1
|
Zhu Q, Guan J, Tian B, Wang P. Rational design of antibiotic-free antimicrobial contact lenses: Trade-offs between antimicrobial performance and biocompatibility. BIOMATERIALS ADVANCES 2024; 164:213990. [PMID: 39154560 DOI: 10.1016/j.bioadv.2024.213990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Microbial keratitis associated with contact lenses (CLs) wear remains a significant clinical concern. Antibiotic therapy is the current standard of care. However, the emergence of multidrug-resistant pathogens necessitates the investigation of alternative strategies. Antibiotic-free antimicrobial contact lenses (AFAMCLs) represent a promising approach in this regard. The effectiveness of CLs constructed with a variety of antibiotic-free antimicrobial strategies against microorganisms has been demonstrated. However, the impact of these antimicrobial strategies on CLs biocompatibility remains unclear. In the design and development of AFAMCLs, striking a balance between robust antimicrobial performance and optimal biocompatibility, including safety and wearing comfort, is a key issue. This review provides a comprehensive overview of recent advancements in AFAMCLs technology. The focus is on the antimicrobial efficacy and safety of various strategies employed in AFAMCLs construction. Furthermore, this review investigates the potential impact of these strategies on CLs parameters related to wearer comfort. This review aims to contribute to the continuous improvement of AFAMCLs and provide a reference for the trade-off between resistance to microorganisms and wearing comfort. In addition, it is hoped that this review can also provide a reference for the antimicrobial design of other medical devices.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
3
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
4
|
Zhang J, Ali LMA, Durand D, Gary-Bobo M, Hesemann P. Novel Antifouling Coatings by Zwitterionic Silica Grafting on Glass Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38319714 DOI: 10.1021/acs.langmuir.3c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Zwitterionic silica coatings for surface functionalization are greatly prominent because of their simple and fast preparation, high availability, and effective antifouling properties. In this work, two zwitterionic sulfobetaine silane coatings, i.e., mono-SBSi and tris-SBSi, were deposited on glass surfaces and tested for antifouling of biological material and biofilm using human cancer cell and seawater, respectively. The used zwitterionic precursors mono-SBSi and tris-SBSi differ by the number of hydrolyzable silane groups: mono-SBSi contains one trimethoxysilane group, whereas tris-SBSi contains three of these functions. First, X-ray photoelectron spectroscopy indicates the successful grafting of zwitterionic coatings onto a glass surface. Characterization using atomic force microscopy shows the different morphologies and roughness of the two coatings. The glass surface became more hydrophilic after the grafting of zwitterionic coatings than the bare glass substrate. The antifouling properties of two coatings were evaluated via human cancer cell adsorption. Interestingly, the tris-SBSi coating displays a significantly lower level of cell adsorption compared to that of both mono-SBSi coating and the non-modified control surface. The same trend was observed for biofilm formation in seawater. Finally, the toxicity of mono-SBSi and tris-SBSi coatings was evaluated on zebrafish embryos, indicating the good biocompatibility of both coatings. Our results indicate interesting antifouling properties of zwitterionic coatings. The chemical constitution of the used precursor has an impact on the antifouling properties of the formed coating: the tris-SBSi-based zwitterionic silica coatings display improved antifouling properties compared to those of the mono-SBSi-based coating. Besides, the use of trisilylated precursors should result in the formation of more resistant and robust coatings due to the higher number of grafting functions. For all these reasons, we anticipate that tris-SBSi coatings will open new perspectives for antifouling applications for biological environments and implants.
Collapse
Affiliation(s)
- Jian Zhang
- ICGM, Université Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Université Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Denis Durand
- IBMM, Université Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Magali Gary-Bobo
- IBMM, Université Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Université Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| |
Collapse
|
5
|
Gokaltun AA, Mazzaferro L, Yarmush ML, Usta OB, Asatekin A. Surface-segregating zwitterionic copolymers to control poly(dimethylsiloxane) surface chemistry. J Mater Chem B 2023; 12:145-157. [PMID: 38051000 PMCID: PMC10777474 DOI: 10.1039/d3tb02164e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The use of microfluidic devices in biomedicine is growing rapidly in applications such as organs-on-chip and separations. Polydimethylsiloxane (PDMS) is the most popular material for microfluidics due to its ability to replicate features down to the nanoscale, flexibility, gas permeability, and low cost. However, the inherent hydrophobicity of PDMS leads to the adsorption of macromolecules and small molecules on device surfaces. This curtails its use in "organs-on-chip" and other applications. Current technologies to improve PDMS surface hydrophilicity and fouling resistance involve added processing steps or do not create surfaces that remain hydrophilic for long periods. This work describes a novel, simple, fast, and scalable method for improving surface hydrophilicity and preventing the nonspecific adsorption of proteins and small molecules on PDMS through the use of a surface-segregating zwitterionic copolymer as an additive that is blended in during manufacture. These highly branched copolymers spontaneously segregate to surfaces and rearrange in contact with aqueous solutions to resist nonspecific adsorption. We report that mixing a minute amount (0.025 wt%) of the zwitterionic copolymer in PDMS considerably reduces hydrophobicity and nonspecific adsorption of proteins (albumin and lysozyme) and small molecules (vitamin B12 and reactive red). PDMS blended with these zwitterionic copolymers retains its mechanical and physical properties for at least six months. Moreover, this approach is fully compatible with existing PDMS device manufacture protocols without additional processing steps and thus provides a low-cost and user-friendly approach to fabricating reliable biomicrofluidics.
Collapse
Affiliation(s)
- A Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Das A, Santhosh S, Giridhar M, Behr J, Michel T, Schaudy E, Ibáñez-Redín G, Lietard J, Somoza MM. Dipodal Silanes Greatly Stabilize Glass Surface Functionalization for DNA Microarray Synthesis and High-Throughput Biological Assays. Anal Chem 2023; 95:15384-15393. [PMID: 37801728 PMCID: PMC10586054 DOI: 10.1021/acs.analchem.3c03399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Glass is by far the most common substrate for biomolecular arrays, including high-throughput sequencing flow cells and microarrays. The native glass hydroxyl surface is modified by using silane chemistry to provide appropriate functional groups and reactivities for either in situ synthesis or surface immobilization of biologically or chemically synthesized biomolecules. These arrays, typically of oligonucleotides or peptides, are then subjected to long incubation times in warm aqueous buffers prior to fluorescence readout. Under these conditions, the siloxy bonds to the glass are susceptible to hydrolysis, resulting in significant loss of biomolecules and concomitant loss of signal from the assay. Here, we demonstrate that functionalization of glass surfaces with dipodal silanes results in greatly improved stability compared to equivalent functionalization with standard monopodal silanes. Using photolithographic in situ synthesis of DNA, we show that dipodal silanes are compatible with phosphoramidite chemistry and that hybridization performed on the resulting arrays provides greatly improved signal and signal-to-noise ratios compared with surfaces functionalized with monopodal silanes.
Collapse
Affiliation(s)
- Arya Das
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Santra Santhosh
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Maya Giridhar
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Jürgen Behr
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Timm Michel
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Technical
University of Munich, Germany, TUM School
of Life Sciences, Alte
Akademie 8, 85354 Freising, Germany
| | - Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Gisela Ibáñez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Mark M. Somoza
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
7
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
9
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
10
|
Stepulane A, Rajasekharan AK, Andersson M. Multifunctional Surface Modification of PDMS for Antibacterial Contact Killing and Drug-Delivery of Polar, Nonpolar, and Amphiphilic Drugs. ACS APPLIED BIO MATERIALS 2022; 5:5289-5301. [PMID: 36322397 PMCID: PMC9682518 DOI: 10.1021/acsabm.2c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Medical device-associated infections pose major clinical challenges that emphasize the need for improved anti-infective biomaterials. Polydimethylsiloxane (PDMS), a frequently used elastomeric biomaterial in medical devices, is inherently prone to bacterial attachment and associated infection formation. Here, PDMS surface modification strategy is presented consisting of a cross-linked lyotropic liquid crystal hydrogel microparticle coating with antibacterial functionality. The microparticle coating composed of cross-linked triblock copolymers (diacrylated Pluronic F127) was deposited on PDMS by physical immobilization via interpenetrating polymer network formation. The formed coating served as a substrate for covalent immobilization of a potent antimicrobial peptide (AMP), RRPRPRPRPWWWW-NH2, yielding high contact-killing antibacterial effect against Staphylococcus epidermidis and Staphylococcus aureus. Additionally, the coating was assessed for its ability to selectively host polar, amphiphilic, and nonpolar drugs, resulting in sustained release profiles. The results of this study put forward a versatile PDMS modification strategy for both contact-killing antibacterial surface properties and drug-delivery capabilities, offering a solution for medical device-associated infection prevention.
Collapse
Affiliation(s)
- Annija Stepulane
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, GothenburgSE-412 96, Sweden
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| | - Anand Kumar Rajasekharan
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| | - Martin Andersson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, GothenburgSE-412 96, Sweden
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| |
Collapse
|
11
|
Chen YY, Wu CL, Hsu CW, Wang CH, Su CR, Huang CJ, Chen HR, Chau LK, Wang SC. Trace Determination of Grouper Nervous Necrosis Virus in Contaminated Larvae and Pond Water Samples Using Label-Free Fiber Optic Nanoplasmonic Biosensor. BIOSENSORS 2022; 12:907. [PMID: 36291043 PMCID: PMC9599950 DOI: 10.3390/bios12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
We developed a fast (<20 min), label-free fiber optic particle plasmon resonance (FOPPR) immunosensing method to detect nervous necrosis virus (NNV), which often infects high-value economic aquatic species, such as grouper. Using spiked NNV particles in a phosphate buffer as samples, the standard calibration curve obtained was linear (R2 = 0.99) and the limit of detection (LOD) achieved was 2.75 × 104 TCID50/mL, which is superior to that obtained using enzyme-linked immunosorbent assay (ELISA). By using an enhancement method called fiber optic nanogold-linked immunosorbent assay (FONLISA), the LOD can be further improved to <1 TCID50/mL, which is comparable to that found by the conventional qPCR method. Employing the larvae homogenate samples of NNV-infected grouper, the results obtained by the FOPPR biosensor agree with those obtained by the quantitative polymerase chain reaction (qPCR) method. We also examined pond water samples from an infected container in an indoor aquaculture facility. The lowest detectable level of NNV coat protein was found to be 0.17 μg/mL, which is one order lower than the LOD reported by ELISA. Therefore, we demonstrated the potential of the FOPPR biosensor as an outbreak surveillance tool, which is able to give warning indication even when the trend of larvae death toll increment is still not clear.
Collapse
Affiliation(s)
- Yuan-Yu Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Lu Wu
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chia-Wei Hsu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Hui Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chung-Rui Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, NCU-Covestro Research Center, National Central University, Taoyuan 32001, Taiwan
| | - Hau-Ren Chen
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| |
Collapse
|
12
|
|
13
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Lee J, Choi JW, Hong KD, Seo JH. Injectable polydimethylsiloxane microfiller coated with zwitterionic polymer for enhanced biocompatibility. Colloids Surf B Biointerfaces 2021; 210:112223. [PMID: 34838418 DOI: 10.1016/j.colsurfb.2021.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
Silicone-based fillers have been applied in several branches of medicine, such as soft tissue augmentation, because of their stability and durability. However, the inherently hydrophobic surfaces of silicone occasionally cause excessive deposition of the fibrous matrix in vivo, leading to severe fibrosis. In this study, we evaluated the use of a zwitterionic copolymer to offer a facile surface treatment method for silicone-based fillers and performed a preclinical trial of the formulation as-prepared. The copolymer has amphiphilic moieties, which act as macromolecular surfactants that can functionalize and stabilize the silicone particles during fabrication. The effectiveness and safety of the particle filler were evaluated histologically by scoring the peri-implant tissues into previously defined categories. Our results suggest that zwitterion-coated silicone fillers can inhibit protein adsorption, and thus, help attenuate foreign body reactions in a rat model. This demonstrates their potential for wide application in different fields within the discipline of medicine.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea.
| | - Kwang Dae Hong
- Department of Colorectal Surgery, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Chiu CY, Chang Y, Liu TH, Chou YN, Yen TJ. Convergent charge interval spacing of zwitterionic 4-vinylpyridine carboxybetaine structures for superior blood-inert regulation in amphiphilic phases. J Mater Chem B 2021; 9:8437-8450. [PMID: 34542146 DOI: 10.1039/d1tb01374b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifouling materials are indispensable in the biomedical field, but their high hydrophilicity and surface free energy provoke contamination on surfaces under atmospheric conditions, thus limiting their applicability in medical devices. This study proposes a new zwitterionic structure, 4-vinylpyridine carboxybetaine (4VPCB), that results in lower surface free energy and increases biological inertness. In the design of 4VPCB, one to three carbon atoms are inserted between the positive charge and negative charge (carbon space length, CSL) of the pyridyl-containing side chain to adjust hydration with water molecules. The pyridine in the 4VPCB structure provides the hydrophobicity of the zwitterionic functional group, and thus it can have a lower free energy in the gas phase but maintain higher hydrophilicity in the liquid phase environment. Surface plasmon resonance and confocal microscopy were used to analyze the antiprotein adsorption and anti-blood cell adhesion properties of the P4VPCB brush surface. The results showed that the CSL in the P4VPCB structure affected the biological inertness of the surface. The protein adsorption on the surface of P4VPCB2 (CSL= 2) is lower than that on the surfaces of P4VPCB1 (CSL = 1) and P4VPCB3 (CSL = 3), and the optimal resistance to protein adsorption can be reduced to 7.5 ng cm-2. The surface of P4VPCB2 can also exhibit excellent blood-inert function in the adhesion test with various human blood cells, offering a potential possibility for the future design of a new generation of blood-inert medical materials.
Collapse
Affiliation(s)
- Chieh-Yang Chiu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan.
| | - Tzu-Hao Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ying-Nien Chou
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan.
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
16
|
Eco-friendly erucamide-polydimethylsiloxane coatings for marine anti-biofouling. Colloids Surf B Biointerfaces 2021; 207:112003. [PMID: 34343909 DOI: 10.1016/j.colsurfb.2021.112003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Marine biofouling of ship hulls and ocean structures causes enormous economic losses due to increased frictional drag. Thus, efforts have been exerted worldwide to eliminate biofouling. In addition, a strong demand exists for the development of a cost-effective and eco-friendly anti-biofouling coating technology. Thus, erucamide-polydimethylsiloxane (EP) coating is proposed in this study. EP exhibits a hydrophobic surface as the erucamide content and drag reduction effect increase. In this study, the drag reduction effect of the EP 2.5 is better than that of glass and polydimethylsiloxane (PDMS) surfaces. Moreover, the proposed EP coatings are observed to prevent the biofouling induced by bacteria (E. coli) and brown algae (Cladosiphon sp.). In addition, through a marine field test, the anti-biofouling effect of the EP surface is found to be better than the previously studied oleamide-PDMS (OP) surface. In the marine field test, the EP 2.5 demonstrates superior anti-biofouling performance for 5.5 months under real marine environment. The proposed eco-friendly EP coating method could be applicable to marine vehicles that require effective drag reduction and anti-biofouling properties.
Collapse
|
17
|
Bennion DM, Horne R, Peel A, Reineke P, Henslee A, Kaufmann C, Guymon CA, Hansen MR. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol Neurotol 2021; 42:1476-1483. [PMID: 34310554 DOI: 10.1097/mao.0000000000003288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces. BACKGROUND Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response. METHODS Using a recently designed one-step process, thin-film coatings derived from zwitterionic sulfobetaine methacrylate (SBMA) were photopolymerized and photografted to the surface of polydimethylsiloxane (PDMS, silastic) samples and also to CI arrays from two manufacturers. Fluorescein staining and scanning electron microscopy with energy-dispersive X-ray spectroscopy verified and characterized the coatings. Tribometry was used to measure the coefficient of friction between uncoated and coated PDMS and synthetic and biological tissues. Force transducer measurements were obtained during insertion of uncoated (n = 9) and coated (n = 9) CI electrode arrays into human cadaveric cochleae. RESULTS SBMA thin-film coating of PDMS resulted in >90% reduction in frictional coefficients with steel, ceramic, and dermal tissue from guinea pigs (p < 0.0001). We employed a novel method for applying covalently bonded, durable, and uniform coating in geographically selective areas at the electrode array portion of the implant. Image analysis confirmed uniform coating of PDMS systems and the CI electrode arrays with SBMA polymer films. During insertion of electrode arrays into human cadaveric cochleae, SBMA coatings reduced maximum force by ∼40% during insertion (p < 0.001), as well as decreasing force variability and the overall work of insertion. CONCLUSION Thin-film SBMA photografted coatings on PDMS and electrode arrays significantly reduce frictional coefficients and insertional forces in cadaveric cochleae. These encouraging findings support that thin-film zwitterionic coating of CI electrode arrays may potentially reduce insertional trauma and thereby promote improved hearing and other long-term outcomes.
Collapse
Affiliation(s)
- Douglas M Bennion
- Department of Otolaryngology-Head and Neck Surgery Department of Chemical and Biochemical Engineering, University of Iowa iotaMotion, Inc, Iowa City, Iowa
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Marks MA, Kalaitzidou K, Gutekunst WR. Synthesis and Characterization of Cationic Dendrimer-PDMS Hybrids. Macromol Rapid Commun 2021; 42:e2000652. [PMID: 33368765 PMCID: PMC8085078 DOI: 10.1002/marc.202000652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Indexed: 12/19/2022]
Abstract
A modular strategy for the synthesis of dendron-linear polymer hybrids comprised of a flexible polydimethylsiloxane (PDMS) midblock with cationic 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendron end groups is developed. The invention of a scalable methodology to access quaternary ammonium carboxylate building blocks and their direct use in esterification chemistry enables rapid access to cationic bis-MPA dendrons. The convergent click coupling of highly charged dendrons to hydrophobic PDMS chain-ends gives a 12-membered family of hybrids that are comprised of different dendron generations (G1-3) and quaternary ammonium alkyl chain lengths (C4 , C8 , C12 , C16 ). This provides a library of materials with variable hydrophobicity, charge density, and chain-end valency. The physical behavior of the dendron-linear PDMS hybrid copolymers significantly changes after introduction of the cationic dendron end-groups and leads to soft-solid materials as a result of inhibited chain mobility. These PDMS-dendron hybrids are expected to behave as surface-active antimicrobial additives in bulk cross-linked silicone systems.
Collapse
Affiliation(s)
- Monica A Marks
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kyriaki Kalaitzidou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Wu TH, Wu CH, Huang CJ, Chang YC. Anticlogging Hemofiltration Device for Mass Collection of Circulating Tumor Cells by Ligand-Free Size Selection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3399-3409. [PMID: 33689353 DOI: 10.1021/acs.langmuir.0c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.
Collapse
Affiliation(s)
- Tzu-Hsien Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Cheng-Han Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Chemical & Materials Engineering Department, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
- NCU-DSM Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Rahimi A, Stafslien SJ, Vanderwal L, Bahr J, Safaripour M, Finlay JA, Clare AS, Webster DC. Critical Amphiphilic Concentration: Effect of the Extent of Amphiphilicity on Marine Fouling-Release Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2728-2739. [PMID: 33586437 DOI: 10.1021/acs.langmuir.0c03446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphiphilic compound is synthesized and added at increasing amounts to a PU system, where the amount of the additive is the only variable in the study. The additive-modified surfaces are characterized by a variety of techniques including ATR-FTIR, XPS, contact angle measurements, and AFM. Surface characterizations indicate the presence of amphiphilic domains on the surface due to the introduction of the self-stratifying amphiphilic additive. The fouling-release properties of the surfaces are assessed with three biological assays using Ulva linza, Cellulophaga lytica, and Navicula Incerta as the test organisms. A change in the fouling-release performance is observed and plateaued once a certain amount of amphiphilicity is attained in the coating system, which we call the critical amphiphilic concentration (CAC).
Collapse
Affiliation(s)
- AliReza Rahimi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Bahr
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
22
|
Wang R, Xia J, Tang J, Liu D, Zhu S, Wen S, Lin Q. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther 2021; 37:172-180. [PMID: 33497580 DOI: 10.1089/jop.2020.0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: The intraocular lens (IOL) is a common, yet important, implantable device used in treatment of cataract in clinics. However, the unexpected adhesion of postoperative residual lens epithelial cells (LECs) often causes serious complications, such as posterior capsular opacification (PCO), which lead to vision loss again. In this investigation, a poly(sulfobetaine methacrylate) (PSBMA) brush coating was fabricated on an IOL to generate a hydrophilic surface coating on the IOL for enhanced cell adhesion resistance so as to decrease PCO incidence. Methods: The PSBMA brush coating on the IOL surface was fabricated using surface-initiated reversible addition-fragmentation chain transfer polymerization. X-ray photoelectron spectroscopy (XPS) was used to demonstrate the surface coating preparation. The water contact angle (WCA) measurement was used to test surface hydrophilicity. In vitro LEC culture was use to evaluate the cell behavior on the IOL material surfaces, with or without PSBMA coating modification. Finally, animal cataract surgeries were carried out to evaluate in vivo biocompatibilities and anti-PCO effects. Results: The XPS and WCA measurements illustrate successful surface modification and good surface hydrophilicity. The in vitro cell culture results show that the hydrophilic PSBMA polymer brush coating evidently decreases adhesion and proliferation of LECs. Results of the in vivo cataract surgery with intraocular implantation show that PSBMA modification on the IOL surface does not induce side effects in nearby tissues, whereas posterior capsular hyperplasia can be evidently reduced. Conclusion: The PSBMA brush surface-modified IOL has good in vivo biocompatibility and it can effectively reduce the incidence of postoperative PCO.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Xia
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junmei Tang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Shen N, Cheng E, Whitley JW, Horne RR, Leigh B, Xu L, Jones BD, Guymon CA, Hansen MR. Photograftable Zwitterionic Coatings Prevent Staphylococcus aureus and Staphylococcus epidermidis Adhesion to PDMS Surfaces. ACS APPLIED BIO MATERIALS 2021; 4:1283-1293. [DOI: 10.1021/acsabm.0c01147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Shen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Otolaryngology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Elise Cheng
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - John W. Whitley
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan R. Horne
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Braden Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bradley D. Jones
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Woo S, Park HR, Park J, Yi J, Hwang W. Robust and continuous oil/water separation with superhydrophobic glass microfiber membrane by vertical polymerization under harsh conditions. Sci Rep 2020; 10:21413. [PMID: 33293602 PMCID: PMC7722867 DOI: 10.1038/s41598-020-78271-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
We report a robust and continuous oil/water separation with nanostructured glass microfiber (GMF) membranes modified by oxygen plasma treatment and self-assembled monolayer coating with vertical polymerization. The modified GMF membrane had a nanostructured surface and showed excellent superhydrophobicity. With an appropriate membrane thickness, a high water intrusion pressure (< 62.7 kPa) was achieved for continuous pressure-driven separation of oil/water mixtures with high flux (< 4418 L h-1 m-2) and high oil purity (> 99%). Under simulated industrial conditions, the modified GMF membrane exhibited robust chemical stability against strong acidic/alkaline solutions and corrosive environments. The proposed superhydrophobic composite coating technique is simple, low cost, environmentally friendly, and suitable for the mass production of scalable three-dimensional surfaces. Moreover, its stability and customizable functionality offers considerable potential for a wide range of novel applications.
Collapse
Affiliation(s)
- Seeun Woo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hong Ryul Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinyoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Johan Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonbong Hwang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
25
|
Del Bigio MR, Sidhu RK, Kazina CJ, Serletis D. Inflammation and obstruction of distal catheter slits in ventriculoperitoneal shunts: likely role of graphite. J Neurosurg 2020; 133:1495-1502. [PMID: 31561214 DOI: 10.3171/2019.6.jns191082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tissue reactions that contribute to obstruction of peritoneal catheters in ventriculoperitoneal shunt systems are not well characterized. Several recent rapid obstructions in children prompted a retrospective quality assurance review. METHODS The authors conducted a detailed investigation of 22 surgically explanted peritoneal shunt catheters and 8 autopsy cases with documented distal shunt obstruction. Patients' medical histories were reviewed, and the catheters and/or tissues were subjected to conventional histological and immunohistochemical evaluations. In addition, 3 cases were subjected to electron microscopic examination including elemental analysis. RESULTS The majority of symptomatic obstructions were associated with distal slit catheters (17 slit, 3 open-end, and 2 unknown type). Among the autopsy cases, deaths were attributed to shunt failure in 2 cases of slit catheter obstruction, 1 case of open-end catheter obstruction, and 1 case of catheter withdrawal from the peritoneal cavity. The early tissue response consisted of a predominantly T lymphocyte accumulation with phagocytosis of graphite particles by macrophages. This is associated with proliferation of fibroblasts, mesothelial cells, and blood vessels, which can grow through the slits and occlude the catheter lumen. As the inflammation subsides after approximately 1 year, the tissue plug becomes collagenized and calcified. CONCLUSIONS This study, supported by experimental literature in other organ systems, indicates that graphite used to coat the slit openings of distal catheters from ventriculoperitoneal shunts likely predisposes to obstruction. Neurosurgeons and manufacturers should consider the potential negative consequences of this shunt design. The authors concur with previous recommendations that slit-valve distal catheters should not be used for ventriculoperitoneal shunting unless they can be proven safe and efficacious in a controlled trial.
Collapse
Affiliation(s)
- Marc R Del Bigio
- 1Department of Pathology, University of Manitoba
- 2Children's Hospital Research Institute of Manitoba
- 3SharedHealth Manitoba
| | | | - Colin J Kazina
- 5Section of Neurosurgery, University of Manitoba and Health Sciences Centre; and
| | - Demitre Serletis
- 5Section of Neurosurgery, University of Manitoba and Health Sciences Centre; and
- 6Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Mannitoba, Canada
| |
Collapse
|
26
|
Wen C, Zhang J, Li Y, Zheng W, Liu M, Zhu Y, Sui X, Zhang X, Han Q, Lin Y, Yang J, Zhang L. A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization. Biomater Sci 2020; 8:5441-5451. [PMID: 32996913 DOI: 10.1039/d0bm00671h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronary stent implantation is an effective procedure for percutaneous coronary intervention treatment. However, its long-term safety and efficacy are still hindered by the in-stent restenosis and late thrombus formation. Herein, an anti-biofouling and endothelial cell selective zwitterionic hydrogel coating was developed to simultaneously enhance the nonspecific resistance and rapid re-endothelialization of the titanium surface. An endothelial cell selective peptide, REDV, could be simply conjugated on the zwitterionic carboxybetaine (CB) hydrogel to prepare the REDV/CB coating. It was found that the REDV/CB hydrogel layer maintained antifouling properties, which could inhibit the protein adsorption, bacterial adhesion, platelet activation and aggregation, and smooth muscle cell proliferation. More importantly, the co-culture study confirmed that the conjugated REVD peptide could specifically capture endothelial cells and promote their migration and proliferation, and simultaneously decrease the adhesion and proliferation of smooth muscle cells. Therefore, the antifouling and endothelial cell selective coating proposed in this work provides a promising strategy to develop an intravascular stent for promoted re-endothelialization and inhibited neointimal hyperplasia in clinical applications.
Collapse
Affiliation(s)
- Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284:102230. [PMID: 32961420 DOI: 10.1016/j.cis.2020.102230] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The use of invasive medical devices is becoming more common nowadays, with catheters representing one of the most used medical devices. However, there is a risk of infection associated with the use of these devices, since they are made of materials that are prone to bacterial adhesion with biofilm formation, often requiring catheter removal as the only therapeutic option. Catheter-related urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs) are among the most common causes of healthcare-associated infections (HAIs) worldwide while endotracheal intubation is responsible for ventilator-associated pneumonia (VAP). Therefore, to avoid the use of biocides due to the potential risk of bacterial resistance development, antifouling strategies aiming at the prevention of bacterial adherence and colonization of catheter surfaces represent important alternative measures. This review is focused on the main strategies that are able to modify the physical or chemical properties of biomaterials, leading to the creation of antiadhesive surfaces. The most promising approaches include coating the surfaces with hydrophilic polymers, such as poly(ethylene glycol) (PEG), poly(acrylamide) and poly(acrylates), betaine-based zwitterionic polymers and amphiphilic polymers or the use of bulk-modified poly(urethanes). Natural polysaccharides and its modifications with heparin, have also been used to improve hemocompatibility. Recently developed bioinspired techniques yielding very promising results in the prevention of bacterial adhesion and colonization of surfaces include slippery liquid-infused porous surfaces (SLIPS) based on the superhydrophilic rim of the pitcher plant and the Sharklet topography inspired by the shark skin, which are potential candidates as surface-modifying approaches for biomedical devices. Concerning the potential application of most of these strategies in catheters, more in vivo studies and clinical trials are needed to assure their efficacy and safety for possible future use.
Collapse
Affiliation(s)
- Célia M C Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sara M C Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
28
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
29
|
Schnepper M, Roles J, Hickman JJ. Inverse liquid-solid chromatography to evaluate drug interactions with organosilane-modified polydimethylsiloxane for use in body-on-a-chip systems. Biotechnol Prog 2020; 36:e3048. [PMID: 32663376 DOI: 10.1002/btpr.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 11/08/2022]
Abstract
Body-on-a-chip and organ-on-a-chip systems utilize polydimethylsiloxane (PDMS) because of the relative suitability of the material for fabrication of microfluidic channels and chambers used in these devices. However, hydrophobic molecules, especially therapeutic compounds, tend to adsorb to PDMS, which may distort the dose-response curves that feed into the pharmacokinetic/pharmacodynamic models used to translate preclinical data into predictions of clinical outcomes. Surface modification by organosilanes is one method being explored to modify PDMS, but the effect of organosilanes on drug adsorption isotherms is not well characterized. We utilized Inverse Liquid-Solid Chromatography to characterize the adsorption parameters of the drugs acetaminophen, diclofenac, and verapamil with native PDMS and organosilane-modified (fluoropolymer (13F) and polyethylene glycol) PDMS surfaces, to correlate the modifications with changes in drug adsorption. It was determined that the organosilane modifications significantly changed the energy of adsorption of the test drug utilizing our methodology.
Collapse
Affiliation(s)
- Mark Schnepper
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA.,Hesperos, Inc, Orlando, Florida, USA
| |
Collapse
|
30
|
Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers. Macromol Rapid Commun 2020; 41:e2000175. [DOI: 10.1002/marc.202000175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/12/2020] [Indexed: 12/19/2022]
|
31
|
Hammond OS, Moura L, Level G, Imberti S, Holbrey JD, Blesic M. Hydration of sulfobetaine dizwitterions as a function of alkyl spacer length. Phys Chem Chem Phys 2020; 22:16040-16050. [PMID: 32706356 DOI: 10.1039/d0cp02654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation and structure of bolaform dizwitterions containing two sulfobetaine moieties in concentrated aqueous solution were determined using neutron diffraction with isotopic substitution (NDIS) combined with modelling of the measured structure factors using Empirical Potential Structure Refinement (EPSR). Strongly directional local hydration was observed in the polar regimes of the dizwitterions with 48-52 water molecules shared between dizwitterion molecules in a first shell water network around each zwitterion pair. Overall, the double zwitterions were highly hydrated, providing experimental evidence in support of the potential formation of protein-resistant hydration layers at zwitterion-water interfaces.
Collapse
Affiliation(s)
- Oliver S Hammond
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Leila Moura
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Gaelle Level
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Silvia Imberti
- ISIS, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - John D Holbrey
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Marijana Blesic
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
32
|
Schnepper MT, Roles J, Hickman JJ. Characterization of Drug-Polymer Adsorption Isotherms in Body-on-a-Chip Systems by Inverse Liquid-Solid Chromatography. ACS Biomater Sci Eng 2020; 6:4462-4475. [PMID: 33455187 DOI: 10.1021/acsbiomaterials.0c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Body-on-a-chip and human-on-a-chip systems are currently being used to augment and could eventually replace animal models in drug discovery and basic biological research. However, hydrophobic molecules, especially therapeutic compounds, tend to adsorb to the polymer materials used to create these microfluidic platforms, which may distort the dose-response curves that feed into pharmacokinetic/pharmacodynamic (PK/PD) models, which translate preclinical data into predictions of clinical outcomes. Inverse liquid-solid chromatography paired with a numerical optimization based on the Langmuir model of adsorption was used to characterize the adsorption isotherm parameters of drugs to polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA), polymers commonly used in these platforms. The adsorption isotherms were then compared against concentration measurements of drugs recirculated in these platforms. This research further illustrates the point that by quantifying drug or drug candidate interactions before system dosing and including this data in the PK/PD models, then polymers used in these platforms need not be limited to "less-adsorbing" materials.
Collapse
Affiliation(s)
- Mark T Schnepper
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Jeff Roles
- Hesperos, Inc., 12501 Research Pkwy #100, Orlando, Florida 32826, United States
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States.,Hesperos, Inc., 12501 Research Pkwy #100, Orlando, Florida 32826, United States
| |
Collapse
|
33
|
Chaudhari PP, Chau LK, Tseng YT, Huang CJ, Chen YL. A fiber optic nanoplasmonic biosensor for the sensitive detection of ampicillin and its analogs. Mikrochim Acta 2020; 187:396. [PMID: 32564163 DOI: 10.1007/s00604-020-04381-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
A novel optical immunosensor for the screening of ampicillin (Amp) residues has been developed. The biosensor is based on fiber optic particle plasmon resonance detection and uses an enhancement method called as fiber optic nanogold-linked immunosorbent assay (FONLISA) for the sensitive detection of antibiotics. A commercial antibody which had a higher affinity for ampicillin than for other β-lactam antibiotics was chosen. A surface competitive binding assay was used in which a fixed concentration of antibiotic-conjugated gold nanoparticles (AuNPs) competes with free unlabeled antibiotic molecules to measure the amount of binding with antibody molecules immobilized on an optical fiber. The synthesis of the 11-mercaptoundecanoic acid (MUA)-ampicillin conjugate facilitates the attachment of the Amp molecules to AuNPs via MUA which acts as a linker between them. This AuNP-Amp conjugate was then used for the detection of β-lactam antibiotics. The practical limit of detection obtained for Amp was 0.74 ppb (7.4 × 10-10 g/mL) which is lower than the recommended maximum residue limit (MRL) for β-lactams. The method also shows a wide linear range of 4 orders. Its applicability to the determination of ampicillin in spiked milk samples has been demonstrated with good recovery and reproducibility. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi P Chaudhari
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan. .,Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan.
| | - Yen-Ta Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences & Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
34
|
Modified silica nanoparticle coatings: Dual antifouling effects of self-assembled quaternary ammonium and zwitterionic silanes. Biointerphases 2020; 15:021009. [PMID: 32264685 DOI: 10.1116/1.5143141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work examines the antifouling effect of quaternary ammonium silane (QAS) grafted from coatings of silica nanoparticles (SiNPs), independently and in combination with a zwitterionic sulfobetaine (SB) silane. The binding of QAS to the SiNP coatings was monitored using quartz crystal microgravimetry with dissipation monitoring (QCM-D) under varied pH and solution concentrations. Adsorption of bovine serum albumin protein was reduced on QAS modified SiNP coatings prepared under alkaline conditions due to the proposed generation of a pseudozwitterionic interface, where the underlying SiNP surface presents an anionic charge at high pH. Significant reductions in protein binding were achieved at low functionalization concentrations and short modification times. Additionally, SiNP coatings modified with a combination of QAS and SB chemistries were investigated. Surface modifications were performed sequentially, varying silane concentration and order of addition, and monitored using QCM-D. Dual-functionalized surfaces presented enhanced resistance to protein adsorption compared to QAS or SB modified surfaces alone, even at low functionalization concentrations. The antiadhesive and antibacterial properties of functionalized surfaces were investigated by challenging the surfaces against the bacterium Escherichia coli. All dual-functionalized coatings showed equal or reduced bacterial adhesion compared to QAS and SB functionalizations alone, while coatings functionalized with high concentrations of combined chemistries reduced the adhesion of bacteria by up to 95% compared to control SiNP surfaces.
Collapse
|
35
|
Khetani S, Yong KW, Ozhukil Kollath V, Eastick E, Azarmanesh M, Karan K, Sen A, Sanati-Nezhad A. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6910-6923. [PMID: 31971367 DOI: 10.1021/acsami.9b20826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conceptualization of body-on-a-chip in 2004 resulted in a new approach for studying human physiology in three-dimensional culture. Despite pioneering works and the progress made in replicating human physiology on-a-chip, the stability, reliability, and preservation of cell-culture-treated microfluidic chips remain a challenge. The development of a reliable surface treatment technique to more efficiently and reproducibly modify microfluidic channels would significantly simplify the process of creating and implementing organ-on-a-chip (OOC) systems. In this work, a new flow-based coating technique using bioinspired polymers was implemented to create reliable, reproducible, ready-to-use microfluidic cell culture chips for OOC studies. Single-channel polydimethylsiloxane microfluidic chips were coated with the bioinspired catecholamine polymers, polydopamine (PDA) and polynorepinephrine (PNE), using a flow-based coating technique. The functionality of the resulting microfluidic chips was evaluated by extensive surface characterizations, at 130 °C, in the presence of various cleaning and culture media in static and flow conditions regularly used in OOCs and tested for shelf life by storing the coated microfluidic chips for 4 months at room temperature. Microfluidic chips coated with polycatecholamine were then seeded with the mouse cancer cell line Cath.a.differentiated (CAD) and with the normal human cerebral microvascular endothelial cell line human cerebral microvascular endothelial cells (hCMEC)/D3. Cell viability, cell phenotype, and cell functionality were assessed to evaluate the performance of both the coatings and the surface treatment technique. Both PDA- and PNE-coated microfluidic chips maintained high viability, phenotype, and functionality of CAD cells and hCMEC/D3 cells. In addition, CAD cells retained high viability when they were cultured in both the polymer-coated chips, which were stored at room temperature for up to 120 days. These results suggest that flow-based techniques to coat surfaces with polycatecholamines can be used to generate ready-to-use microfluidic OOC chips that offer long-term stability and reliability for the culture of cell types with application in pathophysiological studies and drug screening.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kar Wey Yong
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Erin Eastick
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Milad Azarmanesh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
36
|
Amphiphilic hydrolyzable polydimethylsiloxane-b-poly(ethyleneglycol methacrylate-co-trialkylsilyl methacrylate) block copolymers for marine coatings. I. Synthesis, hydrolysis and surface wettability. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Huang KT, Hsieh PS, Dai LG, Huang CJ. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B 2020; 8:7390-7402. [DOI: 10.1039/d0tb01163k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new methodology for developing biocompatible double network hydrogels by using a responsive amphoteric polymer as a first framework.
Collapse
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center
- Taiwan
| | - Lien-Guo Dai
- Department of Orthopedics, Min-Sheng General Hospital
- Taoyuan 330
- Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
- Department of Chemical & Materials Engineering
| |
Collapse
|
38
|
Chiang CY, Huang TT, Wang CH, Huang CJ, Tsai TH, Yu SN, Chen YT, Hong SW, Hsu CW, Chang TC, Chau LK. Fiber optic nanogold-linked immunosorbent assay for rapid detection of procalcitonin at femtomolar concentration level. Biosens Bioelectron 2019; 151:111871. [PMID: 31999569 DOI: 10.1016/j.bios.2019.111871] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/27/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Abstract
A rapid and ultrasensitive biosensing method based on fiber optic nanogold-linked immunosorbent assay is reported. The method employs an immobilized capture probe on the fiber core surface of an optical fiber and a detection probe conjugated to gold nanoparticles (AuNPs) in a solution. Introduction of a sample containing an analyte and the detection probe into a biosensor chip leads to the formation of a sandwich-like complex of capture probe-analyte-detection probe on the fiber core surface, through which nanoplasmonic absorption of the fiber optic evanescent wave occurs. The performance of this method has been evaluated by its application to the detection of procalcitonin (PCT), an important biomarker for sepsis. In this study, anti-PCT capture antibody is functionalized on an unclad segment of an optical fiber to yield a fiber sensor and anti-PCT detection antibody is conjugated to AuNPs to afford nanoplasmonic probes. The method provides a wide linear response range from 1 pg/mL to 100 ng/mL (5 orders) and an extremely low limit of detection of 95 fg/mL (7.3 fM) for PCT. In addition, the method shows a good correlation in determining PCT in blood plasma with the clinically validated electrochemiluninescent immunoassay. Furthermore, the method is quick (analysis time ≤15 min), requires low-cost instrumentation and sensor chips, and is also potentially applicable to the detection of many other biomarkers.
Collapse
Affiliation(s)
- Chang-Yue Chiang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Tze-Ta Huang
- Institute of Oral Medicine, Department of Stomatology, College of Medicine and Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Hui Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences & Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Tsung-Heng Tsai
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan; Department of Electrical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Sung-Nien Yu
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan; Department of Electrical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Ying-Ting Chen
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Shih-Wei Hong
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Chia-Wei Hsu
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Ting-Chou Chang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Lai-Kwan Chau
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan.
| |
Collapse
|
39
|
Mohan T, Čas A, Bračič M, Plohl O, Vesel A, Rupnik M, Zemljič LF, Rebol J. Highly Protein Repellent and Antiadhesive Polysaccharide Biomaterial Coating for Urinary Catheter Applications. ACS Biomater Sci Eng 2019; 5:5825-5832. [DOI: 10.1021/acsbiomaterials.9b01288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Alja Čas
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Matej Bračič
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Olivija Plohl
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova 30, Ljubljana SI-1000, Slovenia
| | - Maja Rupnik
- Faculty of Medicine, University of Maribor, Taborska ulica 8, Maribor 2000, Slovenia
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, Maribor 2000, Slovenia
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Janez Rebol
- Department of Otorhinolaryngology, Cervical and Maxillofacial Surgery, University Medical Centre Maribor, Ljubljanska ulica 5, Maribor 2000, Slovenia
| |
Collapse
|
40
|
Silicone grafted bioactive peptides and their applications. Curr Opin Chem Biol 2019; 52:125-135. [DOI: 10.1016/j.cbpa.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
|
41
|
Zhang Y, Xiao Z, Liu C, Yu X. Durable superamphiphobic coatings from one-step electrostatic dusting. SOFT MATTER 2019; 15:7374-7380. [PMID: 31432875 DOI: 10.1039/c9sm01278h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superamphiphobic coatings are fabricated via electrostatic dusting using modified silica particles and polymethyl methacrylate resin particles on conductive substrates (metal and conductive glass). The obtained translucent superamphiphobic coatings show excellent durability and chemical robustness even after exposure to strong acids and bases. Importantly, the coatings maintain hydrophobicity even after 100 cycles of abrasion testing and 1000 cycles of finger wiping. In addition, the fabricated coatings are superoleophobic after finger wiping, tape peeling and oil immersion. This facile strategy may provide researchers in related fields with new avenues for improving powder coatings in practical applications.
Collapse
Affiliation(s)
- Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | |
Collapse
|
42
|
Wen C, Guo H, Bai H, Xu T, Liu M, Yang J, Zhu Y, Zhao W, Zhang J, Cao M, Zhang L. Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34330-34337. [PMID: 31429271 DOI: 10.1021/acsami.9b11862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The microdroplets in fog flow have been considered as an important resource for supplying fresh drinking water. Most of the reported works of fog collection focus on the water-collecting ability rather than the environmental reliability of selected materials. In this work, a beetle-inspired hierarchical fog-collecting interface based on the antibacterial needle-array (ABN) and hydrophilic/hydrophobic cooperative structure is displayed. The hydrophilic ABN is coated with zwitterionic carboxybetaine (CB) brushes that endow the fog collector with a long-term cleaning in harsh environment. Due to its strong affinity to water molecules, the tilted needles with a CB coating can facilitate the capture of fog and the rapid delivery of condensed water driven by gravity. After being transported to the connected hydrophobic sheet, the collected droplets can be rapidly detached and stored in the container, achieving a high fog-harvesting rate. Furthermore, CB-patterned channels are integrated on the hydrophobic sheet for the pathway-controlled water delivery. The CB coating is able to efficiently resist bacterial adhesion and contamination during fog harvesting, protecting the device from microbiological corrosion. The current design provides a promising method to incorporate antibacterial ability into fog collectors, which offer great opportunity to develop water harvesters for real-world applications.
Collapse
Affiliation(s)
- Chiyu Wen
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Hongshuang Guo
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Haoyu Bai
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Tong Xu
- School of Chemical Engineering and Technology , Inner Mongolia University of Technology , Huhhot 010051 , China
| | - Min Liu
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Jing Yang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Yingnan Zhu
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Weiqiang Zhao
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Jiamin Zhang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Moyuan Cao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Lei Zhang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| |
Collapse
|
43
|
Han YJ, Liu YL. Preparation of Cross-Linkable Zwitterionic Polybenzoxazine with Sulfobetaine Groups and Corresponding Zwitterionic Thermosetting Resin for Antifouling Surface Coating. ACS APPLIED BIO MATERIALS 2019; 2:3799-3807. [PMID: 35021353 DOI: 10.1021/acsabm.9b00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work demonstrates a cross-linkable zwitterionic polymer, the corresponding zwitterionic thermosetting resin, and their application for antifouling surface coating. The tertiary amine-containing benzoxazine group is utilized as a precursor to react with 1,3-propane sultone to introduce sulfobetaine moiety to benzoxazine group. The reaction route provides an effective approach for preparation of sulfobetaine-functionalized benzoxazines and the corresponding sulfobetaine-functionalized thermosetting resins of benzoxazines. The sulfobetaine-functionalized polybenzoxazine has been utilized as a coating material for ceramic porous membranes to impart protein-repelling characteristic to the membrane surface. In a filtration test on a Bovine serum albumin (BSA) aqueous solution, the sulfobetaine resin modified membrane shows a 96.2% of rejection rate and a 1680 ± 9 Lm2-h-1 of permeation flux at the first cycle test. In cycled measurements with membrane washing, the membrane shows a total flux decline ratio (Rt) and a reversible flux decline ratio (Rr) of about 46.9% and 43.1%, respectively. A high ratio of reversible fouling (Rr/Rt) of 91.9% is found, which supports the statement that the sulfobetaine-functionalized polybenzoxazine is an effective material to impart antifouling characteristic to porous materials for bioseparation and filtration.
Collapse
Affiliation(s)
- Yi-Jen Han
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
44
|
Phiri I, Eum KY, Kim JW, Choi WS, Kim SH, Ko JM, Jung H. Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fiber membranes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Gevaux L, Lejars M, Margaillan A, Briand JF, Bunet R, Bressy C. Hydrolyzable Additive-Based Silicone Elastomers: A New Approach for Antifouling Coatings. Polymers (Basel) 2019; 11:E305. [PMID: 30960289 PMCID: PMC6419558 DOI: 10.3390/polym11020305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/27/2023] Open
Abstract
Fouling Release Coatings are marine antifouling coatings based on silicone elastomers. Contrary to commonly used biocide-based antifouling coatings, they do not release biocides into the marine environment, however, they suffer from poor antifouling efficacy during idle periods. To improve their antifouling performances in static conditions, various amounts of hydrolyzable polymers were incorporated within a silicone matrix. These hydrolyzable polymers were chosen for the well-known hydrolytic degradation mechanism of their main chain, e.g. poly(ε-caprolactone) (PCL), or of their ester pending groups, e.g. poly(bis(trimethylsilyloxy)methylsilyl methacrylate) (PMATM2). The degradation kinetics of such hydrolyzable silicone coatings were assessed by mass loss measurements during immersion in deionized water. Coatings containing PMATM2 exhibited a maximum mass loss after 12 weeks, whereas PCL-based coatings showed no significant mass loss after 24 weeks. Dynamic contact angle measurements revealed the modifications of the coatings surface chemistry with an amphiphilic behavior after water exposure. The attachment of macrofoulers on these coatings were evaluated by field tests in the Mediterranean Sea, demonstrating the short or long-term antifouling effect of these hydrolyzable polymers embedded in the silicone matrix. The settlement of A. amphitrite barnacles on the different coatings indicated inhospitable behaviors towards larval barnacles for coatings with at least 15 wt % of additives.
Collapse
Affiliation(s)
- Laure Gevaux
- Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.
| | - Marlène Lejars
- Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.
| | - André Margaillan
- Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.
| | - Jean-François Briand
- Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.
| | - Robert Bunet
- Institut Océanographique Paul Ricard, Ile des Embiez, 83140 Six-Fours-les-Plages, France.
| | - Christine Bressy
- Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.
| |
Collapse
|
46
|
Halvey AK, Macdonald B, Dhyani A, Tuteja A. Design of surfaces for controlling hard and soft fouling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180266. [PMID: 30967072 PMCID: PMC6335287 DOI: 10.1098/rsta.2018.0266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 05/29/2023]
Abstract
In this review, we present a framework to guide the design of surfaces which are resistant to solid fouling, based on the modulus and length scale of the fouling material. Solid fouling is defined as the undesired attachment of solid contaminants including ice, clathrates, waxes, inorganic scale, polymers, proteins, dust and biological materials. We first provide an overview of the surface design approaches typically applied across the scope of solid fouling and explain how these disparate research efforts can be united to an extent under a single framework. We discuss how the elastic modulus and the operating length scale of a foulant determine its ability or inability to elastically deform surfaces. When surface deformation occurs, minimization of the substrate elastic modulus is critical for the facile de-bonding of a solid contaminant. Foulants with low modulus or small deposition sizes cannot deform an elastic bulk material and instead de-bond more readily from surfaces with chemistries that minimize their interfacial free energy or induce a particular repellant interaction with the foulant. Overall, we review reported surface design strategies for the reduction in solid fouling, and provide perspective regarding how our framework, together with the modulus and length scale of a foulant, can guide future antifouling surface designs. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Alex Kate Halvey
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Macdonald
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhishek Dhyani
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Xie Q, Pan J, Ma C, Zhang G. Dynamic surface antifouling: mechanism and systems. SOFT MATTER 2019; 15:1087-1107. [PMID: 30444519 DOI: 10.1039/c8sm01853g] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling is a global problem today. High efficiency and eco-friendly antifouling systems are in pressing need. In recent years, we have proposed the concept of dynamic surface antifouling (DSA). That is, a continuously changing surface can effectively prevent marine fouling organisms from landing and adhesion. Based on this strategy, we developed coatings with dynamic surfaces by using degradable polymers including polyester-polyurethane, modified polyester and poly(ester-co-acrylate). They exhibit tunable renewability, and excellent antifouling and mechanical performance. Moreover, the polymers can serve as carrier and controlled release systems of antifoulants so that they have long service life. This paper reviews the progress and trends in marine anti-biofouling, and presents the mechanism and systems of DSA.
Collapse
Affiliation(s)
- Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | |
Collapse
|
48
|
Yong Y, Qiao M, Chiu A, Fuchs S, Liu Q, Pardo Y, Worobo R, Liu Z, Ma M. Conformal Hydrogel Coatings on Catheters To Reduce Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1927-1934. [PMID: 30441901 DOI: 10.1021/acs.langmuir.8b03074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reducing biofouling while increasing lubricity of inserted medical catheters is highly desirable to improve their comfort, safety, and long-term use. We report here a simple method to create thin (∼30 μm) conformal lubricating hydrogel coatings on catheters. The key to this method is a three-step process including shape-forming, gradient cross-linking, and swell-peeling (we label this method as SGS). First, we took advantage of the fast gelation of agar to form a hydrogel layer conformal to catheters; then, we performed a surface-bound UV cross-linking of acrylamide mixed in agar in open air, purposely allowing gradual oxygen inhibition of free radicals to generate a gradient of cross-linking density across the hydrogel layer; and finally, we caused the hydrogel to swell to let the non-cross-linked/loosely attached hydrogel fall off, leaving behind a surface-bound, thin, and mostly uniform hydrogel coating. This method also allowed easy incorporation of different polymerizable monomers to obtain multifunctionality. For example, incorporating an antifouling, zwitterionic moiety sulfobetaine in the hydrogel reduced both in vitro protein adsorption and in vivo foreign-body response in mice. The addition of a biocidal N-halamine monomer to the hydrogel coating deactivated both Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) O157:H7 within 30 min of contact and reduced biofilm formation by 90% compared to those of uncoated commercial catheters when challenged with S. aureus for 3 days. The lubricating, antibiofouling hydrogel coating may bring clinical benefits in the use of urinary and venous catheters as well as other types of medical devices.
Collapse
Affiliation(s)
- You Yong
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Mingyu Qiao
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Alan Chiu
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Stephanie Fuchs
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Qingsheng Liu
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Yehudah Pardo
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Randy Worobo
- Department of Food Science , Cornell University , Ithaca , New York 14850 , United States
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Minglin Ma
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14850 , United States
| |
Collapse
|
49
|
Huang CJ, Zheng YY. Controlled Silanization Using Functional Silatrane for Thin and Homogeneous Antifouling Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1662-1671. [PMID: 30086630 DOI: 10.1021/acs.langmuir.8b01981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organosilicons for surface modification are gaining prominence because of their easy and rapid preparation, high availability, and effective modification for varying interfacial properties. However, their implementation has been humbled by poor control of the packing density, thickness, and molecular structures due to the uncontrollable hydrolysis and condensation. This study reports for the first time new functional silatrane chemistry for the precision deposition of a thin and homogeneous zwitterionic coating. Sulfobetaine silatrane (SBSiT) has a tricyclic caged structure and a transannular N → Si dative bond, which shows excellent chemical stability in the presence of water and an acid-modulated hydrolysis characteristic. Results from X-ray photoelectron spectroscopy indicate the progressive deposition of SBSiT on a silicon surface. Characterization using atomic force microscopy and ellipsometry shows the uniform and thin SBSiT films on silicon surfaces. The superior antifouling properties of SBSiT coatings were demonstrated by resisting bacterial and protein adsorption. More importantly, the stable and complete formation of the SBSiT coatings allows an accurate interpretation of the interfacial phenomena for sensing and nanomaterial applications.
Collapse
|
50
|
Leigh BL, Cheng E, Xu L, Derk A, Hansen MR, Guymon CA. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1100-1110. [PMID: 29983076 PMCID: PMC6358520 DOI: 10.1021/acs.langmuir.8b00838] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.
Collapse
|