1
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
2
|
Cavalli D, Waser J. Organic Dye Photocatalyzed Synthesis of Functionalized Lactones and Lactams via a Cyclization-Alkynylation Cascade. Org Lett 2024; 26:4235-4239. [PMID: 38739856 PMCID: PMC11129301 DOI: 10.1021/acs.orglett.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
An organic dye photocatalyzed lactonization-alkynylation of easily accessible homoallylic cesium oxalates using ethynylbenziodoxolone (EBX) reagents has been developed. The reaction gave access to valuable functionalized lactones and lactams in up to 88% yield via the formation of two new C-C bonds. The transformation was carried out on primary, secondary, and tertiary homoallylic alcohols and primary homoallylic amines and could be applied to the synthesis of spirocyclic compounds as well as fused and bridged bicyclic lactones.
Collapse
Affiliation(s)
- Diana Cavalli
- Laboratory of Catalysis and Organic
Synthesis, Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic
Synthesis, Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| |
Collapse
|
3
|
Feng Q, Wang Y, Zheng B, Huang S. Electrochemical Oxidative Cleavage of Alkynes to Carboxylic Acids. Org Lett 2023; 25:293-297. [PMID: 36587377 DOI: 10.1021/acs.orglett.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A sustainable method for converting terminal alkynes into their corresponding carboxylic acids is reported using synthetic electrolysis in an undivided cell at room temperature. This protocol, avoiding transition metal catalysis and stoichiometric chemical oxidants, tolerates a variety of aryl, heteroaryl, and alkyl akynes. Preliminary mechanistic studies demonstrate that sodium nitrite serves a triple role as the electrolyte, nitryl radical precursor, and a nitrosating reagent.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yamin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
5
|
Chen YX, He JT, Wu MC, Liu ZL, Tang K, Xia PJ, Chen K, Xiang HY, Chen XQ, Yang H. Photochemical Organocatalytic Aerobic Cleavage of C═C Bonds Enabled by Charge-Transfer Complex Formation. Org Lett 2022; 24:3920-3925. [PMID: 35613702 DOI: 10.1021/acs.orglett.2c01192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel visible-light-driven organocatalytic protocol to access aerobic oxidative cleavage of olefins, promoted by sodium benzene sulfinate, is described herein. An array of alkenes smoothly delivered the corresponding aldehydes and ketones under transition-metal-free conditions. Notably, α-halo-substituted styrenes proceeded with photoinduced oxidation to finally afford α-halo-acetophenones with halogen migration. Crucial to this oxidation was the formation of charge-transfer complexes between sodium benzene sulfinate with molecular O2 to ultimately deliver the carbonyl products.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, Hunan, P.R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
6
|
SBA15-supported nano-ruthenium catalyst for the oxidative cleavage of alkenes to aldehydes under flow conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Shen D, Wang H, Zheng Y, Zhu X, Gong P, Wang B, You J, Zhao Y, Chao M. Catalyst-Free and Transition-Metal-Free Approach to 1,2-Diketones via Aerobic Alkyne Oxidation. J Org Chem 2021; 86:5354-5361. [PMID: 33764062 DOI: 10.1021/acs.joc.0c03010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-free and transition-metal-free method for the synthesis of 1,2-diketones from aerobic alkyne oxidation was reported. The oxidation of various internal alkynes, especially more challenging aryl-alkyl acetylenes, proceeded smoothly with inexpensive, easily handled, and commercially available potassium persulfate and an ambient air balloon, achieving the corresponding 1,2-diketones with up to 85% yields. Meanwhile, mechanistic studies indicated a radical process, and the two oxygen atoms in the 1,2-diketons were most likely from persulfate salts and molecular oxygen, respectively, rather than water.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hongyan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanan Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinjing Zhu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, P. R. China
| | - Yulei Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
8
|
Kommera R, Bhimapaka CR. A simple and efficient approach for the preparation of dihydroxanthyletin, xanthyletin, decursinol and marmesin. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1797812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rajkumar Kommera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - China Raju Bhimapaka
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020; 59:10913-10917. [PMID: 32219974 DOI: 10.1002/anie.202000988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/16/2020] [Indexed: 12/13/2022]
Abstract
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)-B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
10
|
|
11
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
12
|
Sadamitsu Y, Okumura A, Saito K, Yamada T. Kolbe-Schmitt type reaction under ambient conditions mediated by an organic base. Chem Commun (Camb) 2019; 55:9837-9840. [PMID: 31364638 DOI: 10.1039/c9cc04550c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The combined use of an organic base for resorcinols realized a Kolbe-Schmitt type reaction under ambient conditions. When resorcinols (3-hydroxyphenol derivatives) were treated with DBU under a carbon dioxide atmosphere, nucleophilic addition to carbon dioxide proceeded to afford the corresponding salicylic acid derivatives in high yields.
Collapse
Affiliation(s)
- Yuta Sadamitsu
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | |
Collapse
|
13
|
Lakshmireddy VM, Naga Veera Y, Reddy TJ, Rao VJ, China Raju B. A Green and Sustainable Approach for Selective Halogenation of Anilides, Benzanilides, Sulphonamides and Heterocycles
†. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- V. M. Lakshmireddy
- Organic Synthesis & Process Chemistry DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- AcSIR-Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| | - Y. Naga Veera
- Analytical Chemistry DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - T. J. Reddy
- Analytical Chemistry DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - V. J. Rao
- Fluoro Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- AcSIR-Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| | - B. China Raju
- Organic Synthesis & Process Chemistry DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- AcSIR-Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
14
|
Transition metal free one pot synthesis of aryl carboxylic acids via dehomologative oxidation of styrenes. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Xu L, Chen Y, Shen Z, Wang Y, Li M. I2/Fe(NO3)3·9H2O-catalyzed oxidative synthesis of aryl carboxylic acids from aryl alkyl ketones and secondary benzylic alcohols. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Nowicka E, Hickey NW, Sankar M, Jenkins RL, Knight DW, Willock DJ, Hutchings GJ, Francisco M, Taylor SH. Mechanistic Insights into Selective Oxidation of Polyaromatic Compounds using RICO Chemistry. Chemistry 2018; 24:12359-12369. [PMID: 29790204 DOI: 10.1002/chem.201800423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/07/2022]
Abstract
Ruthenium-ion-catalyzed oxidation (RICO) of polyaromatic hydrocarbons (PAHs) has been studied in detail using experimental and computational approaches to explore the reaction mechanism. DFT calculations show that regioselectivity in these reactions can be understood in terms of the preservation of aromaticity in the initial formation of a [3+2] metallocycle intermediate at the most-isolated double bond. We identify two competing pathways: C-C bond cleavage leading to a dialdehyde and C-H activation followed by H migration to the RuOx complex to give diketones. Experimentally, the oxidation of pyrene and phenanthrene has been carried out in monophasic and biphasic solvent systems. Our results show that diketones are the major product for both phenanthrene and pyrene substrates. These diketone products are shown to be stable under our reaction conditions so that higher oxidation products (acids and their derivatives) are assigned to the competing pathway through the dialdehyde. Experiments using 18 O-labelled water do show incorporation of oxygen from the solvents into products, but this may take place during the formation of the reactive RuO4 species rather than directly during PAH oxidation. When the oxidation of pyrene is carried out using D2 O, a kinetic isotope effect (KIE) is observed implying that water is involved in the rate-determining step leading to the diketone products.
Collapse
Affiliation(s)
- Ewa Nowicka
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany.,Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Niamh W Hickey
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Meenakshisundaram Sankar
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Robert L Jenkins
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - David W Knight
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Manuel Francisco
- ExxonMobil, Research & Engineering Company, 1545 Route 22 East, Annandale, New Jersey, 08801, USA
| | - Stuart H Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
17
|
Kolle S, Batra S. Transformations of alkynes to carboxylic acids and their derivatives via C[triple bond, length as m-dash]C bond cleavage. Org Biomol Chem 2018; 14:11048-11060. [PMID: 27805215 DOI: 10.1039/c6ob01912a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alkynes are building blocks of high synthetic value and their usefulness as precursors to many chemical and biological systems is widely established. Amongst several transformations of alkynes, cleavage of the C[triple bond, length as m-dash]C bond for obtaining diverse compounds is considered to be important. This review, in particular, comprehensively assimilates the transformations of alkynes to carboxylic acids including esters, amides and nitriles resulting from the cleavage of the C[triple bond, length as m-dash]C bond either under the influence of a metal catalyst or via a metal-free approach.
Collapse
Affiliation(s)
- Shivalinga Kolle
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India. and Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
18
|
Nowicka E, Clarke TJ, Sankar M, Jenkins RL, Knight DW, Golunski S, Hutchings GJ, Willock DJ, Francisco M, Taylor SH. Oxidation of Polynuclear Aromatic Hydrocarbons using Ruthenium-Ion-Catalyzed Oxidation: The Role of Aromatic Ring Number in Reaction Kinetics and Product Distribution. Chemistry 2017; 24:655-662. [PMID: 29131412 DOI: 10.1002/chem.201704133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 11/12/2022]
Abstract
Oxidation of aromatic hydrocarbons with differing numbers of fused aromatic rings (2-5), have been studied in two solvent environments (monophasic and biphasic) using ruthenium-ion-catalyzed oxidation (RICO). RICO reduces the aromaticity of the polyaromatic core of the molecule in a controlled manner by selective oxidative ring opening. Moreover, the nature of the solvent system determines the product type and distribution, for molecules with more than two aromatic rings. Competitive oxidation between substrates with different numbers of aromatic rings has been studied in detail. It was found that the rate of polyaromatic hydrocarbon oxidation increases with the number of fused aromatic rings. A similar trend was also identified for alkylated aromatic hydrocarbons. The proof-of-concept investigation provides new insight into selective oxidation chemistry for upgrading of polyaromatic molecules.
Collapse
Affiliation(s)
- Ewa Nowicka
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tomos J Clarke
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Meenakshisundaram Sankar
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Robert L Jenkins
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - David W Knight
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Stanislaw Golunski
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Manuel Francisco
- ExxonMobil, Research & Engineering Company, 1545 Route 22 East, Annandale, New Jersey, 08801, USA
| | - Stuart H Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
19
|
Kitching MO, Dixon OE, Baumann M, Baxendale IR. Flow-Assisted Synthesis: A Key Fragment of SR 142948A. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Olivia E. Dixon
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Marcus Baumann
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Ian R. Baxendale
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| |
Collapse
|
20
|
Transmetalation of Alkylzirconocenes in Copper-Catalyzed Alkyl-Alkynyl Cross-Coupling Reactions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03654] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Raul SanMartin
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - María Teresa Herrero
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Esther Domínguez
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| |
Collapse
|
22
|
Dighe SU, Batra S. Visible Light-Induced Iodine-Catalyzed Transformation of Terminal Alkynes to Primary AmidesviaCC Bond Cleavage under Aqueous Conditions. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Wang X, Chen RX, Wei ZF, Zhang CY, Tu HY, Zhang AD. Chemoselective Transformation of Diarylethanones to Arylmethanoic Acids and Diarylmethanones and Mechanistic Insights. J Org Chem 2015; 81:238-49. [DOI: 10.1021/acs.joc.5b02506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xing Wang
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rui-Xi Chen
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zeng-Feng Wei
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chen-Yang Zhang
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hai-Yang Tu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ai-Dong Zhang
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
24
|
Nowicka E, Sankar M, Jenkins RL, Knight DW, Willock DJ, Hutchings GJ, Francisco M, Taylor SH. Selective Oxidation of Alkyl-Substituted Polyaromatics Using Ruthenium-Ion-Catalyzed Oxidation. Chemistry 2015; 21:4285-93. [DOI: 10.1002/chem.201405831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/11/2022]
|
25
|
Miao Y, Dupé A, Bruneau C, Fischmeister C. Ruthenium-Catalyzed Synthesis of 1,2-Diketones from Alkynes. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402447] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Satake Y, Adachi M, Tokoro S, Yotsu-Yamashita M, Isobe M, Nishikawa T. Synthesis of 5- and 8-Deoxytetrodotoxin. Chem Asian J 2014; 9:1922-32. [DOI: 10.1002/asia.201402202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 12/29/2022]
|
27
|
Piccialli V. Ruthenium tetroxide and perruthenate chemistry. Recent advances and related transformations mediated by other transition metal oxo-species. Molecules 2014; 19:6534-82. [PMID: 24853716 PMCID: PMC6270930 DOI: 10.3390/molecules19056534] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022] Open
Abstract
In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C-C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds. Its use in the oxidation of other functionalities is known and recently, its utility in new synthetic transformations has been demonstrated. New processes, synthetic applications, theoretical studies and unusual transformations, published in the last eight years (2006-2013), in the chemistry of these two oxo-species, will be covered in this review with the aim of offering a clear picture of their reactivity. When appropriate, related oxidative transformations mediated by other metal oxo-species will be presented to highlight similarities and differences. An historical overview of some aspects of the ruthenium tetroxide chemistry will be presented as well.
Collapse
Affiliation(s)
- Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia 4, 80126, Napoli, Italy.
| |
Collapse
|
28
|
Adachi M, Imazu T, Sakakibara R, Satake Y, Isobe M, Nishikawa T. Total Synthesis of Chiriquitoxin, an Analogue of Tetrodotoxin Isolated from the Skin of a Dart Frog. Chemistry 2014; 20:1247-51. [DOI: 10.1002/chem.201304110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 11/11/2022]
|
29
|
Wang H, Yang H, Li Y, Duan XH. Oxone-mediated oxidative carbon-heteroatom bond cleavage: synthesis of benzoxazinones from benzoxazoles with α-oxocarboxylic acids. RSC Adv 2014. [DOI: 10.1039/c3ra47660j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Sequential [3+2] Cycloaddition/Air Oxidation Reactions: Triazoloyl Ion Assisted Oxidative Cleavage of Alkynes. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Ruthenium-catalyzed oxidation of alkynes to 1,2-diketones under room temperature and one-pot synthesis of quinoxalines. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.142] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Lian XL, Lei H, Quan XJ, Ren ZH, Wang YY, Guan ZH. Oxidation of 2-arylindoles for synthesis of 2-arylbenzoxazinones with oxone as the sole oxidant. Chem Commun (Camb) 2013; 49:8196-8. [DOI: 10.1039/c3cc44215b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Hoshikawa T, Kamijo S, Inoue M. Photochemically induced radical alkynylation of C(sp3)–H bonds. Org Biomol Chem 2013; 11:164-9. [DOI: 10.1039/c2ob26785c] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Gampe CM, Carreira EM. Cyclohexyne cycloinsertion in the divergent synthesis of guanacastepenes. Chemistry 2012; 18:15761-71. [PMID: 23080228 DOI: 10.1002/chem.201202222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Indexed: 12/20/2022]
Abstract
The guanacastepenes are a family of 15 diterpenes that share a common 5-6-7 tricyclic core, which is decorated with quaternary centers, unsaturation, hydroxyl and carbonyl groups. Some of these natural products show interesting antimicrobial potency. Their collective structural and biological features have stirred up vibrant activity among organic chemists. Herein, we disclose an account of our studies toward the synthesis of a number of guanacastepenes. The synthetic strategy relies on the use of cyclohexyne in a cycloinsertion reaction to rapidly construct the guanacastepene core. Isolation of a cyclobutenol as intermediate in the cyclohexyne cycloinsertion provided us with the possibility to study further the reactivity of this metastable compound, and we uncovered novel rearrangements and ring-opening reactions. Stereoselective, late-stage oxidative diversification of the carbon scaffold allowed the synthesis of guanacastepenes N and O and paved the way for the synthesis of guanacastepenes H and D.
Collapse
|
35
|
Khattar R, Hundal M, Mathur P. Synthesis, structure and oxidation of alkynes using a μ-oxo diiron complex with the ligand bis (1-(pyridin-2-ylmethyl)-benzimidazol-2-yl methyl) ether. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Vieira EM, Haeffner F, Snapper ML, Hoveyda AH. A Robust, Efficient, and Highly Enantioselective Method for Synthesis of Homopropargyl Amines. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Vieira EM, Haeffner F, Snapper ML, Hoveyda AH. A robust, efficient, and highly enantioselective method for synthesis of homopropargyl amines. Angew Chem Int Ed Engl 2012; 51:6618-21. [PMID: 22623437 DOI: 10.1002/anie.201202694] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Erika M Vieira
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
38
|
Hart SR, Whitehead DC, Travis BR, Borhan B. Catalytic oxidative cleavage of olefins promoted by osmium tetroxide and hydrogen peroxide. Org Biomol Chem 2011; 9:4741-4. [PMID: 21603726 DOI: 10.1039/c0ob01189d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide was employed as the terminal oxidant in the osmium tetroxide mediated oxidative cleavage of olefins, producing the corresponding aldehyde and ketone products. Aryl olefins are cleaved in good to excellent yield regardless of arene electronics. Alkyl olefins cleave in moderate to good yield for di- and tri-substituted alkenes.
Collapse
Affiliation(s)
- Stewart R Hart
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
39
|
Shaikh TM, Hong FE. Iron-Catalyzed Oxidative Cleavage of Olefins and Alkynes to Carboxylic Acids with Aqueous tert-Butyl Hydroperoxide. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201000899] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
|
41
|
Gampe CM, Carreira EM. Total syntheses of guanacastepenes N and O. Angew Chem Int Ed Engl 2011; 50:2962-5. [PMID: 21370370 DOI: 10.1002/anie.201007644] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 11/12/2022]
|
42
|
Yu J, Cui J, Zhang C. A Simple and Effective Method for α-Hydroxylation of β-Dicarbonyl Compounds Using Oxone as an Oxidant without a Catalyst. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000940] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Ren W, Liu J, Chen L, Wan X. Ruthenium-Catalyzed Alkyne Oxidation with Part-Per-Million Catalyst Loadings. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000250] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Mowat J, Gries R, Khaskin G, Gries G, Britton R. (S)-2-pentyl (R)-3-hydroxyhexanoate, a banana volatile and its olfactory recognition by the common fruit fly, Drosophila melanogaster. JOURNAL OF NATURAL PRODUCTS 2009; 72:772-776. [PMID: 19388708 DOI: 10.1021/np800597k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The volatile organic compounds emitted from ripening bananas that elicit an antennal response from the common fruit fly, Drosophila melanogaster, were analyzed by a combination of gas chromatographic-electroantennographic detection, mass spectrometry, and (1)H NMR spectroscopy. These analyses revealed that the headspace of ripening bananas contains a number of EAD-active components including the new ester (S)-2-pentyl (R)-3-hydroxyhexanoate, the structural assignment of which was confirmed by chemical synthesis.
Collapse
Affiliation(s)
- Jeffrey Mowat
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
45
|
Le Quement ST, Nielsen TE, Meldal M. Divergent Pathway for the Solid-Phase Conversion of Aromatic Acetylenes to Carboxylic Acids, α-Ketocarboxylic Acids, and Methyl Ketones. ACTA ACUST UNITED AC 2008; 10:546-56. [DOI: 10.1021/cc8000037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Thomas E. Nielsen
- Carlsberg Laboratory, SPOCC Centre, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Morten Meldal
- Carlsberg Laboratory, SPOCC Centre, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
46
|
Ranu BC, Bhadra S, Adak L. Indium(III) chloride-catalyzed oxidative cleavage of carbon–carbon multiple bonds by tert-butyl hydroperoxide in water—a safer alternative to ozonolysis. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.02.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Tabatabaeian K, Mamaghani M, Mahmoodi N, Khorshidi A. Ultrasonic-assisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds. CATAL COMMUN 2008. [DOI: 10.1016/j.catcom.2007.07.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Che CM, Yip WP, Yu WY. Ruthenium-Catalyzed Oxidation of Alkenes, Alkynes, and Alcohols to Organic Acids with Aqueous Hydrogen Peroxide. Chem Asian J 2006; 1:453-8. [PMID: 17441082 DOI: 10.1002/asia.200600091] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.
Collapse
Affiliation(s)
- Chi-Ming Che
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | | | | |
Collapse
|
49
|
Abstract
Biacetyl reacts with oxone to give bis-dioxirane [3,3'-dimethyl-3,3'-bidioxirane, 3B] and mono-dioxirane [1-(3-methyl-dioxiran-3-yl)ethanone, 3A)]. Bis-dioxirane 3B is formed when two oxygens are incorporated into biacetyl, while mono-dioxirane 3A incorporated only one. A greater stability is observed in 3B compared to 3A, which is attributed to an alpha-dioxiranyl (anomeric) effect in the former. In contrast, 3A suffers from a destabilizing pi-electron withdrawing effect from the adjacent carbonyl group.
Collapse
Affiliation(s)
- Nahed Sawwan
- Department of Chemistry, Graduate Center and The City University of New York (CUNY), Brooklyn College, Brooklyn, New York 11210, USA
| | | |
Collapse
|