1
|
Salmasi Z, Kamali H, Rezaee H, Nazeran F, Jafari Z, Eisvand F, Teymouri M, Khordad E, Mosafer J. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Deliv Transl Res 2024:10.1007/s13346-024-01693-9. [PMID: 39215953 DOI: 10.1007/s13346-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, DOX (Doxorubicin) and Fe3O4 magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g. The NPs showed faster DOX release at pH 5.5 compared to pH 7.4. Also, the cytotoxicity effect of NPs increased compared to Free-DOX alone in C6 glioma cancer cells. For in vivo investigations, the 2.2 Kg rabbits were injected with NPs formulations via a central articular anterior vein in their ears. Furthermore, the images of rabbit organs were depicted via MR (Magnetic resonance) and fluorescent imaging techniques. A negative contrast (dark signal) was observed in T2 (Relaxation Time) weighted MR images of IV (Intravenously)-injected rabbits with NPs compared to the control ones. The organ's florescent images of NPs-injected rabbits showed a high density of red color related to the accumulation of DOX in liver and kidney organs. These data showed that the NPs have no cytotoxicity effect on the heart. Also, the results of histopathological tests of different organs showed that the groups receiving NPs and Free-DOX were almost similar and no significant difference was seen, except for the cardiac tissue in which the pathological effects of NPs were significantly less than the Free-DOX. Additionally, pharmacokinetic studies were also conducted at the sera and whole bloods of IV-injected rabbits with NPs and Free-DOX. The pharmacokinetic parameters showed that NPs could enhance the DOX retention in the serum compared to the Free-DOX. Altogether, we aimed to produce a powerful delivery nanosystem for its potential in dual therapeutic and diagnostic applications which are called theranostic agents.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Rezaee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Nazeran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frarhad Eisvand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, North Khorasan, Iran
| | - Elnaz Khordad
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, P.O. Box 9516915169, Torbat Heydariyeh, Iran.
| |
Collapse
|
2
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
3
|
Koti N, Timalsena T, Kajal K, Worsley C, Worsley A, Worsley P, Sutton C, Banerjee T, Santra S. Core-Tunable Dendritic Polymer: A Folate-Guided Theranostic Nanoplatform for Drug Delivery Applications. ACS OMEGA 2024; 9:30544-30558. [PMID: 39035936 PMCID: PMC11256300 DOI: 10.1021/acsomega.4c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Clinical application of anticancer drugs is mostly limited due to their hydrophobic nature, which often results in lower bioavailability and lesser retention in systemic circulation. Despite extensive research on the development of targeted drug delivery systems for cancer treatment, delivery of hydrophobic therapeutic drugs to tumor cells remains a major challenge in the field. To address these concerns, we have precisely engineered a new hyperbranched polymer for the targeted delivery of hydrophobic drugs by using a malonic acid-based A2B monomer and 1,6-hexanediol. The choice of monomer systems in our design allows for the formation of higher molecular weight polymers with hydrophobic cavities for the efficient encapsulation of therapeutic drugs that exhibit poor water solubility. Using several experimental techniques such as NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform-infrared (FT-IR), and gel permeation chromatography (GPC), the synthesized polymer was characterized, which indicated its dendritic structure, thermal stability, and amorphous nature, making it suitable as a drug delivery system. Following characterizations, theranostic nanoplatforms were formulated using a one-pot solvent diffusion method to coencapsulate hydrophobic drugs, BQU57 and doxorubicin. To achieve targeted delivery of loaded therapeutic drugs in A549 cancer cells, the surface of the polymeric nanoparticle was conjugated with folic acid. The therapeutic efficacy of the delivery system was determined by various cell-based in vitro experiments, including cytotoxicity, cell internalizations, reactive oxygen species (ROS), apoptosis, migration, and comet assays. Overall, findings from this study indicate that the synthesized dendritic polymer is a promising carrier for hydrophobic anticancer drugs with higher biocompatibility, stability, and therapeutic efficacy for applications in cancer therapy.
Collapse
Affiliation(s)
- Neelima Koti
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Trishna Timalsena
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Kajal Kajal
- Department
of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Caleb Worsley
- Department
of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Adam Worsley
- Department
of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Paul Worsley
- Department
of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Carissa Sutton
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| |
Collapse
|
4
|
Koç-Demir A, Elçin AE, Elçin YM. Magnetic biocomposite scaffold based on decellularized tendon ECM and MNP-deposited halloysite nanotubes: physicochemical, thermal, rheological, mechanical and in vitrobiological evaluations. Biomed Mater 2024; 19:035027. [PMID: 38537375 DOI: 10.1088/1748-605x/ad38ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The development of new three-dimensional biomaterials with advanced versatile properties is critical to the success of tissue engineering (TE) applications. Here, (a) bioactive decellularized tendon extracellular matrix (dECM) with a sol-gel transition feature at physiological temperature, (b) halloysite nanotubes (HNT) with known mechanical properties and bioactivity, and (c) magnetic nanoparticles (MNP) with superparamagnetic and osteogenic properties were combined to develop a new scaffold that could be used in prospective bone TE applications. Deposition of MNPs on HNTs resulted in magnetic nanostructures without agglomeration of MNPs. A completely cell-free, collagen- and glycosaminoglycan- rich dECM was obtained and characterized. dECM-based scaffolds incorporated with 1%, 2% and 4% MNP-HNT were analysed for their physical, chemical, andin vitrobiological properties. Fourier-transform infrared spectroscopy, x-ray powder diffractometry and vibrating sample magnetometry analyses confirmed the presence of dECM, HNT and MNP in all scaffold types. The capacity to form apatite layer upon incubation in simulated body fluid revealed that dECM-MNP-HNT is a bioactive material. Combining dECM with MNP-HNT improved the thermal stability and compressive strength of the macroporous scaffolds upto 2% MNP-HNT.In vitrocytotoxicity and hemolysis experiments showed that the scaffolds were essentially biocompatible. Human bone marrow mesenchymal stem cells adhered and proliferated well on the macroporous constructs containing 1% and 2% MNP-HNT; and remained metabolically active for at least 21 din vitro. Collectively, the findings support the idea that magnetic nanocomposite dECM scaffolds containing MNP-HNT could be a potential template for TE applications.
Collapse
Affiliation(s)
- Aysel Koç-Demir
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
5
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|
6
|
Carrelo H, Escoval AR, Vieira T, Jiménez-Rosado M, Silva JC, Romero A, Soares PIP, Borges JP. Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications. Gels 2023; 9:982. [PMID: 38131968 PMCID: PMC10742759 DOI: 10.3390/gels9120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is a disease that continues to greatly impact our society. Developing new and more personalized treatment options is crucial to decreasing the cancer burden. In this study, we combined magnetic polysaccharide microparticles with a Pluronic thermoresponsive hydrogel to develop a multifunctional, injectable drug delivery system (DDS) for magnetic hyperthermia applications. Gellan gum and alginate microparticles were loaded with superparamagnetic iron oxide nanoparticles (SPIONs) with and without coating. The magnetic microparticles' registered temperature increases up to 4 °C upon the application of an alternating magnetic field. These magnetic microparticles were mixed with drug-loaded microparticles, and, subsequently, this mixture was embedded within a Pluronic thermoresponsive hydrogel that is capable of being in the gel state at 37 °C. The proposed DDS was capable of slowly releasing methylene blue, used as a model drug, for up to 9 days. The developed hydrogel/microparticle system had a smaller rate of drug release compared with microparticles alone. This system proved to be a potential thermoresponsive DDS suitable for magnetic hyperthermia applications, thus enabling a synergistic treatment for cancer.
Collapse
Affiliation(s)
- Henrique Carrelo
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - André R. Escoval
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - Tânia Vieira
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | | | - Jorge Carvalho Silva
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alberto Romero
- Department of Chemical Engineering, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Paula Isabel P. Soares
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - João Paulo Borges
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| |
Collapse
|
7
|
Mesaros A, Garzón A, Nasui M, Bortnic R, Vasile B, Vasile O, Iordache F, Leostean C, Ciontea L, Ros J, Pana O. Insight into synthesis and characterisation of Ga 0.9Fe 2.1O 4 superparamagnetic NPs for biomedical applications. Sci Rep 2023; 13:18175. [PMID: 37875541 PMCID: PMC10598038 DOI: 10.1038/s41598-023-45285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
A Ga3+-substituted spinel magnetite nanoparticles (NPs) with the formula Ga0.9Fe2.1O4 were synthesized using both the one-pot solvothermal decomposition method (TD) and the microwave-assisted heating method (MW). Stable colloidal solutions were obtained by using triethylene glycol, which served as a NPs stabilizer and as a reaction medium in both methods. A narrow size distribution of NPs, below 10 nm, was achieved through selected nucleation and growth. The composition, structure, morphology, and magnetic properties of the NPs were investigated using FTIR spectroscopy, thermal analysis (TA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and magnetic measurements. NPs with the expected spinel structure were obtained in the case of the TD method, while the MW method produced, additionally, an important amount of gallium suboxide. The NPs, especially those prepared by TD, have superparamagnetic behavior with 2.02 μB/f.u. at 300 K and 3.06 μB/f.u. at 4.2 K. For the MW sample these values are 0.5 μB/f.u. and 0.6 μB/f.u. at 300 K and 4.2 K, respectively. The MW prepared sample contains a secondary phase and very small NPs which affects both the dimensional distribution and the magnetic behavior of NPs. The NPs were tested in vitro on amniotic mesenchymal stem cells. It was shown that the cellular metabolism is active in the presence of Ga0.9Fe2.1O4 NPs and preserves an active biocompatible cytoskeleton.
Collapse
Affiliation(s)
- Amalia Mesaros
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, Cluj-Napoca, Romania
| | - Alba Garzón
- Institut Català de Nanocència i Nanotecnologia (ICN2), Av. Serragalliners S/N, 08193, Bellaterra, Spain
| | - Mircea Nasui
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, Cluj-Napoca, Romania
| | - Rares Bortnic
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, Cluj-Napoca, Romania
| | - Bogdan Vasile
- Research Center for Advanced Materials, Products and Processes, National University for Science and Technology Politehnica Bucharest, Splaiul Independentei 313, S6, Bucharest, Romania
| | - Otilia Vasile
- National University for Science and Technology Politehnica Bucharest, National Research Center for Micro and Nanomaterials, Splaiul Independentei 313, S6, Bucharest, Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Cristian Leostean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania
| | - Lelia Ciontea
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, Cluj-Napoca, Romania
| | - Josep Ros
- Departament de Química Inorgànica, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ovidiu Pana
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
9
|
Antal I, Strbak O, Zavisova V, Vojtova J, Kubovcikova M, Jurikova A, Khmara I, Girman V, Džunda R, Kovaľ K, Koneracka M. Development of Positively Charged Poly-L-Lysine Magnetic Nanoparticles as Potential MRI Contrast Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1831. [PMID: 37368261 DOI: 10.3390/nano13121831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
A colloidal solution of magnetic nanoparticles (MNPs) modified with biocompatible positively charged poly-L-lysine (PLL) with an oleate (OL) layer employed as an initial coating was produced as a potential MRI contrast agent. The effect of various PLL/MNPs' mass ratios on the samples' hydrodynamic diameter, zeta potential, and isoelectric point (IEP) was studied by the dynamic light-scattering method. The optimal mass ratio for MNPs' surface coating was 0.5 (sample PLL0.5-OL-MNPs). The average hydrodynamic particle size in the sample of PLL0.5-OL-MNPs was 124.4 ± 1.4 nm, and in the PLL-unmodified nanoparticles, it was 60.9 ± 0.2 nm, indicating that the OL-MNPs' surface became covered by PLL. Next, the typical characteristics of the superparamagnetic behavior were observed in all samples. In addition, the decrease in saturation magnetizations from 66.9 Am2/kg for MNPs to 35.9 and 31.6 Am2/kg for sample OL-MNPs and PLL0.5-OL-MNPs also confirmed successful PLL adsorption. Moreover, we show that both OL-MNPs and PLL0.5-OL-MNPs exhibit excellent MRI relaxivity properties and a very high r2(*)/r1 ratio, which is very desirable in biomedical applications with required MRI contrast enhancement. The PLL coating itself appears to be the crucial factor in enhancing the relaxivity of MNPs in MRI relaxometry.
Collapse
Affiliation(s)
- Iryna Antal
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Jana Vojtova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Martina Kubovcikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Alena Jurikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Iryna Khmara
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Vladimir Girman
- Institute of Physics, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Park Angelinum 9, 04154 Kosice, Slovakia
| | - Róbert Džunda
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Karol Kovaľ
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| |
Collapse
|
10
|
Teixeira PV, Fernandes E, Soares TB, Adega F, Lopes CM, Lúcio M. Natural Compounds: Co-Delivery Strategies with Chemotherapeutic Agents or Nucleic Acids Using Lipid-Based Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15041317. [PMID: 37111802 PMCID: PMC10141470 DOI: 10.3390/pharmaceutics15041317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.
Collapse
Affiliation(s)
- Patrícia V Teixeira
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduarda Fernandes
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Telma B Soares
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Filomena Adega
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Carla M Lopes
- FFP-I3ID-Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS-Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CBMA-Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Amino acid-capped transition metal ion-doped iron oxide nanoparticles: evaluating drug delivery carrier efficiency and in vitro magnetic resonance image contrasting ability. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
12
|
Sia CS, Lim HP, Lin YN, Beh LC, Tey BT, Goh BH, Low LE. pH-controllable stability of iron oxide@chitosan nanocomposite-stabilized magnetic Pickering emulsions. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Bio-Assisted Synthesis of Zinc Oxide Nanoparticles from Mimosa pudica Aqueous Leave Extract: Structure and Antibacterial Activity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
15
|
dos Santos OAL, Pizzorno Backx B, Abumousa RA, Bououdina M. Environmental Implications Associated with the Development of Nanotechnology: From Synthesis to Disposal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4319. [PMID: 36500947 PMCID: PMC9740896 DOI: 10.3390/nano12234319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology remains under continuous development. The unique, fascinating, and tunable properties of nanomaterials make them interesting for diverse applications in different fields such as medicine, agriculture, and remediation. However, knowledge about the risks associated with nanomaterials is still poorly known and presents variable results. Furthermore, the interaction of nanomaterials with biological systems and the environment still needs to be clarified. Moreover, some issues such as toxicity, bioaccumulation, and physicochemical transformations are found to be dependent on several factors such as size, capping agent, and shape, making the comparisons even more complex. This review presents a comprehensive discussion about the consequences of the use and development of nanomaterials regarding their potential risks to the environment as well as human and animal health. For this purpose, we reviewed the entire production chain from manufacturing, product development, applications, and even product disposal to raise the important implications at each stage. In addition, we present the recent developments in terms of risk management and the recycling of nanomaterials. Furthermore, the advances and limitations in the legislation and characterization of nanomaterials are also discussed.
Collapse
Affiliation(s)
| | - Bianca Pizzorno Backx
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil
| | - Rasha A. Abumousa
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
16
|
Synthesis, and experimental evaluation of novel 4-(-3-(2-hydroxyethoxy)-3-oxopropenyl)-1,2-phenylene nanohybrid derivatives as potential corrosion inhibitors for mild steel in 1 M HCl. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Arora J, Ranjan A, Chauhan A, Biswas R, Rajput VD, Sushkova S, Mandzhieva S, Minkina T, Jindal T. Surfactant Pollution, an Emerging Threat to Ecosystem: Approaches for Effective Bacterial Degradation. J Appl Microbiol 2022; 133:1229-1244. [PMID: 35598183 DOI: 10.1111/jam.15631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 12/08/2022]
Abstract
The use of surfactants in households and industries is inevitable and so is their discharge into the environment, especially into the water bodies as effluents. Being surface-active agents, their utilization is mostly seen in soaps, detergents, personal care products, emulsifiers, wetting agents, etc. Anionic surfactants are the most used class. These surfactants are responsible for the foam and froth in the water bodies and cause potential adverse effects to both biotic and abiotic components of the ecosystem. Surfactants are capable of penetrating the cell membrane and thus cause toxicity to living organisms. Accumulation of these compounds has been known to cause significant gill damage and loss of sight in fish. Alteration of physiological and biochemical parameters of water decreases the amount of dissolved oxygen and thus affecting the entire ecosystem. Microbes utilizing surfactants as substrates for energy form the basis of the biodegradation of these compounds. The main organisms for surfactant biodegradation, both in sewage and natural waters, are bacteria. Several Pseudomonas and Bacillus spp. have shown efficient degradation of anionic surfactants namely: sodium dodecyl sulphate (SDS), linear alkylbenzene sulphonate (LAS), sodium dodecylbenzenesulphonate (SDBS). Also, several microbial consortia constituting Alcaligenes spp., Citrobacter spp., etc. have shown efficacy in the degradation of surfactants. The biodegradation efficiency studies of these microbes/microbial consortia would be of immense help in formulating better solutions for the bioremediation of surfactants and help to reduce their potential environmental hazards.
Collapse
Affiliation(s)
- Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
19
|
Sarkar S, Debnath SK, Srivastava R, Kulkarni AR. Continuous flow scale-up of biofunctionalized defective ZnO quantum dots: A safer inorganic ingredient for skin UV protection. Acta Biomater 2022; 147:377-390. [PMID: 35609802 DOI: 10.1016/j.actbio.2022.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
The versatility of ZnO quantum dots (QDs) exhibiting size-tunable visible photoluminescence has propelled them to the forefront of leading-edge innovations in healthcare. At the nano-bio interface, enhancing the singly-ionized oxygen vacancy defects (VO•) through holistic, sustainable synthesis protocols driven by the synergistic influence of QDs' nucleation-growth kinetics has implications on their bioactivity, physiochemical, and optical performance. Recently, robust continuous flow platforms have transcended the conventional batch reactors by alleviating the concerns of "hot-spot" formation due to inhomogeneous heat distribution, acute energy consumption, poor quality, and yield. However, complexities exist in translating batch chemistries into flow processes. Here, a unique, rationally designed continuous flow synthesis of luminescent defect-engineered ZnO QDs (E-QDs) via helical-reactor assembly that can adequately synthesize on a large scale is reported. The crux of this lies in the amalgamation of "green chemistry" and flow synthesis, which results in Lamer-mechanism mediated monodispersed E-QDs demonstrating high photoluminescence quantum yield (PLQY) of 89% under an accurately regulated synthesis environment. Process intensification corroborated that the bio-stable E-QDs manifested admirable photostability, broad-spectrum UV-shielding (400-250 nm), colloidal stability, in vitro biocompatibility against L929 and HaCaT cells, and antioxidant activity. These attributes were better compared to the commercial ZnO nanoparticles (ZnOC-NPs) used for skin UV protection. Delving deeper, the main drivers for the high density of intrinsic VO• formation (Iv/Io∼42.5) were revealed to be the reactor's hydrodynamic performance and the improvised heating rate (2.5°C/sec). Hence, these E-QDs have potential as a new, safe, and economical multifunctional active ingredient for skin UV protection and antioxidants for treating ROS-mediated disorders. STATEMENT OF SIGNIFICANCE: UV filters exhibiting questionable UV-attenuation efficacy and phototoxicity are significant impediments to the healthcare industry emphasizing skin cancer prevention. Although least explored, VO•-governed aberrant photoactive, biological, and surface-reactive qualities of engineered ZnO QDs (E-QDs) have created ample room to investigate these hallmarks for skin UV protection. However, the bottlenecks in stereotypical ZnO QDs production confined by inefficient process control are annihilated by continuous flow strategies. Herein, the high-throughput continuous flow helical reactor assembly was designed and fabricated to successfully showcase optimized transport properties, reproducibility, yield, and quality E-QDs. Anticipating a skyrocketing demand for E-QDs as bioactive-sunscreen components, the comprehensive investigation has demonstrated unprecedented biofunctionality and ROS-scavenging behaviour, even upon UVR exposure, contrary to the traditional nanoparticulate ZnO UV filters.
Collapse
|
20
|
Zhou R, Ohulchanskyy TY, Xu Y, Ziniuk R, Xu H, Liu L, Qu J. Tumor-Microenvironment-Activated NIR-II Nanotheranostic Platform for Precise Diagnosis and Treatment of Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23206-23218. [PMID: 35549055 DOI: 10.1021/acsami.2c04242] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational design of tumor-microenvironment (TME)-activated nanoformulation for precisely targeted cancer treatment has recently attracted an enormous attention. However, the all-in-one TME-activated theranostic nanosystems with a simple preparation and high biocompatibility are still rarely reported. Herein, catalase nanocrystals (CatCry) are first introduced as a tumor microenvironment activatable nanoplatform for selective theranostics of colon cancer. They are engaged as (i) a "nanoreactor" for silver nanoparticles (AgNP) synthesis, (ii) a nanovehicle for tumor delivery of anticancer drug doxorubicin (DOX), and (iii) an in situ O2 generator to relief tumor hypoxia. When CatCry-AgNP-DOX nanoformulation is within a tumor, the intratumoral H2S turns AgNP into Ag2S nanoparticles, inducing a photothermal effect and NIR-II emission under 808 nm laser irradiation and also triggering DOX release. Simultaneously, CatCry catalyzes intratumoral H2O2 into O2, relieving hypoxia and enhancing chemotherapy. In contrast, when delivered to healthy tissue without increased concentration of H2S, the developed nanoformulation remains in the "off" state and no theranostic action takes place. Studies with colon cancer cells in vitro and a murine colon cancer model in vivo demonstrated that CatCry-AgNP-DOX delivered a synergistic combination of PTT and enhanced chemotherapy, enabling complete eradication of tumor with minimal side effects. This work not only introduces nanoplatform for theranostics of H2S-rich tumors but also suggests a general strategy for protein-crystal-based nanomedicine.
Collapse
Affiliation(s)
- Renbin Zhou
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yunjian Xu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Roman Ziniuk
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hao Xu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Liwei Liu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
21
|
Vaghasiya JV, Mayorga-Martinez CC, Matějková S, Pumera M. Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nat Commun 2022; 13:1026. [PMID: 35232958 PMCID: PMC8888651 DOI: 10.1038/s41467-022-28406-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Nano/micromotor technology is evolving as an effective method for water treatment applications in comparison to existing static mechanisms. The dynamic nature of the nano/micromotor particles enable faster mass transport and a uniform mixing ensuring an improved pollutant degradation and removal. Here we develop thermosensitive magnetic nanorobots (TM nanorobots) consisting of a pluronic tri-block copolymer (PTBC) that functions as hands for pollutant removal. These TM nanorobots are incorporated with iron oxide (Fe3O4) nanoparticles as an active material to enable magnetic propulsion. The pickup and disposal of toxic pollutants are monitored by intermicellar agglomeration and separation of PTBC at different temperatures. The as-prepared TM nanorobots show excellent arsenic and atrazine removal efficiency. Furthermore, the adsorbed toxic contaminants on the TM nanorobots can be disposed by a simple cooling process and exhibit good recovery retention after multiple reuse cycles. This combination of temperature sensitive aggregation/separation coupled with magnetic propulsion opens a plethora of opportunities in the applicability of nanorobots in water treatment and targeted pollutant removal approaches.
Collapse
Affiliation(s)
- Jayraj V Vaghasiya
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, 6, Czech Republic
| | - Stanislava Matějková
- Central Analytical Laboratory, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, 166 10, Prague, 6, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, 6, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Center for Nanorobotics and Machine Intelligence, Dept. of Food Technology, Mendel University, Zemedelska 1, Brno, 613 00, Czech Republic.
- Future Energy and Innovation Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic.
| |
Collapse
|
22
|
Wang F, Qi X, Geng J, Liu X, Li D, Zhang H, Zhang P, He X, Li B, Li Z, Yu R, Yang X, Wang G. Template-free construction of hollow mesoporous Fe3O4 nanospheres as controlled drug delivery with enhanced drug loading capacity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
24
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
25
|
Santadkha T, Skolpap W, Thitapakorn V. Diffusion Modeling and In Vitro Release Kinetics Studies of Curcumin-Loaded Superparamagnetic Nanomicelles in Cancer Drug Delivery System. J Pharm Sci 2021; 111:1690-1699. [PMID: 34838781 DOI: 10.1016/j.xphs.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to investigate in vitro drug release kinetics and to develop diffusion model of curcumin loaded Pluronic F127/Oleic acid(OA)-Fe3O4 nanoparticles. The prepared superparamagnetic nanoparticles by co-precipitation technique were characterized by the average size, size distribution, crystallinity, colloidal stability and magnetic property. The release of curcumin was triggered by an acidic environment in pH 5.0 of phosphate buffer saline. Release data of various curcumin loading (15, 25 and 30 ppm) were fitted using non-linear first-order, second-order, Higuchi and Korsmeyer-Peppas model. All the curcumin release mechanism followed Korsmeyer-Peppas model with n values less than 0.45 indicating the Fickian diffusion of curcumin from the prepared nanomicelles. The dynamic of controlled drug release of dilute curcumin loading was well described by a combination of diffusion and first-order release rate. The corresponding diffusion coefficient and kinetic rate were 9.1 × 10-7 cm2⋅min-1 and 6.51 × 10-7 min-1, which were used as controlled release to achieve the desired curcumin constant release rate in the delivery system.
Collapse
Affiliation(s)
- Tinnabhop Santadkha
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanwisa Skolpap
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand; Center of Clinical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand.
| | - Veerachai Thitapakorn
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| |
Collapse
|
26
|
Banerjee A, Jariwala T, Baek YK, To DTH, Tai Y, Liu J, Park H, Myung NV, Nam J. Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system. NANOTECHNOLOGY 2021; 32:505101. [PMID: 34525464 DOI: 10.1088/1361-6528/ac2700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The drawbacks of conventional drug administration include repeated administration, non-specific biodistribution in the body's systems, the long-term unsustainability of drug molecules, and high global cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled-release methods encapsulate drug molecules in biodegradable materials that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. To address these limitations, we developed a magneto-, opto-stimuli responsive drug delivery system based on functionalized electrospun nanofibers loaded with superparamagnetic iron oxide nanoparticles (SPIONs). We exploited the Néel relaxation effect of SPIONs, where heat generated from vibrating SPIONs under exogenously applied magnetic fields or laser illumination induced structural changes of the thermo-sensitive nanofibers that encapsulate the particles. We showed that this structural change of nanofibers is the governing factor in controlling the release of dye molecules, used as a model drug and co-encapsulated within the nanofibers. We also showed that the degree of nanofiber structural change depends on SPION loading and duration of stimulation, demonstrating the tunability of the drug release profile. Overall, we demonstrated the potential of SPION-embedded thermoplastic nanofibers as an attractive platform for on-demand drug delivery.
Collapse
Affiliation(s)
- Aihik Banerjee
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Tanvi Jariwala
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Youn-Kyung Baek
- Department of Magnetic Materials, Powder Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan gu, Changwon, Gyeongnam, Republic of Korea
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Youyi Tai
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Junze Liu
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Hyle Park
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| |
Collapse
|
27
|
Philip S, Kuriakose S. Photodynamic antifungal activity of a superparamagnetic and fluorescent drug carrier system against antibiotic-resistant fungal strains. CELLULOSE (LONDON, ENGLAND) 2021; 28:9091-9102. [PMID: 34366583 PMCID: PMC8325540 DOI: 10.1007/s10570-021-04107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Increased antimicrobial resistance demands the development of new antimicrobial agents with high potency. A wide variety of microbial systems are continuously subjected to mutations which ultimately results in antimicrobial resistance. The present study aimed at the fabrication of a nano drug delivery system which simultaneously is superparamagnetic, fluorescent, non-cytotoxic and antifungal. The developed system is an easily targetable and detectable tool owing to its superparamagnetic and fluorescent characteristics respectively. Superparamagnetic iron oxide nanoparticles stabilized by macromolecular starch have been incorporated into a fluorescently modified carrier system to get the final drug delivery system. The finally developed drug carrier system is found to be non-cytotoxic from the in vitro cytotoxicity studies performed against normal rat spleen cells. The photodynamic antifungal capability of the system was the premier concern of investigation of the present study. The antifungal studies were conducted against Histoplasma capsulatum and Trichophyton rubrum by well diffusion method and the results were compared with the activity of the antibiotic, griseofulvin. The minimum inhibitory concentration against each fungal strain was determined using broth dilution method. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-021-04107-y.
Collapse
Affiliation(s)
- Sherin Philip
- Research and Post-Graduate Department of Chemistry, St. Thomas College, Palai, 686574 India
- Mahatma Gandhi University, Kottayam, Kerala India
| | - Sunny Kuriakose
- Research and Post-Graduate Department of Chemistry, St. Thomas College, Palai, 686574 India
- Mahatma Gandhi University, Kottayam, Kerala India
| |
Collapse
|
28
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The focus of this review is on the physical and magnetic properties that are related to the efficiency of monometallic magnetic nanoparticles used in biomedical applications, such as magnetic resonance imaging (MRI) or magnetic nanoparticle hyperthermia, and how to model these by theoretical methods, where the discussion is based on the example of cobalt nanoparticles. Different simulation systems (cluster, extended slab, and nanoparticle models) are critically appraised for their efficacy in the determination of reactivity, magnetic behaviour, and ligand-induced modifications of relevant properties. Simulations of the effects of nanoscale alloying with other metallic phases are also briefly reviewed.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Thermal stability, paramagnetic properties, morphology and antioxidant activity of iron oxide nanoparticles synthesized by chemical and green methods. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics 2021; 13:pharmaceutics13050757. [PMID: 34065179 PMCID: PMC8161190 DOI: 10.3390/pharmaceutics13050757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in developed countries. Therapeutic methods such as recanalization approaches, neuroprotective drugs, or recovery strategies have been widely developed to improve the patient's outcome; however, important limitations such as a narrow therapeutic window, the ability to reach brain targets, or drug side effects constitute some of the main aspects that limit the clinical applicability of the current treatments. Nanotechnology has emerged as a promising tool to overcome many of these drug limitations and improve the efficacy of treatments for neurological diseases such as stroke. The use of nanoparticles as a contrast agent or as drug carriers to a specific target are some of the most common approaches developed in nanomedicine for stroke. Throughout this review, we have summarized our experience of using nanotechnology tools for the study of stroke and the search for novel therapies.
Collapse
|
33
|
Basina G, Khurshid H, Tzitzios N, Hadjipanayis G, Tzitzios V. Facile Organometallic Synthesis of Fe-Based Nanomaterials by Hot Injection Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1141. [PMID: 33924901 PMCID: PMC8145410 DOI: 10.3390/nano11051141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids' surface functionalization in a nonpolar solvent.
Collapse
Affiliation(s)
- Georgia Basina
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Athens, Greece; (G.B.); (N.T.)
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Hafsa Khurshid
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA;
| | - Nikolaos Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Athens, Greece; (G.B.); (N.T.)
| | - George Hadjipanayis
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA;
| | - Vasileios Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Athens, Greece; (G.B.); (N.T.)
| |
Collapse
|
34
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
35
|
Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ. Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001044. [PMID: 33225633 PMCID: PMC7933107 DOI: 10.1002/adhm.202001044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Recent advancements in unravelling elements of cancer biology involved in disease progression and treatment resistance have highlighted the need for a holistic approach to effectively tackle cancer. Stimuli-responsive nanotheranostics based on iron oxide nanoparticles are an emerging class of versatile nanomedicines with powerful capabilities to "seek, sense, and attack" multiple components of solid tumors. In this work, the rationale for using iron oxide nanoparticles and the basic physical principles that impact their function in biomedical applications are reviewed. Subsequently, recent advances in the integration of iron oxide nanoparticles with various stimulus mechanisms to facilitate the development of stimuli-responsive nanotheranostics for application in cancer therapy are summarized. The integration of an iron oxide core with various surface coating mechanisms results in the generation of hybrid nanoconstructs with capabilities to codeliver a wide variety of highly potent anticancer therapeutics and immune modulators. Finally, emerging future directions and considerations for their clinical translation are touched upon.
Collapse
Affiliation(s)
- Morgan E. Lorkowski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Prabhani U. Atukorale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ketan B. Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Yang Y, Han Y, Sun Q, Cheng J, Yue C, Liu Y, Song J, Jin W, Ding X, de la Fuente JM, Ni J, Wang X, Cui D. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J Nanobiotechnology 2021; 19:54. [PMID: 33627152 PMCID: PMC7905599 DOI: 10.1186/s12951-020-00759-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gene and chemical therapy has become one of the rising stars in the field of molecular medicine during the last two decades. However, there are still numerous challenges in the development of efficient, targeted, and safe delivery systems that can avoid siRNA degradation and reduce the toxicity and adverse effects of chemotherapy medicine. RESULTS In this paper, a highly efficient AS1411 aptamer modified, dsDNA and MMP-2 cleavable peptide-fabricated gold nanocage vehicle, which could load doxorubicin hydrochloride (DOX) and siRNAs to achieve a combination of tumor responsive genetic therapy, chemotherapy, and photothermal treatment is presented. Our results show that this combined treatment achieved targeted gene silencing and tumor inhibition. After nearly one month of treatment with DOX-loaded Au-siRNA-PAA-AS1411 nanoparticles with one dose every three days in mice, a synergistic effect promoting the eradication of long-lived tumors was observed along with an increased survival rate of mice. The combined genetic, chemotherapeutic, and photothermal treatment group exhibited more than 90% tumor inhibition ratio (tumor signal) and a ~ 67% survival rate compared with a 30% tumor inhibition ratio and a 0% survival rate in the passive genetic treatment group. CONCLUSIONS The development of nanocarriers with double-stranded DNA and MMP-2 cleavable peptides provides a new strategy for the combined delivery of gene and chemotherapy medicine. Au-siRNA-PAA-AS1411 exerts high anticancer activities on lung cancer, indicating immense potentials for clinical application.
Collapse
Affiliation(s)
- Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Yu Han
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Qiuyang Sun
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Caixia Yue
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Xianting Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaoqiang Wang
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
38
|
Zhang Y, Xia M, Zhou Z, Hu X, Wang J, Zhang M, Li Y, Sun L, Chen F, Yu H. p53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides. Int J Nanomedicine 2021; 16:283-296. [PMID: 33469287 PMCID: PMC7811475 DOI: 10.2147/ijn.s282489] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Methods In this study, we used MTT assays to demonstrate that a combination of SPIO-Serum and wild-type p53 overexpression can reduce ovarian cancer cell viability in vitro. Prussian blue staining and iron assays were used to determine changes in intracellular iron concentration following SPIO-Serum treatment. TEM was used to evaluate any mitochondrial damage induced by SPIO-Serum treatment, and Western blot was used to evaluate the expression of the iron transporter and lipid peroxidation regulator proteins. JC-1 was used to measure mitochondrial membrane potential, and ROS levels were estimated by flow cytometry. Finally, xCT protein expression and mitochondrial ROS levels were confirmed using fluorescence microscopy. Results SPIO-Serum effectively induced lipid peroxidation and generated abundant toxic ROS. It also facilitated the downregulation of GPX4 and xCT, ultimately resulting in iron-dependent oxidative death. These effects could be reversed by iron chelator DFO and lipid peroxidation inhibitor Fer-1. SPIO-Serum treatment disrupted intracellular iron homeostasis by regulating iron uptake and the cells presented with missing mitochondrial cristae and ruptured outer mitochondrial membranes. Moreover, we were able to show that p53 contributed to SPIO-Serum-induced ferroptosis in ovarian cancer cells. Conclusion SPIO-Serum induced ferroptosis and overexpressed p53 contributed to ferroptosis in ovarian cancer cells. Our data provide a theoretical basis for ferroptosis as a novel cell death phenotype induced by nanomaterials.
Collapse
Affiliation(s)
- Yunhan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Meihui Xia
- Department of Obstetrics & Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zizhen Zhou
- Clinical Medical College, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaoqing Hu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Jiabin Wang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Meiyu Zhang
- Clinical Medical College, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China.,Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China.,Animal Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
39
|
Liu ZY, Yan GH, Li XY, Zhang Z, Guo YZ, Xu KX, Quan JS, Jin GY. GE11 peptide modified CSO-SPION micelles for MRI diagnosis of targeted hepatic carcinoma. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhuo-Yan Liu
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Guang-Hai Yan
- Department of Anatomy, Basic Medical College, Yanbian University, Yanji, Jilin, PR China
| | - Xiao-Yu Li
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Zhuo Zhang
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Yu-Zhu Guo
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Kai-Xuan Xu
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Ji-Shan Quan
- Department of Pharmacy, College of Pharmacy, Yanbian University, Yanji, Jilin, PR China
| | - Guang-Yu Jin
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| |
Collapse
|
40
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
41
|
Sánchez-Oseguera A, López-Meléndez A, Lucio-Porto R, Arredondo-Espinoza EU, González-Santiago O, Ramírez-Cabrera MA. Anticancer activity of VOHPO4·2H2O nanoparticles in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Human gastric carcinoma cells targeting peptide-functionalized iron oxide nanoparticles delivery for magnetic resonance imaging. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Panda J, Satapathy BS, Mandal B, Sen R, Mukherjee B, Sarkar R, Tudu B. Anticancer potential of docetaxel-loaded cobalt ferrite nanocarrier: an in vitro study on MCF-7 and MDA-MB-231 cell lines. J Microencapsul 2020; 38:36-46. [PMID: 33206010 DOI: 10.1080/02652048.2020.1842529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To develop a biocompatible cobalt ferrite (CF-NP) nanodrug formulation using oleic acid and poly (d,l-lactide-co-glycolic) acid (PLGA) for the delivery of docetaxel (DTX) specifically to breast cancer cells. METHODS The CF-NP were synthesised by hydrothermal method and conjugated with DTX in a PLGA matrix and were systematically characterised using XRD, FE-SEM, TEM, DLS, FTIR, TGA, SQUID etc. The drug loading, in vitro drug release, cellular uptake, cytotoxicity were evaluated and haemolytic effect was studied. RESULTS The CF-NP showed good crystallinity with an average particle size of 21 nm and ferromagnetic nature. The DTX-loaded CF-NP (DCF-NP) showed 8.4% (w/w) drug loading with 81.8% loading efficiency with a sustained DTX release over time. An effective internalisation and anti-proliferative efficiency was observed in MCF-7 and MDA-MB-231 breast cancer cells and negligible haemolytic effect. CONCLUSION The DCF-NP can have the potential for the effective delivery of DTX for breast cancer treatment.
Collapse
Affiliation(s)
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Bidisha Mandal
- Department of Physics, Jadavpur University, Kolkata, India
| | - Ramkrishna Sen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Ratan Sarkar
- Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata, India
| | - Bharati Tudu
- Department of Physics, Jadavpur University, Kolkata, India
| |
Collapse
|
44
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
45
|
Horia F, Easawi K, Khalil R, Abdallah S, El-Mansy M, Negm S. Optical and Thermophysical Characterization of Fe3O4 nanoparticle. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/956/1/012016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Hybrid mesoporous silica-based nanocarriers for responsive drug release in cancerous cell line. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Combination of Cytochalasin H and zinc oxide nanoparticles in human breast cancer: an insight into apoptosis study. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Padya BS, Pandey A, Pisay M, Koteshwara KB, Chandrashekhar Hariharapura R, Bhat KU, Biswas S, Mutalik S. Stimuli-responsive and cellular targeted nanoplatforms for multimodal therapy of skin cancer. Eur J Pharmacol 2020; 890:173633. [PMID: 33049302 DOI: 10.1016/j.ejphar.2020.173633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Interdisciplinary applications of nanopharmaceutical sciences have tremendous potential for enhancing pharmacokinetics, efficacy and safety of cancer therapy. The limitations of conventional therapeutic platforms used for skin cancer therapy have been largely overcome by the use of nanoplatforms. This review discusses various nanotechnological approaches experimented for the treatment of skin cancer. The review describes various polymeric, lipidic and inorganic nanoplatforms for efficient therapy of skin cancer. The stimuli-responsive nanoplatforms such as pH-responsive as well as temperature-responsive platforms have also been reviewed. Different strategies for potentiating the nanoparticles application for cancer therapy such as surface engineering, conjugation with drugs, stimulus-responsive and multimodal effect have also been discussed and compared with the available conventional treatments. Although, nanopharmaceuticals face challenges such as toxicity, cost and scale-up, efforts put-in to improve these drawbacks with continuous research would deliver exciting and promising results in coming days.
Collapse
Affiliation(s)
- Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kuruveri Udaya Bhat
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Mangalore, Karnataka, 575025, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
49
|
Simvastatin-loaded nanoemulsions: development, characterization, stability study and toxicity assays. Ther Deliv 2020; 11:497-505. [PMID: 32842914 DOI: 10.4155/tde-2020-0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of this study is to prepare and characterize simvastatin-loaded nanoemulsions (SIM-LN) as well as evaluate their physicochemical properties and toxicity. Methodology & results: The SIM-LN were prepared, their characteristics evaluated for 30 days, and after that, the SIM-LN toxicity was evaluated using Vero cell culture and the in vivo model of Caenorhabditis elegans. The prepared SIM-LN had an average droplet size of 139 ± 22 nm, with high encapsulation rate (>98.4%). The storage at room temperature proved to be the most optimal condition. Toxicity assays demonstrated no toxicity. Conclusion: It was demonstrated that the surfactants used as emulsifiers optimized the properties without side effects, because no toxicity was measured in preliminary tests.
Collapse
|
50
|
Stoller MA, Gromowsky M, Rauhauser M, Judah M, Konda A, Jurich CP, Morin SA. Crystallization at droplet interfaces for the fabrication of geometrically programmed synthetic magnetosomes. SOFT MATTER 2020; 16:5819-5826. [PMID: 32324186 DOI: 10.1039/d0sm00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological systems demonstrate exquisite three dimensional (3D) control over crystal nucleation and growth using soft micro/nanoenvironments, such as vesicles, for reagent transport and confinement. It remains challenging to mimic such biomineralization processes using synthetic systems. A synthetic mineralization strategy applicable to the synthesis of artificial magnetosomes with programmable magnetic domains is described. This strategy relies on the compartmentalization of precursors in surfactant-stabilized liquid microdroplets which, when contacted, spontaneously form lipid bilayers that support reagent transport and interface-confined magnetite nucleation and growth. The resulting magnetic domains are polarized and thus readily manipulated using magnetic fields or assembled using droplet-droplet interactions. This strategy presents a new, liquid phase procedure for the synthesis of vesicles with geometrically controlled inorganic features that would be difficult to produce otherwise. The artificial magnetosomes demonstrated could find use in, for example, drug/cargo delivery, droplet microfluidics, and formulation science.
Collapse
Affiliation(s)
- Michael A Stoller
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE 68588, USA.
| | | | | | | | | | | | | |
Collapse
|