1
|
Huang C, Liu YC, Oh H, Guo DS, Nau WM, Hennig A. Cellular Uptake of Cell-Penetrating Peptides Activated by Amphiphilic p-Sulfonatocalix[4]arenes. Chemistry 2024; 30:e202400174. [PMID: 38456376 DOI: 10.1002/chem.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.
Collapse
Affiliation(s)
- Chusen Huang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Cen Liu
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Hyeyoung Oh
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
2
|
Park SG, Lee HB, Kang S. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Int J Biol Macromol 2024; 261:129622. [PMID: 38266854 DOI: 10.1016/j.ijbiomac.2024.129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Abdullah Z, Ashraf MU, Barkat K, Badshah SF, Rehman U, Razzaq A, Mahmood A, Ulhaq F, Chopra H, Rashid S, Valko M, Alomar S, Kuca K, Sharma R. Formulation of pH-responsive highly swellable hydrogel scaffolds for controlled release of tramadol HCl: characterization and biocompatibility evaluation. Front Bioeng Biotechnol 2023; 11:1190322. [PMID: 37304144 PMCID: PMC10250648 DOI: 10.3389/fbioe.2023.1190322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: The objective of current project was to formulate a system for controlled delivery of Tramadol HCl (TRD), an opioid analgesic used in the treatment of moderate to severe pain. Methods: For this purpose, a pH responsive AvT-co-poly hydrogel network was formulated through free radical polymerization by incorporating natural polymers i.e., aloe vera gel and tamarind gum, monomer and crosslinker. Formulated hydrogels were loaded with Tramadol HCl (TRD) and evaluated for percent drug loading, sol-gel fraction, dynamic and equilibrium swelling, morphological characteristics, structural features and in-vitro release of Tramadol HCl. Results and Discussions: Hydrogels were proved to be pH sensitive as remarkable dynamic swelling response ranging within 2.94g/g-10.81g/g was noticed at pH 7.4 as compared to pH 1.2. Percent drug loading was in the range of 70.28%-90.64% for all formulations. Thermal stability and compatibility of hydrogel components were validated by DSC analysis and FTIR spectroscopy. Controlled release pattern of Tramadol HCl from the polymeric network was confirmed as maximum release of 92.22% was observed for over a period of 24 hours at pH 7.4. Moreover, oral toxicity studies were also conducted in rabbits to investigate the safety of hydrogels. No evidence of any toxicity, lesions and degeneration was reported, confirming the biocompatibility and safety of grafted system.
Collapse
Affiliation(s)
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | | | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asma Razzaq
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Farid Ulhaq
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Marian Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol 2023; 11:1211798. [PMID: 37304137 PMCID: PMC10247999 DOI: 10.3389/fbioe.2023.1211798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Achieving the full potential of therapeutic proteins to access and target intracellular receptors will have enormous benefits in advancing human health and fighting disease. Existing strategies for intracellular protein delivery, such as chemical modification and nanocarrier-based protein delivery approaches, have shown promise but with limited efficiency and safety concerns. The development of more effective and versatile delivery tools is crucial for the safe and effective use of protein drugs. Nanosystems that can trigger endocytosis and endosomal disruption, or directly deliver proteins into the cytosol, are essential for successful therapeutic effects. This article aims to provide a brief overview of the current methods for intracellular protein delivery to mammalian cells, highlighting current challenges, new developments, and future research opportunities.
Collapse
|
5
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
6
|
Wu S, Liu M, Hu X, He C, Zhao C, Xiang S, Zeng Y. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery. Bioorg Med Chem Lett 2022; 62:128635. [PMID: 35202809 DOI: 10.1016/j.bmcl.2022.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Meiyan Liu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Chengxi He
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Chunyan Zhao
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
7
|
Yang K, Tang M, Chang HH, Kanamala M, Davidson AJ, Wu Z. Mannosylation of pH-sensitive liposomes promoted cytoplasmic delivery of protein to macrophages: green fluorescent protein (GFP) performed as an endosomal escape tracer. Pharm Dev Technol 2021; 26:1000-1009. [PMID: 34396913 DOI: 10.1080/10837450.2021.1969406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conventional non-pH-sensitive liposomes for cytoplasmic delivery of protein suffer from poor efficiency. Here we investigated mannosylated pH-sensitive liposomes (MAN-PSL) for cytoplasmic delivery of protein to macrophages RAW 264.7 using PSL and non-pH-sensitive liposomes for comparison. We characterised the pH-dependent fluorescence of green fluorescent protein (GFP) and encapsulated it in liposomes as an intracellular trafficking tracer. GFP showed a reversed 'S'-shaped pH-fluorescence curve with a dramatic signal loss at acidic pH. GFP stored at 4 °C with light protection showed a half-life of 10 days (pH 5-8). The entrapment efficiency of GFP was dominated by the volume ratio of intraliposomal core to external medium for thin-film hydration. Mannosylation did not affect the pH-responsiveness of PSL. Confocal microscopy elucidated that mannosylation promoted the cellular uptake of PSL. For both these liposomes, the strongest, homogeneously distributed GFP fluorescence in the cytoplasm was found at 3 h, confirming efficient endosomal escape of GFP. Conversely, internalisation of non-pH-sensitive liposomes was slow (peaked at 12 h) and both Nile Red and GFP signals remained weak and punctuated in the cytosol. In conclusion, GFP performed as a probe for endosome escape of liposomal cargo. Mannosylation facilitated the internalisation of PSL without compromising their endosomal escape ability.
Collapse
Affiliation(s)
- Kaiyun Yang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hao-Han Chang
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manju Kanamala
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alan James Davidson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Wagner TR, Rothbauer U. Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules 2020; 10:biom10121701. [PMID: 33371447 PMCID: PMC7767433 DOI: 10.3390/biom10121701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications.
Collapse
Affiliation(s)
- Teresa R. Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816
| |
Collapse
|
9
|
Takikawa M, Fujisawa M, Yoshino K, Takeoka S. Intracellular Distribution of Lipids and Encapsulated Model Drugs from Cationic Liposomes with Different Uptake Pathways. Int J Nanomedicine 2020; 15:8401-8409. [PMID: 33149583 PMCID: PMC7605631 DOI: 10.2147/ijn.s267638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
AIM The uptake pathway of liposomes into cells is mainly via endocytosis or membrane fusion; however, the relationship between the uptake pathway and the intracellular pharmacokinetics of the liposome components remains unclear. This study aimed at revealing the relationship by using cationic liposomes having similar physical properties and different uptake pathways. MATERIALS AND METHODS We prepared cationic liposomes composed of amino acid-type lipids, K3C14 and K3C16, which have different uptake pathways by a hydration method, and fluorescently modified them by encapsulating FITC-dextran and surface conjugation with Alexa Fluor® 488 (AF488). Then, we investigated their intracellular distribution in HeLa cells over time. RESULTS The liposomes had similar physical properties and did not cause significant cell mortality after treatment for 180 min. The delivery rate and efficiency of encapsulated FITC-dextran with the fusogenic K3C16 liposomes were 3 and 1.6 times higher, respectively, than with the endocytic K3C14 liposomes. FITC-dextran molecules delivered with K3C16 liposomes were observed throughout the cytosolic space after 10 min, while those delivered with K3C14 liposomes were mainly observed as foci and took 60 min to diffuse into the cytosolic space. K3C14 lipids modified with AF488 were distributed mostly in the cytosolic space. In contrast, fluorescently labeled K3C16 lipids were colocalized with the plasma membrane of 50% of the HeLa cells after 10 min and were gradually internalized intracellularly. CONCLUSION Fusogenic K3C16 liposomes internalized into HeLa cells faster than endocytic K3C14 liposomes, and their components differently distributed in the cells.
Collapse
Affiliation(s)
- Masato Takikawa
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo169-8555, Japan
| | - Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate Schoolof Advanced Science and Engineering, Waseda University (TWIns), Tokyo162-8480, Japan
| | - Kazuma Yoshino
- Department of Life Science and Medical Bioscience, Graduate Schoolof Advanced Science and Engineering, Waseda University (TWIns), Tokyo162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate Schoolof Advanced Science and Engineering, Waseda University (TWIns), Tokyo162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo169-8555, Japan
| |
Collapse
|
10
|
Nayanathara U, Kermaniyan SS, Such GK. Multicompartment Polymeric Nanocarriers for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000298. [PMID: 32686228 DOI: 10.1002/marc.202000298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Multicompartment polymeric nanocarriers which mimic the compartmentalized architecture of living cells have received considerable research attention in the biomedical field. The advancement of synthetic polymeric chemistry has allowed multicompartment polymeric nanocarriers to be tailored for biomedical applications such as drug delivery, encapsulated catalysis, and artificial cellular mimics. In this review, polymer-based multicompartment nanocarriers (multicompartment micelles, multicompartment polymersomes, and capsosomes) have been discussed. This review focuses on multicompartment systems applied to biomedical applications over the last ten years. The synthetic procedures and structural properties that impact the specific application are also highlighted.
Collapse
Affiliation(s)
- Umeka Nayanathara
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah S Kermaniyan
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
11
|
Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, Buzyurova DN, Babaev VM, Voloshina AD, Lukashenko SS, Rizvanov IK, Petrov KA, Zakharova LY, Sinyashin OG. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm 2020; 587:119640. [PMID: 32673770 DOI: 10.1016/j.ijpharm.2020.119640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats. In vivo, pharmacokinetics of free and formulated 2-PAM in plasma and brain were evaluated, liposomal 2-PAM was found to reactivate 27% of brain acetylcholinesterase, which is, to our knowledge, the first example of such high degree of reactivation after intravenous administration of liposomal drug.
Collapse
Affiliation(s)
- Rais V Pavlov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Gulnara A Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Daina N Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Ildar Kh Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
12
|
Chen H, Luo C, Yang M, Li J, Ma P, Zhang X. Intracellular uptake of and sensing with SERS-active hybrid exosomes: insight into a role of metal nanoparticles. Nanomedicine (Lond) 2020; 15:913-926. [PMID: 32216580 DOI: 10.2217/nnm-2019-0419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Exosomes, known as novel biocompatible vesicles, have attracted much interest. This makes it urgent to observe exosomes at the visually cellular or subcellular levels. Methods: Herein, we constructed a new kind of exosome/metal nanohybrid and employed a surface-enhanced Raman scattering technique to study the intracellular behaviors of hybrid exosomes. Results: Experimental results revealed that hybrid exosomes were internalized mainly through clathrin-mediated endocytosis and thereafter transported to lysosomes. The metal nanoparticles in the hybrid were demonstrated to have little effect on exosomal characteristics while serving as surface-enhanced Raman scattering generators. Conclusion: This study is significant for removing the barrier in designing programmable exosome/metal nanohybrids, which will greatly improve the utility of exosomal nanohybrids for therapeutics, such as multifunctional drug-delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Caixia Luo
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Moyu Yang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Junying Li
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Pei Ma
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Xuedian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| |
Collapse
|
13
|
Sarker SR, Takikawa M, Takeoka S. In Vitro Delivery of Cell Impermeable Phallotoxin Using Cationic Liposomes Composed of Lipids Bearing Lysine Headgroup. ACS APPLIED BIO MATERIALS 2020; 3:2048-2057. [DOI: 10.1021/acsabm.9b01167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Satya Ranjan Sarker
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Masato Takikawa
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Yang HY, Li Y, Jang MS, Fu Y, Wu T, Lee JH, Lee DS. Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Martínez-Negro M, Sánchez-Arribas N, Guerrero-Martínez A, Moyá ML, Tros de Ilarduya C, Mendicuti F, Aicart E, Junquera E. A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid. Pharmaceutics 2019; 11:E632. [PMID: 31783620 PMCID: PMC6956073 DOI: 10.3390/pharmaceutics11120632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
The insertion of biocompatible amino acid moieties in non-viral gene nanocarriers is an attractive approach that has been recently gaining interest. In this work, a cationic lipid, consisting of a lysine-derived moiety linked to a C12 chain (LYCl) was combined with a common fusogenic helper lipid (DOPE) and evaluated as a potential vehicle to transfect two plasmid DNAs (encoding green fluorescent protein GFP and luciferase) into COS-7 cells. A multidisciplinary approach has been followed: (i) biophysical characterization based on zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and cryo-transmission electronic microscopy (cryo-TEM); (ii) biological studies by fluorescence assisted cell sorting (FACS), luminometry, and cytotoxicity experiments; and (iii) a computational study of the formation of lipid bilayers and their subsequent stabilization with DNA. The results indicate that LYCl/DOPE nanocarriers are capable of compacting the pDNAs and protecting them efficiently against DNase I degradation, by forming Lα lyotropic liquid crystal phases, with an average size of ~200 nm and low polydispersity that facilitate the cellular uptake process. The computational results confirmed that the LYCl/DOPE lipid bilayers are stable and also capable of stabilizing DNA fragments via lipoplex formation, with dimensions consistent with experimental values. The optimum formulations (found at 20% of LYCl content) were able to complete the transfection process efficiently and with high cell viabilities, even improving the outcomes of the positive control Lipo2000*.
Collapse
Affiliation(s)
- María Martínez-Negro
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Natalia Sánchez-Arribas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - María Luisa Moyá
- Grupo de Química Coloidal y Catálisis Micelar, Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Conchita Tros de Ilarduya
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31080 Pamplona, Spain;
| | - Francisco Mendicuti
- Departmento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Quimica Andrés M. del Rio, Universidad de Alcalá, 28871 Alcalá de Henares, Spain;
| | - Emilio Aicart
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| |
Collapse
|
16
|
Li T, Zehner M, He J, Próchnicki T, Horvath G, Latz E, Burgdorf S, Takeoka S. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells. Int J Nanomedicine 2019; 14:3503-3516. [PMID: 31190807 PMCID: PMC6526778 DOI: 10.2147/ijn.s202379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 02/04/2023] Open
Abstract
Purpose: The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses. Materials and methods: A series of structurally similar lipids, consisting of arginine (Arg) head group and varied lengths of alkyl chains or spacers in between were used to prepare cationic liposomes. Lipopolysaccharide-primed human or murine macrophages or phorbol 12-myristate 13-acetate-primed THP-1 cells were treated with these liposomes, and interleukin (IL)-1β secretion was measured to quantify the NLRP3 inflammasome activation. Lysosome rupture was examined in THP-1 cells by the fluorescence loss of acridine orange, a lysosome dye. Further, chicken ovalbumin (OVA) was loaded on the liposome surface and applied to murine bone marrow-derived dendritic cells (BMDCs), which activate OT-I and OT-II lymphocytes upon major histocompatibility complex (MHC) class I- and class II-mediated antigen presentation, respectively. OT-I and OT-II cell division and IL-2 secretion were measured to evaluate the antigen presentation efficiency. The expressions of MHC molecules and co-stimulatory molecules ie, CD80, CD86, and CD40 on BMDCs were investigated by flow cytometry. Results: All the liposomes showed size distributions of 80–200 nm and zeta potentials of around 50 mV. A3C14 liposomes, consisting of Arg-C3-Glu2C14 lipids induced the most potent lysosome rupture and NLRP3 inflammasome activation. OVA-A3C14 also exhibited the most potent MHC class I- and class II-mediated antigen presentation in BMDCs without interfering MHC and co-stimulatory molecules. Conclusion: The hydrophobic moieties of arginine-based liposomes are crucial in stimulating innate immune cells. A3C14 liposomes were non-immunogenic but strongly activated innate immune cells and promoted antigen presentation, and therefore can be applied as immune adjuvants.
Collapse
Affiliation(s)
- Tianshu Li
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Matthias Zehner
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jieyan He
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomasz Próchnicki
- Institute of Innate Immunity, Biomedical Center, University Hospitals, University of Bonn, Bonn, Germany
| | - Gabor Horvath
- Institute of Innate Immunity, Biomedical Center, University Hospitals, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Biomedical Center, University Hospitals, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Shinji Takeoka
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
17
|
Membrane fusogenic lysine type lipid assemblies possess enhanced NLRP3 inflammasome activation potency. Biochem Biophys Rep 2019; 18:100623. [PMID: 31011633 PMCID: PMC6462779 DOI: 10.1016/j.bbrep.2019.100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
Lysine (K) type cationic lipid with a propyl spacer and ditetradecyl hydrophobic moieties composing liposomes, K3C14, previously studied for gene delivery, were reported to activate the NLRP3 inflammasomes in human macrophages via the conventional phagolysosomal pathway. In this study, K3C16, a propyl spacer bearing lysine type lipids with dihexadecyl moieties (an extension of two hydrocarbon tail length) were compared with K3C14 as liposomes. Such a small change in tail length did not alter the physical properties such as size distribution, zeta potential and polydispersity index (PDI). The NLRP3 activation potency of K3C16 was shown to be 1.5-fold higher. Yet, the toxicity was minimal, whereas K3C14 has shown to cause significant cell death after 24 h incubation. Even in the presence of endocytosis inhibitors, cytochalasin D or dynasore, K3C16 continued to activate the NLRP3 inflammasomes and to induce IL-1β release. To our surprise, K3C16 liposomes were confirmed to fuse with the plasma membrane of human macrophages and CHO-K1 cells. It is demonstrated that the change in hydrophobic tail length by two hydrocarbons drastically changed a cellular entry route and potency in activating the NLRP3 inflammasomes.
Collapse
|
18
|
Sakai-Kato K, Yoshida K, Izutsu KI. Effect of surface charge on the size-dependent cellular internalization of liposomes. Chem Phys Lipids 2019; 224:104726. [PMID: 30660745 DOI: 10.1016/j.chemphyslip.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
Abstract
Here we report that the size dependence of cellular internalization of liposomes differs depending on the surface charge. We prepared liposomes of various lipid compositions ranging from 100 to 200 nm size. It was found that cationic liposomes composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) were most effectively internalized into cells when their mean particle sizes were around 180 nm. When their size was reduced to around 90 nm, the level of internalization reduced six-fold. Conversely, hydrogenated soy phosphatidylcholine (HSPC)/N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG2000-DSPE)/cholesterol(Chol) liposomes, HSPC/PEG2000-DSPE liposomes, and HSPC/Chol liposomes were most readily internalized when they were around 110 to 130 nm in mean particle size. Unlike DOPC/DOTAP liposomes the difference between the maximum and minimum levels of internalization was less than two-fold. It has been suggested that strong electrostatic interactions between cationic liposomes and the negatively charged plasma membrane affect the size dependence and optimal size range for internalization of liposomes. Size dependence of internalization should be carefully monitored for effective formulation development and quality control of liposome drug products.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Kohki Yoshida
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
19
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
20
|
Li T, He J, Horvath G, Próchnicki T, Latz E, Takeoka S. Lysine-containing cationic liposomes activate the NLRP3 inflammasome: Effect of a spacer between the head group and the hydrophobic moieties of the lipids. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:279-288. [DOI: 10.1016/j.nano.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023]
|
21
|
Zhu D, Wang Z, Zong S, Zhang Y, Chen C, Zhang R, Yun B, Cui Y. Investigating the Intracellular Behaviors of Liposomal Nanohybrids via SERS: Insights into the Influence of Metal Nanoparticles. Theranostics 2018; 8:941-954. [PMID: 29463992 PMCID: PMC5817103 DOI: 10.7150/thno.21173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/07/2017] [Indexed: 02/04/2023] Open
Abstract
The recent proposition to combine liposomes with nanoparticles presents great opportunities to develop multifunctional drug delivery platforms. Although impressive progress has been made, attempts to elucidate the role nanoparticles play in the integral nanohybrids are still rather limited. Here, using surface-enhanced Raman scattering (SERS) technique, we investigate the influence of metal nanoparticles on the liposomal properties, ranging from drug release to intracellular movement. Specifically, we prepared SERS-active nanohybrids by attaching metal nanoparticles to liposomes and employed SERS signals to explore the intracellular behavior of the nanohybrids. Once deposited on the cell membrane, the nanohybrids entered tumor cells via clathrin-mediated endocytosis and then moved to lysosomes. In comparison with pure liposomes, metal nanoparticles in the nanohybrids had little influence on the properties of liposomes. This study fills the gap of the function of nanoparticles in the overall nanohybrids, which provides a significant prerequisite for efficient drug delivery in therapeutic applications.
Collapse
Affiliation(s)
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, 2# Sipailou, Nanjing 210096, Jiangsu, China
| | | | | | | | | | | | - Yiping Cui
- Advanced Photonics Center, Southeast University, 2# Sipailou, Nanjing 210096, Jiangsu, China
| |
Collapse
|
22
|
Dallet L, Decossas M, Taveau JC, Lecomte S, Poussard S, Lambert O, Pitard B. Single lipoaminoglycoside promotes efficient intracellular antibody delivery: A comprehensive insight into the mechanism of action. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:141-151. [PMID: 28939489 DOI: 10.1016/j.nano.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Delivery of biologically active proteins into cells is emerging as important strategy for many applications. Previous experiments have shown that lipoaminoglycosides were capable of delivery of the anti-cytokeratin8 antibody (anti-K8) but only when formulated with lipid helpers potentially leading to toxicity from excess lipids. Here, we optimized anti-K8 delivery with various lipoaminoglycosides in the absence of a lipid helper. Results led to the identification of the aminoglycoside lipid dioleyl phosphoramido ribostamycin (DOPRI) as a potent intracellular delivery system for anti-K8. Electron microscopy revealed that delivered anti-K8 molecules were bound to intermediate filaments in cells. Anti-K8 was bound to the surface of DOPRI vesicles without perturbing lipid organization. Macropinocytosis and caveolin mediated endocytosis contributed to anti-K8 internalization and to filament labeling with a major contribution being made by the caveolin pathway. The results showed that the unique properties of DOPRI were sufficient for efficient intracellular protein delivery without requiring lipid helpers.
Collapse
Affiliation(s)
- Laurence Dallet
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France; CRCINA, INSERM Université d'Angers, Université de Nantes, France
| | - Marion Decossas
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | | | - Sophie Lecomte
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | - Sylvie Poussard
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | - Olivier Lambert
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France.
| | | |
Collapse
|
23
|
Chen PC, Prasannan A, Huang CC, Tang SF, Tsai HC. Fabrication of self-assembled vesicle nanoparticles of poly( l -lysine)–arachidic acid conjugates for a vascular endothelial growth factor carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:756-762. [DOI: 10.1016/j.msec.2017.04.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/15/2017] [Indexed: 11/30/2022]
|
24
|
Chen J, Ouyang J, Chen Q, Deng C, Meng F, Zhang J, Cheng R, Lan Q, Zhong Z. EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to Ovarian and Breast Cancers In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24140-24147. [PMID: 28675028 DOI: 10.1021/acsami.7b06879] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein drugs with intracellular targets like Granzyme B (GrB) have demonstrated great proliferative inhibition activity in cancer cells. Their clinical translation, however, relies on the development of safe, efficient, and selective protein-delivery vehicles. Here, we report that epidermal growth factor receptor (EGFR) and CD44 dual-targeted multifunctional hyaluronic acid nanogels (EGFR/CD44-NGs) boost protein delivery to ovarian and breast cancers in vitro and in vivo. EGFR/CD44-NGs obtained via nanoprecipitation and photoclick chemistry from hyaluronic acid derivatives with tetrazole, GE11 peptide/tetrazole, and cystamine methacrylate groups had nearly quantitative loading of therapeutic proteins like cytochrome C (CC) and GrB, a small size of ca. 165 nm, excellent stability in serum, and fast protein release under a reductive condition. Flow cytometry assays showed that EGFR/CD44-NGs exhibited over 6-fold better uptake in CD44 and EGFR-positive SKOV-3 ovarian cancer cells than CD44-NGs. In accordance, GrB-loaded EGFR/CD44-NGs (GrB-EGFR/CD44-NGs) displayed enhanced caspase activity and growth inhibition in SKOV-3 cells as compared to GrB-loaded CD44-NGs (GrB-CD44-NGs) control. Intriguingly, the therapeutic studies in SKOV-3 human ovarian carcinoma and MDA-MB-231 human breast tumor xenografted in nude mice revealed that GrB-EGFR/CD44-NGs at a low dose of 3.85 nmol GrB equiv/kg induced nearly complete growth suppression of both tumors, which was obviously more effective than GrB-CD44-NGs, without causing any adverse effects. EGFR and CD44 dual-targeted multifunctional hyaluronic acid nanogels have appeared as a safe and efficacious platform for cancer protein therapy.
Collapse
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jia Ouyang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou 215004, People's Republic of China
| | - Qijun Chen
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou 215004, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
25
|
Ray M, Lee YW, Scaletti F, Yu R, Rotello VM. Intracellular delivery of proteins by nanocarriers. Nanomedicine (Lond) 2017; 12:941-952. [PMID: 28338410 DOI: 10.2217/nnm-2016-0393] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracellular delivery of proteins is potentially a game-changing approach for therapeutics. However, for most applications, the protein needs to access the cytosol to be effective. A wide variety of strategies have been developed for protein delivery, however access of delivered protein to the cytosol without acute cytotoxicity remains a critical issue. In this review we discuss recent trends in protein delivery using nanocarriers, focusing on the ability of these strategies to deliver protein into the cytosol.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ruijin Yu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.,College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1280-1292. [PMID: 28009503 DOI: 10.1021/acsami.6b13738] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A safe and efficient tumor-targeting strategy based on oligomeric hyaluronic acid (HA) modification and coadministration of tumor-penetrating peptide-iRGD was successfully developed. In this study, common liposomes (cLip) were modified by oligomeric HA to obtain HA-Lip. After injection into rats, HA-Lip showed good stealth in the bloodstream and lower liver distribution compared with cLip. Moreover, our HA-Lip could be internalized into B16F10 cells (CD44-overexpressing tumor cells) through HA-CD44 interaction. After systemic administration to B16F10 melanoma-bearing mice, HA-Lip showed an increased distribution in tumor due to the prolonged blood circulation time and the enhanced penetration and retention effect. When coadministered with iRGD, the tumor penetration of HA-Lip was significantly enhanced, which could promote HA-Lip internalization by tumors cells located in deep tumor regions through receptor-mediated endocytosis. Furthermore, doxorubicin (DOX)-loaded HA-Lip coadministering with iRGD showed much better antitumor effect compared to DOX-loaded cLip and DOX-loaded cLip in combination with iRGD. In systemic toxicity test, DOX-loaded HA-Lip could significantly decrease the cardiotoxicity and myelosuppression of DOX. Taken together, our results demonstrated that coadministration of oligomeric HA-modified liposomes with iRGD could be a promising treatment strategy for targeted therapy of melanoma.
Collapse
Affiliation(s)
- Caifeng Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Quan Zhang
- School of Pharmacy, Chengdu Medical College , Chengdu 610083, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
27
|
Zhao YN, Piao YZ, Zhang CM, Jiang YM, Liu A, Cui SH, Zhi DF, Zhen YH, Zhang SB. Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. J Mater Chem B 2017; 5:7963-7973. [DOI: 10.1039/c7tb01915g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Replacement of quaternary ammonium headgroups by tri-ornithine in lipids improved gene delivery in vitro and in vivo with little toxicity.
Collapse
Affiliation(s)
- Y. N. Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. Z. Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - C. M. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. M. Jiang
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - A. Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - S. H. Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - D. F. Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. H. Zhen
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - S. B. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
28
|
Chen J, Zou Y, Deng C, Meng F, Zhang J, Zhong Z. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment in Vivo. CHEMISTRY OF MATERIALS 2016; 28:8792-8799. [DOI: 10.1021/acs.chemmater.6b04404] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yan Zou
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
29
|
Röder R, Helma J, Preiß T, Rädler JO, Leonhardt H, Wagner E. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells. Pharm Res 2016; 34:161-174. [PMID: 27800572 DOI: 10.1007/s11095-016-2052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Cytosolic delivery of nanobodies for molecular target binding and fluorescent labeling in living cells. METHODS Fluorescently labeled nanobodies were formulated with sixteen different sequence-defined oligoaminoamides. The delivery of formulated anti-GFP nanobodies into different target protein-containing HeLa cell lines was investigated by flow cytometry and fluorescence microscopy. Nanoparticle formation was analyzed by fluorescence correlation spectroscopy. RESULTS The initial oligomer screen identified two cationizable four-arm structured oligomers (734, 735) which mediate intracellular nanobody delivery in a receptor-independent (734) or folate receptor facilitated (735) process. The presence of disulfide-forming cysteines in the oligomers was found critical for the formation of stable protein nanoparticles of around 20 nm diameter. Delivery of labeled GFP nanobodies or lamin nanobodies to their cellular targets was demonstrated by fluorescence microscopy including time lapse studies. CONCLUSION Two sequence-defined oligoaminoamides with or without folate for receptor targeting were identified as effective carriers for intracellular nanobody delivery, as exemplified by GFP or lamin binding in living cells. Due to the conserved nanobody core structure, the methods should be applicable for a broad range of nanobodies directed to different intracellular targets.
Collapse
Affiliation(s)
- Ruth Röder
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377, Munich, Germany
| | - Jonas Helma
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Preiß
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377, Munich, Germany.
| |
Collapse
|
30
|
He C, Wang S, Liu M, Zhao C, Xiang S, Zeng Y. Design, synthesis and in vitro evaluation of d-glucose-based cationic glycolipids for gene delivery. Org Biomol Chem 2016; 14:1611-22. [PMID: 26670704 DOI: 10.1039/c5ob02107c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic lipid consists of a hydrophilic headgroup, backbone and hydrophobic tails which have an immense influence on the transfection efficiency of the lipid. In this paper, two novel series of cationic cyclic glycolipids with a quaternary ammonium headgroup and different-length hydrophobic tails (dodecyl, tetradecyl, hexadecyl) have been designed and synthesized for gene delivery. One contains lipids 1-3 with two hydrophobic alkyl chains linked to the glucose ring directly via an ether link. The other contains lipids 4-6 with two hydrophobic chains on the positively charged nitrogen atoms. All of the lipids were characterized for their ability to bind to DNA, size, ζ-potential, and toxicity. Atomic force microscopy showed that the lipids and DNA-lipid complexes were sphere-like forms. The lipids were used to transfer enhanced green fluorescent protein (EGFP-C3) to HEK293 cells without a helper lipid, the results indicated that lipids 4-6 have better transfection efficiency, in particular lipids 5-6 have similar or better efficiency, compared with the commercial transfection reagent lipofectamine 2000.
Collapse
Affiliation(s)
- Chengxi He
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Meiyan Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunyan Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Youlin Zeng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| |
Collapse
|
31
|
Ahmed S, Fujita S, Matsumura K. Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration. NANOSCALE 2016; 8:15888-15901. [PMID: 27439774 DOI: 10.1039/c6nr03940e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we show a new strategy for efficient freeze concentration-mediated cytoplasmic delivery of proteins, obtained via the endosomal escape property of polyampholyte-modified liposomes. The freeze concentration method successfully induces the efficient internalization of proteins simply by freezing cells with protein and nanocarrier complexes. However, the mechanism of protein internalization remains unclear. Here, we designed a novel protein delivery carrier by modifying liposomes through incorporating hydrophobic polyampholytes therein. These complexes were characterized for particle size, encapsulation efficiency, and cytotoxicity. Flow cytometry and microscopic analysis showed that the adsorption and internalization of protein-loaded polyampholyte-modified liposomes after freezing were enhanced compared with that observed in unfrozen complexes. Inhibition studies demonstrated that the internalization mechanism differs between unmodified and polyampholyte-modified liposomes. Furthermore, polyampholyte-modified liposomes exhibited high efficacy in facilitating endosomal escape to enhance protein delivery to the cytoplasm with low toxicity. These results strongly suggest that the freeze concentration-based strategy could be widely utilised for efficient cargo delivery into the cytoplasm in vitro not only in cancer treatment but also for gene therapy as well.
Collapse
Affiliation(s)
- Sana Ahmed
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | |
Collapse
|
32
|
Li S, Zhang J, Deng C, Meng F, Yu L, Zhong Z. Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome c to Breast Tumor in Mice. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21155-62. [PMID: 27509045 DOI: 10.1021/acsami.6b05775] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In spite of their high specificity and potency, few protein therapeutics are applied in clinical cancer therapy owing to a lack of safe and efficacious delivery systems. Here, we report that redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels (HA-NGs) show highly efficient loading and breast tumor-targeted delivery of cytochrome c (CC). HA-NGs were obtained from hyaluronic acid-graft-oligo(ethylene glycol)-tetrazole (HA-OEG-Tet) via inverse nanoprecipitation and catalyst-free photoclick cross-linking with l-cystine dimethacrylamide (MA-Cys-MA). HA-NGs exhibited a superb CC loading content of up to 40.6 wt %, intrinsic fluorescence (λem = 510 nm), and a small size of ca. 170 nm. Notably, CC-loaded nanogels (CC-NGs) showed a fast glutathione-responsive protein release behavior. Importantly, released CC maintained its bioactivity. MTT assays revealed that CC-NGs were highly potent with a low IC50 of 3.07 μM to CD44+ MCF-7 human breast tumor cells. Confocal microscopy observed efficient and selective internalization of fluorescent HA-NGs into MCF-7 cells. Interestingly, HA-NGs exhibited also effective breast tumor penetration. The therapeutic results demonstrated that CC-NGs effectively inhibited the growth of MCF-7 breast tumor xenografts at a particularly low dose of 80 or 160 nmol CC equiv./kg. Moreover, CC-NGs did not cause any change in mice body weight, corroborating their low systemic side effects. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels have appeared as a "smart" protein delivery nanoplatform enabling safe, efficacious, traceable, and targeted cancer protein therapy in vivo.
Collapse
Affiliation(s)
- Shuai Li
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| |
Collapse
|
33
|
Bandeira E, Lopes-Pacheco M, Chiaramoni N, Ferreira D, Fernandez-Ruocco MJ, Prieto MJ, Maron-Gutierrez T, Perrotta RM, de Castro-Faria-Neto HC, Rocco PRM, Alonso SDV, Morales MM. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery. Front Physiol 2016; 7:151. [PMID: 27199766 PMCID: PMC4844622 DOI: 10.3389/fphys.2016.00151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/08/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elga Bandeira
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Nadia Chiaramoni
- Laboratory of Biomembranes, Department of Science and Technology, National University of QuilmesBuenos Aires, Argentina
| | - Débora Ferreira
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Maria J. Fernandez-Ruocco
- Laboratory of Biomembranes, Department of Science and Technology, National University of QuilmesBuenos Aires, Argentina
| | - Maria J. Prieto
- Laboratory of Biomembranes, Department of Science and Technology, National University of QuilmesBuenos Aires, Argentina
| | | | - Ramiro M. Perrotta
- Laboratory of Biomembranes, Department of Science and Technology, National University of QuilmesBuenos Aires, Argentina
| | | | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Silvia del Valle Alonso
- Laboratory of Biomembranes, Department of Science and Technology, National University of QuilmesBuenos Aires, Argentina
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
- *Correspondence: Marcelo M. Morales
| |
Collapse
|
34
|
Ng KK, Motoda Y, Watanabe S, Sofiman Othman A, Kigawa T, Kodama Y, Numata K. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants. PLoS One 2016; 11:e0154081. [PMID: 27100681 PMCID: PMC4839658 DOI: 10.1371/journal.pone.0154081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.
Collapse
Affiliation(s)
- Kiaw Kiaw Ng
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoko Motoda
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center (QBiC), Yokohama, Kanagawa, Japan
| | - Satoru Watanabe
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center (QBiC), Yokohama, Kanagawa, Japan
| | | | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center (QBiC), Yokohama, Kanagawa, Japan
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
35
|
Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T, Muto S, Sato E, Takayama N, Honjo E, Kiyono H, Kunisawa J, Aramaki Y. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice. PLoS One 2015; 10:e0139785. [PMID: 26440657 PMCID: PMC4594917 DOI: 10.1371/journal.pone.0139785] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL-4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoko Iwase
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Saeko Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Yamakita
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoko Iwata
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Sato
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Noriko Takayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Honjo
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| |
Collapse
|
36
|
Fu J, Yu C, Li L, Yao SQ. Intracellular Delivery of Functional Proteins and Native Drugs by Cell-Penetrating Poly(disulfide)s. J Am Chem Soc 2015; 137:12153-60. [DOI: 10.1021/jacs.5b08130] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiaqi Fu
- Department
of Chemistry, National University of Singapore, 117543 Singapore
| | - Changmin Yu
- Department
of Chemistry, National University of Singapore, 117543 Singapore
| | - Lin Li
- Department
of Chemistry, National University of Singapore, 117543 Singapore
- Key
Laboratory of Flexible Electronics and Institute of Advanced Materials,
National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, 117543 Singapore
| |
Collapse
|
37
|
Sun W, Lu Y, Gu Z. Advances in Anticancer Protein Delivery Using Micro-/ Nanoparticles. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2014; 31:1204-1222. [PMID: 27642232 PMCID: PMC5026193 DOI: 10.1002/ppsc.201400140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Indexed: 04/14/2023]
Abstract
Proteins exhibiting anticancer activities, especially those capable of discriminately killing cancer cells, have attracted increasing interest in developing protein-based anticancer therapeutics. This progress report surveys recent advances in delivering anticancer proteins directly to tumor tissue for inducing apoptosis/necrosis or indirectly to antigen presenting cells for provoking immune responses. Protein delivery carriers such as inorganic particles, lipid particles, polymeric particles, DNA/protein based biomacromolecular particles as well as cell based carriers are reviewed with comments on their advantages and limitations. Future challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
38
|
Fu A, Tang R, Hardie J, Farkas M, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem 2014; 25:1602-8. [PMID: 25133522 PMCID: PMC4166028 DOI: 10.1021/bc500320j] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/10/2014] [Indexed: 02/07/2023]
Abstract
The direct delivery of functional proteins into the cell cytosol is a key issue for protein therapy, with many current strategies resulting in endosomal entrapment. Protein delivery to the cytosol is challenging due to the high molecular weight and the polarity of therapeutic proteins. Here we review strategies for the delivery of proteins into cells, including cell-penetrating peptides, virus-like particles, supercharged proteins, nanocarriers, polymers, and nanoparticle-stabilized nanocapsules. The advantages and disadvantages of these approaches including cytosolar delivery are compared and contrasted, with promising pathways forward identified.
Collapse
Affiliation(s)
- Ailing Fu
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- School
of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Rui Tang
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle
E. Farkas
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
39
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|