1
|
Collada A, Cruz A, Pérez-Gil J. Studying the interfacial activity and structure of pulmonary surfactant complexes. Chem Phys Lipids 2025; 266:105459. [PMID: 39581437 DOI: 10.1016/j.chemphyslip.2024.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pulmonary surfactant (PS) is a membranous complex that coats the respiratory air-liquid interface in air-breathing animal lungs. Its main function is to minimize the surface tension at the end of expiration, what is needed for preventing alveolar collapse. Although the tension reduction capabilities of surfactant depend on the formation of air-exposed phospholipid-enriched monolayers, the interfacial surfactant films are far from simple monolayers. Surfactant surface films are dynamically interconnected to continuously secreted newly synthetized material thanks to the action of a pair of very hydrophobic proteins, termed SP-B and SP-C, which are responsible to modulate the biophysical behavior of the complex. Other proteins in the system, such as the hydrophilic SP-A and SP-D, are integrated into different surfactant structures but participate primarily in the immune defense of the lung. In spite of countless studies on the structure and chemico-physical properties of surfactant membranes, the full complexity of surfactant three-dimensional structure is far from being completely understood. Here we review some of the most useful techniques that have allowed the characterization of the PS system along the years to develop the current models interpreting surfactant structure-function relationships.
Collapse
Affiliation(s)
- Ainhoa Collada
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain.
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain.
| |
Collapse
|
2
|
Xu C, Käser T, Xia Y, Kumar N, Zenobi R. Probing Deuteration-Induced Phase Separation in Supported Lipid Monolayers using Hyperspectral TERS Imaging. J Phys Chem Lett 2024; 15:10237-10243. [PMID: 39356968 DOI: 10.1021/acs.jpclett.4c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In this study, we investigate the impact of deuteration on the formation of phase-separated domains in supported lipid monolayers using hyperspectral Tip-Enhanced Raman Spectroscopy (TERS) imaging. The intricate organization of biological membranes plays a crucial role in cellular functions. Various factors that influence domain formation have been identified in previous studies such as lipid tail length and cholesterol concentration. Deuterium labeling of lipids has proven useful for probing cellular structures and dynamics, but its impact on lipid phase separation remains underexplored. By examining 1:1 mixed monolayers of dipalmitoylphosphatidylcholine (DPPC) and deuterated DPPC on Au(111) surfaces, we reveal partial segregation of domains rich in deuterated and nondeuterated lipids. This study addresses a gap in knowledge by examining the impact of deuteration on lipid tail behavior, offering new insights into how even subtle structural modifications can influence phase behavior. Furthermore, it demonstrates that TERS can be a powerful, nondestructive, and label-free nanoanalytical tool for analyzing lipid membranes and advance the field of membrane biophysics.
Collapse
Affiliation(s)
- Chengcheng Xu
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timon Käser
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yuanzhi Xia
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Pandey Y, Ingold A, Kumar N, Zenobi R. Nanoscale visualization of phase separation in binary supported lipid monolayer using tip-enhanced Raman spectroscopy. NANOSCALE 2024; 16:10578-10583. [PMID: 38767416 PMCID: PMC11154864 DOI: 10.1039/d4nr00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Supported lipid membranes are an important model system to study the phase separation behavior at the nanoscale. However, the conventional nanoanalytical tools often fail to provide reliable chemical characterization of the phase separated domains in a non-destructive and label-free manner. This study demonstrates the application of scanning tunneling microscopy-based tip-enhanced Raman spectroscopy (TERS) to study the nanoscale phase separation in supported d62-DPPC : DOPC lipid monolayers. Hyperspectral TERS imaging successfully revealed a clear segregation of the d62-DPPC-rich and DOPC-rich domains. Interestingly, nanoscale deposits of d62-DPPC were observed inside the DOPC-rich domains and vice versa. High-resolution TERS imaging also revealed the presence of a 40-120 nm wide interfacial region between the d62-DPPC-rich and DOPC-rich domains signifying a smooth transition rather than a sharp boundary between them. The novel insights obtained in this study demonstrate the effectiveness of TERS in studying binary lipid monolayers at the nanoscale.
Collapse
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Andrea Ingold
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Roy B, Guha P, Chang CH, Nahak P, Karmakar G, Bykov AG, Akentiev AV, Noskov BA, Patra A, Dutta K, Ghosh C, Panda AK. Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer. Chem Phys Lipids 2024; 258:105364. [PMID: 38040405 DOI: 10.1016/j.chemphyslip.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Interactions between a zwitterionic phospholipid, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and four anionic phospholipids dihexadecyl phosphate (DHP), 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1, 2-dipalmitoyl-sn-glycero-3-phosphate (DPP) and 1, 2-dipalmitoyl-sn-glycero-3-phospho ethanol (DPPEth) in combination with an additional amount of 30 mol% cholesterol were separately investigated at air-buffer interface through surface pressure (π) - area (A) measurements. π-A isotherm derived parameters revealed maximum negative deviation from ideality for the mixtures comprising 30 mol% anionic lipids. Besides the film functionality, structural changes of the monomolecular films at different surface pressures in the absence and presence of polyamidoamine (PAMAM, generation 4), a cationic dendrimer, were visualised through Brewster angle microscopy and fluorescence microscopic studies. Fluidity/rigidity of monolayers were assessed by surface dilatational rheology studies. Effect of PAMAM on the formation of adsorbed monolayer, due to bilayer disintegration of liposomes (DPPC:anionic lipids= 7:3 M/M, and 30 mol% cholesterol) were monitored by surface pressure (π) - time (t) isotherms. Bilayer disintegration kinetics were dependent on lipid head group and chain length, besides dendrimer concentration. Such studies are considered to be an in vitro cell membrane model where the alteration of molecular orientation play important roles in understanding the nature of interaction between the dendrimer and cell membrane. Liposome-dendrimer aggregates were nontoxic to breast cancer cell line as well as in doxorubicin treated MDA-MB-468 cell line suggesting their potential as drug delivery systems.
Collapse
Affiliation(s)
- Biplab Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Pritam Guha
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Prasant Nahak
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
5
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Liu Y, Zheng X, Guan D, Jiang X, Hu G. Heterogeneous Nanostructures Cause Anomalous Diffusion in Lipid Monolayers. ACS NANO 2022; 16:16054-16066. [PMID: 36149751 DOI: 10.1021/acsnano.2c04089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The diffusion and mobility in biomembranes are crucial for various cell functions; however, the mechanisms involved in such processes remain ambiguous due to the complex membrane structures. Herein, we investigate how the heterogeneous nanostructures cause anomalous diffusion in dipalmitoylphosphatidylcholine (DPPC) monolayers. By identifying the existence of condensed nanodomains and clarifying their impact, our findings renew the understanding of the hydrodynamic description and the statistical feature of the diffusion in the monolayers. We find a universal characteristic of the multistage mean square displacement (MSD) with an intermediate crossover, signifying two membrane viscosities at different scales: the short-time scale describes the local fluidity and is independent of the nominal DPPC density, and the long-time scale represents the global continuous phase taking into account nanodomains and increases with DPPC density. The constant short-time viscosity reflects a dynamic equilibrium between the continuous fluid phase and the condensed nanodomains in the molecular scale. Notably, we observe an "anomalous yet Brownian" phenomenon exhibiting an unusual double-peaked displacement probability distribution (DPD), which is attributed to the net dipolar repulsive force from the heterogeneous nanodomains around the microdomains. The findings provide physical insights into the transport of membrane inclusions that underpin various biological functions and drug deliveries.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Frontier Scientific Research Centre for Fluidized Mining of Deep Underground Resources, China University of Mining & Technology, Xuzhou 221116, People's Republic of China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xikai Jiang
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
7
|
Yang F, Baldelli S. Chemical Imaging of Lipid Segregation: Determining Different Length Scales of Heterogeneity with Compressive-Sensing Sum Frequency Generation Microscopy and Brewster Angle Microscopy. J Phys Chem B 2022; 126:5637-5645. [DOI: 10.1021/acs.jpcb.2c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangyuan Yang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Steven Baldelli
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
8
|
Fanani ML, Nocelli NE, Zulueta Díaz YDLM. What can we learn about amphiphile-membrane interaction from model lipid membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183781. [PMID: 34555419 DOI: 10.1016/j.bbamem.2021.183781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina.
| | - Natalia E Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de Las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| |
Collapse
|
9
|
Pandey Y, Kumar N, Goubert G, Zenobi R. Nanoscale Chemical Imaging of Supported Lipid Monolayers using Tip‐Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
- Current address: Department of Chemistry Université du Québec à Montréal Montreal Québec H2X 2J6 Canada
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| |
Collapse
|
10
|
Pandey Y, Kumar N, Goubert G, Zenobi R. Nanoscale Chemical Imaging of Supported Lipid Monolayers using Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19041-19046. [PMID: 34170590 PMCID: PMC8456802 DOI: 10.1002/anie.202106128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Indexed: 12/01/2022]
Abstract
Visualizing the molecular organization of lipid membranes is essential to comprehend their biological functions. However, current analytical techniques fail to provide a non‐destructive and label‐free characterization of lipid films under ambient conditions at nanometer length scales. In this work, we demonstrate the capability of tip‐enhanced Raman spectroscopy (TERS) to probe the molecular organization of supported DPPC monolayers on Au (111), prepared using the Langmuir–Blodgett (LB) technique. High‐quality TERS spectra were obtained, that permitted a direct correlation of the topography of the lipid monolayer with its TERS image for the first time. Furthermore, hyperspectral TERS imaging revealed the presence of nanometer‐sized holes within a continuous DPPC monolayer structure. This shows that a homogeneously transferred LB monolayer is heterogeneous at the nanoscale. Finally, the high sensitivity and spatial resolution down to 20 nm of TERS imaging enabled reproducible, hyperspectral visualization of molecular disorder in the DPPC monolayers, demonstrating that TERS is a promising nanoanalytical tool to investigate the molecular organization of lipid membranes.
Collapse
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland.,Current address: Department of Chemistry, Université du Québec à Montréal, Montreal, Québec, H2X 2J6, Canada
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
11
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
12
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
13
|
Gardner W, Cutts SM, Muir BW, Jones RT, Pigram PJ. Visualizing ToF-SIMS Hyperspectral Imaging Data Using Color-Tagged Toroidal Self-Organizing Maps. Anal Chem 2019; 91:13855-13865. [DOI: 10.1021/acs.analchem.9b03322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wil Gardner
- Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Suzanne M. Cutts
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | | | - Robert T. Jones
- Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Hanashima S, Ibata Y, Watanabe H, Yasuda T, Tsuchikawa H, Murata M. Side-chain deuterated cholesterol as a molecular probe to determine membrane order and cholesterol partitioning. Org Biomol Chem 2019; 17:8601-8610. [DOI: 10.1039/c9ob01342c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
24dCho, which perfectly retains the cholesterol's membrane properties, was developed to examine cholesterol's interactions and membrane partitions using solid state 2H NMR.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yuki Ibata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hirofumi Watanabe
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Tomokazu Yasuda
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Michio Murata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
15
|
Fanani ML, Busto JV, Sot J, Abad JL, Fabrías G, Saiz L, Vilar JMG, Goñi FM, Maggio B, Alonso A. Clearly Detectable, Kinetically Restricted Solid-Solid Phase Transition in cis-Ceramide Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11749-11758. [PMID: 30183303 DOI: 10.1021/acs.langmuir.8b02198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.
Collapse
Affiliation(s)
| | - Jon V Busto
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
| | - José L Abad
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
| | - Gemma Fabrías
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
- Centro de Investigación Biomédica en Red (CIBERehd) , 28029 Madrid , Spain
| | - Leonor Saiz
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering , University of California , 451 East Health Sciences Drive , Davis , California 95616 , United States
- Institute for Medical Engineering & Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jose M G Vilar
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | | | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
16
|
Kassenböhmer R, Heeger M, Dwivedi M, Körsgen M, Tyler BJ, Galla HJ, Arlinghaus HF. 3D Molecular ToF-SIMS Imaging of Artificial Lipid Membranes Using a Discriminant Analysis-Based Algorithm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8750-8757. [PMID: 29969039 DOI: 10.1021/acs.langmuir.8b01253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial lipid membranes play a growing role in technical applications such as biosensors in pharmacological research and as model systems in the investigation of biological lipid films. In the standard procedure for displaying the distribution of membrane components, fluorescence microscopy, the fluorophores used can influence the distribution of the components and usually not all substances can be displayed at the same time. The discriminant analysis-based algorithm used in combination with scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) enables marker-free, quantitative, simultaneous recording of all membrane components. These data are used for reconstruction of distribution patterns. In the model system used for this survey, a tear fluid lipid layer, the distribution patterns of all lipids correlate well in calculated ToF-SIMS images and epi-fluorescence microscopic images. All epi-fluorescence microscopically viewable structures are visible when using both positive and negative secondary ions and can be reproduced with high lateral resolution in the submicrometer range despite the very low signal intensity and a very low signal-to-noise ratio. In addition, three-dimensional images can be obtained with a subnanometer depth resolution. Furthermore, structures and the distribution of substances that cannot be made visible by epi-fluorescence microscopy can be displayed. This enables new insights that cannot be gained by epi-fluorescence microscopy alone.
Collapse
Affiliation(s)
- Rainer Kassenböhmer
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Marcel Heeger
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Mridula Dwivedi
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 2 , 48149 Münster , Germany
| | - Martin Körsgen
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Bonnie J Tyler
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Hans-Joachim Galla
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 2 , 48149 Münster , Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| |
Collapse
|
17
|
Zou Y, Pan R, Ruan Q, Wan Z, Guo J, Yang X. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4913-4922. [PMID: 29634259 DOI: 10.1021/acs.jafc.8b00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To understand the underlying molecular mechanism of the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g., DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in the enterocytes.
Collapse
Affiliation(s)
- Yuan Zou
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Runting Pan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Qijun Ruan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Zhili Wan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jian Guo
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xiaoquan Yang
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
18
|
Nakahara H, Hagimori M, Mukai T, Shibata O. Monolayers of a tetrazine-containing gemini amphiphile: Interplays with biomembrane lipids. Colloids Surf B Biointerfaces 2018; 164:1-10. [DOI: 10.1016/j.colsurfb.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 01/13/2018] [Indexed: 01/02/2023]
|
19
|
Fanani ML, Wilke N. Regulation of phase boundaries and phase-segregated patterns in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1972-1984. [PMID: 29505769 DOI: 10.1016/j.bbamem.2018.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
Demixing of components has long been described in model membranes. It is a consequence of non-ideal lateral interactions between membrane components, and it causes the presence of segregated phases, forming patches (domains) of different properties, thus introducing heterogeneity into the membrane. In the present review we first describe the processes through which domains are generated, how they grow, and why they are rounded, striped or fractal-like, as well as why they get distributed forming defined patterns. Next, we focus on the effect of an additive on a lipid mixture, which usually induces shifts in demixing points, thus stabilizing or destabilizing the phase-segregated state. Results found for different model membranes are summarized, detailing the ways in which phase segregation and the generated patterns may be modulated. We focus on which are, from our viewpoint, the most relevant regulating factors affecting the surface texture observed in model membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- María Laura Fanani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
20
|
Applications of Brewster angle microscopy from biological materials to biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1749-1766. [PMID: 28655618 DOI: 10.1016/j.bbamem.2017.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Brewster angle microscopy (BAM) is a powerful technique that allows for real-time visualization of Langmuir monolayers. The lateral organization of these films can be investigated, including phase separation and the formation of domains, which may be of different sizes and shapes depending on the properties of the monolayer. Different molecules or small changes within a molecule such as the molecule's length or presence of a double bond can alter the monolayer's lateral organization that is usually undetected using surface pressure-area isotherms. The effect of such changes can be clearly observed using BAM in real-time, under full hydration, which is an experimental advantage in many cases. While previous BAM reviews focused more on selected compounds or compared the impact of structural variations on the lateral domain formation, this review provided a broader overview of BAM application using biological materials and systems including the visualization of amphiphilic molecules, proteins, drugs, extracts, DNA, and nanoparticles at the air-water interface.
Collapse
|
21
|
Nandi S, Malishev R, Bhunia SK, Kolusheva S, Jopp J, Jelinek R. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate. Biophys J 2017; 110:2016-25. [PMID: 27166809 DOI: 10.1016/j.bpj.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.
Collapse
Affiliation(s)
- Sukhendu Nandi
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jürgen Jopp
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
22
|
Effect of Diazotated Sulphonated Polystyrene Films on the Calcium Oxalate Crystallization. CRYSTALS 2017. [DOI: 10.3390/cryst7030070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Nakahara H, Hagimori M, Mukai T, Shibata O. Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6591-6599. [PMID: 27280946 DOI: 10.1021/acs.langmuir.6b00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University , 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University , 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University , 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Osamu Shibata
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University , 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
24
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
25
|
Nakahara H. Fluidizing and Solidifying Effects of Perfluorooctylated Fatty Alcohols on Pulmonary Surfactant Monolayers. J Oleo Sci 2016; 65:99-109. [DOI: 10.5650/jos.ess15222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiromichi Nakahara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
26
|
Cui J, Matsuoka S, Kinoshita M, Matsumori N, Sato F, Murata M, Ando J, Yamakoshi H, Dodo K, Sodeoka M. Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior. Bioorg Med Chem 2015; 23:2989-94. [PMID: 26026768 DOI: 10.1016/j.bmc.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
Abstract
Three Raman probes of sphingomyelin (SM) were synthesized and evaluated for their applicability to imaging experiments. One probe containing a hydroxymethyl-1,3-butadiyne moiety in the polar head group showed strong scattering. The solid-state (2)H NMR spectra of this probe in oriented bilayer membrane revealed excellent compatibility with natural SM in phase behavior since the probe undergoes phase separation to form raft-like liquid ordered (Lo) domains in the raft-mimicking mixed bilayers.
Collapse
Affiliation(s)
- Jin Cui
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Fuminori Sato
- JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Jun Ando
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Yamakoshi
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Demchenko AP, Duportail G, Oncul S, Klymchenko AS, Mély Y. Introduction to fluorescence probing of biological membranes. Methods Mol Biol 2015; 1232:19-43. [PMID: 25331125 DOI: 10.1007/978-1-4939-1752-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence is one of the most powerful and commonly used tools in biophysical studies of biomembrane structure and dynamics that can be applied on different levels, from lipid monolayers and bilayers to living cells, tissues, and whole animals. Successful application of this method relies on proper design of fluorescence probes with optimized photophysical properties. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Being smaller than the membrane width they can sense the gradients of these parameters across the membrane. We present examples of novel dyes that achieve increased spatial resolution and information content of the probe responses. In this respect, multiparametric environment-sensitive probes feature considerable promise.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01030, Ukraine,
| | | | | | | | | |
Collapse
|
28
|
Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1707-14. [PMID: 23506681 DOI: 10.1016/j.bbamem.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
Abstract
Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures.
Collapse
|
29
|
Picas L, Milhiet PE, Hernández-Borrell J. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 2012. [PMID: 23194897 DOI: 10.1016/j.chemphyslip.2012.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomic force microscopy (AFM) was developed in the 1980s following the invention of its precursor, scanning tunneling microscopy (STM), earlier in the decade. Several modes of operation have evolved, demonstrating the extreme versatility of this method for measuring the physicochemical properties of samples at the nanoscopic scale. AFM has proved an invaluable technique for visualizing the topographic characteristics of phospholipid monolayers and bilayers, such as roughness, height or laterally segregated domains. Implemented modes such as phase imaging have also provided criteria for discriminating the viscoelastic properties of different supported lipid bilayer (SLB) regions. In this review, we focus on the AFM force spectroscopy (FS) mode, which enables determination of the nanomechanical properties of membrane models. The interpretation of force curves is presented, together with newly emerging techniques that provide complementary information on physicochemical properties that may contribute to our understanding of the structure and function of biomembranes. Since AFM is an imaging technique, some basic indications on how real-time AFM imaging is evolving are also presented at the end of this paper.
Collapse
Affiliation(s)
- Laura Picas
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75248 Paris, France
| | | | | |
Collapse
|
30
|
Ale EC, Maggio B, Fanani ML. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2767-76. [DOI: 10.1016/j.bbamem.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/01/2012] [Accepted: 06/25/2012] [Indexed: 01/02/2023]
|
31
|
Jensen EC. Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations. Anat Rec (Hoboken) 2012; 295:2031-6. [DOI: 10.1002/ar.22602] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/13/2012] [Indexed: 01/31/2023]
|
32
|
Campelo F, Cruz A, Pérez-Gil J, Vázquez L, Hernández-Machado A. Phase-field model for the morphology of monolayer lipid domains. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:49. [PMID: 22714836 DOI: 10.1140/epje/i2012-12049-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/08/2011] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Phase-separated domains exist in multicomponent lipid monolayers and bilayers. We present here a phase-field model that takes into account the competition between lipid dipole-dipole interactions and line tension to define the domain morphology. A dynamic equation for the phase-field is solved numerically showing stationary non-circular shapes like starfish shapes. This phase-field model could be applied to study the dynamic properties of complex problems like phase segregation in pulmonary surfactant membranes and films.
Collapse
Affiliation(s)
- F Campelo
- Department of Cell and Developmental Biology, Center for Genomic Regulation (CRG) and UPF, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
33
|
Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1832-42. [PMID: 21439262 DOI: 10.1016/j.bbamem.2011.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 12/21/2022]
Abstract
Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
34
|
Huckabay HA, Dunn RC. Hydration effects on membrane structure probed by single molecule orientations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2658-2666. [PMID: 21319764 DOI: 10.1021/la104792w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity. Population histograms of the emission dipole tilt angle reveal bimodal distributions as observed previously for BODIPY-PC in DPPC. These distributions are dominated by large populations of BODIPY-PC molecules with emission dipoles oriented parallel (≥81°) and normal (≤10°) to the membrane plane, with less than 25% oriented at intermediate tilts. As the relative humidity is increased from 13% to 95%, the population of molecules oriented normal to the surface decreases with a concomitant increase in those oriented parallel to the surface. The close agreement in trends observed for bilayers formed from vesicle fusion and LB/LS transfer supports the assignment of an equivalent surface pressure of 23 mN/m for bilayers formed from vesicle fusion. At each RH condition, a small population of BODIPY-PC dye molecules are laterally mobile in both bilayer preparations. This population exponentially increases with RH but never exceeds 6% of the total population. Interestingly, even under conditions where there is little lateral diffusion, fluctuations in the single molecule orientations can be observed which suggests there is appreciable freedom in the acyl chain region. Dynamic measurements of single molecule orientation changes, therefore, provide a new view into membrane properties at the single molecule level.
Collapse
Affiliation(s)
- Heath A Huckabay
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
35
|
Nakahara H, Lee S, Krafft MP, Shibata O. Fluorocarbon-hybrid pulmonary surfactants for replacement therapy--a Langmuir monolayer study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18256-18265. [PMID: 21049919 DOI: 10.1021/la103118d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Effective additives to pulmonary surfactant (PS) preparations for therapy of respiratory distress syndrome (RDS) are being intensively sought. We report here the investigation of the effects of partially fluorinated amphiphiles (PFA) on the surface behavior of a model PS formulation. When small amounts of a partially fluorinated alcohol C(8)F(17)C(m)H(2m)OH (F8HmOH, m = 5 and 11) are added to the PS model preparation (a dipalmitoylphosphatidylcholine (DPPC)/Hel 13-5 peptide mixture) considered here, the effectiveness of the latter in in vitro pulmonary functions is enhanced. The mechanism for the improved efficacy depends on the hydrophobic chain length of the added PFA molecules. The shorter PFA, F8H5OH, when incorporated in the monolayer of the PS model preparation, promotes a disordered liquid-expanded (LE) phase upon lateral compression (fluidization). In contrast, the addition of the longer PFA, F8H11OH, reduces the disordered LE/ordered liquid-condensed (LC) phase transition pressure and promotes the growth of ordered domains (solidification). Furthermore, compression-expansion cycles suggest that F8H5OH, when incorporated in the PS model preparation, undergoes an irreversible elimination into the subphase, whereas F8H11OH enhances the squeeze-out phenomenon of the SP-B mimicking peptide, which is important in pulmonary functions and is related to the formation of a solid-like monolayer at the surface and of a surface reservoir just below the surface. F8H11OH particularly reinforces the effectiveness of DPPC in terms of minimum reachable surface tension, and of preservation of the integrated hysteresis area between compression and expansion isotherms, the two latter parameters being generally accepted indices for assessing PS efficacy. We suggest that PFA amphiphiles may be useful potential additives for synthetic PS preparations destined for treatment of RDS in premature infants and in adults.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | | | | | | |
Collapse
|
36
|
Zarragoicoechea GJ, Meyra AG, Kuz VA. Pattern formation by interacting particles on the surface of a sphere. Mol Phys 2010. [DOI: 10.1080/00268970902886903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Picardi MV, Cruz A, Orellana G, Pérez-Gil J. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:696-705. [PMID: 21126510 DOI: 10.1016/j.bbamem.2010.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/30/2010] [Accepted: 11/17/2010] [Indexed: 01/04/2023]
Abstract
The efficiency of pulmonary surfactant to stabilize the respiratory surface depends critically on the ability of surfactant to form highly packed films at the air-liquid interface. In the present study we have compared the packing and hydration properties of lipids in native pulmonary surfactant and in several surfactant models by analyzing the pressure and temperature dependence of the fluorescence emission of the LAURDAN (1-[6-(dimethylamino)-2-naphthyl]dodecan-1-one) probe incorporated into surfactant interfacial films or free-standing membranes. In interfacial films, compression-driven changes in the fluorescence of LAURDAN, evaluated from the generalized polarization function (GPF), correlated with changes in packing monitored by surface pressure. Compression isotherms and GPF profiles of films formed by native surfactant or its organic extract were compared at 25 or 37 °C to those of films made of dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), DPPC/phosphatidylglycerol (PG) (7:3, w/w), or the mixture DPPC/POPC/palmitoyloleoylphosphatidylglycerol (POPG)/cholesterol (Chol) (50:25:15.10), which simulates the lipid composition of surfactant. In general terms, compression of surfactant films at 25 °C leads to LAURDAN GPF values close to those obtained from pure DPPC monolayers, suggesting that compressed surfactant films reach a dehydrated state of the lipid surface, which is similar to that achieved in DPPC monolayers. However, at 37 °C, the highest GPF values were achieved in films made of full surfactant organic extract or the mixture DPPC/POPC/POPG/Chol, suggesting a potentially important role of cholesterol to ensure maximal packing/dehydration under physiological constraints. Native surfactant films reached high pressures at 37 °C while maintaining relatively low GPF, suggesting that the complex three-dimensional structures formed by whole surfactant might withstand the highest pressures without necessarily achieving full dehydration of the lipid environments sensed by LAURDAN. Finally, comparison of the thermotropic profiles of LAURDAN GPF in surfactant model bilayers and monolayers of analogous composition shows that the fluorophore probes an environment that is in average intrinsically more hydrated at the interface than inserted into free-standing bilayers, particularly at 37 °C. This effect suggests that the dependence of membrane and surfactant events on the balance of polar/non-polar interactions could differ in bilayer and monolayer models, and might be affected differently by the access of water molecules to confined or free-standing lipid structures.
Collapse
Affiliation(s)
- M Victoria Picardi
- Department of Biochemistry, Faculty of Biology, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Fanani ML, Hartel S, Maggio B, De Tullio L, Jara J, Olmos F, Oliveira RG. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1309-23. [DOI: 10.1016/j.bbamem.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/16/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
|
39
|
Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1333-7. [DOI: 10.1016/j.bbamem.2010.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 12/19/2022]
|
40
|
Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C. Surface topography of membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:703-18. [DOI: 10.1016/j.bbamem.2009.09.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/20/2009] [Indexed: 12/24/2022]
|
41
|
Reversible formation of nanodomains in monolayers of DPPC studied by kinetic modeling. Biophys J 2009; 96:4896-905. [PMID: 19527648 DOI: 10.1016/j.bpj.2009.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 03/15/2009] [Accepted: 03/23/2009] [Indexed: 12/13/2022] Open
Abstract
Dipalmitoylphosphatidylcholine (DPPC) is the most abundant component in pulmonary surfactants and is believed to be responsible for maintaining low surface tension in alveoli during breathing. In this work, a kinetic model is introduced that describes the phase separation in DPPC films that produces the liquid-condensed (LC) and liquid-expanded (LE) fractions, which differ according to the area density of DPPC. The phase separation in an initially homogeneous film has been investigated numerically. Furthermore, explicit simulations of periodic compression-expansion cycles are reported. In this process, a moderate change of the surface area resulted in a dramatic change in the total amount of LC fraction, as well as in the surface morphology. Depending on the extent of the film's compression, the simulated surface morphologies comprised individual nanosized LC domains embedded in the LE fraction, interconnected networks of such domains, or continuous LC films with nanopores. Equilibration of the total area of the LC nanodomains occurred over a few milliseconds, indicating that the rate of the LE-LC phase transformation is sufficient for maintaining low surface tension during breathing, and that nanoscale LC domains are likely to play a major role in this process. Unlike the total content of the LC fraction, which stabilized quickly, the average size of LC nanodomains showed a tendency to increase slowly, at a rate determined by the diffusivity of DPPC. The computed average domain size seems to be compatible with published experiments for DPPC films. The numeric results also elucidate the distinction between thermodynamically determined and kinetically limited structural properties during phase separation in the major structure-forming component of pulmonary surfactants.
Collapse
|
42
|
Zhu L, Becker HC, Henriksen L, Kilså K. A class of fluorescent heterocyclic dyes revisited: photophysics, structure, and solvent effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 73:757-763. [PMID: 19457716 DOI: 10.1016/j.saa.2009.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/09/2009] [Accepted: 03/30/2009] [Indexed: 05/27/2023]
Abstract
The photophysical behavior of a series of 2-methylthio-5-(Z-carbonyl)thieno-[3,4-e]-3,4-dihydro-1,2,3-triazine-4-ones was investigated by absorption and emission spectroscopy in a range of solvents representing a systematic variation in polarity, polarizability, as well as hydrogen bond donating and accepting capabilities. In all the investigated compounds, the heterocyclic 6-membered ring of the chromophore is involved in interactions between electron donor and acceptor substituents on the thiophene ring. Throughout the series, the charge-donating methylthio group is kept constant, while the acceptor (Z-carbonyl) is varied between amide, ester, and ketone functionalities. The fluorescent first electronically excited state is primarily of intramolecular HOMO-LUMO charge transfer character. All members of the series exhibit solvent-dependent photophysics, although the magnitude of the dependence varies with the nature of the acceptor group. In addition to the solvent-sensitive photophysics, the investigated class of compounds shows high thermal and chemical stability. Among this class of heterocyclic dyes, the amide-substituted compound is superior with respect to high quantum yield and lifetime, and also shows the largest change in emission lifetimes and fluorescence quantum yields upon solvent variation (about 5-fold).
Collapse
Affiliation(s)
- Lianjie Zhu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
43
|
He JY, Ouyang JM. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir–Blodgett film on quartz substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
WAN MH, ZHANG S, ZHENG H, OUYANG JM. Induction of Ring-Shaped Calcium Oxalate Patterns by Boundaries between Liquid Expanded Phase and Liquid Condensed Phase in Langmuir-Blodgett Film. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
Ouyang JM, Deng SP. Formation of circular patterns of calcium oxalate crystals at defective sites of Langmuir–Blodgett films. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro- and nanostructures of functional pulmonary surfactant films and the effect of SP-A. Biophys J 2008; 94:3549-64. [PMID: 18212010 DOI: 10.1529/biophysj.107.122648] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40-50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition.
Collapse
|
48
|
Lafontaine C, Valleton JM, Orange N, Norris V, Mileykovskaya E, Alexandre S. Behaviour of bacterial division protein FtsZ under a monolayer with phospholipid domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2812-21. [PMID: 17884010 DOI: 10.1016/j.bbamem.2007.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 11/26/2022]
Abstract
Assembly of the tubulin-like protein FtsZ at or near the cytoplasmic membrane is one of the earliest steps in division of bacteria such as Escherichia coli. Exactly what constitutes the site at which FtsZ acts is less clear. To investigate the influence of the membrane phospholipids on FtsZ localization and assembly, we have elaborated with the Langmuir technique a two-lipid monolayer made of dilauryl-phosphatidylethanolamine (DLPE) and dipalmitoyl-phosphatidylglycerol (DPPG). This monolayer comprised stable condensed domains in an expanded continuous phase. In the presence of GTP, FtsZ assembly disrupts the condensed domains within 5 min. After several hours, with or without GTP, FtsZ assembled into large aggregates at the domain interface. We suggest that the GTP-induced polymerization of FtsZ is coupled to the association of FtsZ protofilaments with domain interfaces.
Collapse
Affiliation(s)
- Céline Lafontaine
- Polymères, Biopolymères, Membranes, UMR 6522 CNRS, Université de Rouen, UFR des Sciences, 76821, Mont Saint Aignan Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Fox CB, Uibel RH, Harris JM. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution. J Phys Chem B 2007; 111:11428-36. [PMID: 17850068 DOI: 10.1021/jp0735886] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of phospholipid phase transitions is important for understanding drug- and protein-membrane interactions as well as other phenomena such as trans-membrane diffusion and vesicle fusion. A temperature-controlled stage on a confocal Raman microscope has allowed phase transitions in optically trapped phospholipid vesicles to be monitored. Raman spectra were acquired and analyzed using self-modeling curve resolution, a multivariate statistical analysis technique. This method revealed the subtle spectral changes indicative of sub- and pretransitions and main transitions in vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The Raman scattering results were compared to differential scanning calorimetry (DSC) experiments and found to be in good agreement. This method of observing lipid phase transition profiles requires little sample preparation and a minimal amount of lipid (<or=0.1 nmol) for an experiment. The conformational changes of the phospholipid molecules occurring during phase transitions are elucidated from the Raman spectroscopy results. The evolution of chain decoupling, rotational disorder, and gauche defects in the lipid acyl chains as a function of temperature is described.
Collapse
Affiliation(s)
- Christopher B Fox
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, Utah 84112-9202, USA
| | | | | |
Collapse
|
50
|
Coban O, Burger M, Laliberte M, Ianoul A, Johnston LJ. Ganglioside partitioning and aggregation in phase-separated monolayers characterized by bodipy GM1 monomer/dimer emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6704-11. [PMID: 17477552 DOI: 10.1021/la0635348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The distribution of Bodipy GM1 in monolayers of binary and ternary lipid mixtures with coexisting fluid and ordered phases has been examined using a combination of atomic force microscopy and near-field scanning optical microscopy. Monolayers deposited at high (30 mN/m) and low (5 or 10 mN/m) surface pressures were examined and compared to those containing the same concentration of unlabeled ganglioside. Measurements of monomer and dimer Bodipy emission were used to distinguish aggregated from dilute ganglioside levels. For binary DPPC/DOPC monolayers, Bodipy GM1 is distributed throughout both the fluid and ordered phases at low surface pressures, and both labeled and unlabeled gangliosides result in a reduction in the size of ordered DPPC domains at 0.4% and the appearance of small aligned ganglioside-rich domains at 4%. In agreement with earlier studies, GM1 is heterogeneously distributed in small islands in the condensed DPPC domains at high surface pressure. By contrast, Bodipy GM1 causes the disappearance of large DPPC domains at 0.4% and the formation of a new GM1-rich phase at 4%. The addition of both gangliosides leads to a comparable loss of large ordered domains at low surface pressure and the appearance of a new GM1-rich phase at 30 mN/m for ternary lipid mixtures containing cholesterol. The results demonstrate the complexity of GM1 partitioning and illustrate the utility of complementary AFM and high spatial resolution two-color fluorescence experiments for understanding Bodipy GM1 aggregation and distribution.
Collapse
Affiliation(s)
- Oana Coban
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | |
Collapse
|