1
|
Varvogli AAC, Fylaktakidou KC, Farmaki T, Stefanakis JG, Koumbis AE. Versatile Synthesis of 1- O-(ω-Aminolauryl)-I(4,5)P 2. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Conway SJ, Gardiner J, Grove SJA, Johns MK, Lim ZY, Painter GF, Robinson DEJE, Schieber C, Thuring JW, Wong LSM, Yin MX, Burgess AW, Catimel B, Hawkins PT, Ktistakis NT, Stephens LR, Holmes AB. Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Org Biomol Chem 2009; 8:66-76. [PMID: 20024134 DOI: 10.1039/b913399b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs. Removal of the remaining protecting groups was achieved via hydrogenolysis using palladium black or palladium hydroxide on carbon in the presence of sodium bicarbonate to afford the complete family of dipalmitoyl- and amino-PIP analogues 42, 45, 50, 51, 58, 59, 67, 68, 76, 77, 82, 83, 92, 93, 99 and 100. Investigations using affinity probes incorporating these compounds have identified novel proteins involved in the PI3K intracellular signalling network and have allowed a comprehensive proteomic analysis of phosphoinositide interacting proteins.
Collapse
Affiliation(s)
- Stuart J Conway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Keddie NS, Bultynck G, Luyten T, Slawin AM, Conway SJ. A type 2 Ferrier rearrangement-based synthesis of d-myo-inositol 1,4,5-trisphosphate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Covell D, White M. A Chiral Lewis Acid Strategy for Enantioselective Allylic CH Oxidation. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Covell DJ, White MC. A chiral Lewis acid strategy for enantioselective allylic C-H oxidation. Angew Chem Int Ed Engl 2008; 47:6448-51. [PMID: 18624317 PMCID: PMC2720790 DOI: 10.1002/anie.200802106] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - M. Christina White
- D. J. Covell, Prof. M. C. White, Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL 61801 (USA), Fax: (+1)217-2-14-8024, E-mail: , Homepage: http://www.scs.uiuc.edu/white/
| |
Collapse
|
7
|
Zhang H, Xu Y, Zhang Z, Liman ER, Prestwich GD. Synthesis and biological activity of phospholipase C-resistant analogues of phosphatidylinositol 4,5-bisphosphate. J Am Chem Soc 2007; 128:5642-3. [PMID: 16637624 PMCID: PMC2531207 DOI: 10.1021/ja060621d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is an important regulator in cell physiology. Hydrolysis of PtdIns(4,5)P2 by phospholipase C (PLC) releases two second messengers, Ins(1,4,5)P3 and diacylglycerol. To dissect the effects of PtdIns(4,5)P2 from those resulting from PLC-generated signals, a metabolically stabilized analogue of PtdIns(4,5)P2 was required. Two analogues were designed in which the scissile O-P bond was replaced with a C-P bond that could not be hydrolyzed by PLC activity. Herein we describe the asymmetric total synthesis of the first metabolically stabilized phospholipase C-resistant analogues of PtdIns(4,5)P2. The key transformation was a Pd(0)-catalyzed coupling of a H-phosphite with a vinyl bromide to form the desired C-P linkage. The phosphonate analogues of PtdIns(4,5)P2 were found to be effective in restoring the sensitivity of the TRPM4 channel to Ca2+ activation.
Collapse
Affiliation(s)
- Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| | - Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| | - Zheng Zhang
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, 3641 Watt Way, Los Angeles, California 90089-2520 USA
| | - Emily R. Liman
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, 3641 Watt Way, Los Angeles, California 90089-2520 USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| |
Collapse
|
8
|
Notter RH, Wang Z, Wang Z, Davy JA, Schwan AL. Synthesis and surface activity of diether-linked phosphoglycerols: Potential applications for exogenous lung surfactants. Bioorg Med Chem Lett 2007; 17:113-7. [PMID: 17055273 DOI: 10.1016/j.bmcl.2006.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/24/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
The synthesis of three phosphoglycerols is described, one of which contains the previously unknown phosphonoglycerol headgroup. The surface tension-lowering capabilities of synthetic lung surfactant mixtures containing the PG analogs were measured on the pulsating bubble surfactometer and compared to known controls. The PG-containing mixtures exhibited superior surface tension-lowering properties indicating the significant potential of these analogs as components in synthetic exogenous lung surfactants.
Collapse
Affiliation(s)
- Robert H Notter
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
9
|
Xu Y, Lee SA, Kutateladze TG, Sbrissa D, Shisheva A, Prestwich GD. Chemical synthesis and molecular recognition of phosphatase-resistant analogues of phosphatidylinositol-3-phosphate. J Am Chem Soc 2006; 128:885-97. [PMID: 16417379 PMCID: PMC2535791 DOI: 10.1021/ja0554716] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. To provide chemical tools to study the changes in cell physiology mediated by these lipids, three new metabolically stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P) were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-(monofluoromethyl)phosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl, and dibutyryl chains. In addition, we introduce a new phosphorylation reagent, (monofluoromethyl)phosphonyl chloride, which has general applications for the preparation of "pKa-matched" monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labeled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)P analogues into membrane-mimetic dodecylphosphocholine micelles. In addition, the PtdIns(3)P analogues with dioleoyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis.
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| | - Stephanie A. Lee
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Detroit, MI 48201 USA
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Detroit, MI 48201 USA
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
- Phone: +1-801-585-9051. Fax: +1-801-585-9053.
| |
Collapse
|
10
|
Desmaret S, Qian L, Vanloo B, Meerschaert K, Van Damme J, Grooten J, Vandekerckhove J, Prestwich GD, Gettemans J. Lysophosphatidic acid affinity chromatography reveals pyruvate kinase as a specific LPA-binding protein. Biol Chem 2006; 386:1137-47. [PMID: 16307479 DOI: 10.1515/bc.2005.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lysophosphatidic acid is a pleiotropic lipid signaling molecule that evokes a broad array of cellular responses including proliferation, tumor cell invasion, neurite retraction, cytoskeletal rearrangements and smooth muscle contraction. Generally, lysophosphatidic acid triggers physiological responses through interaction with specific plasma membrane receptors called LPA 1-4. There is, however, increasing evidence in support of intracellular proteins that interact with LPA. We employed Affigel-immobilized LPA to isolate cytoplasmic proteins that interact with this lysophospholipid. Among the proteins retained by this affinity matrix, pyruvate kinase, clathrin heavy chain and heat shock protein 70 (Hsp70) were identified by mass spectrometry. Isothermal titration calorimetry showed that pyruvate kinase contains one binding site for LPA (Ka approx. 10(6) M(-1)). Furthermore, LPA dissociates enzymatically active pyruvate-kinase tetramers into less active dimers, and is maximally active at concentrations close to its critical micelle concentration. These effects were not mimicked by other lysophospholipids. Co-immunoprecipitation experiments showed that pyruvate kinase interacts with clathrin, and confocal imaging revealed co-localization between clathrin and pyruvate kinase in the perinuclear region of cells. Our data suggest that pyruvate kinase partly exists in complex with clathrin in subcellular membranous areas, and that locally increased LPA levels can trigger inactivation of the metabolic enzyme.
Collapse
Affiliation(s)
- Sophie Desmaret
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu Y, Fang Y, Chen J, Prestwich GD. Activation of mTOR signaling by novel fluoromethylene phosphonate analogues of phosphatidic acid. Bioorg Med Chem Lett 2004; 14:1461-4. [PMID: 15006382 DOI: 10.1016/j.bmcl.2004.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/30/2003] [Accepted: 01/12/2004] [Indexed: 11/22/2022]
Abstract
Phosphonate analogues of phosphatidic acid (PA) were synthesized in which the bridging oxygen was replaced by an alpha-monofluoromethylene (-CHF-) or alpha-difluoromethylene (-CF(2)-) moiety using hydrolytic kinetic resolution (HKR) of a racemic epoxide as the key step. Since PA activates signaling in the mTOR (mammalian target of rapamycin) pathway, these metabolically stabilized PA analogues were evaluated in quiescent HEK 293 cells. Most of these analogues surpassed PA in activating S6 kinase, a downstream target of mTOR signaling. The unnatural (2R) analogues were more slightly active than the natural (2S) enantiomers for both the mono- and difluoromethylene phosphonates.
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | |
Collapse
|
12
|
Qian L, Xu Y, Arai H, Aoki J, McIntyre TM, Prestwich GD. Synthesis of migration-resistant hydroxyethoxy analogues of lysophosphatidic acid. Org Lett 2004; 5:4685-8. [PMID: 14627415 DOI: 10.1021/ol0358758] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The susceptibility of lysophosphatidic acid (LPA) to intramolecular acyl migration impedes the determination of specific receptor activation by the sn-1 and sn-2 LPA regioisomers. An efficient enantioselective synthesis of hydroxyethoxy (HE)-substituted analogues of sn-1-acyl and 2-acyl LPA derivatives that possess palmitoyl and oleoyl chains is described. While the palmitoyl derivatives fail to activate calcium release in cells transfected with LPA(2) or LPA(3) G-protein-coupled receptors, the LPA(3) receptor is activated by both 1-HE and 2-HE oleoyl LPA analogues with a potency 10-fold lower than that of the parent oleoyl LPA.
Collapse
Affiliation(s)
- Lian Qian
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | | | | | | | |
Collapse
|
13
|
Synthesis of a novel cyclic pentacovalent phosphoenol ether derived from a dienone. Approaches to the syntheses of phosphonate analogs of sphingomyelin, sphingosine 1-phosphate and ceramide 1-phosphate. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)01038-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Rao VR, Corradetti MN, Chen J, Peng J, Yuan J, Prestwich GD, Brugge JS. Expression cloning of protein targets for 3-phosphorylated phosphoinositides. J Biol Chem 1999; 274:37893-900. [PMID: 10608855 DOI: 10.1074/jbc.274.53.37893] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI 3'-K) family of lipid kinases play a critical role in cell proliferation, survival, vesicle trafficking, motility, cytoskeletal rearrangements, and oncogenesis. To identify downstream effectors of PI 3'-K, we developed a novel screen to isolate proteins that bind to the major products of PI 3'-K: phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P(2)) and PtdIns-3,4,5-trisphosphate (PtdIns-3,4,5-P(3)). This screen uses synthetic biotinylated analogs of these lipids in conjunction with libraries of radiolabeled proteins that are produced by coupled in vitro transcription/translation reactions. The feasibility of the screen was initially demonstrated using avidin-coated beads prebound to biotinylated PtdIns-3,4-P(2) and PtdIns-3,4,5-P(3) to specifically isolate the pleckstrin homology domain of the serine/threonine kinase Akt. We then demonstrated the utility of this technique in isolating novel 3'-phosphorylated phosphatidylinositol (3'-PPI)-binding proteins through the preliminary screening of in vitro transcribed/translated cDNAs from a small pool expression library derived from mouse spleen. Three proteins were isolated that bound specifically to 3'PPIs. Two of these proteins have been previously characterized as PIP3BP/p42(IP4) and the PtdIns-3,4,5-P(3)-dependent serine/threonine kinase phosphoinositide-dependent kinase 1. The third protein is a novel protein that contains only a Src homology 2 domain and a pleckstrin homology domain; this protein has a higher specificity for both PtdIns-3,4,5-P(3) and PtdIns-3,4-P(2) than for PtdIns-4, 5-bisphosphate. Transcripts of this novel gene are present in every tissue analyzed but are most prominently expressed in spleen. We have renamed this new protein PHISH for 3'-phosphoinositide-interacting Src homology-containing protein. This report demonstrates the utility of this technique for isolating and characterizing 3'-PPI-binding proteins and has broad applicability for the isolation of binding domains for other lipid products.
Collapse
Affiliation(s)
- V R Rao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lin W, Leung LW, Bae YS, Bittman R, Arthur G. Effects of a water-soluble antitumor ether phosphonoinositide, D-myo-inositol 4-(hexadecyloxy)-3(S)-methoxybutanephosphonate (C4-PI), on inositol lipid metabolism in breast epithelial cancer cell lines. Biochem Pharmacol 1999; 57:1153-8. [PMID: 11230803 DOI: 10.1016/s0006-2952(99)00019-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have demonstrated previously that D-myo-inositol 4-(hexadecyloxy)-3(S)-methoxybutanephosphonate (C4-PI), an isosteric phosphonate analog of phosphatidylinositol developed to inhibit inositol lipid metabolism, was unable to inhibit phosphatidylinositol (PI) 3-kinase activity. We now report the effects of the compound on other aspects of inositol metabolism. We demonstrated that C4-PI inhibits the activity of purified recombinant PI-phospholipase C-beta (PLC-beta) at all concentrations tested; it enhanced the activity of PI-PLC-gamma and PI-PLC-delta at low concentrations (10 microM), while severely inhibiting their activities at higher concentrations. In the breast cancer cell lines MCF-7 (estrogen receptor positive) and MDA-MB-468 (estrogen receptor negative), C4-PI had no effect on the uptake of D-myo-inositol but severely inhibited its incorporation into PI. In spite of the drastic decrease in PI synthesis, C4-PI did not affect the levels of inositol incorporated into phosphatidylinositol 4,5-bisphosphate (PIP2) in the cells. In vitro assays showed that C4-PI inhibited PI synthase activity (inhibition of 35% at 50 microM) but had little effect on PI 4-kinase activity (inhibition of 13% at 150 microM). C4-PI inhibited the proliferation of MCF-7 and MDA-MB-468 cell lines with IC(50) values of 12 and 18 microM. Taken together, the results suggest that the accumulation of [3H]inositol in PIP2 in cells incubated with C4-PI may be due to the inhibition of PIP2 hydrolysis in the cells with no effect on its synthesis. The role of these C4-PI-induced effects in the mechanism of growth inhibition by C4-PI remains to be established.
Collapse
Affiliation(s)
- W Lin
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|