1
|
Macagnano A, Molinari FN, Papa P, Mancini T, Lupi S, D’Arco A, Taddei AR, Serrecchia S, De Cesare F. Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1123. [PMID: 38998727 PMCID: PMC11243275 DOI: 10.3390/nano14131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Collapse
Affiliation(s)
- Antonella Macagnano
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabricio Nicolas Molinari
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- National Institute of Industrial Technology (INTI), Buenos Aires B1650WAB, Argentina
| | - Paolo Papa
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Tiziana Mancini
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Stefano Lupi
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Annalisa D’Arco
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Anna Rita Taddei
- High Equipment Centre, Electron Microscopy Section, University of Tuscia, University Square, Building D, 01100 Viterbo, Italy;
| | - Simone Serrecchia
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabrizio De Cesare
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
2
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
3
|
Zhang Y, Cheng M, Gao J, Li J. Review of the influencing factors of secondary organic aerosol formation and aging mechanism based on photochemical smog chamber simulation methods. J Environ Sci (China) 2023; 123:545-559. [PMID: 36522014 DOI: 10.1016/j.jes.2022.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Parmentier EA, Corral Arroyo P, Gruseck R, Ban L, David G, Signorell R. Charge Effects on the Photodegradation of Single Optically Trapped Oleic Acid Aerosol Droplets. J Phys Chem A 2022; 126:4456-4464. [PMID: 35767023 PMCID: PMC9289876 DOI: 10.1021/acs.jpca.2c01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
It has recently been
reported that reactions can occur faster in
microdroplets than in extended condensed matter. The electric charge
of droplets has also been suggested as a possible cause of this phenomenon.
Here, we investigate the influence of electric charges on the photodegradation
of single, optically trapped oleic acid aerosol droplets in the absence
of other reactive species. The temporal evolution of the chemical
composition and the size of droplets with charge states ranging from
0 to 104 elementary charges were retrieved from Raman spectra
and elastic light scattering, respectively. No influence of the droplet
charge was observed, either on the chemical composition or on the
kinetics. Based on a kinetic multilayer model, we propose a reaction
mechanism with the photoexcitation of oleic acid into an excited state,
subsequent decay into intermediates and further photoexcitation of
intermediates and their decay into nonvolatile and volatile products.
Collapse
Affiliation(s)
- Evelyne A Parmentier
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Pablo Corral Arroyo
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Richard Gruseck
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grégory David
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Sbai SE, Bentayeb F, Yin H. Atmospheric pollutants response to the emission reduction and meteorology during the COVID-19 lockdown in the north of Africa (Morocco). STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 36:3769-3784. [PMID: 35498271 PMCID: PMC9033931 DOI: 10.1007/s00477-022-02224-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Climate and air quality change due to COVID-19 lockdown (LCD) are extremely concerned subjects of several research recently. The contribution of meteorological factors and emission reduction to air pollution change over the north of Morocco has been investigated in this study using the framework generalized additive models, that have been proved to be a robust technique for the environmental data sets, focusing on main atmospheric pollutants in the region including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter (PM2.5 and PM10), secondary inorganic aerosols (SIA), nom-methane volatile organic compounds and carbon monoxide (CO) from the regional air pollution dataset of the Copernicus Atmosphere Monitoring Service. Our results, indicate that secondary air pollutants (PM2.5, PM10 and O3) are more influenced by metrological factors and the other air pollutants reported by this study (NO2 and SO2). We show a negative effect for PBHL, total precipitation and NW10M on PM (PM2.5 and PM10 ), this meteorological parameters contribute to decrease in PM2.5 by 9, 2 and 9% respectively, before LCD and 8, 1 and 5% respectively during LCD. However, a positive marginal effect was found for SAT, Irradiance and RH that contribute to increase PM2.5 by 9, 12 and 18% respectively, before LCD and 17, 54 and 34% respectively during LCD. We found also that meteorological factors contribute to O3, PM2.5, PM10 and SIA average mass concentration by 22, 5, 3 and 34% before LCD and by 28, 19, 5 and 42% during LCD respectively. The increase in meteorological factors marginal effect during LCD shows the contribution of photochemical oxidation to air pollution due to increase in atmospheric oxidant (O3 and OH radical) during LCD, which can explain the response of PM to emission reduction. This study indicates that PM (PM2.5, PM10) has more controlled by SO2 due to the formation of sulfate particles especially under high oxidants level. The positive correlation between westward wind at 10 m (WW10M), Northward Wind at 10 m (NW10M) and PM indicates the implication of sea salt particles transported from Mediterranean Sea and Atlantic Ocean. The Ozone mass concentration shows a positive trend with Irradiance, Total and SAT during LCD; because temperature and irradiance enhance tropospheric ozone formation via photochemical reaction.This study shows the contribution of atmospheric oxidation capacity to air pollution change. Supplementary Information The online version contains supplementary material available at 10.1007/s00477-022-02224-z.
Collapse
Affiliation(s)
- Salah Eddine Sbai
- Department of Physics, Laboratoires de Physique des Hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| | - Farida Bentayeb
- Department of Physics, Laboratoires de Physique des Hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| | - Hao Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
- University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
6
|
Amouei Torkmahalleh M, Turganova K, Zhigulina Z, Madiyarova T, Adotey EK, Malekipirbazari M, Buonanno G, Stabile L. Formation of cluster mode particles (1-3 nm) in preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151756. [PMID: 34822884 DOI: 10.1016/j.scitotenv.2021.151756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study is the first study that reports the cluster particle (1-3 nm) formation (CPF) in two modern preschools located in Nur-Sultan city of Kazakhstan from October 28 to November 27, 2019. The average particle number concentration and mode diameter values during major CPF events in Preschool I and Preschool II were found to be 1.90 × 106 (SD 6.43 × 106) particles/cm3 and 1.60 (SD 0.85) nm, and 1.11 × 109 (SD 5.46 × 109) particles/cm3 and 2.16 (SD 1.47) nm, respectively. The ultraviolet PM concentration reached as high as 7 μg/m3 in one of the measurement days. The estimated emission rate in Preschool I for CPF events was 9.57 × 109 (SD 1.92 × 109) particles/min. For Preschool II, the emission rate was 7.25 × 109 (SD 12.4 × 109) particles/min. We identified primary cluster particles (CPs) emitted directly from the sources such as candle burning, and secondary CPs formed as a result of the oxidation of indoor VOCs or smoking VOCs. The secondary CPs are likely to be SOA. Indoor VOCs were mainly emitted during cleaning activities as well as during painting and gluing. Indoor VOCs are the controlling factors in the CPF events. Changes in the training and cleaning programs may result in significant reductions in the exposure of the children to CPs.
Collapse
Affiliation(s)
- Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| | - Kamila Turganova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Zhuldyz Zhigulina
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Tomiris Madiyarova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Enoch Kwasi Adotey
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Milad Malekipirbazari
- Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| |
Collapse
|
7
|
Jiang X, Liu D, Xu L, Tsona NT, Du L. Assessing the influence of environmental conditions on secondary organic aerosol formation from a typical biomass burning compound. J Environ Sci (China) 2022; 114:136-148. [PMID: 35459479 DOI: 10.1016/j.jes.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
The atmospheric chemistry in complex air pollution remains poorly understood. In order to probe how environmental conditions can impact the secondary organic aerosol (SOA) formation from biomass burning emissions, we investigated the photooxidation of 2,5-dimethylfuran (DMF) under different environmental conditions in a smog chamber. It was found that SO2 could promote the formation of SOA and increase the amounts of inorganic salts produced during the photooxidation. The formation rate of SOA and the corresponding SOA mass concentration increased gradually with the increasing DMF/OH ratio. The addition of (NH4)2SO4 seed aerosol accelerated the SOA formation rate and significantly shortened the time for the reaction to reach equilibrium. Additionally, a relatively high illumination intensity promoted the formation of OH radicals and, correspondingly, enhanced the photooxidation of DMF. However, the enhancement of light intensity accelerated the aging of SOA, which led to a gradual decrease of the SOA mass concentration. This work shows that by having varying influence on atmospheric chemical reactions, the same environmental factor can affect SOA formation in different ways. The present study is helpful for us to better understand atmospheric complex pollution.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Chen X, Millet DB, Neuman JA, Veres PR, Ray EA, Commane R, Daube BC, McKain K, Schwarz JP, Katich JM, Froyd KD, Schill GP, Kim MJ, Crounse JD, Allen HM, Apel EC, Hornbrook RS, Blake DR, Nault BA, Campuzano-Jost P, Jimenez JL, Dibb JE. HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. ACS EARTH & SPACE CHEMISTRY 2021; 5:1436-1454. [PMID: 34164590 PMCID: PMC8216292 DOI: 10.1021/acsearthspacechem.1c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.
Collapse
Affiliation(s)
- Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | | | - Eric A. Ray
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Róisín Commane
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964
| | - Bruce C. Daube
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Kathryn McKain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- NOAA Global Monitoring Laboratory, Boulder, CO 80305
| | | | - Joseph M. Katich
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Karl D. Froyd
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory P. Schill
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Michelle J. Kim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hannah M. Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Benjamin A. Nault
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jack E. Dibb
- Earth Systems Research Center/EOS, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
9
|
Pospisilova V, Bell DM, Lamkaddam H, Bertrand A, Wang L, Bhattu D, Zhou X, Dommen J, Prevot ASH, Baltensperger U, El Haddad I, Slowik JG. Photodegradation of α-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6936-6943. [PMID: 33961408 DOI: 10.1021/acs.est.0c06752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (∼100 μg m-3), whereas the effect is less prevalent at lower loadings (∼20 μg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).
Collapse
Affiliation(s)
- Veronika Pospisilova
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Tofwerk, 3600 Thun, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Amelie Bertrand
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Liwei Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Deepika Bhattu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Karwar 342037, India
| | - Xueqin Zhou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
10
|
Yeoman AM, Shaw M, Carslaw N, Murrells T, Passant N, Lewis AC. Simplified speciation and atmospheric volatile organic compound emission rates from non-aerosol personal care products. INDOOR AIR 2020; 30:459-472. [PMID: 32034823 PMCID: PMC7217173 DOI: 10.1111/ina.12652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 05/22/2023]
Abstract
Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person-1 yr-1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr-1 and limonene 0.15 ktonne yr-1 ) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.
Collapse
Affiliation(s)
- Amber M. Yeoman
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
| | - Marvin Shaw
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
- National Centre for Atmospheric ScienceUniversity of YorkYorkUK
| | - Nicola Carslaw
- Department of Environment and GeographyUniversity of YorkYorkUK
| | - Tim Murrells
- Ricardo Energy & Environment Gemini BuildingHarwellUK
| | - Neil Passant
- Ricardo Energy & Environment Gemini BuildingHarwellUK
| | - Alastair C. Lewis
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
- National Centre for Atmospheric ScienceUniversity of YorkYorkUK
| |
Collapse
|
11
|
Wang Y, Chen J, Wang Q, Qin Q, Ye J, Han Y, Li L, Zhen W, Zhi Q, Zhang Y, Cao J. Increased secondary aerosol contribution and possible processing on polluted winter days in China. ENVIRONMENT INTERNATIONAL 2019; 127:78-84. [PMID: 30909096 DOI: 10.1016/j.envint.2019.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
China experiences severe particulate pollution, especially in winter, and determining the characteristics of particulate matter (PM) during pollution events is imperative for understanding the sources and causes of the pollution. However, inconsistencies have been found in the aerosol composition, sources and secondary processing among reported studies. Modern meta-analysis was used to probe the PM chemical characteristics and processing in winter at four representative regions of China, and the first finding was that secondary aerosol formation was the major effect factor for PM pollution. The secondary inorganic species behaved differently in the four regions: sulfate, nitrate, and ammonium increased in the Beijing-Tianjin-Hebei (BTH) and Guanzhong (GZ) areas, but only nitrate increased in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) regions. The increased production of secondary organic aerosol (SOA) was probably caused by aqueous-phase processing in the GZ and BTH regions and by photochemical reactions in the PRD. Finally, we suggest future AMS/ACSM observations should focus on the aerosol characteristics in rural areas in winter in China.
Collapse
Affiliation(s)
- Yichen Wang
- College of Management, Shenzhen University, Shenzhen 518060, China; Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Ji Chen
- Aarhus University Centre for Circular Bioeconomy, Department of Agroecology, Aarhus University, BlichersAllé 20, 8830 Tjele, Denmark
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Quande Qin
- College of Management, Shenzhen University, Shenzhen 518060, China.
| | - Jianhuai Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuemei Han
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Li Li
- College of Management, Shenzhen University, Shenzhen 518060, China
| | - Wei Zhen
- College of Management, Shenzhen University, Shenzhen 518060, China
| | - Qiang Zhi
- School of Government Administration, Central University of Finance and Economics, China
| | - Yixuan Zhang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
12
|
Arroyo PC, Malecha KT, Ammann M, Nizkorodov SA. Influence of humidity and iron(iii) on photodegradation of atmospheric secondary organic aerosol particles. Phys Chem Chem Phys 2018; 20:30021-30031. [PMID: 30480278 DOI: 10.1039/c8cp03981j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absorption of solar actinic radiation by atmospheric secondary organic aerosol (SOA) particles drives condensed-phase photochemical processes, which lead to particle mass loss by the production of CO, CO2, hydrocarbons, and various oxygenated volatile organic compounds (OVOCs). We examined the influence of relative humidity (RH) and Fe(iii) content on the OVOC release and subsequent mass loss from secondary organic aerosol material (SOM) during UV irradiation. The samples were generated in a flow tube reactor from the oxidation of d-limonene by ozone. The SOM was collected with a Micro Orifice Uniform Deposit Impactor (MOUDI) on CaF2 windows. To selected samples, a variable amount of FeCl3 was added before irradiation. The resulting SOM samples, with or without added FeCl3, were irradiated with a 305 nm light-emitting diode and the release of several OVOCs, including acetic acid, acetone, formic acid and acetaldehyde, was measured with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The release of OVOCs from photodegradation of SOM at typical ambient mid-values of RH (30-70%) was 2-4 times higher than under dry conditions. The release of OVOCs was slightly enhanced in the presence of low concentrations of iron (0.04 Fe molar ratio) but it was suppressed at higher concentrations (0.50 Fe molar ratio) of iron indicating the existence of a complicated radical chemistry driving the photodegradation of SOM. Our findings suggest that the presence of iron in atmospheric aerosol particles will either increase or decrease release of OVOCs due to the photodegradation of SOM depending on whether the relative iron concentration is low or high, respectively. At atmospherically relevant RH conditions, the expected fractional mass loss induced by these photochemical processes from limonene SOA particles would be between 2 and 4% of particle mass per hour. Therefore, photodegradation is an important aging mechanism for this type of SOA.
Collapse
Affiliation(s)
- Pablo Corral Arroyo
- Paul Scherrer Institute, Laboratory of Environmental Chemistry, 5232 Villigen PSI, Switzerland
| | | | | | | |
Collapse
|
13
|
Witkowski B, Al-Sharafi M, Gierczak T. Kinetics of Limonene Secondary Organic Aerosol Oxidation in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11583-11590. [PMID: 30207709 DOI: 10.1021/acs.est.8b02516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Twenty semivolatile organic compounds that contribute to limonene secondary organic aerosol (SOA) were synthesized in the flow-tube reactor. Kinetics of the aqueous-phase oxidation of the synthesized compounds by hydroxyl radicals (OH) and ozone (O3) were investigated at 298 ± 2 K using the relative rate method. Oxidized organic compounds identified as the major components of limonene SOA were quantified with liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The bimolecular rate coefficients measured for the oxidation products of limonene are kOH = 2-5 × 109 M-1 s-1 for saturated and kOH = 1-2 × 1010 M-1 s-1 for unsaturated compounds. Ozonolysis reaction bimolecular rate coefficients obtained for the unsaturated compounds in the aqueous phase are between 2 and 6 × 104 M-1 s-1. The results obtained in this work also indicate that oxidation of limonene carboxylic acids by OH was about a factor of 2 slower for the carboxylate ions than for the protonated acids while the opposite was true for the ozonolysis. The data acquired provided new insights into kinetics of the limonene SOA processing in the aqueous phase. Ozonolysis of limonene SOA also increased the concentration of dimers, most likely due to reactions of the stabilized Criegee intermediates with the other, stable products. These results indicate that aqueous-phase oxidation of limonene SOA by OH and O3 will be relevant in clouds, fogs, and wet aerosols.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Mohammed Al-Sharafi
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
14
|
Arney G, Domagal-Goldman SD, Meadows VS. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres. ASTROBIOLOGY 2018; 18:311-329. [PMID: 29189040 PMCID: PMC5867516 DOI: 10.1089/ast.2017.1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth. Astrobiology 18, 311-329.
Collapse
Affiliation(s)
- Giada Arney
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Victoria S. Meadows
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
- University of Washington Astrobiology Program, Seattle, Washington
| |
Collapse
|
15
|
Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure. Food Chem 2018; 239:434-441. [PMID: 28873588 DOI: 10.1016/j.foodchem.2017.06.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products.
Collapse
|
16
|
Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops. ATMOSPHERE 2017. [DOI: 10.3390/atmos8080138] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Malecha KT, Nizkorodov SA. Feasibility of Photosensitized Reactions with Secondary Organic Aerosol Particles in the Presence of Volatile Organic Compounds. J Phys Chem A 2017; 121:4961-4967. [PMID: 28598172 DOI: 10.1021/acs.jpca.7b04066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of a complex mixture of organic compounds found in secondary organic aerosol (SOA) to act as a photosensitizer in the oxidation of volatile organic compounds (VOCs) was investigated. Different types of SOAs were produced in a smog chamber by oxidation of various biogenic and anthropogenic VOCs. The SOA particles were collected from the chamber onto an inert substrate, and the resulting material was exposed to 365 nm radiation in an air flow containing ∼200 ppbv of limonene vapor. The mixing ratio of limonene and other VOCs in the flow was observed with a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). The photosensitized uptake of limonene was observed for several SOA materials, with a lower limit for the reactive uptake coefficient on the scale of ∼10-5. The lower limit for the uptake coefficient under conditions of Los Angeles, California on the summer solstice at noon was estimated to be on the order of ∼10-6. Photoproduction of oxygenated VOCs (OVOCs) resulting from photodegradation of the SOA material also occurred in parallel with the photosensitized uptake of limonene. The estimated photosensitized limonene uptake rates by atmospheric SOA particles and vegetation surfaces appear to be too small to compete with the atmospheric oxidation of limonene by the hydroxyl radical or ozone. However, these processes could play a role in the leaf boundary layer where concentrations of oxidants are depleted and concentrations of VOCs are enhanced relative to the free atmosphere.
Collapse
Affiliation(s)
- Kurtis T Malecha
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Loru D, Quesada-Moreno MM, Avilés-Moreno JR, Jarman N, Huet TR, López-González JJ, Sanz ME. Conformational Flexibility of Limonene Oxide Studied By Microwave Spectroscopy. Chemphyschem 2016; 18:274-280. [DOI: 10.1002/cphc.201600991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/17/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Donatella Loru
- Department of Chemistry; King's College London; London United Kingdom
| | - María Mar Quesada-Moreno
- University of Jaen; Department of Physical and Analytical Chemistry; Campus Las Lagunillas E-23071 Jaen Spain
- PhLAM, UMR8523 CNRS-; Université Lille 1; Bâtiment P5 F-59655 Villeneuve D'Ascq Cedex France
| | | | - Natasha Jarman
- Department of Chemistry; King's College London; London United Kingdom
| | - Thérèse R. Huet
- PhLAM, UMR8523 CNRS-; Université Lille 1; Bâtiment P5 F-59655 Villeneuve D'Ascq Cedex France
| | - Juan Jesús López-González
- University of Jaen; Department of Physical and Analytical Chemistry; Campus Las Lagunillas E-23071 Jaen Spain
| | - M. Eugenia Sanz
- Department of Chemistry; King's College London; London United Kingdom
| |
Collapse
|
19
|
Malecha KT, Nizkorodov SA. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9990-7. [PMID: 27547987 DOI: 10.1021/acs.est.6b02313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigated the photodegradation of secondary organic aerosol (SOA) particles by near-UV radiation and photoproduction of oxygenated volatile organic compounds (OVOCs) from various types of SOA. We used a smog chamber to generate SOA from α-pinene, guaiacol, isoprene, tetradecane, and 1,3,5-trimethylbenzene under high-NOx, low-NOx, or ozone oxidation conditions. The SOA particles were collected on a substrate, and the resulting material was exposed to several mW of near-UV radiation (λ ∼ 300 nm) from a light-emitting diode. Various OVOCs, including acetic acid, formic acid, acetaldehyde, and acetone were observed during photodegradation, and their SOA-mass-normalized fluxes were estimated with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). All the SOA, with the exception of guaiacol SOA, emitted OVOCs upon irradiation. Based on the measured OVOC emission rates, we estimate that SOA particles would lose at least ∼1% of their mass over a 24 h period during summertime conditions in Los Angeles, California. This condensed-phase photochemical process may produce a few Tg/year of gaseous formic acid, the amount comparable to its primary sources. The condensed-phase SOA photodegradation processes could therefore measurably affect the budgets of both particulate and gaseous atmospheric organic compounds on a global scale.
Collapse
Affiliation(s)
- Kurtis T Malecha
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
20
|
Kroll JH, Lim CY, Kessler SH, Wilson KR. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. J Phys Chem A 2015; 119:10767-83. [PMID: 26381466 DOI: 10.1021/acs.jpca.5b06946] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.
Collapse
Affiliation(s)
| | | | | | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
21
|
George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov S. Heterogeneous photochemistry in the atmosphere. Chem Rev 2015; 115:4218-58. [PMID: 25775235 PMCID: PMC4772778 DOI: 10.1021/cr500648z] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Christian George
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - Markus Ammann
- Laboratory
of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Barbara D’Anna
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - D. J. Donaldson
- Department
of Chemistry and Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sergey
A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
22
|
Maulini-Duran C, Abraham J, Rodríguez-Pérez S, Cerda A, Jiménez-Peñalver P, Gea T, Barrena R, Artola A, Font X, Sánchez A. Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale. BIORESOURCE TECHNOLOGY 2015; 179:211-218. [PMID: 25545090 DOI: 10.1016/j.biortech.2014.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
The emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during the solid state fermentation process of some selected wastes to obtain different enzymes have been determined at pilot scale. Orange peel+compost (OP), hair wastes+raw sludge (HW) and winterization residue+raw sludge (WR) have been processed in duplicate in 50 L reactors to provide emission factors and to identify the different VOC families present in exhaust gaseous emissions. Ammonia emission from HW fermentation (3.2±0.5 kg Mg(-1) dry matter) and VOC emission during OP processes (18±6 kg Mg(-1) dry matter) should be considered in an industrial application of these processes. Terpenes have been the most emitted VOC family during all the processes although the emission of sulphide molecules during HW SSF is notable. The most emitted compound was dimethyl disulfide in HW and WR processes, and limonene in the SSF of OP.
Collapse
Affiliation(s)
- Caterina Maulini-Duran
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Juliana Abraham
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Sheila Rodríguez-Pérez
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alejandra Cerda
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pedro Jiménez-Peñalver
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Teresa Gea
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Adriana Artola
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Xavier Font
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
23
|
Romonosky DE, Laskin A, Laskin J, Nizkorodov SA. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. J Phys Chem A 2014; 119:2594-606. [DOI: 10.1021/jp509476r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dian E. Romonosky
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
24
|
Epstein SA, Blair SL, Nizkorodov SA. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11251-11258. [PMID: 25165890 DOI: 10.1021/es502350u] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Primary and secondary organic aerosols (POA and SOA) contain a complex mixture of multifunctional chemicals, many of which are photolabile. Much of the previous work that aimed to understand the chemical evolution (aging) of POA and SOA has focused on the reactive uptake of gas-phase oxidants by particles. By stripping volatile compounds and ozone from α-pinene ozonolysis SOA with three 1-m-long denuders, and exposing the residual particles in a flow cell to near-ultraviolet (λ>300 nm) radiation, we find that condensed-phase photochemistry can induce significant changes in SOA particle size and chemical composition. The particle-bound organic peroxides, which are highly abundant in α-pinene ozonolysis SOA (22 ± 5% by weight), have an atmospheric photolysis lifetime of about 6 days at a 24-h average solar zenith angle (SZA) of 65° experienced at 34° latitude (Los Angeles) in the summer. In addition, the particle diameter shrinks 0.56% per day under these irradiation conditions as a result of the loss of volatile photolysis products. Experiments with and without the denuders show similar results, suggesting that condensed-phase processes dominate over heterogeneous reactions of particles with organic vapors, excess ozone, and gas-phase free radicals. These condensed-phase photochemical processes occur on atmospherically relevant time scales and should be considered when modeling the evolution of organic aerosol in the atmosphere.
Collapse
Affiliation(s)
- Scott A Epstein
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | |
Collapse
|
25
|
Lee HJJ, Aiona PK, Laskin A, Laskin J, Nizkorodov SA. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10217-26. [PMID: 25102050 DOI: 10.1021/es502515r] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.
Collapse
Affiliation(s)
- Hyun Ji Julie Lee
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | | | | |
Collapse
|
26
|
Leng C, Hiltner J, Pham H, Kelley J, Mach M, Zhang Y, Liu Y. Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor. Phys Chem Chem Phys 2014; 16:4350-60. [DOI: 10.1039/c3cp54646b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Lambe AT, Cappa CD, Massoli P, Onasch TB, Forestieri SD, Martin AT, Cummings MJ, Croasdale DR, Brune WH, Worsnop DR, Davidovits P. Relationship between oxidation level and optical properties of secondary organic aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6349-6357. [PMID: 23701291 DOI: 10.1021/es401043j] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Brown carbon (BrC), which may include secondary organic aerosol (SOA), can be a significant climate-forcing agent via its optical absorption properties. However, the overall contribution of SOA to BrC remains poorly understood. Here, correlations between oxidation level and optical properties of SOA are examined. SOA was generated in a flow reactor in the absence of NOx by OH oxidation of gas-phase precursors used as surrogates for anthropogenic (naphthalene, tricyclo[5.2.1.0(2,6)]decane), biomass burning (guaiacol), and biogenic (α-pinene) emissions. SOA chemical composition was characterized with a time-of-flight aerosol mass spectrometer. SOA mass-specific absorption cross sections (MAC) and refractive indices were calculated from real-time cavity ring-down photoacoustic spectrometry measurements at 405 and 532 nm and from UV-vis spectrometry measurements of methanol extracts of filter-collected particles (300 to 600 nm). At 405 nm, SOA MAC values and imaginary refractive indices increased with increasing oxidation level and decreased with increasing wavelength, leading to negligible absorption at 532 nm. Real refractive indices of SOA decreased with increasing oxidation level. Comparison with literature studies suggests that under typical polluted conditions the effect of NOx on SOA absorption is small. SOA may contribute significantly to atmospheric BrC, with the magnitude dependent on both precursor type and oxidation level.
Collapse
Affiliation(s)
- Andrew T Lambe
- Chemistry Department, Boston College, Chestnut Hill, Massachusetts, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kourtchev I, Fuller S, Aalto J, Ruuskanen TM, McLeod MW, Maenhaut W, Jones R, Kulmala M, Kalberer M. Molecular composition of boreal forest aerosol from Hyytiälä, Finland, using ultrahigh resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4069-4079. [PMID: 23469832 DOI: 10.1021/es3051636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.
Collapse
Affiliation(s)
- Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zeng G, Holladay S, Langlois D, Zhang Y, Liu Y. Kinetics of Heterogeneous Reaction of Ozone with Linoleic Acid and its Dependence on Temperature, Physical State, RH, and Ozone Concentration. J Phys Chem A 2013; 117:1963-74. [DOI: 10.1021/jp308304n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guang Zeng
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
- The Institute of Chemical Physics,
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing
100081, People’s Republic of China
| | - Sara Holladay
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| | - Danielle Langlois
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| | - Yunhong Zhang
- The Institute of Chemical Physics,
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing
100081, People’s Republic of China
| | - Yong Liu
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| |
Collapse
|
30
|
Kim YW, Kim MJ, Chung BY, Bang DY, Lim SK, Choi SM, Lim DS, Cho MC, Yoon K, Kim HS, Kim KB, Kim YS, Kwack SJ, Lee BM. Safety evaluation and risk assessment of d-Limonene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:17-38. [PMID: 23573938 DOI: 10.1080/10937404.2013.769418] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
d-Limonene, a major constituent of citrus oils, is a monoterpene widely used as a flavor/fragrance additive in cosmetics, foods, and industrial solvents as it possesses a pleasant lemon-like odor. d-Limonene has been designated as a chemical with low toxicity based upon lethal dose (LD50) and repeated-dose toxicity studies when administered orally to animals. However, skin irritation or sensitizing potential was reported following widespread use of this agent in various consumer products. In experimental animals and humans, oxidation products or metabolites of d-limonene were shown to act as skin irritants. Carcinogenic effects have also been observed in male rats, but the mode of action (MOA) is considered irrelevant for humans as the protein α(2u)-globulin responsible for this effect in rodents is absent in humans. Thus, the liver was identified as a critical target organ following oral administration of d-limonene. Other than the adverse dermal effects noted in humans, other notable toxic effects of d-limonene have not been reported. The reference dose (RfD), the no-observed-adverse-effect level (NOAEL), and the systemic exposure dose (SED) were determined and found to be 2.5 mg/kg/d, 250 mg/kg//d, and 1.48 mg/kg/d, respectively. Consequently, the margin of exposure (MOE = NOAEL/SED) of 169 was derived based upon the data, and the hazard index (HI = SED/RfD) for d-limonene is 0.592. Taking into consideration conservative estimation, d-limonene appears to exert no serious risk for human exposure. Based on adverse effects and risk assessments, d-limonene may be regarded as a safe ingredient. However, the potential occurrence of skin irritation necessitates regulation of this chemical as an ingredient in cosmetics. In conclusion, the use of d-limonene in cosmetics is safe under the current regulatory guidelines for cosmetics.
Collapse
Affiliation(s)
- Young Woo Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Qi L, Nakao S, Cocker DR. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:1359-1369. [PMID: 23362755 DOI: 10.1080/10962247.2012.712082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED This work investigates the oxidative aging of preformed secondary organic aerosol (SOA) derived from alpha-pinene ozonolysis (-100 ppb(v) hydrocarbon [HC(x)] with excess of O3) within the University of California-Riverside Center for Environmental Research and Technology environmental chamber that occurs after introduction of additional hydroxyl (OH) and nitrate (NO3) radicals. Simultaneous measurements of SOA volume concentration, hygroscopicity, particle density, and elemental chemical composition (C:O:H) reveal increased particle wall-loss-corrected SOA formation (1.5%, 7.5%, and 15.1%), increase in oxygen-to-carbon ratio (O/C; 15.6%, 8.7%, and 8.7%), and hydrophilicity (4.2%, 7.4%, and 1.4%) after addition of NO (ultraviolet [UV] on), H2O2 (UV(on)), and N2O5 (dark), respectively. The processing observed as an increase in O/C and hydrophilicity is attributed to OH and NO3 reactions with first-generation vapor products and UV photolysis. The rate of increase in O/C appears to be only sufficient to achieve semivolatile oxygenated organic aerosol (SV-OOA) on a day time scale even at the raised chamber radical concentrations. The additional processing with UV irradiation without addition of NO, H2O2, or N2O5 is observed, adding 5.5% wall-loss-corrected volume. The photolysis-only processing is attributed to additional OH generated from photolysis of the nitrous acid (HONO) offgasing from chamber walls. This finding indicates that OH and NO3 radicals can further alter the chemical composition of SOA from alpha-pinene ozonolysis, which is proved to consist of first-generation products. IMPLICATIONS Secondary organic aerosol (SOA) may undergo aging processes once formed in the atmosphere, thereby altering the physicochemical and toxic properties of aerosol. This study discusses SOA aging of a major biogenic volatile organic compound (VOC; alpha-pinene) after it initially forms SOA. Aging of the alpha-pinene ozonolysis system by OH (through NO or H2O2 injection), NO3 (through N2O5 injection), and photolysis is observed. Although the reaction rate appears to be only sufficient to achieve semivolatile oxygenated organic aerosol (SV-OOA) level of oxygenation on a 1-day scale, it is important that SOA aging be considered in ambient air quality models. Aging in this study is attributed to further oxidation of gas-phase oxidation products of alpha-pinene ozonolysis.
Collapse
Affiliation(s)
- Li Qi
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, California, USA.
| | | | | |
Collapse
|
32
|
Carslaw N, Mota T, Jenkin ME, Barley MH, McFiggans G. A significant role for nitrate and peroxide groups on indoor secondary organic aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9290-9298. [PMID: 22881450 DOI: 10.1021/es301350x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper reports indoor secondary organic aerosol, SOA, composition based on the results from an improved model for indoor air chemistry. The model uses a detailed chemical mechanism that is near-explicit to describe the gas-phase degradation of relevant indoor VOC species. In addition, gas-to-particle partitioning is included for oxygenated products formed from the degradation of limonene, the most ubiquitous terpenoid species in the indoor environment. The detail inherent in the chemical mechanism permits the indoor SOA composition to be reported in greater detail than currently possible using experimental techniques. For typical indoor conditions in the suburban UK, SOA concentrations are ~1 μg m(-3) and dominated by nitrated material (~85%), with smaller contributions from peroxide (12%), carbonyl (3%), and acidic (1%) material. During cleaning activities, SOA concentrations can reach 20 μg m(-3) with the composition dominated by peroxide material (73%), with a smaller contribution from nitrated material (21%). The relative importance of these different moieties depends crucially (in order) on the outdoor concentration of O(3), the deposition rates employed and the scaling factor value applied to the partitioning coefficient. There are currently few studies that report observation of aerosol composition indoors, and most of these have been carried out under conditions that are not directly relevant. This study highlights the need to investigate SOA composition in real indoor environments. Further, there is a need to measure deposition rates for key indoor air species on relevant indoor surfaces and to reduce the uncertainties that still exist in gas-to-particle phase parametrization for both indoor and outdoor air chemistry models.
Collapse
|
33
|
Ebben CJ, Shrestha M, Martinez IS, Corrigan AL, Frossard AA, Song WW, Worton DR, Petäjä T, Williams J, Russell LM, Kulmala M, Goldstein AH, Artaxo P, Martin ST, Thomson RJ, Geiger FM. Organic constituents on the surfaces of aerosol particles from Southern Finland, Amazonia, and California studied by vibrational sum frequency generation. J Phys Chem A 2012; 116:8271-90. [PMID: 22734593 DOI: 10.1021/jp302631z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article summarizes and compares the analysis of the surfaces of natural aerosol particles from three different forest environments by vibrational sum frequency generation. The experiments were carried out directly on filter and impactor substrates, without the need for sample preconcentration, manipulation, or destruction. We discuss the important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation by showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 μm and lower appears to be close to size-invariant. We also discuss the concept of molecular chirality as a chemical marker that could be useful for quantifying how chemical constituents in the SOA gas phase and the SOA particle phase are related in time. Finally, we describe how the combination of multiple disciplines, such as aerosol science, advanced vibrational spectroscopy, meteorology, and chemistry can be highly informative when studying particles collected during atmospheric chemistry field campaigns, such as those carried out during HUMPPA-COPEC-2010, AMAZE-08, or BEARPEX-2009, and when they are compared to results from synthetic model systems such as particles from the Harvard Environmental Chamber (HEC). Discussions regarding the future of SOA chemical analysis approaches are given in the context of providing a path toward detailed spectroscopic assignments of SOA particle precursors and constituents and to fast-forward, in terms of mechanistic studies, through the SOA particle formation process.
Collapse
Affiliation(s)
- Carlena J Ebben
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Paulot F, Wunch D, Crounse JD, Toon GC, Millet DB, DeCarlo PF, Vigouroux C, Deutscher NM, González Abad G, Notholt J, Warneke T, Hannigan JW, Warneke C, de Gouw JA, Dunlea EJ, De Mazière M, Griffith DWT, Bernath P, Jimenez JL, Wennberg PO. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. ATMOSPHERIC CHEMISTRY AND PHYSICS 2011; 11:1989-2013. [PMID: 33758586 PMCID: PMC7983864 DOI: 10.5194/acp-11-1989-2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ∼1200 and ∼1400Gmolyr-1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.
Collapse
Affiliation(s)
- F. Paulot
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - D. Wunch
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - J. D. Crounse
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - G. C. Toon
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D. B. Millet
- University of Minnesota, Department of Soil, Water and Climate, St. Paul, Minnesota, USA
| | - P. F. DeCarlo
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - C. Vigouroux
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - N. M. Deutscher
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | | | - J. Notholt
- Institute of Environmental Physics, Bremen, Germany
| | - T. Warneke
- Institute of Environmental Physics, Bremen, Germany
| | - J. W. Hannigan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - J. A. de Gouw
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - E. J. Dunlea
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - M. De Mazière
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - D. W. T. Griffith
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | - P. Bernath
- Department of Chemistry, University of York, York, UK
| | - J. L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - P. O. Wennberg
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
35
|
Bateman AP, Nizkorodov SA, Laskin J, Laskin A. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys Chem Chem Phys 2011; 13:12199-212. [DOI: 10.1039/c1cp20526a] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Tang X, Wilson SR, Solomon KR, Shao M, Madronich S. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate. Photochem Photobiol Sci 2011; 10:280-91. [DOI: 10.1039/c0pp90039g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
|
38
|
McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, Madronich S. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 2011; 10:182-98. [DOI: 10.1039/c0pp90034f] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Veres P, Roberts JM, Burling IR, Warneke C, de Gouw J, Yokelson RJ. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014033] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Geddes S, Nichols B, Flemer S, Eisenhauer J, Zahardis J, Petrucci GA. Near-Infrared Laser Desorption/Ionization Aerosol Mass Spectrometry for Investigating Primary and Secondary Organic Aerosols under Low Loading Conditions. Anal Chem 2010; 82:7915-23. [DOI: 10.1021/ac1013354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Scott Geddes
- Department of Chemistry, University of Vermont, Burlington, Vermont 05452
| | - Brian Nichols
- Department of Chemistry, University of Vermont, Burlington, Vermont 05452
| | - Stevenson Flemer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05452
| | - Jessica Eisenhauer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05452
| | - James Zahardis
- Department of Chemistry, University of Vermont, Burlington, Vermont 05452
| | | |
Collapse
|
41
|
Bateman AP, Nizkorodov SA, Laskin J, Laskin A. Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Phys Chem Chem Phys 2009; 11:7931-42. [DOI: 10.1039/b905288g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Finlayson-Pitts BJ. Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys Chem Chem Phys 2009; 11:7760-79. [DOI: 10.1039/b906540g] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Vaida V. Spectroscopy of Photoreactive Systems: Implications for Atmospheric Chemistry. J Phys Chem A 2008; 113:5-18. [DOI: 10.1021/jp806365r] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
44
|
Mang SA, Henricksen DK, Bateman AP, Andersen MPS, Blake DR, Nizkorodov SA. Contribution of Carbonyl Photochemistry to Aging of Atmospheric Secondary Organic Aerosol. J Phys Chem A 2008; 112:8337-44. [DOI: 10.1021/jp804376c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen A. Mang
- Department of Chemistry, University of California, Irvine, California 92697
| | - Dana K. Henricksen
- Department of Chemistry, University of California, Irvine, California 92697
| | - Adam P. Bateman
- Department of Chemistry, University of California, Irvine, California 92697
| | | | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, California 92697
| | | |
Collapse
|
45
|
Walser ML, Desyaterik Y, Laskin J, Laskin A, Nizkorodov SA. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys Chem Chem Phys 2008; 10:1009-22. [DOI: 10.1039/b712620d] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Karagulian F, Scott Lea A, Dilbeck CW, Finlayson-Pitts BJ. A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles. Phys Chem Chem Phys 2008; 10:528-41. [DOI: 10.1039/b712715d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|