1
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
3
|
O'Shea TC, Croland KJ, Salem A, Urbanski R, Schultz KM. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology. Biomacromolecules 2024; 25:5121-5137. [PMID: 38961715 DOI: 10.1021/acs.biomac.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Polymer-peptide hydrogels are being designed as implantable materials that deliver human mesenchymal stem cells (hMSCs) to treat wounds. Most wounds can progress through the healing process without intervention. During the normal healing process, cytokines are released from the wound to create a concentration gradient, which causes directed cell migration from the native niche to the wound site. Our work takes inspiration from this process and uniformly tethers cytokines into the scaffold to measure changes in cell-mediated degradation and motility. This is the first step in designing cytokine concentration gradients into the material to direct cell migration. We measure changes in rheological properties, encapsulated cell-mediated pericellular degradation and migration in a hydrogel scaffold with covalently tethered cytokines, either tumor necrosis factor-α (TNF-α) or transforming growth factor-β (TGF-β). TNF-α is expressed in early stages of wound healing causing an inflammatory response. TGF-β is released in later stages of wound healing causing an anti-inflammatory response in the surrounding tissue. Both cytokines cause directed cell migration. We measure no statistically significant difference in modulus or the critical relaxation exponent when tethering either cytokine in the polymeric network without encapsulated hMSCs. This indicates that the scaffold structure and rheology is unchanged by the addition of tethered cytokines. Increases in hMSC motility, morphology and cell-mediated degradation are measured using a combination of multiple particle tracking microrheology (MPT) and live-cell imaging in hydrogels with tethered cytokines. We measure that tethering TNF-α into the hydrogel increases cellular remodeling on earlier days postencapsulation and tethering TGF-β into the scaffold increases cellular remodeling on later days. We measure tethering either TGF-β or TNF-α enhances cell stretching and, subsequently, migration. This work provides rheological characterization that can be used to design new materials that present chemical cues in the pericellular region to direct cell migration.
Collapse
Affiliation(s)
- Thomas C O'Shea
- Purdue University, Davidson School of Chemical Engineering, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Kiera J Croland
- University of Colorado at Boulder, Department of Chemical and Biological Engineering, 3415 Colorado Ave, Boulder, Colorado 80303, United States
| | - Ahmad Salem
- Lehigh University, Department of Chemical and Biomolecular Engineering, 124 East Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Rylie Urbanski
- Lehigh University, Department of Chemical and Biomolecular Engineering, 124 East Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Purdue University, Davidson School of Chemical Engineering, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Rodriguez-Rivera GJ, Green M, Shah V, Leyendecker K, Cosgriff-Hernandez E. A user's guide to degradation testing of polyethylene glycol-based hydrogels: From in vitro to in vivo studies. J Biomed Mater Res A 2024; 112:1200-1212. [PMID: 37715481 DOI: 10.1002/jbm.a.37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels have gained significant attention in the field of biomedical applications due to their versatility and antifouling properties. Acrylate-derivatized PEG hydrogels (PEGDA) are some of the most widely studied hydrogels; however, there has been debate around the degradation mechanism and predicting resorption rates. Several factors influence the degradation rate of PEG hydrogels, including backbone and endgroup chemistry, macromer molecular weight, and polymer concentration. In addition to hydrogel parameters, it is necessary to understand the influence of biological and environmental conditions (e.g., pH and temperature) on hydrogel degradation. Rigorous methods for monitoring degradation in both in vitro and in vivo settings are also critical to hydrogel design and development. Herein, we provide guidance on tailoring PEG hydrogel chemistry to achieve target hydrolytic degradation kinetics for both resorbable and biostable applications. A detailed overview of accelerated testing methods and hydrogel degradation characterization is provided to aid researchers in experimental design and interpreting in vitro-in vivo correlations necessary for predicting hydrogel device performance.
Collapse
Affiliation(s)
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, USA
| | - Vani Shah
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, USA
| | - Kathleen Leyendecker
- Department of Mechanical Engineering, The University of Texas, Austin, Texas, USA
| | | |
Collapse
|
5
|
Hebner TS, Kirkpatrick BE, Fairbanks BD, Bowman CN, Anseth KS, Benoit DS. Radical-Mediated Degradation of Thiol-Maleimide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402191. [PMID: 38582514 PMCID: PMC11220706 DOI: 10.1002/advs.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Michael addition between thiol- and maleimide-functionalized molecules is a long-standing approach used for bioconjugation, hydrogel crosslinking, and the functionalization of other advanced materials. While the simplicity of this chemistry enables facile synthesis of hydrogels, network degradation is also desirable in many instances. Here, the susceptibility of thiol-maleimide bonds to radical-mediated degradation is reported. Irreversible degradation in crosslinked materials is demonstrated using photoinitiated and chemically initiated radicals in hydrogels and linear polymers. The extent of degradation is shown to be dependent on initiator concentration. Using a model linear polymer system, the radical-mediated mechanism of degradation is elucidated, in which the thiosuccinimide crosslink is converted to a succinimide and a new thioether formed with an initiator fragment. Using laser stereolithography, high-fidelity spatiotemporal control over degradation in crosslinked gels is demonstrated. Ultimately, this work establishes a platform for controllable, radical-mediated degradation in thiol-maleimide hydrogels, further expanding their versatility as functional materials.
Collapse
Affiliation(s)
- Tayler S. Hebner
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers Institute Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical Campus13001 East 17th PlaceAuroraCO80045USA
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Christopher N. Bowman
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Danielle S.W. Benoit
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| |
Collapse
|
6
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, Koruji M. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023; 394:393-421. [PMID: 37721632 DOI: 10.1007/s00441-023-03824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Afzali
- Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
8
|
Son J, Parveen S, MacPherson D, Marciano Y, Huang RH, Ulijn RV. MMP-responsive nanomaterials. Biomater Sci 2023; 11:6457-6479. [PMID: 37623747 DOI: 10.1039/d3bm00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Matrix metalloproteinases (MMP) are enzymes that degrade the extracellular matrix and regulate essential normal cell behaviors. Inhibition of these enzymes has been a strategy for anti-cancer therapy since the 1990s, but with limited success. A new type of MMP-targeting strategy exploits the innate selective hydrolytic activity and consequent catalytic signal amplification of the proteinases, rather than inhibiting it. Using nanomaterials, the enzymatic chemical reaction can trigger the temporal and spatial activation of the anti-cancer effects, amplify the associated response, and cause mechanical damage or report on cancer cells. We analyzed nearly 60 literature studies that incorporate chemical design strategies that lead to spatial, temporal, and mechanical control of the anti-cancer effect through four modes of action: nanomaterial shrinkage, induced aggregation, formation of cytotoxic nanofibers, and activation by de-PEGylation. From the literature analysis, we derived chemical design guidelines to control and enhance MMP activation of nanomaterials of various chemical compositions (peptide, lipid, polymer, inorganic). Finally, the review includes a guide on how multiple characteristics of the nanomaterial, such as substrate modification, supramolecular structure, and electrostatic charge should be collectively considered for the targeted MMP to result in optimal kinetics of enzyme action on the nanomaterial, which allow access to amplification and additional levels of spatial, temporal, and mechanical control of the response. Although this review focuses on the design strategies of MMP-responsive nanomaterials in cancer applications, these guidelines are expected to be generalizable to systems that target MMP for treatment or detection of cancer and other diseases, as well as other enzyme-responsive nanomaterials.
Collapse
Affiliation(s)
- Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
| | - Sadiyah Parveen
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY 10031, USA
| | - Douglas MacPherson
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Richard H Huang
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
| | - Rein V Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Kasper M, Cydis M, Afridi A, Smadi BM, Li Y, Charlier A, Barnes BE, Hohn J, Cline MJ, Carver W, Matthews M, Savin D, Rinaldi-Ramos CM, Schmidt CE. Development of a bioactive tunable hyaluronic-protein bioconjugate hydrogel for tissue regenerative applications. J Mater Chem B 2023; 11:7663-7674. [PMID: 37458393 PMCID: PMC10528782 DOI: 10.1039/d2tb02766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Every year, there are approximately 500 000 peripheral nerve injury (PNI) procedures due to trauma in the US alone. Autologous and acellular nerve grafts are among current clinical repair options; however, they are limited largely by the high costs associated with donor nerve tissue harvesting and implant processing, respectively. Therefore, there is a clinical need for an off-the-shelf nerve graft that can recapitulate the native microenvironment of the nerve. In our previous work, we created a hydrogel scaffold that incorporates mechanical and biological cues that mimic the peripheral nerve microenvironment using chemically modified hyaluronic acid (HA). However, with our previous work, the degradation profile and cell adhesivity was not ideal for tissue regeneration, in particular, peripheral nerve regeneration. To improve our previous hydrogel, HA was conjugated with fibrinogen using Michael-addition to assist in cell adhesion and hydrogel degradability. The addition of the fibrinogen linker was found to contribute to faster scaffold degradation via active enzymatic breakdown, compared to HA alone. Additionally, cell count and metabolic activity was significantly higher on HA conjugated fibrinogen compared previous hydrogel formulations. This manuscript discusses the various techniques deployed to characterize our new modified HA fibrinogen chemistry physically, mechanically, and biologically. This work addresses the aforementioned concerns by incorporating controllable degradability and increased cell adhesivity while maintaining incorporation of hyaluronic acid, paving the pathway for use in a variety of applications as a multi-purpose tissue engineering platform.
Collapse
Affiliation(s)
- Mary Kasper
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Madison Cydis
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Abdullah Afridi
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Bassam M Smadi
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Yuan Li
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Alban Charlier
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Brooke E Barnes
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Julia Hohn
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Michael J Cline
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Michael Matthews
- Department of Chemical Engineering, University of South Carolina, Columbia, USA
| | - Daniel Savin
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Carlos M Rinaldi-Ramos
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Christine E Schmidt
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| |
Collapse
|
10
|
Jha A, Larkin J, Moore E. SOCS1-KIR Peptide in PEGDA Hydrogels Reduces Pro-Inflammatory Macrophage Activation. Macromol Biosci 2023; 23:e2300237. [PMID: 37337867 DOI: 10.1002/mabi.202300237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Macrophages modulate the wound healing cascade by adopting different phenotypes such as pro-inflammatory (M1) or pro-wound healing (M2). To reduce M1 activation, the JAK/STAT pathway can be targeted by using suppressors of cytokine signaling (SOCS1) proteins. Recently a peptide mimicking the kinase inhibitory region (KIR) of SOCS1 has been utilized to manipulate the adaptive immune response. However, the utilization of SOCS1-KIR to reduce pro-inflammatory phenotype in macrophages is yet to be investigated in a biomaterial formulation. This study introduces a PEGDA hydrogel platform to investigate SOCS1-KIR as a macrophage phenotype manipulating peptide. Immunocytochemistry, cytokine secretion assays, and gene expression analysis for pro-inflammatory macrophage markers in 2D and 3D experiments demonstrate a reduction in M1 activation due to SOCS1-KIR treatment. The retention of SOCS1-KIR in the hydrogel through release assays and diffusion tests is demonstrated. The swelling ratio of the hydrogel also remains unaffected with the entrapment of SOCS1-KIR. This study elucidates how SOCS1-KIR peptide in PEGDA hydrogels can be utilized as an effective therapeutic for macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Erika Moore
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
11
|
Francis RM, DeForest CA. 4D Biochemical Photocustomization of Hydrogel Scaffolds for Biomimetic Tissue Engineering. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:704-715. [PMID: 39071987 PMCID: PMC11271249 DOI: 10.1021/accountsmr.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Programmable engineered tissues and the materials that support them are instrumental to the development of next-generation therapeutics and gaining new understanding of human biology. Toward these ends, recent years have brought a growing emphasis on the creation of "4D" hydrogel culture platforms-those that can be customized in 3D space and on demand over time. Many of the most powerful 4D-tunable biomaterials are photochemically regulated, affording users unmatched spatiotemporal modulation through high-yielding, synthetically tractable, and cytocompatible reactions. Precise physicochemical manipulation of gel networks has given us the ability to drive critical changes in cell fate across a diverse range of distance and time scales, including proliferation, migration, and differentiation through user-directed intracellular and intercellular signaling. This Account provides a survey of the numerous creative approaches taken by our lab and others to recapitulate the dynamically heterogeneous biochemistry underpinning in vivo extracellular matrix (ECM)-cell interactions via light-based network (de)decoration with biomolecules (e.g., peptides, proteins) and in situ protein activation/generation. We believe the insights gained from these studies can motivate disruptive improvements to emerging technologies, including low-variability organoid generation and culture, high-throughput drug screening, and personalized medicine. As photolithography and chemical modification strategies continue to mature, access to and control over new and increasingly complex biological pathways are being unlocked. The earliest hydrogel photopatterning efforts selectively encapsulated bioactive peptides and drugs into rudimentary gel volumes. Through continued exploration and refinement, next-generation materials now boast reversible, multiplexed, and/or Boolean logic-based biomolecule presentation, as well as functional activation at subcellular resolutions throughout 3D space. Lithographic hardware and software technologies, particularly those enabling image-guided patterning, allow researchers to precisely replicate complex biological structures within engineered tissue environments. The advent of bioorthogonal click chemistries has expanded 4D tissue engineering toolkits, permitting diverse constructs to be independently customized in the vicinity of any cell that is amenable to hydrogel-based culture. Additionally, the adoption of modern protein engineering techniques including genetic code expansion and chemoenzymatic alteration provides a roadmap toward site-specific modification of nearly any recombinant or isolated protein, affording installation of photoreactive and click handles without sacrificing their bioactivity. While the established bind, release, (de)activate paradigm in hydrogel photolithography continues to thrive alongside these modern engineering techniques, new studies are also demonstrating photocontrol of more complex or nonclassical operations, including engineered material-microorganism interfaces and functional protein photoassembly. Such creative approaches offer exciting new avenues for the field, including spatial control of on-demand biomolecule production from cellular depots and patterned bioactivity using a growing array of split protein pairs. Taken together, these technologies provide the foundation for truly biomimetic photopatterning of engineered tissues.
Collapse
Affiliation(s)
- Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States; Department of Bioengineering, Department of Chemistry, Institute of Stem Cell & Regenerative Medicine, Molecular Engineering & Sciences Institute, and Institute for Protein Design, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
12
|
Nicosia A, Salamone M, Costa S, Ragusa MA, Ghersi G. Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues. Int J Mol Sci 2023; 24:12314. [PMID: 37569691 PMCID: PMC10418696 DOI: 10.3390/ijms241512314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes.
Collapse
Affiliation(s)
- Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Monica Salamone
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| |
Collapse
|
13
|
Trapani G, Weiß MS, Trappmann B. Tunable Synthetic Hydrogels to Study Angiogenic Sprouting. Curr Protoc 2023; 3:e859. [PMID: 37555756 DOI: 10.1002/cpz1.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Angiogenic sprouting, the formation of new blood vessels from pre-existing vasculature, is tightly regulated by the properties of the surrounding tissue microenvironment. Although the extracellular matrix has been shown to be a major regulator of this process, it is not clear how individual biochemical and mechanical properties influence endothelial cell sprouting. This information gap is largely due to the lack of suitable in vitro models that recapitulate angiogenic sprouting in a 3D environment with independent control over matrix properties. Here, we present protocols for the preparation of endothelial cell spheroid-laden synthetic, dextran-based hydrogels, which serve as a highly tunable 3D scaffold. The adjustment of the hydrogels' adhesiveness, stiffness, and degradability is demonstrated in detail. Finally, we describe assays to elucidate how individual matrix properties regulate angiogenic sprouting, including their analysis by immunofluorescence staining and imaging. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of methacrylated dextran (DexMA) Basic Protocol 2: Generation of endothelial cell spheroids in microwells Basic Protocol 3: Endothelial cell sprouting in hydrogels of tunable stiffness Basic Protocol 4: Endothelial cell sprouting in hydrogels of tunable adhesiveness Basic Protocol 5: Endothelial cell sprouting in hydrogels of tunable degradability Basic Protocol 6: Imaging of endothelial cell spheroid-laden hydrogels Support Protocol 1: Preparation of pro-angiogenic cocktail for endothelial cell sprouting.
Collapse
Affiliation(s)
- Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Sebastian Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
14
|
Zhou C, Li X, Tang SW, Liu C, Lam MHW, Lam YW. A Dual-Enzyme Amplification Loop for the Sensitive Biosensing of Endopeptidases. ACS OMEGA 2023; 8:25592-25600. [PMID: 37483190 PMCID: PMC10357553 DOI: 10.1021/acsomega.3c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
A rapid and sensitive approach for the detection of endopeptidases via a new analyte-triggered mutual emancipation of linker-immobilized enzymes (AMELIE) mechanism has been developed and demonstrated using a matrix metallopeptidase, a collagenase, as the model endopeptidase analyte. AMELIE involves an autocatalytic loop created by a pair of selected enzymes immobilized on solid substrates via linkers with specific sites that can be proteolyzed by one another. These bound enzymes are spatially separated so that they cannot act upon their corresponding substrates until the introduction of the target endopeptidase analyte that can also cleave one of the linkers. This triggers the self-sustained loop of enzymatic activities to emancipate all the immobilized enzymes. In this proof of concept, signal transduction was achieved by a colorimetric horseradish peroxidase-tetramethylbenzidine (HRP-TMB-H2O2) reaction with HRP that are also being immobilized by one of the linkers. The pair of immobilized enzymes were collagenase and alginate lyase, and they were immobilized by an alginate linker and a short peptide chain containing the amino acid sequence of Leu-Gly-Pro-Ala for collagenase. A detection limit of 2.5 pg collagenase mL-1 with a wide linear range up to 4 orders of magnitude was achieved. The AMELIE biosensor can detect extracellular collagenase in the supernatant of various bacteria cultures, with a sensitivity as low as 103 cfu mL-1 of E. coli. AMELIE can readily be adapted to provide the sensitive detection of other endopeptidases.
Collapse
Affiliation(s)
- Chuanwen Zhou
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaomin Li
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sze Wing Tang
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chunxi Liu
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Michael H. W. Lam
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yun Wah Lam
- Department
of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
15
|
Bressler EM, Adams S, Liu R, Colson YL, Wong WW, Grinstaff MW. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics. Clin Transl Med 2023; 13:e1244. [PMID: 37386762 PMCID: PMC10310979 DOI: 10.1002/ctm2.1244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The intersection of synthetic biology and biomaterials promises to enhance safety and efficacy in novel therapeutics. Both fields increasingly employ Boolean logic, which allows for specific therapeutic outputs (e.g., drug release, peptide synthesis) in response to inputs such as disease markers or bio-orthogonal stimuli. Examples include stimuli-responsive drug delivery devices and logic-gated chimeric antigen receptor (CAR) T cells. In this review, we explore recent manuscripts highlighting the potential of synthetic biology and biomaterials with Boolean logic to create novel and efficacious living therapeutics. MAIN BODY Collaborations in synthetic biology and biomaterials have led to significant advancements in drug delivery and cell therapy. Borrowing from synthetic biology, researchers have created Boolean-responsive biomaterials sensitive to multiple inputs including pH, light, enzymes and more to produce functional outputs such as degradation, gel-sol transition and conformational change. Biomaterials also enhance synthetic biology, particularly CAR T and adoptive T cell therapy, by modulating therapeutic immune cells in vivo. Nanoparticles and hydrogels also enable in situ generation of CAR T cells, which promises to drive down production costs and expand access to these therapies to a larger population. Biomaterials are also used to interface with logic-gated CAR T cell therapies, creating controllable cellular therapies that enhance safety and efficacy. Finally, designer cells acting as living therapeutic factories benefit from biomaterials that improve biocompatibility and stability in vivo. CONCLUSION By using Boolean logic in both cellular therapy and drug delivery devices, researchers have achieved better safety and efficacy outcomes. While early projects show incredible promise, coordination between these fields is ongoing and growing. We expect that these collaborations will continue to grow and realize the next generation of living biomaterial therapeutics.
Collapse
Affiliation(s)
- Eric M. Bressler
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Sarah Adams
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Rong Liu
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yolonda L. Colson
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
- Department of Chemistry and Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
16
|
Kundak H, Bilisik K. Development of Three-Dimensional (3D) Biodegradable Polyglycolic Acid Fiber (PGA) Preforms for Scaffold Applications: Experimental Patterning and Fiber Volume Fraction-Porosity Modeling Study. Polymers (Basel) 2023; 15:polym15092083. [PMID: 37177227 PMCID: PMC10181393 DOI: 10.3390/polym15092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Three-dimensional (3D) biodegradable polyglycolic acid fiber (PGA) preforms were developed as temporary scaffolds for three-dimensional tissue regeneration applications. Three-dimensional biodegradable polyglycolic acid fiber (PGA) preforms including various degrees of interlaced structures called 3D plain, semi-interlaced, and orthogonal woven preforms were designed. Analytical relations and finite element model-based software (TexGen) on fiber volume fraction and porosity fraction were proposed to predict scaffolds' stiffness and strength properties considering micromechanics relations. It was revealed that yarn-to-yarn space, density, and angles of all 3D PGA fiber preforms were heterogeneous and demonstrated direction-dependent features (anisotropy). Total fiber volume fractions (Vfp) and porosity fraction (Vtpr) predicted by analytic and numerical modelling of all 3D scaffolds showed some deviations compared to the measured values. This was because yarn cross-sections in the scaffolds were changed from ideal circular yarn (fiber TOW) geometry to high-order ellipse (lenticular) due to inter-fiber pressure generated under a tensile-based macrostress environment during preform formation. Z-yarn modulus (Ez-yarn) and strength (σz-yarn) were probably critical values due to strong stiffness and strength in the through-the-thickness direction where hydrogel modulus and strengths were negligibly small. Morphology of the scaffold showed that PGA fiber sets in the preform were locally distorted, and they appeared as inconsistent and inhomogeneous continuous fiber forms. Additionally, various porosity shapes in the preform based on the virtual model featured complex shapes from nearly trapezoidal beams to partial or concave rectangular beams and ellipsoid rectangular cylinders. It was concluded that 3D polyglycolic acid fiber preforms could be a temporary supportive substrate for 3D tissue regeneration because cells in the scaffold's thickness can grow via through-the-thickness fiber (z-yarn), including various possible mechanobiology mechanisms.
Collapse
Affiliation(s)
- Hikmet Kundak
- Nano/Micro Fiber Preform Design and Composite Laboratory, Department of Textile Engineering, Faculty of Engineering, Erciyes University, Talas 38039, Kayseri, Turkey
| | - Kadir Bilisik
- Nano/Micro Fiber Preform Design and Composite Laboratory, Department of Textile Engineering, Faculty of Engineering, Erciyes University, Talas 38039, Kayseri, Turkey
- Nanotechnology Application and Research Centre (ERNAM), Erciyes University, Talas 38039, Kayseri, Turkey
| |
Collapse
|
17
|
Song YT, Dong L, Hu JG, Liu PC, Jiang YL, Zhou L, Wang M, Tan J, Li YX, Zhang QY, Zou CY, Zhang XZ, Zhao LM, Nie R, Zhang Y, Li-Ling J, Xie HQ. Application of genipin-crosslinked small intestine submucosa and urine-derived stem cells for the prevention of intrauterine adhesion in a rat model. COMPOSITES PART B: ENGINEERING 2023; 250:110461. [DOI: 10.1016/j.compositesb.2022.110461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
18
|
Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (Beijing) 2023; 4:e194. [PMID: 36582305 PMCID: PMC9790048 DOI: 10.1002/mco2.194] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/26/2022] Open
Abstract
3D bioprinting or additive manufacturing is an emerging innovative technology revolutionizing the field of biomedical applications by combining engineering, manufacturing, art, education, and medicine. This process involved incorporating the cells with biocompatible materials to design the required tissue or organ model in situ for various in vivo applications. Conventional 3D printing is involved in constructing the model without incorporating any living components, thereby limiting its use in several recent biological applications. However, this uses additional biological complexities, including material choice, cell types, and their growth and differentiation factors. This state-of-the-art technology consciously summarizes different methods used in bioprinting and their importance and setbacks. It also elaborates on the concept of bioinks and their utility. Biomedical applications such as cancer therapy, tissue engineering, bone regeneration, and wound healing involving 3D printing have gained much attention in recent years. This article aims to provide a comprehensive review of all the aspects associated with 3D bioprinting, from material selection, technology, and fabrication to applications in the biomedical fields. Attempts have been made to highlight each element in detail, along with the associated available reports from recent literature. This review focuses on providing a single platform for cancer and tissue engineering applications associated with 3D bioprinting in the biomedical field.
Collapse
Affiliation(s)
- Swikriti Tripathi
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Subham Shekhar Mandal
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sudepta Bauri
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
19
|
Marciano Y, del Solar V, Nayeem N, Dave D, Son J, Contel M, Ulijn RV. Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. J Am Chem Soc 2023; 145:234-246. [PMID: 36542079 PMCID: PMC10720394 DOI: 10.1021/jacs.2c09820] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds 1 and 2) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge. Peptide sequence strongly dictates the supramolecular packing within the aromatic core, which in turn dictates drug loading. Anionic peptide filaments can effectively load 1, and to a lesser extent 2, while their cationic counterparts could not, collectively demonstrating that loading efficiency is dictated by both aromatic and electrostatic (mis)matching between drug and peptide. Peptide nanofilaments were nontoxic to cancerous and noncancerous cells. By contrast, those loaded with 1 and 2 displayed enhanced cytotoxicity in comparison to 1 and 2 alone, when exposed to Caki-1 and MDA-MB-231 cancerous cell lines, while no cytotoxicity was observed in noncancerous lung fibroblasts, IMR-90. We propose that the enhanced in vitro activity results from the enhanced proteolytic activity in the vicinity of the cancer cells, thereby breaking the filaments into drug-bound peptide fragments that are taken up by these cells, resulting in enhanced cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Virginia del Solar
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dhwanit Dave
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Rein V. Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Katz RR, West JL. Tunable PEG Hydrogels for Discerning Differential Tumor Cell Response to Biomechanical Cues. Adv Biol (Weinh) 2022; 6:e2200084. [PMID: 35996804 DOI: 10.1002/adbi.202200084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Increased extracellular matrix (ECM) density in the tumor microenvironment has been shown to influence aspects of tumor progression such as proliferation and invasion. Increased matrix density means cells experience not only increased mechanical properties, but also a higher density of bioactive sites. Traditional in vitro ECM models like Matrigel and collagen do not allow these properties to be investigated independently. In this work, a poly(ethylene glycol)-based scaffold is used which modifies with integrin-binding sites for cell attachment and matrix metalloproteinase 2 and 9 sensitive sites for enzyme-mediated degradation. The polymer backbone density and binding site concentration are independently tuned and the effect each of these properties and their interaction have on the proliferation, invasion, and focal complex formation of two different tumor cell lines is evaluated. It is seen that the cell line of epithelial origin (Hs 578T, triple negative breast cancer) proliferates more, invades less, and forms more mature focal complexes in response to an increase in matrix adhesion sites. Conversely, the cell line of mesenchymal origin (HT1080, fibrosarcoma) proliferates more in 2D culture but less in 3D culture, invades less, and forms more mature focal complexes in response to an increase in matrix stiffness.
Collapse
Affiliation(s)
- Rachel R Katz
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA.,Department of Biomedical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, VA, 22904, USA
| |
Collapse
|
21
|
Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022; 8:768. [PMID: 36547292 PMCID: PMC9777866 DOI: 10.3390/gels8120768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.
Collapse
Affiliation(s)
- Katharina Völlmecke
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rowshon Afroz
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Sascha Bierbach
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lee Josephine Brenker
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sebastian Frücht
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alexandra Glass
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ryland Giebelhaus
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Axel Hoppe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michal Lazarek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Lukas Rabbe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Longfei Song
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Andrea Velasco Suarez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michael Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Dirk Kuckling
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
22
|
Austin MJ, Schunk H, Watkins C, Ling N, Chauvin J, Morton L, Rosales AM. Fluorescent Peptomer Substrates for Differential Degradation by Metalloproteases. Biomacromolecules 2022; 23:4909-4923. [PMID: 36269900 DOI: 10.1021/acs.biomac.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteases, especially MMPs, are attractive biomarkers given their central role in both physiological and pathological processes. Distinguishing MMP activity with degradable substrates, however, is a difficult task due to overlapping substrate specificity profiles. Here, we developed a system of peptomers (peptide-peptoid hybrids) to probe the impact of non-natural residues on MMP specificity for an MMP peptide consensus sequence. Peptoids are non-natural, N-substituted glycines with a large side-chain diversity. Given the presence of a hallmark proline residue in the P3 position of MMP consensus sequences, we hypothesized that peptoids may offer N-substituted alternatives to generate differential interactions with MMPs. To investigate this hypothesis, peptomer substrates were exposed to five different MMPs, as well as bacterial collagenase, and monitored by fluorescence resonance energy transfer and liquid chromatography-mass spectrometry to determine the rate of cleavage and the composition of degraded fragments, respectively. We found that peptoid residues are well tolerated in the P3 and P3' substrate sites and that the identity of the peptoid in these sites displays a moderate influence on the rate of cleavage. However, peptoid residues were even better tolerated in the P1 substrate site where activity was more strongly correlated with side-chain identity than side-chain position. All MMPs explored demonstrated similar trends in specificity for the peptomers but exhibited different degrees of variability in proteolytic rate. These kinetic profiles served as "fingerprints" for the proteases and yielded separation by multivariate data analysis. To further demonstrate the practical application of this tunability in degradation kinetics, peptomer substrates were tethered into hydrogels and released over distinct timescales. Overall, this work represents a significant step toward the design of probes that maximize differential MMP behavior and presents design rules to tune degradation kinetics with peptoid substitutions, which has promising implications for diagnostic and prognostic applications using array-based sensors.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Hattie Schunk
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States.,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Carolyn Watkins
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Natalie Ling
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Jeremy Chauvin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Logan Morton
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
23
|
McGlynn JA, Schultz KM. Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus. SOFT MATTER 2022; 18:6340-6352. [PMID: 35968833 DOI: 10.1039/d2sm00717g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are instrumental in the wound healing process. They migrate to wounds from their native niche in response to chemical signals released during the inflammatory phase of healing. At the wound, hMSCs downregulate inflammation and regulate tissue regeneration. Delivering additional hMSCs to wounds using cell-laden implantable hydrogels has the potential to improve healing outcomes and restart healing in chronic wounds. For these materials to be effective, cells must migrate from the scaffold into the native tissue. This requires cells to traverse a step-change in material properties at the implant-tissue interface. Migration of cells in material with highly varying properties is not well characterized. We measure 3D encapsulated hMSC migration and remodeling in a well-characterized hydrogel with a step-change in stiffness. This cell-degradable hydrogel is composed of 4-arm poly(ethylene glycol)-norbornene cross-linked with an enzymatically-degradable peptide. The scaffold is made with two halves of different stiffnesses separated by an interface where stiffness changes rapidly. We characterize changes in structure and rheology of the pericellular region using multiple particle tracking microrheology (MPT). MPT measures Brownian motion of embedded particles and relates it to material rheology. We measure more remodeling in the soft region of the hydrogel than the stiff region on day 1 post-encapsulation and similar remodeling everywhere on day 6. In the interface region, we measure hMSC-mediated remodeling along the interface and migration towards the stiff side of the scaffold. These results can improve materials designed for cell delivery from implants to a wound to enhance healing.
Collapse
Affiliation(s)
- John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, PA, USA.
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, PA, USA.
| |
Collapse
|
24
|
Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23084421. [PMID: 35457239 PMCID: PMC9031066 DOI: 10.3390/ijms23084421] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.
Collapse
|
25
|
Katz RR, West JL. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels. Cancers (Basel) 2022; 14:cancers14051225. [PMID: 35267532 PMCID: PMC8909517 DOI: 10.3390/cancers14051225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumors exist in a complex, three-dimensional environment which helps them to survive, grow, metastasize, and resist drug treatment. Simple, reproducible, in vitro models of this environment are necessary in order to better understand tumor behavior. Naturally derived polymers are great 3D cell culture substrates, but they often lack the tunability and batch-to-batch consistency which can be found in synthetic polymer systems. In this review, we describe the current state of and future directions for tumor microenvironment models in synthetic hydrogels. Abstract The tumor microenvironment (TME) plays a determining role in everything from disease progression to drug resistance. As such, in vitro models which can recapitulate the cell–cell and cell–matrix interactions that occur in situ are key to the investigation of tumor behavior and selecting effective therapeutic drugs. While naturally derived matrices can retain the dimensionality of the native TME, they lack tunability and batch-to-batch consistency. As such, many synthetic polymer systems have been employed to create physiologically relevant TME cultures. In this review, we discussed the common semi-synthetic and synthetic polymers used as hydrogel matrices for tumor models. We reviewed studies in synthetic hydrogels which investigated tumor cell interactions with vasculature and immune cells. Finally, we reviewed the utility of these models as chemotherapeutic drug-screening platforms, as well as the future directions of the field.
Collapse
Affiliation(s)
- Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Correspondence:
| |
Collapse
|
26
|
MacPherson DS, McPhee SA, Zeglis BM, Ulijn RV. The Impact of Tyrosine Iodination on the Aggregation and Cleavage Kinetics of MMP-9-Responsive Peptide Sequences. ACS Biomater Sci Eng 2022; 8:579-587. [PMID: 35050574 DOI: 10.1021/acsbiomaterials.1c01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase (MMP) enzymes are over-expressed by some metastatic cancers, in which they are responsible for the degradation and remodeling of the extracellular matrix. In recent years, MMPs have emerged as promising targets for enzyme-responsive diagnostic probes because oligopeptides can be designed to be selectively hydrolyzed by exposure to these enzymes. With the ultimate goal of developing radio-iodinated peptides as supramolecular building blocks for MMP-sensitive tools for nuclear imaging and therapy, we designed three MMP-9-responsive peptides containing either tyrosine or iodotyrosine to assess the impact of iodotyrosine introduction to the peptide structure and cleavage kinetics. We found that the peptides containing iodotyrosine underwent more rapid and more complete hydrolysis by MMP-9. While the peptides under investigation were predominantly disordered, it was found that iodination increased the degree of aromatic residue-driven aggregation of the peptides. We determined that these iodination-related trends stem from the improved overall intramolecular order through H- and halogen bonding, in addition to intermolecular organization of the self-assembled peptides due to steric and electrostatic effects introduced by the halogenated tyrosine. These fundamental observations provide insights for the development of enzyme-triggered peptide aggregation tools for localized radioactive iodine-based tumor imaging.
Collapse
Affiliation(s)
- Douglas S MacPherson
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10028, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Scott A McPhee
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10028, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Rein V Ulijn
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10028, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| |
Collapse
|
27
|
Jha A, Moore E. Collagen-derived peptide, DGEA, inhibits pro-inflammatory macrophages in biofunctional hydrogels. JOURNAL OF MATERIALS RESEARCH 2021; 37:77-87. [PMID: 35185277 PMCID: PMC8810474 DOI: 10.1557/s43578-021-00423-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Macrophages are innate immune cells that play important roles in wound healing. Particularly, M1 macrophages are considered pro-inflammatory and promote initial phases of inflammation. Long-term exposure to inflammatory stimuli causes an increase in M1 macrophages, which contributes to chronic inflammation. Activated M1 macrophages have been shown to upregulate integrin α2β1 expression. To interfere with α2β1 binding, we designed a biofunctional hydrogel utilizing a collagen I-derived peptide, DGEA (Asp-Gly-Glu-Ala). We hypothesize that M1 macrophage activation can be reduced in the presence of DGEA. Effects of DGEA on M1 macrophages were studied via soluble delivery and immobilization within poly(ethylene glycol) (PEG) hydrogels. We demonstrate that M1 macrophage activation is reduced both via soluble delivery of DGEA in 2D and via immobilized DGEA in a 3D PEG-DGEA hydrogel. This novel biomaterial can manipulate inflammatory macrophage activation and can be applied to prevent chronic inflammatory conditions via macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
28
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
29
|
Daviran M, McGlynn JA, Catalano JA, Knudsen HE, Druggan KJ, Croland KJ, Stratton A, Schultz KM. Measuring the Effects of Cytokines on the Modification of Pericellular Rheology by Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2021; 7:5762-5774. [PMID: 34752080 DOI: 10.1021/acsbiomaterials.1c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Implantable hydrogels are designed to treat wounds by providing structure and delivering additional cells to damaged tissue. These materials must consider how aspects of the native wound, including environmental chemical cues, affect and instruct delivered cells. One cell type researchers are interested in delivering are human mesenchymal stem cells (hMSCs) due to their importance in healing. Wound healing involves recruiting and coordinating a variety of cells to resolve a wound. hMSCs coordinate the cellular response and are signaled to the wound by cytokines, including transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α), present in vivo. These cytokines change hMSC secretions, regulating material remodeling. TGF-β, present from inflammation through remodeling, directs hMSCs to reorganize collagen, increasing extracellular matrix (ECM) structure. TNF-α, present primarily during inflammation, cues hMSCs to clear debris and degrade ECM. Because cytokines change how hMSCs degrade their microenvironment and are naturally present in the wound, they also affect how hMSCs migrate out of the scaffold to conduct healing. Therefore, the effects of cytokines on hMSC remodeling are important when designing materials for cell delivery. In this work, we encapsulate hMSCs in a polymer-peptide hydrogel and incubate the scaffolds in media with TGF-β or TNF-α at concentrations similar to those in wounds. Multiple particle tracking microrheology (MPT) measures hMSC-mediated scaffold degradation in response to these cytokines, which mimics aspects of the in vivo microenvironment post-implantation. MPT uses video microscopy to measure Brownian motion of particles in a material, quantifying structure and rheology. Using MPT, we measure increased hMSC-mediated remodeling when cells are exposed to TNF-α and decreased remodeling after exposure to TGF-β when compared to untreated hMSCs. This agrees with previous studies that measure: (1) TNF-α encourages matrix reorganization and (2) TGF-β signals the formation of new matrix. These results enable material design that anticipates changes in remodeling after implantation, improving control over hMSC delivery and healing.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Jenna A Catalano
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Hannah E Knudsen
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Amanda Stratton
- Department of Bioengineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
30
|
Clark AT, Bennett A, Kraus E, Pogoda K, Cēbers A, Janmey P, Turner KT, Corbin EA, Cheng X. Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. MULTIFUNCTIONAL MATERIALS 2021; 4:035001. [PMID: 36860552 PMCID: PMC9974181 DOI: 10.1088/2399-7532/ac1b7e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report tuning of the moduli and surface roughness of magnetorheological elastomers (MREs) by varying applied magnetic field. Ultrasoft MREs are fabricated using a physiologically relevant commercial polymer, Sylgard™ 527, and carbonyl iron powder (CIP). We found that the shear storage modulus, Young's modulus, and root-mean-square surface roughness are increased by ~41×, ~11×, and ~11×, respectively, when subjected to a magnetic field strength of 95.5 kA m-1. Single fit parameter equations are presented that capture the tunability of the moduli and surface roughness as a function of CIP volume fraction and magnetic field strength. These magnetic field-induced changes in the mechanical moduli and surface roughness of MREs are key parameters for biological applications.
Collapse
Affiliation(s)
- Andy T Clark
- Department of Physics, Bryn Mawr College, Bryn Mawr, PA, United States of America
| | - Alexander Bennett
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Emile Kraus
- Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Katarzyna Pogoda
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Andrejs Cēbers
- Department of Physics, University of Latvia, Riga, Latvia
| | - Paul Janmey
- Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin T Turner
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Elise A Corbin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States of America
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States of America
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States of America
| | - Xuemei Cheng
- Department of Physics, Bryn Mawr College, Bryn Mawr, PA, United States of America
| |
Collapse
|
31
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
32
|
Piluso S, Skvortsov GA, Altunbek M, Afghah F, Khani N, Koç B, Patterson J. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication 2021; 13. [PMID: 34192670 DOI: 10.1088/1758-5090/ac0ff0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process in which the combination of biomaterials and living cells, referred to as a bioink, is deposited layer-by-layer to form biologically active 3D tissue constructs. Recent advancements in the field show that the success of this technology requires the development of novel biomaterials or the improvement of existing bioinks. Polyethylene glycol (PEG) is one of the well-known synthetic biomaterials and has been commonly used as a photocrosslinkable bioink for bioprinting; however, other types of cell-friendly crosslinking mechanisms to form PEG hydrogels need to be explored for bioprinting and tissue engineering. In this work, we proposed micro-capillary based bioprinting of a novel molecularly engineered PEG-based bioink that transiently incorporates low molecular weight gelatin (LMWG) fragments. The rheological properties and release profile of the LMWG fragments were characterized, and their presence during hydrogel formation had no effect on the swelling ratio or sol fraction when compared to PEG hydrogels formed without the LMWG fragments. For bioprinting, PEG was first functionalized with cell-adhesive RGD ligands and was then crosslinked using protease-sensitive peptides via a Michael-type addition reaction inside the micro-capillary. The printability was assessed by the analysis of extrudability, shape fidelity, and printing accuracy of the hydrogel filaments after the optimization of the gelation conditions of the PEG-based bioink. The LMWG fragments supplemented into the bioink allowed the extrusion of smooth and uniform cylindrical strands of the hydrogel and improved shape fidelity and printing accuracy. Encapsulated cells in both bioprinted and non-bioprinted PEG-based hydrogels showed high viability and continued to proliferate over time in culture with a well-defined cell morphology depending on the presence of the cell adhesive peptide RGD. The presented micro-capillary based bioprinting process for a novel PEG-based bioink can be promising to construct complex 3D structures with micro-scale range and spatiotemporal variations without using any cytotoxic photoinitiator, UV light, or polymer support.
Collapse
Affiliation(s)
- Susanna Piluso
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, 3000 Leuven, Belgium.,Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium.,SentryX, Yalelaan 54, 3584 CM Utrecht, The Netherlands
| | - Gözde Akdeniz Skvortsov
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Mine Altunbek
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Ferdows Afghah
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Navid Khani
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Bahattin Koç
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| | - Jennifer Patterson
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, 3000 Leuven, Belgium.,Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium.,Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
| |
Collapse
|
33
|
Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials 2021; 276:121020. [PMID: 34280822 DOI: 10.1016/j.biomaterials.2021.121020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Organoids are a new class of biological model systems that have garnered significant interest in the life sciences. When provided with the proper 3D matrix and biochemical factors, stem cells can self-organize and form tissue-specific organoids. Thus far, there has been a substantial effort to identify soluble niche components essential for organoid culture; however, the role of the solid extracellular matrix (ECM) as an essential element of the niche is still largely lacking. In this review, we discuss the importance of the ECM in intestinal, hepatic, and pancreatic organoid culture and how biomaterial-based approaches can be used to probe different ECM properties required for more physiologically and translationally relevant organoid models.
Collapse
Affiliation(s)
- S Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland
| | - N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
34
|
Chakraborty M, Haag SL, Bernards MT, Waynant KV. Synthesis of a zwitterionic N-Ser-Ser-C dimethacrylate cross-linker and evaluation in polyampholyte hydrogels. Biomater Sci 2021; 9:5508-5518. [PMID: 34232245 DOI: 10.1039/d1bm00603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyampholyte hydrogels are attractive materials for tissue engineering scaffolds as they offer a wide variety of features including nonfouling, selective protein delivery, and tunable physical characteristics. However, to improve the potential performance of these materials for in vivo applications, there is a need for a higher diversity of zwitterionic cross-linker species to replace commonly used ethylene glycol (EG) based chemistries. Towards this end, the synthesis of a dipeptide based zwitterionic cross-linker, N-Ser-Ser-C dimethacrylate (S-S) from N-Boc-l-serine is presented. The strategy utilized a convergent coupling of methacrylated serine partners followed by careful global deprotection to yield the zwitterionic cross-linker with good overall yields. This novel cross-linker was incorporated into a polyampholyte hydrogel and its physical properties and biocompatibility were compared against a polyampholyte hydrogel synthesized with an EG-based cross-linker. The S-S cross-linked hydrogel demonstrated excellent nonfouling performance, while promoting enhanced cellular adhesion to fibrinogen delivered from the hydrogel. Therefore, the results suggest that the S-S cross-linker will demonstrate superior future performance for in vivo applications.
Collapse
Affiliation(s)
| | - Stephanie L Haag
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.
| | | |
Collapse
|
35
|
Photo-Polymerization Damage Protection by Hydrogen Sulfide Donors for 3D-Cell Culture Systems Optimization. Int J Mol Sci 2021; 22:ijms22116095. [PMID: 34198821 PMCID: PMC8201135 DOI: 10.3390/ijms22116095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Photo-polymerized hydrogels are ideally suited for stem-cell based tissue regeneration and three dimensional (3D) bioprinting because they can be highly biocompatible, injectable, easy to use, and their mechanical and physical properties can be controlled. However, photo-polymerization involves the use of potentially toxic photo-initiators, exposure to ultraviolet light radiation, formation of free radicals that trigger the cross-linking reaction, and other events whose effects on cells are not yet fully understood. The purpose of this study was to examine the effects of hydrogen sulfide (H2S) in mitigating cellular toxicity of photo-polymerization caused to resident cells during the process of hydrogel formation. H2S, which is the latest discovered member of the gasotransmitter family of gaseous signalling molecules, has a number of established beneficial properties, including cell protection from oxidative damage both directly (by acting as a scavenger molecule) and indirectly (by inducing the expression of anti-oxidant proteins in the cell). Cells were exposed to slow release H2S treatment using pre-conditioning with glutathione-conjugated-garlic extract in order to mitigate toxicity during the photo-polymerization process of hydrogel formation. The protective effects of the H2S treatment were evaluated in both an enzymatic model and a 3D cell culture system using cell viability as a quantitative indicator. The protective effect of H2S treatment of cells is a promising approach to enhance cell survival in tissue engineering applications requiring photo-polymerized hydrogel scaffolds.
Collapse
|
36
|
Moghaddam AS, Khonakdar HA, Arjmand M, Jafari SH, Bagher Z, Moghaddam ZS, Chimerad M, Sisakht MM, Shojaei S. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells. ACS APPLIED BIO MATERIALS 2021; 4:4049-4070. [PMID: 35006822 DOI: 10.1021/acsabm.1c00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Hossein Ali Khonakdar
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany.,Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mohammadreza Chimerad
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 19379-57511, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3000 DR, The Netherlands
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, PO Box 13185/768, Tehran 15689-37813, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, PO Box 13185-768, Tehran 15689-37813, Iran
| |
Collapse
|
37
|
Lau CML, Jahanmir G, Yu Y, Chau Y. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel. J Control Release 2021; 335:75-85. [PMID: 33971140 DOI: 10.1016/j.jconrel.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Using hydrogels to control the long-term release of protein remains challenging, especially for in-situ forming formulations. The uncontrollable burst release in the initial phase, the halted release in the subsequent phase, and the undesired drug dumping at the late stage are some obstacles hydrogel-based depots commonly encounter. In this study, we report hydrolyzable dextran-based hydrogels crosslinked by Michael addition to demonstrate a systematic solution to solve these problems. First, the polymer concentration was used as the critical parameter to control the proportion of releasable versus physically trapped protein molecules in the initial hydrogel meshwork. Subsequently, the dynamic change of the hydrogel meshwork was modulated by the crosslinking density and the cleavage rate of ester linkers. To this end, we designed and synthesized a series of ester linkers with hydrolytic half-life ranging from 4 h to 4 months and incorporate them into the hydrogel. Controlled release was demonstrated for model proteins varied in size, including lysozyme (14 kDa), bovine serum albumin (66 kDa), immunoglobulin G (150 kDa), and bevacizumab (149 kDa). In particular, sustained release of IgG ranging from 10 days to 8 months was achieved. Lastly, a tunable multi-phase release profile was made feasible by incorporating multiple ester linkers into one hydrogel formulation. The linker's half-life determined each phase's release duration, and the linkers' mixing ratio determined the corresponding release fraction. The reported hydrogel design engenders a versatile platform to address the needs for long-term and readily adjustable protein release for biomedical applications.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Pleryon Therapeutics Ltd., Shenzhen, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
38
|
Herting SM, Monroe MBB, Weems AC, Briggs ST, Fletcher GK, Blair SE, Hatch CJ, Maitland DJ. In vitro cytocompatibility testing of oxidative degradation products. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211003115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Implantable medical devices must undergo thorough evaluation to ensure safety and efficacy before use in humans. If a device is designed to degrade, it is critical to understand the rate of degradation and the degradation products that will be released. Oxidative degradation is typically modeled in vitro by immersing materials or devices in hydrogen peroxide, which can limit further analysis of degradation products in many cases. Here we demonstrate a novel approach for testing the cytocompatibility of degradation products for oxidatively-degradable biomaterials where the materials are exposed to hydrogen peroxide, and then catalase enzyme is used to convert the hydrogen peroxide to water and oxygen so that the resulting aqueous solution can be added to cell culture media. To validate our results, expected degradation products are also synthesized then added to cell culture media. We used these methods to evaluate the cytocompatibility of degradation products from an oxidatively-degradable shape memory polyurethane designed in our lab and found that the degradation of these polymers is unlikely to cause a cytotoxic response in vivo based on the guidance provided by ISO 10993-5. These methods may also be applicable to other biocompatibility tests such as tests for mutagenicity or systemic toxicity, and evaluations of cell proliferation, migration, or gene and protein expression.
Collapse
Affiliation(s)
- Scott M Herting
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mary Beth B Monroe
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Andrew C Weems
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sam T Briggs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Grace K Fletcher
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Samuel E Blair
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Christopher J Hatch
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
39
|
Teixeira MO, Antunes JC, Felgueiras HP. Recent Advances in Fiber-Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics (Basel) 2021; 10:248. [PMID: 33801438 PMCID: PMC8001440 DOI: 10.3390/antibiotics10030248] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber-hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber-hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.
Collapse
Affiliation(s)
| | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.O.T.); (J.C.A.)
| |
Collapse
|
40
|
McGlynn JA, Druggan KJ, Croland KJ, Schultz KM. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. Acta Biomater 2021; 121:405-417. [PMID: 33278674 DOI: 10.1016/j.actbio.2020.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Biological materials have length scale dependent structure enabling complex cell-material interactions and driving cellular processes. Synthetic biomaterials are designed to mimic aspects of these biological materials for applications including enhancing cell delivery during wound healing. To mimic native microenvironments, we must understand how cells manipulate their surroundings over several length scales. Our work characterizes length scale dependent rheology in a well-established 3D cell culture platform for human mesenchymal stem cells (hMSCs). hMSCs re-engineer their microenvironment through matrix metalloproteinase (MMP) secretions and cytoskeletal tension. Remodeling occurs across length scales: MMPs degrade cross-links on nanometer scales resulting in micrometer-sized paths that hMSCs migrate through, eventually resulting in bulk scaffold degradation. We use multiple particle tracking microrheology (MPT) and bi-disperse MPT to characterize hMSC-mediated length scale dependent pericellular remodeling. MPT measures particle Brownian motion to calculate rheological properties. We use MPT to measure larger length scales with 4.5 µm particles. Bi-disperse MPT simultaneously measures two different length scales (0.5 and 2.0 µm). We measure that hMSCs preferentially remodel larger length scales measured as a higher mobility of larger particles. We inhibit cytoskeletal tension by inhibiting myosin-II and no longer measure this difference in particle mobility. This indicates that cytoskeletal tension is the source of cell-mediated length scale dependent rheological changes. Particle mobility correlates with cell speed across length scales, relating material rheology to cell behavior. These results quantify length scale dependent pericellular remodeling and provide insight into how these microenvironments can be designed into materials to direct cell behavior.
Collapse
Affiliation(s)
- John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
41
|
Chapla R, Alhaj Abed M, West J. Modulating Functionalized Poly(ethylene glycol) Diacrylate Hydrogel Mechanical Properties through Competitive Crosslinking Mechanics for Soft Tissue Applications. Polymers (Basel) 2020; 12:E3000. [PMID: 33339216 PMCID: PMC7766244 DOI: 10.3390/polym12123000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Local mechanical stiffness influences cell behavior, and thus cell culture scaffolds should approximate the stiffness of the tissue type from which the cells are derived. In synthetic hydrogels, this has been difficult to achieve for very soft tissues such as neural. This work presents a method for reducing the stiffness of mechanically and biochemically tunable synthetic poly(ethylene glycol) diacrylate hydrogels to within the soft tissue stiffness regime by altering the organization of the crosslinking sites. A soluble allyl-presenting monomer, which has a higher propensity for chain termination than acrylate monomers, was introduced into the PEG-diacrylate hydrogel precursor solution before crosslinking, resulting in acrylate-allyl competition and a reduction in gel compressive modulus from 5.1 ± 0.48 kPa to 0.32 ± 0.09 kPa. Both allyl monomer concentration and chemical structure were shown to influence the effectiveness of competition and change in stiffness. Fibroblast cells demonstrated a 37% reduction in average cell spread area on the softest hydrogels produced as compared to cells on control hydrogels, while the average percentage of neural cells extending neurites increased by 41% on these hydrogels, demonstrating the potential for this technology to serve as a soft tissue culture system.
Collapse
Affiliation(s)
| | | | - Jennifer West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.C.); (M.A.A.)
| |
Collapse
|
42
|
Coburn PT, Herbay AC, Berrini M, Li-Jessen NYK. An in vitro assessment of the response of THP-1 macrophages to varying stiffness of a glycol-chitosan hydrogel for vocal fold tissue engineering applications. J Biomed Mater Res A 2020; 109:1337-1352. [PMID: 33112473 DOI: 10.1002/jbm.a.37125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Abstract
The physical properties of a biomaterial play an essential role in regulating immune and reparative activities within the host tissue. This study aimed to evaluate the immunological impact of material stiffness of a glycol-chitosan hydrogel designed for vocal fold tissue engineering. Hydrogel stiffness was varied via the concentration of glyoxal cross-linker applied. Hydrogel mechanical properties were characterized through atomic force microscopy and shear plate rheometry. Using a transwell setup, macrophages were co-cultured with human vocal fold fibroblasts that were embedded within the hydrogel. Macrophage viability and cytokine secretion were evaluated at 3, 24, and 72 hr of culture. Flow cytometry was applied to evaluate macrophage cell surface markers after 72 hr of cell culture. Results indicated that increasing hydrogel stiffness was associated with increased anti-inflammatory activity compared to relevant controls. In addition, increased anti-inflammatory activity was observed in hydrogel co-cultures. This study highlighted the importance of hydrogel stiffness from an immunological viewpoint when designing novel vocal fold hydrogels.
Collapse
Affiliation(s)
| | | | - Mattia Berrini
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Nicole Y K Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Canada
| |
Collapse
|
43
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
44
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
45
|
Abstract
The specific microenvironment that cells reside in fundamentally impacts their broader function in tissues and organs. At its core, this microenvironment is composed of precise arrangements of cells that encourage homotypic and heterotypic cell-cell interactions, biochemical signaling through soluble factors like cytokines, hormones, and autocrine, endocrine, or paracrine secretions, and the local extracellular matrix (ECM) that provides physical support and mechanobiological stimuli, and further regulates biochemical signaling through cell-ECM interactions like adhesions and growth factor sequestering. Each cue provided in the microenvironment dictates cellular behavior and, thus, overall potential to perform tissue and organ specific function. It follows that in order to recapitulate physiological cell responses and develop constructs capable of replacing damaged tissue, we must engineer the cellular microenvironment very carefully. Many great strides have been made toward this goal using various three-dimensional (3D) tissue culture scaffolds and specific media conditions. Among the various 3D biomimetic scaffolds, synthetic hydrogels have emerged as a highly tunable and tissue-like biomaterial well-suited for implantable tissue-engineered constructs. Because many synthetic hydrogel materials are inherently bioinert, they minimize unintentional cell responses and thus are good candidates for long-term implantable grafts, patches, and organs. This review will provide an overview of commonly used biomaterials for forming synthetic hydrogels for tissue engineering applications and techniques for modifying them to with bioactive properties to elicit the desired cell responses.
Collapse
Affiliation(s)
- Asli Z Unal
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
| |
Collapse
|
46
|
Bao G, Jiang T, Ravanbakhsh H, Reyes A, Ma Z, Strong M, Wang H, Kinsella JM, Li J, Mongeau L. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. MATERIALS HORIZONS 2020; 7:2336-2347. [PMID: 33841881 PMCID: PMC8030731 DOI: 10.1039/d0mh00813c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-laden scaffolds of architecture and mechanics that mimic those of the host tissues are important for a wide range of biomedical applications but remain challenging to bioprint. To address these challenges, we report a new method called triggered micropore-forming bioprinting. The approach can yield cell-laden scaffolds of defined architecture and interconnected pores over a range of sizes, encompassing that of many cell types. The viscoelasticity of the bioprinted scaffold can match that of biological tissues and be tuned independently of porosity and stiffness. The bioprinted scaffold also exhibits superior mechanical robustness despite high porosity. The bioprinting method and the resulting scaffolds support cell spreading, migration, and proliferation. The potential of the 3D bioprinting system is demonstrated for vocal fold tissue engineering and as an in vitro cancer model. Other possible applications are foreseen for tissue repair, regenerative medicine, organ-on-chip, drug screening, organ transplantation, and disease modeling.
Collapse
Affiliation(s)
- Guangyu Bao
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Tao Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Alicia Reyes
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC H3A 2B4, Canada
| | - Zhenwei Ma
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Mitchell Strong
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Huijie Wang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC H3A 2B4, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
47
|
Daviran M, Catalano J, Schultz KM. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Biomacromolecules 2020; 21:3056-3068. [PMID: 32559386 PMCID: PMC7429327 DOI: 10.1021/acs.biomac.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During the wound healing process, human mesenchymal stem cells (hMSCs) are recruited to the injury where they regulate inflammation and initiate healing and tissue regeneration. To aid in healing, synthetic cell-laden hydrogel scaffolds are being designed to deliver additional hMSCs to wounds to enhance or restart the healing process. These scaffolds are being designed to mimic native tissue environments, which include physical cues, such as scaffold stiffness. In this work, we focus on how the initial scaffold stiffness hMSCs are encapsulated in changes cell-mediated remodeling and degradation and motility. To do this, we encapsulate hMSCs in a well-defined synthetic hydrogel scaffold that recapitulates aspects of the native extracellular matrix (ECM). We then characterize cell-mediated degradation in the pericellular region as a function of initial microenvironmental stiffness. Our hydrogel consists of a 4-arm poly(ethylene glycol) (PEG) end-functionalized with norbornene which is chemically cross-linked with a matrix metalloproteinase (MMP) degradable peptide sequence. This peptide sequence is cleaved by hMSC-secreted MMPs. The hydrogel elastic modulus is varied from 80 to 2400 Pa by changing the concentration of the peptide cross-linker. We use multiple particle tracking microrheology (MPT) to characterize the spatiotemporal cell-mediated degradation in the pericellular region. In MPT, fluorescently labeled particles are embedded in the material, and their Brownian motion is measured. We measure an increase in cell-mediated degradation and remodeling as the post-encapsulation time increases. MPT also measures changes in the degradation profile in the pericellular region as hydrogel stiffness is increased. We hypothesize that the change in the degradation profile is due to a change in the amount and type of molecules secreted by hMSCs. We also measure a significant decrease in cell speed as hydrogel stiffness increases due to the increased physical barrier that needs to be degraded to enable motility. These measurements increase our understanding of the rheological changes in the pericellular region in different physical microenvironments which could lead to better design of implantable biomaterials for cell delivery to wounded areas.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jenna Catalano
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
48
|
Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater 2020; 15:055021. [DOI: 10.1088/1748-605x/ab954e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Xie Z, Gao M, Lobo AO, Webster TJ. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers (Basel) 2020; 12:E1717. [PMID: 32751797 PMCID: PMC7464247 DOI: 10.3390/polym12081717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.
Collapse
Affiliation(s)
- Zelong Xie
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Ming Gao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Anderson O. Lobo
- LIMAV–Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI–Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| |
Collapse
|
50
|
Kroger SM, Hill L, Jain E, Stock A, Bracher PJ, He F, Zustiak SP. Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation. Macromol Biosci 2020; 20:e2000085. [DOI: 10.1002/mabi.202000085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Stephanie M. Kroger
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Lindsay Hill
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Era Jain
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Aaron Stock
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Paul J. Bracher
- Department of Chemistry Saint Louis University St. Louis MO 63103 USA
| | - Fahu He
- Department of Chemistry Saint Louis University St. Louis MO 63103 USA
| | - Silviya P. Zustiak
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| |
Collapse
|