activity. Previous structure-activity relationship studies revealed that a suitable structure of the quaternary ammonium salts was critical for the bioactivity of phenyl pyrazole inner salts, which contribute to exposing the cationic nitrogen to bind to the receptor (for instance, nicotinic acetylcholine receptors) and possibly interact with the receptor via hydrogen bonding and cooperative π-π interaction. The present work demonstrates that the insecticidal potency of phenyl pyrazole inner salts holds promise for the development new dual-target phenyl pyrazole insecticides.
Collapse
Affiliation(s)
- Dingxin Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Han C, Wan L, Ji H, Ding K, Huang Z, Lai Y, Peng S, Zhang Y. Synthesis and evaluation of 2-anilinopyrimidines bearing 3-aminopropamides as potential epidermal growth factor receptor inhibitors. Eur J Med Chem 2014; 77:75-83. [DOI: 10.1016/j.ejmech.2014.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 01/11/2023]
|
34
|
QSAR and pharmacophore modeling of diverse aminothiazoles and aminopyridines for antimalarial potency against multidrug-resistant Plasmodium falciparum. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0997-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts. ScientificWorldJournal 2014; 2014:825370. [PMID: 24558335 PMCID: PMC3914376 DOI: 10.1155/2014/825370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Ten extracts with different polarity from two Iranian Artemisia species, A. armeniaca Lam. and A. aucheri Boiss, were screened for their antimalarial properties by in vitro
β-hematin formation assay. Dichloromethane (DCM) extracts of both plants showed significant antimalarial activities with IC50 values of 1.36 ± 0.01 and 1.83 ± 0.03 mg/mL and IC90 values of 2.12 ± 0.04 and 2.62 ± 0.09 mg/mL for A. armeniaca and A. aucheri, respectively. Bioactivity-guided fractionation of DCM extracts of both plants by vacuum liquid chromatography (VLC) over silica gel with solvent mixtures of increasing polarities afforded seven fractions. Two fractions from DCM extract of A. armeniaca and four fractions from DCM extract of A. aucheri showed potent antimalarial activity with reducing IC50 and IC90 values compared to extracts. The most potent fraction belonged to DCM extract of A. armeniaca with IC50 and IC90 values of 0.47 ± 0.006 and 0.71 ± 0.006 mg/mL, respectively.
Collapse
|
36
|
Manohar S, Pepe A, Vélez Gerena CE, Zayas B, Malhotra SV, Rawat DS. Anticancer activity of 4-aminoquinoline-triazine based molecular hybrids. RSC Adv 2014. [DOI: 10.1039/c3ra45333b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Manohar S, Khan SI, Rawat DS. 4-aminoquinoline-triazine-based hybrids with improved in vitro antimalarial activity against CQ-sensitive and CQ-resistant strains of Plasmodium falciparum. Chem Biol Drug Des 2013; 81:625-30. [PMID: 23331618 DOI: 10.1111/cbdd.12108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Abstract
A systematic chemical modification in the triazine moiety covalently attached via suitable linkers to 4-amino-7-chloroquinolines yielded a series of new 7-chloro-4-aminoquinoline-triazine hybrids exhibiting high in vitro activity against W2 (chloroquine-resistant) and D6 (chloroquine-sensitive) strains of Plasmodium falciparum without any toxicity against mammalian cell lines (Vero, LLC-PK11, HepG2). Many of the compounds (6, 8, 10, 11, 13, 14, 16, 27, 29 and 33) showed excellent potency against chloroquine sensitive and resistant strains. In particular, compounds 6, 8, 14, 16 and 29 were found to be significantly more active than chloroquine against the chloroquine-resistant strains (W2 clone) of P. falciparum.
Collapse
Affiliation(s)
- Sunny Manohar
- Department of Chemistry, University of Delhi, Delhi, India
| | | | | |
Collapse
|
38
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
39
|
SUBRAMANIAPILLAI SELVAGANESAN. Mannich reaction: A versatile and convenient approach to bioactive skeletons. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0405-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Lin J, Liu Y, Liu L, Song L. Studies on the toxic interaction mechanism between 2-naphthylamine and herring sperm DNA. J Biochem Mol Toxicol 2013; 27:279-85. [PMID: 23625636 DOI: 10.1002/jbt.21488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
Abstract
The toxic interaction between 2-naphthylamine (2-NA) and herring sperm deoxyribonucleic acid (hs-DNA) has been thoroughly investigated by UV absorption, fluorescence, and circular dichroism (CD) spectroscopic methods. UV absorption result indicates that 2-NA may intercalate into the stack base pairs of DNA during the toxic interaction of 2-NA with DNA. A fluorescence quenching study shows that DNA quenches the intrinsic fluorescence of 2-NA via a static pathway. The studies on effects of ionic strength and anionic quenching rule out electrostatic and groove bindings as the dominant binding modes. Further studies on denatured DNA fluorescence quenching and thermal melting studies confirm that the dominant binding mode of 2-NA-DNA is intercalative binding. A CD spectral study shows that the binding interaction of 2-NA with DNA leads to the disorganization of the neat double-helical structure of hs-DNA.
Collapse
Affiliation(s)
- Jingjing Lin
- The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Paloma F. Salas
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| | - Christoph Herrmann
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
- Advanced
Applied Physics Solutions, TRIUMF, 4004
Wesbrook Mall, Vancouver, British Columbia
V6T 2A3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| |
Collapse
|
42
|
Manohar S, Rajesh UC, Khan SI, Tekwani BL, Rawat DS. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med Chem Lett 2012; 3:555-9. [PMID: 24900509 DOI: 10.1021/ml3000808] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/10/2012] [Indexed: 11/28/2022] Open
Abstract
A class of hybrid molecules consisting of 4-aminoquinoline and pyrimidine were synthesized and tested for antimalarial activity against both chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) strains of Plasmodium falciparum through an in vitro assay. Eleven hybrids showed better antimalarial activity against both CQ-sensitive and CQ-resistant strains of P. falciparum in comparison to standard drug CQ. Four molecules were more potent (7-8-fold) than CQ in D6 strain, and eight molecules were found to be 5-25-fold more active against resistant strain (W2). Several compounds did not show any cytotoxicity up to a high concentration (60 μM), others exhibited mild toxicities, but the selective index for the antimalarial activity was very high for most of these hybrids. Two compounds selected for in vivo evaluation have shown excellent activity (po) in a mouse model of Plasmodium berghei without any apparent toxicity. The X-ray crystal structure of one of the compounds was also determined.
Collapse
Affiliation(s)
- Sunny Manohar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - U. Chinna Rajesh
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | | | | | - Diwan S. Rawat
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
43
|
Kumar DK, Rajendran SP. Novel one pot synthesis of 2-amino-4-chloroquinolines via Smiles rearrangement. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
2-Aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure-activity relationship and mode of action studies. Eur J Med Chem 2012; 52:82-97. [PMID: 22459876 PMCID: PMC7115513 DOI: 10.1016/j.ejmech.2012.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/22/2022]
Abstract
2-Aminopyrimidine based 4-aminoquinolines were synthesized using an efficacious protocol. Some of the compounds showed in vitro anti-plasmodial activity against drug-sensitive CQ(S) (3D7) and drug-resistant CQ(R) (K1) strains of Plasmodium falciparum in the nM range. In particular, 5-isopropyloxycarbonyl-6-methyl-4-(2-nitrophenyl)-2-[(7-chloroquinolin-4-ylamino)butylamino] pyrimidine depicted the lowest IC(50) (3.6 nM) value (56-fold less than CQ) against CQ(R) strain. Structure-activity profile and binding with heme, μ-oxo-heme have been studied. Binding assays with DNA revealed better binding with target parasite type AT rich pUC18 DNA. Most compounds were somewhat cytotoxic, but especially cytostatic. Molecular docking analysis with Pf DHFR allowed identification of stabilizing interactions.
Collapse
|
45
|
Carmi C, Galvani E, Vacondio F, Rivara S, Lodola A, Russo S, Aiello S, Bordi F, Costantino G, Cavazzoni A, Alfieri RR, Ardizzoni A, Petronini PG, Mor M. Irreversible Inhibition of Epidermal Growth Factor Receptor Activity by 3-Aminopropanamides. J Med Chem 2012; 55:2251-64. [DOI: 10.1021/jm201507x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Caterina Carmi
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Elena Galvani
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Federica Vacondio
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Simonetta Russo
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Stefania Aiello
- Dipartimento di Scienze e Tecnologie
Molecolari e Biomolecolari, Università degli Studi di Palermo, Via Archirafi 32, I-90123 Palermo, Italy
| | - Fabrizio Bordi
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Gabriele Costantino
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| | - Andrea Cavazzoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Roberta R. Alfieri
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Andrea Ardizzoni
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Parma, V.le Gramsci
14, I-43125 Parma, Italy
| | - Pier Giorgio Petronini
- Dipartimento di Medicina Sperimentale, Università degli Studi di Parma, Via Volturno
39, I-43125 Parma, Italy
| | - Marco Mor
- Dipartimento
Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti
27/A, I-43124 Parma, Italy
| |
Collapse
|
46
|
Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 2012; 8:200-12. [PMID: 22252008 DOI: 10.4161/auto.8.2.18554] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.
Collapse
Affiliation(s)
- Paola Maycotte
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lanfranchi DA, Belorgey D, Müller T, Vezin H, Lanzer M, Davioud-Charvet E. Exploring the trifluoromenadione core as a template to design antimalarial redox-active agents interacting with glutathione reductase. Org Biomol Chem 2012; 10:4795-806. [DOI: 10.1039/c2ob25229e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Zaater S, Brahimi M, Rahmouni A. Theoretical study of the structure and spectroscopic characterization of the new 1-ferrogermene in the gas phase. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Herrmann C, Salas PF, Patrick BO, de Kock C, Smith PJ, Adam MJ, Orvig C. 1,2-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents. Dalton Trans 2012; 41:6431-42. [DOI: 10.1039/c2dt12050j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
DNA binding, antiviral activities and cytotoxicity of new furochromone and benzofuran derivatives. Arch Pharm Res 2011; 34:1623-32. [PMID: 22076762 DOI: 10.1007/s12272-011-1006-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 10/15/2022]
Abstract
Bromination of visnagin (1) afforded 9-bromovisnagin (2) which on its alkaline hydrolysis afforded the 3-acetyl benzofuran derivative (3). The condensation of (3) with hydrazine hydrate, phenylhydrazine and/or hydroxylamine hydrochloride afforded the corresponding pyrazole derivatives (4a, b) and isoxazole derivative (4c). On the other hand, when compound 3 was condensed with some aromatic aldehydes, this yielded corresponding α, β-unsaturated keto derivatives (5a-e). Furthermore, when 1 was subjected to chlorosulfonation, the visnaginsulfonylchloride derivative 6 was afforded, which on amidation using morpholine, a sulonamido derivative (7) was obtained. Alkaline hydrolysis of the latter compound yielded 7-N-morpholinosulsamidobenzofuran (8) which was condensed with some aromatic aldehydes to yield the corresponding chalcone compounds (9a-e). Demethylation of visnagin afforded norvisnagin (10). The reaction of 10 with ethylbromoacetate in dry acetone yielded the ester benzopyran derivative (11) which reacted with hydrazine hydrate to afford the corresponding hydrazide derivative (12) and this was condensed with 3,4,5-trimethoxybenzaldehyde to give the corresponding hydrazone (13). A thaizolidinone derivative (14) was obtained by condensation of (13) with thioglycolic acid. Chloromethylation of norvisnagin afforded a 4-chloromethyl derivative (15) which reacted with different primary and secondary amines to yield the corresponding ethylamino derivative (16a, b). Moreover, mannich bases (16a, b) and (17a-c) were obtained by reacting norvisnagin with different primary and secondary amines in the presence of formalin but benzoylation of (16a, b) and (17a-c) afforded 4-oxybenzoyl derivative (18a-e). The prepared compounds were tested for their interaction with DNA; bromovisnagin 2 showed the highest affinity and compounds 6, 15, 8a, > 14, > 16b, 17a, and 16a showed moderate activity in decreasing potency. Moreover, compound 2 also was the most active as antiviral agent toward HS-I virus and compounds 6, 7, 15, 14, 16a, and 18a were found to be moderately active. CD(50) of the active compounds were also measured.
Collapse
|