1
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
2
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Ma B, Yu Y, Li J, Zhang Y, Sun B, Ji A, Song K, Shi L, Hu H, Gao S, Cheng H. Temperature-Sensitive Polymer-Driven Nanomotors for Enhanced Tumor Penetration and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403800. [PMID: 39163609 DOI: 10.1002/smll.202403800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Indexed: 08/22/2024]
Abstract
Self-propelled nanomotors possess strong propulsion and penetration abilities, which can increase the efficiency of cellular uptake of nanoparticles and enhance their cytotoxicity against tumor cells, opening a new path for treating major diseases. In this study, the concept of driving nanomotors by alternately stretching and contracting a temperature-sensitive polymer (TS-P) chain is proposed. The TS-Ps are successfully linked to one side of Cu2-xSe@Au (CS@Au) nanoparticles to form a Janus structure, which is designated as Cu2-xSe@Au-polymer (CS@Au-P) nanomotors. Under near-infrared (NIR) light irradiation, Cu2-xSe nanoparticles generate photothermal effects that change the system temperature, triggering the alternation of the TS-P structure to generate a mechanical force that propels the motion of CS@Au-P nanomotors. The nanomotor significantly improved the cellular uptake of nanoparticles and enhanced their penetration and accumulation in tumor. Furthermore, the exceptional photothermal conversion efficiency of CS@Au-P nanomotors suggests their potential as nanomaterials for photothermal therapy (PTT). The prepared material exhibited good biocompatibility and anti-tumor effects both in vivo and in vitro, providing new research insights into the design and application of nanomotors in tumor therapy.
Collapse
Affiliation(s)
- Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Ying Yu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Yunqi Zhang
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Bo Sun
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Anqi Ji
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Kexing Song
- Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| |
Collapse
|
4
|
Herrera-Ochoa D, Bravo I, Garzón-Ruiz A. Monitoring cancer treatments in melanoma cells using a fluorescence lifetime nanoprobe based on a CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine. Colloids Surf B Biointerfaces 2024; 245:114265. [PMID: 39321721 DOI: 10.1016/j.colsurfb.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Anticancer therapies with cisplatin and volasertib (BI-6727) were monitored by fluorescence lifetime imaging microscopy (FLIM) in live SK-Mel-2 melanoma cells. A CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine (CdSe/ZnS-PH) was used as intracellular pH fluorescent probe. A faster cytosol acidification was observed for cells treated with cisplatin when compared to volasertib. The first changes in the intracellular pH were found after 2 hours of treatment with cisplatin and 8 hours with volasertib. Additionally, the relationship between cytosol acidification and apoptosis was investigated using an innovative methodology based on time-resolved fluorescence measurements. Similar low percentages of apoptotic cells were observed after short incubation periods (2 - 8 hours) with both drugs. In contrast, late apoptosis and death were found for a large fraction of cells during 24-hour incubation with cisplatin but not volasertib. Thus, the early acidification observed in cisplatin treatment could accelerate apoptosis and cell death. Despite volasertib treatment shows slower mechanism of action than cisplatin, similar inhibitory effects were found for both drugs at longer incubation periods (72 hours). This study proves the potential of CdSe/ZnS-PH nanoparticle as a fluorescence lifetime probe in the study of the mechanism of action of antitumor drugs.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, Albacete 02008, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
5
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
6
|
Zhang C, Arun A, Lapkin AA. Completing and Balancing Database Excerpted Chemical Reactions with a Hybrid Mechanistic-Machine Learning Approach. ACS OMEGA 2024; 9:18385-18399. [PMID: 38680356 PMCID: PMC11044172 DOI: 10.1021/acsomega.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Computer-aided synthesis planning (CASP) development of reaction routes requires an understanding of complete reaction structures. However, most reactions in the current databases are missing reaction coparticipants. Although reaction prediction and atom mapping tools can predict major reaction participants and trace atom rearrangements in reactions, they fail to identify the missing molecules to complete reactions. This is because these approaches are data-driven models trained on the current reaction databases, which comprise incomplete reactions. In this work, a workflow was developed to tackle the reaction completion challenge. This includes a heuristic-based method to identify balanced reactions from reaction databases and complete some imbalanced reactions by adding candidate molecules. A machine learning masked language model (MLM) was trained to learn from simplified molecular input line entry system (SMILES) sentences of these completed reactions. The model predicted missing molecules for the incomplete reactions, a workflow analogous to predicting missing words in sentences. The model is promising for the prediction of small- and middle-sized missing molecules in incomplete reaction records. The workflow combining both the heuristic and machine learning methods completed more than half of the entire reaction space.
Collapse
Affiliation(s)
- Chonghuan Zhang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Adarsh Arun
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Cambridge
Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, Singapore 138602 Singapore
- Chemical
Data Intelligence (CDI) Pte., Ltd., 9 Raffles Place #26-01, Republic Plaza, Singapore 048619 Singapore
| | - Alexei A. Lapkin
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Cambridge
Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, Singapore 138602 Singapore
- Chemical
Data Intelligence (CDI) Pte., Ltd., 9 Raffles Place #26-01, Republic Plaza, Singapore 048619 Singapore
| |
Collapse
|
7
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
8
|
Guo J, Xu S, Majeed U, Ye J, Zhang H, Xue W, Luo Y. Size-Related Pathway Flux Analysis of Ultrasmall Iron Oxide Nanoparticles in Macrophage Cell RAW264.7 for Safety Evaluation. ACS OMEGA 2024; 9:3480-3490. [PMID: 38284085 PMCID: PMC10809237 DOI: 10.1021/acsomega.3c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The endocytosis, intracellular transport, and exocytosis of different-sized nanoparticles were reported to greatly affect their efficacy and biosafety. The quantitation of endocytosis and exocytosis as well as subcellular distribution of nanoparticles might be an effective approach based on transport pathway flux analysis. Thus, the key parameters that could present the effects of three different-sized ultrasmall iron oxide nanoparticles (USIONPs) were systematically investigated in RAW264.7 cells. The endocytosis and exocytosis of USIONPs were related to their sizes; 15.4 nm of S2 could be quickly and more internalized and excreted in comparison to S1 (7.8 nm) and S3 (30.7 nm). In RAW264.7 cells, USIONPs were observed in endosomes, lysosomes, the Golgi apparatus, and autophagosomes via a transmission electron microscope. Based on flux analysis of intracellular transport pathways of USIONPs, it was found that 43% of S1, 40% of S2, and 44% of S3 were individually transported extracellularly through the Golgi apparatus-involved middle-fast pathway, while 24% of S1, 23% of S2, and 26% of S3 were transported through the fast recycling endosomal pathway, and the residues were transported through the slower speed lysosomal pathway. USIONPs might be transported via size-related endocytosis and exocytosis pathways. The pathway flux could be calculated on the basis of disturbance analysis of special transporters as well as their coding genes. Because there were rate differences among these transport pathways, this pathway flux could anticipate the intracellular remaining time and distribution of different-sized nanoparticles, the function exertion, and side effects of nanomaterials. The size of the nanomaterials could be optimized for improving functions and safety.
Collapse
Affiliation(s)
- Jiaqing Guo
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shixin Xu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Huaxin Zhang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Sun K, White JC, He E, Van Gestel CAM, Zhang P, Peijnenburg WJGM, Qiu H. Earthworm Coelomocyte Internalization of MoS 2 Nanosheets: Multiplexed Imaging, Molecular Profiling, and Computational Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21637-21649. [PMID: 38012053 DOI: 10.1021/acs.est.3c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cornelis A M Van Gestel
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Yin J, Hu J, Deng X, Zheng Y, Tian J. ABC transporter-mediated MXR mechanism in fish embryos and its potential role in the efflux of nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115397. [PMID: 37619399 DOI: 10.1016/j.ecoenv.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
ATP-binding cassette (ABC) transporters are believed to protect aquatic organisms by pumping xenobiotics out, and recent investigation has suggested their involvement in the detoxification and efflux of nanoparticles (NPs), but their roles in fish embryos are poorly understood. In this regard, this paper summarizes the recent advances in research pertaining to the development of ABC transporter-mediated multi-xenobiotic resistance (MXR) mechanism in fish embryos and the potential interaction between ABC transporters and NPs. The paper focuses on: (1) Expression, function, and modulation mechanism of ABC proteins in fish embryos; (2) Potential interaction between ABC transporters and NPs in cell models and fish embryos. ABC transporters could be maternally transferred to fish embryos and thus play an important role in the detoxification of various chemical pollutants and NPs. There is a need to understand the specific mechanism to benefit the protection of aquatic resources.
Collapse
Affiliation(s)
- Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan 250001, PR China.
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yu Zheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215163, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan 250001, PR China
| |
Collapse
|
11
|
Richards CJ, Burgers TCQ, Vlijm R, Roos WH, Åberg C. Rapid Internalization of Nanoparticles by Human Cells at the Single Particle Level. ACS NANO 2023; 17:16517-16529. [PMID: 37642490 PMCID: PMC10510712 DOI: 10.1021/acsnano.3c01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Nanoparticle uptake by cells has been studied for applications both in nanomedicine and in nanosafety. While the majority of studies have focused on the biological mechanisms underlying particle internalization, less attention has been given to questions of a more quantitative nature, such as how many nanoparticles enter cells and how rapidly they do so. To address this, we exposed human embryonic kidney cells to 40-200 nm carboxylated polystyrene nanoparticles and the particles were observed by live-cell confocal and super-resolution stimulated emission depletion fluorescence microscopy. How long a particle remained at the cell membrane after adsorbing onto it was monitored, distinguishing whether the particle ultimately desorbed again or was internalized by the cell. We found that the majority of particles desorb, but interestingly, most of the particles that are internalized do so within seconds, independently of particle size. As this is faster than typical endocytic mechanisms, we interpret this observation as the particles entering via an endocytic event that is already taking place (as opposed to directly triggering their own uptake) or possibly via an as yet uncharacterized endocytic route. Aside from the rapidly internalizing particles, a minority of particles remain at the membrane for tens of seconds to minutes before desorbing or being internalized. We also followed particles after cell internalization, observing particles that appeared to exit the cell, sometimes as rapidly as within tens of seconds. Overall, our results provide quantitative information about nanoparticle cell internalization times and early trafficking.
Collapse
Affiliation(s)
- Ceri J. Richards
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Thomas C. Q. Burgers
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wouter H. Roos
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Christoffer Åberg
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
12
|
Sultana N, David AE. Improving Cancer Targeting: A Study on the Effect of Dual-Ligand Density on Targeting of Cells Having Differential Expression of Target Biomarkers. Int J Mol Sci 2023; 24:13048. [PMID: 37685852 PMCID: PMC10487485 DOI: 10.3390/ijms241713048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Silica nanoparticles with hyaluronic acid (HA) and folic acid (FA) were developed to study dual-ligand targeting of CD44 and folate receptors, respectively, in colon cancer. Characterization of particles with dynamic light scattering showed them to have hydrodynamic diameters of 147-271 nm with moderate polydispersity index (PDI) values. Surface modification of the particles was achieved by simultaneous reaction with HA and FA and results showed that ligand density on the surface increased with increasing concentrations in the reaction mixture. The nanoparticles showed minimal to no cytotoxicity with all formulations showing ≥ 90% cell viability at concentrations up to 100 µg/mL. Based on flow cytometry results, SW480 cell lines were positive for both receptors, the WI38 cell line was positive for CD44 receptor, and Caco2 was positive for the folate receptor. Cellular targeting studies demonstrated the potential of the targeted nanoparticles as promising candidates for delivery of therapeutic agents. The highest cellular targeting was achieved with particles synthesized using folate:surface amine (F:A) ratio of 9 for SW480 and Caco2 cells and at F:A = 0 for WI38 cells. The highest selectivity was achieved at F:A = 9 for both SW480:WI38 and SW480:Caco2 cells. Based on HA conjugation, the highest cellular targeting was achieved at H:A = 0.5-0.75 for SW480 cell, at H:A = 0.75 for WI38 cell and at H:A = 0.5 for Caco2 cells. The highest selectivity was achieved at H:A = 0 for both SW480:WI38 and SW480:Caco2 cells. These results demonstrated that the optimum ligand density on the nanoparticle for targeting is dependent on the levels of biomarker expression on the target cells. Ongoing studies will evaluate the therapeutic efficacy of these targeted nanoparticles using in vitro and in vivo cancer models.
Collapse
Affiliation(s)
| | - Allan E. David
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
13
|
Liu J, Liu YY, Li CS, Cao A, Wang H. Exocytosis of Nanoparticles: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2215. [PMID: 37570533 PMCID: PMC10421347 DOI: 10.3390/nano13152215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Both biomedical applications and safety assessments of manufactured nanomaterials require a thorough understanding of the interaction between nanomaterials and cells, including how nanomaterials enter cells, transport within cells, and leave cells. However, compared to the extensively studied uptake and trafficking of nanoparticles (NPs) in cells, less attention has been paid to the exocytosis of NPs. Yet exocytosis is an indispensable process of regulating the content of NPs in cells, which in turn influences, even decides, the toxicity of NPs to cells. A comprehensive understanding of the mechanisms and influencing factors of the exocytosis of NPs is not only essential for the safety assessment of NPs but also helpful for guiding the design of safe and highly effective NP-based materials for various purposes. Herein, we review the current status and progress of studies on the exocytosis of NPs. Firstly, we introduce experimental procedures and considerations. Then, exocytosis mechanisms/pathways are summarized with a detailed introduction of the main pathways (lysosomal and endoplasmic reticulum/Golgi pathway) and the role of microtubules; the patterns of exocytosis kinetics are presented and discussed. Subsequently, the influencing factors (initial content and location of intracellular NPs, physiochemical properties of NPs, cell type, and extracellular conditions) are fully discussed. Although there are inconsistent results, some rules are obtained, like smaller and charged NPs are more easily excreted. Finally, the challenges and future directions in the field have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
Lin Z, Aryal S, Cheng YH, Gesquiere AJ. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS NANO 2022; 16:19722-19754. [PMID: 36520546 PMCID: PMC9798869 DOI: 10.1021/acsnano.2c07312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 05/15/2023]
Abstract
Nanomaterials (NMs) have been increasingly used in a number of areas, including consumer products and nanomedicine. Target tissue dosimetry is important in the evaluation of safety, efficacy, and potential toxicity of NMs. Current evaluation of NM efficacy and safety involves the time-consuming collection of pharmacokinetic and toxicity data in animals and is usually completed one material at a time. This traditional approach no longer meets the demand of the explosive growth of NM-based products. There is an emerging need to develop methods that can help design safe and effective NMs in an efficient manner. In this review article, we critically evaluate existing studies on in vivo pharmacokinetic properties, in vitro cellular uptake and release and kinetic modeling, and whole-body physiologically based pharmacokinetic (PBPK) modeling studies of different NMs. Methods on how to simulate in vitro cellular uptake and release kinetics and how to extrapolate cellular and tissue dosimetry of NMs from in vitro to in vivo via PBPK modeling are discussed. We also share our perspectives on the current challenges and future directions of in vivo pharmacokinetic studies, in vitro cellular uptake and kinetic modeling, and whole-body PBPK modeling studies for NMs. Finally, we propose a nanomaterial in vitro to in vivo extrapolation via physiologically based pharmacokinetic modeling (Nano-IVIVE-PBPK) framework for high-throughput screening of target cellular and tissue dosimetry as well as potential toxicity of different NMs in order to meet the demand of efficient evaluation of the safety, efficacy, and potential toxicity of a rapidly increasing number of NM-based products.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32610, United States
- Center
for
Environmental and Human Toxicology, University
of Florida, Gainesville, Florida 32608, United
States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Andre J. Gesquiere
- Department
of Chemistry, College of Sciences, University
of Central Florida, Orlando, Florida 32816, United States
- NanoScience
Technology Center, University of Central
Florida, Orlando, Florida 32826, United States
- Department
of Materials Science and Engineering, College of Engineering,, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
16
|
Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. J Control Release 2022; 352:1048-1070. [PMID: 36372385 DOI: 10.1016/j.jconrel.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| |
Collapse
|
17
|
Lu B, Wang J, Scheepers PTJ, Hendriks AJ, Nolte TM. Generic prediction of exocytosis rate constants by size-based surface energies of nanoparticles and cells. Sci Rep 2022; 12:17813. [PMID: 36280701 PMCID: PMC9592603 DOI: 10.1038/s41598-022-20761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023] Open
Abstract
Nanotechnology brings benefits in fields such as biomedicine but nanoparticles (NPs) may also have adverse health effects. The effects of surface-modified NPs at the cellular level have major implications for both medicine and toxicology. Semi-empirical and mechanism-based models aid to understand the cellular transport of various NPs and its implications for quantitatively biological exposure while avoiding large-scale experiments. We hypothesized relationships between NPs-cellular elimination, surface functionality and elimination pathways by cells. Surface free energy components were used to characterize the transport of NPs onto membranes and with lipid vesicles, covering both influences by size and hydrophobicity of NPs. The model was built based on properties of neutral NPs and cells, defining Van de Waals forces, electrostatic forces and Lewis acid-base (polar) interactions between NPs and vesicles as well as between vesicles and cell membranes. We yielded a generic model for estimating exocytosis rate constants of various neutral NPs by cells based on the vesicle-transported exocytosis pathways. Our results indicate that most models are well fitted (R2 ranging from 0.61 to 0.98) and may provide good predictions of exocytosis rate constants for NPs with differing surface functionalities (prediction errors are within 2 times for macrophages). Exocytosis rates differ between cancerous cells with metastatic potential and non-cancerous cells. Our model provides a reference for cellular elimination of NPs, and intends for medical applications and risk assessment.
Collapse
Affiliation(s)
- Bingqing Lu
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Jiaqi Wang
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Paul T. J. Scheepers
- grid.5590.90000000122931605Department of Toxicology, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - A. Jan Hendriks
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Tom M. Nolte
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
18
|
Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review. Antioxidants (Basel) 2022; 11:antiox11101916. [PMID: 36290639 PMCID: PMC9598137 DOI: 10.3390/antiox11101916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
Collapse
|
19
|
Liu YY, Sun ZX, Liu J, Zhang Q, Liu Y, Cao A, Sun YP, Wang H. On the Cellular Uptake and Exocytosis of Carbon Dots─Significant Cell Type Dependence and Effects of Cell Division. ACS APPLIED BIO MATERIALS 2022; 5:4378-4389. [PMID: 36044400 DOI: 10.1021/acsabm.2c00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the cellular uptake and exocytosis processes of nanoparticles (NPs) is essential for developing the nanomedicines and assessing the health risk of nanomaterials. Considerable efforts have been made to reveal how physicochemical properties of NPs influence these processes. However, little attention has been paid to how cell type impacts these processes, especially exocytosis. Herein, the uptake and exocytosis of the carbon dots (CDs) obtained from the carbonization of citric acid with polyethylenimine (PEI) oligomers (CDs-PEI) in five human cell lines (HeLa, A549, BEAS-2B, A431, and MDA-MB-468) are analyzed to understand how cell type influences the fate of CDs in cells. The cell division is taken into account by the correction of cell number for accurate quantification of the uptake and exocytosis of CDs-PEI. The results indicate that the cell type significantly affects the cellular uptake, trafficking, and exocytosis of CDs-PEI. Among the cell types investigated, MDA-MB-468 cells have the greatest capacity for both uptake and exocytosis, and HeLa cells have the least capacity. The kinetics of the exocytosis largely follows a single exponential decay function, with the remaining CDs-PEI in cells reaching plateaus within 24 h. The kinetic parameters are cell-dependent but insensitive to the initial intracellular CDs-PEI content. Generally, the Golgi apparatus pathways are more important in exocytosis than the lysosomal pathway, and the locations of CDs-PEI in the beginning of exocytosis are not correlated with their exocytosis pathways. The findings on the cell type-dependent cellular uptake and exocytosis reported here may be valuable to the future design of high-performance and safe CDs and related nanomaterials in general.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
21
|
Wang H, Nienhaus K, Shang L, Nienhaus GU. Highly luminescent positively charged quantum dots interacting with proteins and cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Li Shang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Department of Physics University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
22
|
Bhattacharya S, Bhattacharya K, Xavier VJ, Ziarati A, Picard D, Bürgi T. The Atomically Precise Gold/Captopril Nanocluster Au 25(Capt) 18 Gains Anticancer Activity by Inhibiting Mitochondrial Oxidative Phosphorylation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29521-29536. [PMID: 35729793 PMCID: PMC9266621 DOI: 10.1021/acsami.2c05054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.
Collapse
Affiliation(s)
- Sarita
Roy Bhattacharya
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kaushik Bhattacharya
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Vanessa Joanne Xavier
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Didier Picard
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Wu RS, Lin YS, Nain A, Unnikrishnan B, Lin YF, Yang CR, Chen TH, Huang YF, Huang CC, Chang HT. Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosens Bioelectron 2022; 211:114362. [PMID: 35617797 DOI: 10.1016/j.bios.2022.114362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023]
Abstract
Monitoring of structural changes in subcellular organelles is critical to evaluate the chemotherapeutic response of cells. However, commercial organelle selective fluorophores are easily photobleached, and thus are unsuitable for real-time and long-term observation. We have developed photostable carbon-dot liposomes (CDsomes)-based fluorophores for organellar and suborganellar imaging to circumvent these issues. The CDs synthesized through a mild pyrolysis/hydrolysis process exhibit amphipathic nature and underwent self-assembly to form liposome-like structures (CDsomes). The controlled hydrophilicity or hydrophobicity-guided preparation of CDsomes are used to selectively and rapidly (<1 min) stain nucleolus, cytoplasm, and membrane. In addition, the CDsomes offer universal high-contrast staining not only in fixed cells but also in living cells, allowing real-time observation and morphological identification in the specimen. The as-prepared CDsomes exhibit excitation-dependent fluorescence, and are much more stable under photoirradiation (e.g., ultraviolet light) than traditional subcellular dyes. Interestingly, the CDsomes can be transferred to daughter cells by diluting the particles, enabling multigenerational tracking of suborganelle for up to six generations, without interrupting the staining pattern. Therefore, we believe that the ultra-photostable CDsomes with high biocompatibility, and long-term suborganellar imaging capabilities, hold a great potential for screening and evaluating therapeutic performance of various chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Ruei Yang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Heng Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
24
|
Zhang M, Kim DS, Patel R, Wu Q, Kim K. Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells. NANOMATERIALS 2022; 12:nano12091517. [PMID: 35564224 PMCID: PMC9104504 DOI: 10.3390/nano12091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa as a control. Our XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) viability assay (Cell Proliferation Kit II) showed that ML-1 cells and non-cancerous mouse fibroblast cells exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest that HeLa cells are more sensitive to the QDs compared to ML-1 cells. To test the possibility that transporting rates of QDs are different between HeLa and ML-1 cells, we performed a QD subcellular localization assay by determining Pearson’s Coefficient values and found that HeLa cells showed faster QDs transporting towards the lysosome. Consistently, the ICP-OES test showed the uptake of CdSe/ZnS QDs in HeLa cells was significantly higher than in ML-1 cells. Together, we conclude that high levels of toxicity in HeLa are positively correlated with the traffic rate of QDs in the treated cells.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| | - Daniel S. Kim
- Emory College of Arts and Science, Emory University, 201 Dowman Dr., Atlanta, GA 30322, USA;
| | - Rishi Patel
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
25
|
Kim IY, Kwak M, Kim J, Lee TG, Heo MB. Comparative Study on Nanotoxicity in Human Primary and Cancer Cells. NANOMATERIALS 2022; 12:nano12060993. [PMID: 35335806 PMCID: PMC8955245 DOI: 10.3390/nano12060993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Nanomaterial toxicity tests using normal and cancer cells may yield markedly different results. Here, nanomaterial toxicity between cancer and primary human cells was compared to determine the basic cell line selection criteria for nanomaterial toxicity analyses. Specifically, we exposed two cancer (A549 and HepG2) and two normal cell lines (NHBE and HH) cell lines to SiO2 nanoparticles (NPs) and evaluated the cytotoxicity (MTS assay), cell death mode, and intracellular NP retention. MTS assay results revealed higher sensitivity of HH cells to SiO2 NPs than HepG2 cells, while no difference was observed between NHBE and A549 cells. In addition, SiO2 NPs primarily induced necrosis in all the cell lines. Moreover, we evaluated NP accumulation by treating the cell lines with fluorescein-isothiocyanate-labeled SiO2 NPs. After 48 h of treatment, less than 10% of A549 and HepG2 cells and more than 30% of NHBE and HH cells contained the labeled NPs. Collectively, our results suggest that cell viability, death mode, and intracellular compound accumulation could be assessed using cancer cells. However, the outcomes of certain investigations, such as intracellular NP retention, may differ between cancer and normal cells.
Collapse
|
26
|
Hashemkhani M, Loizidou M, MacRobert AJ, Yagci Acar H. One-Step Aqueous Synthesis of Anionic and Cationic AgInS 2 Quantum Dots and Their Utility in Improving the Efficacy of ALA-Based Photodynamic Therapy. Inorg Chem 2022; 61:2846-2863. [PMID: 35104130 PMCID: PMC8895404 DOI: 10.1021/acs.inorgchem.1c03298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Silver-indium-sulfide quantum dots (AIS QDs) have potential applications in many areas, including biomedicine. Their lack of regulated heavy metals, unlike many commercialized QDs, stands out as an advantage, but the necessity for alloyed or core-shell structures and related costly and sophisticated processes for the production of stable and high quantum yield aqueous AIS QDs are the current challenges. The present study demonstrates the one-step aqueous synthesis of simple AgInS2 QD compositions utilizing for the first time either a polyethyleneimine/2-mercaptopropionic acid (AIS-PEI/2MPA) mixture or only 2-mercaptopropionic acid (AIS-2MPA) as the stabilizing molecules, providing a AgInS2 portfolio consisting of cationic and anionic AIS QDs, respectively, and tuneable emission. Small AIS QDs with long-term stability and high quantum yields (19-23%) were achieved at a molar ratio of Ag/In/S 1/10/10 in water without any dopant or a semiconductor shell. The theranostic potential of these cationic and anionic AIS QDs was also evaluated in vitro. Non-toxic doses were determined, and fluorescence imaging potential was demonstrated. More importantly, these QDs were electrostatically loaded with zwitterionic 5-aminolevulinic acid (ALA) as a prodrug to enhance the tumor availability of ALA and to improve ALA-induced porphyrin photodynamic therapy (PDT). This is the first study investigating the influence of nanoparticle charge on ALA binding, release, and therapeutic efficacy. Surface charge was found to be more critical in cellular internalization and dark toxicity rather than drug loading and release. Both QDs provided enhanced ALA release at acidic pH but protected the prodrug at physiological pH, which is critical for tumor delivery of ALA, which suffers from low bioavailability. The PDT efficacy of the ALA-loaded AIS QDs was tested in 2D monolayers and 3D constructs of HT29 and SW480 human colon adenocarcinoma cancer cell lines. The incorporation of ALA delivery by the AIS QDs, which on their own do not cause phototoxicity, elicited significant cell death due to enhanced light-induced ROS generation and apoptotic/necrotic cell death, reducing the IC50 for ALA dramatically to about 0.1 and 0.01 mM in anionic and cationic AIS QDs, respectively. Combined with simple synthetic methods, the strong intracellular photoluminescence of AIS QDs, good biocompatibility of especially the anionic AIS QDs, and the ability to act as drug carriers for effective PDT signify that the AIS QDs, in particular AIS-2MPA, are highly promising theranostic QDs.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Graduate
School of Materials Science and Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, Centre for Nanomedicine and
Surgical Theranostics, University College
London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, U.K.
| | - Alexander J. MacRobert
- Division
of Surgery and Interventional Science, Centre for Nanomedicine and
Surgical Theranostics, University College
London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, U.K.
| | - Havva Yagci Acar
- Graduate
School of Materials Science and Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- Department
of Chemistry, Koç University, KUYTAM, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
27
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
28
|
Kang Y, Nack LM, Liu Y, Qi B, Huang Y, Liu Z, Chakraborty I, Schulz F, Ahmed AAA, Clavo Poveda M, Hafizi F, Roy S, Mutas M, Holzapfel M, Sanchez-Cano C, Wegner KD, Feliu N, Parak WJ. Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types. CHEMTEXTS 2022; 8:9. [PMID: 35223376 PMCID: PMC8827143 DOI: 10.1007/s40828-021-00159-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs.
Collapse
Affiliation(s)
- Yanan Kang
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Leroy Marwin Nack
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Yang Liu
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Bing Qi
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Yalan Huang
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Ziyao Liu
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
- Present Address: Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Indranath Chakraborty
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Florian Schulz
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | - Abdullah A. A. Ahmed
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| | | | - Fereshta Hafizi
- Fraunhofer Center for Applied Nanotechnology (CAN), Hamburg, Germany
| | - Sathi Roy
- Fraunhofer Center for Applied Nanotechnology (CAN), Hamburg, Germany
| | - Marina Mutas
- Fraunhofer Center for Applied Nanotechnology (CAN), Hamburg, Germany
- Mildred Scheel Cancer Career Centre Hamburg, Universitätklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Holzapfel
- Fraunhofer Center for Applied Nanotechnology (CAN), Hamburg, Germany
| | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
| | - K. David Wegner
- Division Biophotonics, Federal Institute of Materials Research and Testing (BAM), Berlin, Germany
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), Hamburg, Germany
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik and Chemie, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Lei W, Yang C, Wu Y, Ru G, He X, Tong X, Wang S. Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. J Nanobiotechnology 2022; 20:45. [PMID: 35062958 PMCID: PMC8781141 DOI: 10.1186/s12951-022-01251-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Inspired by nature, the biomimetic approach has been incorporated into drug nanocarriers for cancer targeted chemotherapy. The nanocarriers are cloaked in cell membranes, which enables them to incorporate the functions of natural cells.
Key scientific concepts of review
Nanocarriers surface engineered with cell membranes have emerged as a fascinating source of materials for cancer targeted chemotherapy. A distinctive characteristic of cell membrane-coated nanocarriers (CMCNs) is that they include carbohydrates, proteins, and lipids, in addition to being biocompatible. CMCNs are capable of interacting with the complicated biological milieu of the tumor because they contain the signaling networks and intrinsic functions of their parent cells. Numerous cell membranes have been investigated for the purpose of masking nanocarriers with membranes, and various tumor-targeting methods have been devised to improve cancer targeted chemotherapy. Moreover, the diverse structure of the membrane from different cell sources broadens the spectrum of CMCNs and offers an entirely new class of drug-delivery systems.
Aim of review
This review will describe the manufacturing processes for CMCNs and the therapeutic uses for different kinds of cell membrane-coated nanocarrier-based drug delivery systems, as well as addressing obstacles and future prospects.
Graphical Abstract
Collapse
|
30
|
Herrera-Ochoa D, Pacheco-Liñán PJ, Bravo I, Garzón-Ruiz A. A Novel Quantum Dot-Based pH Probe for Long-Term Fluorescence Lifetime Imaging Microscopy Experiments in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2578-2586. [PMID: 35001616 PMCID: PMC8778634 DOI: 10.1021/acsami.1c19926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The use of two nanoparticles for quantitative pH measurements in live cells by means of fluorescence lifetime imaging microscopy (FLIM) is investigated here. These nanoparticles are based on CdSe/ZnS quantum dots (QDs), functionalized with N-acetylcysteine (CdSe/ZnS-A) and with a small peptide containing D-penicillamine and histidine (CdSe/ZnS-PH). CdSe/ZnS-A has tendency to aggregate and nonlinear pH sensitivity in a complex medium containing salts and macromolecules. On the contrary, CdSe/ZnS-PH shows chemical stability, low toxicity, efficient uptake in C3H10T1/2 cells, and good performance as an FLIM probe. CdSe/ZnS-PH also has key advantages over a recently reported probe based on a CdSe/ZnS QD functionalized with D-penicillamine (longer lifetimes and higher pH-sensitivity). A pH(±2σ) of 6.97 ± 0.14 was determined for C3H10T1/2 cells by FLIM employing this nanoprobe. In addition, the fluorescence lifetime signal remains nearly constant for C3H10T1/2 cells treated with CdSe/ZnS-PH for 24 h. These results show the promising applications of this nanoprobe to monitor the intracellular pH and cell state employing the FLIM technique.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Pedro J. Pacheco-Liñán
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Iván Bravo
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro
Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/Almansa, 14, 02008 Albacete, Spain
| | - Andrés Garzón-Ruiz
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| |
Collapse
|
31
|
de Boer I, Richards CJ, Åberg C. Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics 2022; 14:136. [PMID: 35057032 PMCID: PMC8779877 DOI: 10.3390/pharmaceutics14010136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Drug delivery using nano-sized carriers holds tremendous potential for curing a range of diseases. The internalisation of nanoparticles by cells, however, remains poorly understood, restricting the possibility for optimising entrance into target cells, avoiding off-target cells and evading clearance. The majority of nanoparticle cell uptake studies have been performed in the presence of only the particle of interest; here, we instead report measurements of uptake when the cells are exposed to two different types of nanoparticles at the same time. We used carboxylated polystyrene nanoparticles of two different sizes as a model system and exposed them to HeLa cells in the presence of a biomolecular corona. Using flow cytometry, we quantify the uptake at both average and individual cell level. Consistent with previous literature, we show that uptake of the larger particles is impeded in the presence of competing smaller particles and, conversely, that uptake of the smaller particles is promoted by competing larger particles. While the mechanism(s) underlying these observations remain(s) undetermined, we are partly able to restrain the likely possibilities. In the future, these effects could conceivably be used to enhance uptake of nano-sized particles used for drug delivery, by administering two different types of particles at the same time.
Collapse
Affiliation(s)
| | | | - Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (I.d.B.); (C.J.R.)
| |
Collapse
|
32
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
33
|
Åberg C, Piattelli V, Montizaan D, Salvati A. Sources of variability in nanoparticle uptake by cells. NANOSCALE 2021; 13:17530-17546. [PMID: 34652349 PMCID: PMC8552707 DOI: 10.1039/d1nr04690j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Understanding how nano-sized objects are taken up by cells is important for applications within medicine (nanomedicine), as well as to avoid unforeseen hazard due to nanotechnology (nanosafety). Even within the same cell population, one typically observes a large cell-to-cell variability in nanoparticle uptake, raising the question of the underlying cause(s). Here we investigate cell-to-cell variability in polystyrene nanoparticle uptake by HeLa cells, with generalisations of the results to silica nanoparticles and liposomes, as well as to A549 and primary human umbilical vein endothelial cells. We show that uptake of nanoparticles is correlated with cell size within a cell population, thereby reproducing and generalising previous reports highlighting the role of cell size in nanoparticle uptake. By repeatedly isolating (using fluorescence-activated cell sorting) the cells that take up the most and least nanoparticles, respectively, and performing RNA sequencing on these cells separately, we examine the underlying gene expression that contributes to high and low polystyrene nanoparticle accumulation in HeLa cells. We can thereby show that cell size is not the sole driver of cell-to-cell variability, but that other cellular characteristics also play a role. In contrast to cell size, these characteristics are more specific to the object (nanoparticle or protein) being taken up, but are nevertheless highly heterogeneous, complicating their detailed identification. Overall, our results highlight the complexity underlying the cellular features that determine nanoparticle uptake propensity.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Valeria Piattelli
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
34
|
Liu YY, Chang Q, Sun ZX, Liu J, Deng X, Liu Y, Cao A, Wang H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf B Biointerfaces 2021; 208:112140. [PMID: 34597939 DOI: 10.1016/j.colsurfb.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Semiconductor quantum dots (QDs) have been extensively explored for extensive bioapplications, yet their cellular fate, especially exocytosis, has not been thoroughly investigated. Herein, we systematically investigated the whole cellular process from the endocytosis, intercellular trafficking, to the exocytosis of a typical QD, core/shell CdSe/ZnS QD. Using confocal laser scanning microscopy and flow cytometry, and after carefully eliminating the effect of cell division, we found that the QDs were internalized by HeLa cells with a time-, dose-, and serum-dependent manner. The cellular uptake was inhibited by serum, but eventually peaked after 4-6 h incubation with or without serum. The primary endocytosis pathway was clathrin-mediated, and actin- and microtubule-dependent in the medium with serum, while the caveolae-mediated endocytosis and macropinocytosis were more important for the QDs in the serum-free medium. Inside cells, most QDs distributed in lysosomes, and some entered mitochondria, endoplasmic reticulum, and Golgi apparatus. The translocation of the QDs from other organelles to Golgi apparatus was observed. The exocytosis of QDs was faster than the endocytosis, reaching the maximum in about one hour after cultured in fresh culture medium, with around 60% of the internalized QDs remained undischarged. The exocytosis process was energy- and actin-dependent, and the lysosome exocytosis and endoplasmic reticulum/Golgi pathway were the main routes. This study provides a full picture of behavior and fate of QDs in cells, which may facilitate the design of ideal QDs applied in biomedical and other fields.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
35
|
E S, He C, Wang JH, Mao Q, Chen X. Tunable Organelle Imaging by Rational Design of Carbon Dots and Utilization of Uptake Pathways. ACS NANO 2021; 15:14465-14474. [PMID: 34498468 DOI: 10.1021/acsnano.1c04001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Employing one-step hydrothermal treatment of o-phenylenediamine and lysine to exploit their self- and copolymerization, four kinds of CDs (ECDs, NCDs, GCDs, and LCDs) are synthesized, possessing different surface groups (CH3, C-O-C, NH2, and COOH) and lipophilicity which endow them with various uptake pathways to achieve tunable organelle imaging. Specifically, highly lipophilic ECDs with CH3 group and NCDs with C-O-C group select passive manner to target to endoplasmic reticulum and nucleus, respectively. Amphiphilic GCDs with CH3, C-O-C and NH2 groups prefer caveolin-mediated endocytosis to locate at Golgi apparatus. Highly hydrophilic LCDs with CH3, NH2 and COOH groups are involved in clathrin-mediated endocytosis to localize in lysosomes. Besides, imaging results of cell division, three-dimensional reconstruction and living zebrafish demonstrate that the obtained CDs are promising potential candidates for specific organelle-targeting imaging.
Collapse
Affiliation(s)
- Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Chuang He
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Quanxing Mao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
36
|
Chen X, Wang Y, Zhang X, Liu C. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions. Biomater Sci 2021; 9:5484-5496. [PMID: 34286716 DOI: 10.1039/d1bm00676b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions between nanomaterials and biological systems plays an essential role in enhancing the efficacy of nanomedicines and deepening the understanding of the biological domain. Fluorescence microscopy is a powerful optical imaging technique that allows direct visualization of the behavior of fluorescent-labeled nanomaterials in the intracellular microenvironment. However, conventional fluorescence microscopy, such as confocal microscopy, has limited optical resolution due to the diffraction of light and therefore cannot provide the precise details of nanomaterials with diameters of less than ∼250 nm. Fortunately, the development of super-resolution fluorescence microscopy has overcome the resolution limitation, enabling more comprehensive studies of nano-cell interactions. Herein, we have summarized the recent advances in nano-cell interactions investigated by a variety of super-resolution microscopic techniques, which may benefit researchers in this multi-disciplinary area by providing a guideline to select appropriate platforms for studying materiobiology.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xuewei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
37
|
Kim J, Vaughan HJ, Zamboni CG, Sunshine JC, Green JJ. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Release 2021; 337:105-116. [PMID: 34097924 DOI: 10.1016/j.jconrel.2021.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Successful systemic gene delivery requires specific tissue targeting as well as efficient intracellular transfection. Increasingly, research laboratories are fabricating libraries of novel nanoparticles, engineering both new biomaterial structures and composition ratios of multicomponent systems. Yet, methods for screening gene delivery vehicles directly in vivo are often low-throughout, limiting the number of candidate nanoparticles that can be investigated. Here, we report a comprehensive, high-throughput method to evaluate a library of polymeric nanoparticles in vivo for tissue-specific gene delivery. The method involves pairing each nanoparticle formulation with a plasmid DNA (pDNA) that harbors a unique nucleotide sequence serving as the identifying "barcode". Using real time quantitative PCR (qPCR) for detection of the barcoded pDNA and quantitative reverse transcription PCR (RT-qPCR) for transcribed barcoded mRNA, we can quantify accumulation and transfection in tissues of interest. The barcode pDNA and primers were designed with sufficient sensitivity and specificity to evaluate multiple nanoparticle formulations per mouse, improving screening efficiency. Using this platform, we evaluated the biodistribution and transfection of 8 intravenously administered poly(beta-amino ester; PBAE) nanoparticle formulations, each with a PBAE polymer of differential structure. Significant levels of nanoparticle accumulation and gene transfection were observed mainly in organs involved in clearance, including spleen, liver, and kidneys. Interestingly, higher levels of transfection of select organs did not necessarily correlate with higher levels of tissue accumulation, highlighting the importance of directly measuring in vivo transfection efficiency as the key barcoded parameter in gene delivery vector optimization. To validate this method, nanoparticle formulations were used individually for luciferase pDNA delivery in vivo. The distribution of luciferase expression in tissues matched the transfection analysis by the barcode qPCR method, confirming that this platform can be used to accurately evaluate systemic gene delivery.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Camila G Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Joel C Sunshine
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Nannuri SH, Nikam AN, Pandey A, Mutalik S, George SD. Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Curr Pharm Des 2021; 28:690-710. [PMID: 34036909 DOI: 10.2174/1381612827666210525154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
39
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
40
|
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. NANOSCALE ADVANCES 2021; 3:2196-2212. [PMID: 36133761 PMCID: PMC9416924 DOI: 10.1039/d0na00716a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/12/2021] [Indexed: 05/17/2023]
Abstract
Whether one wishes to optimise drug delivery using nano-sized carriers or avoid hazard posed by engineered nanomaterials, the kinetics of nanoparticle uptake into human cells and their subsequent intracellular distribution is key. Unique properties of the nanoscale implies that such nanoparticles are taken up and trafficked in a different fashion compared to molecular species. In this review, we discuss in detail how to describe the kinetics of nanoparticle uptake and intracellular distribution, using previous studies for illustration. We also cover the extracellular kinetics, particle degradation, endosomal escape and cell division, ending with an outlook on the future of kinetic studies.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
41
|
Khan MA, Fugate M, Rogers DT, Sambi J, Littleton JM, Rankin SE, Knutson BL. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures during Nanoharvesting of Biomolecules. Adv Biol (Weinh) 2021; 5:e2000173. [PMID: 33729698 DOI: 10.1002/adbi.202000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Cellular uptake and expulsion mechanisms of engineered mesoporous silica nanoparticles (MSNPs) are important in their design for novel biomolecule isolation and delivery applications such as nanoharvesting, defined as using nanocarriers to transport and isolate valuable therapeutics (secondary metabolites) out of living plant organ cultures (e.g., hairy roots). Here, temperature-dependent MSNP uptake and recovery processes in hairy roots are examined as a function of surface chemistry. MSNP uptake into hairy roots and time-dependent expulsion are quantified using Ti content (present for biomolecule binding) and fluorescence spectroscopy of fluorescently tagged MSNPs, respectively. The results suggest that functionalization and surface charge (regulated by amine group attachment) play the biggest role in the effectiveness of uptake and recovery. Comparison of MSNP interactions with hairy roots at 4 and 23 °C shows that weakly charged MSNPs functionalized only with Ti are taken up and expelled by thermally activated mechanisms, while amine-modified positively charged particles are taken up and expelled mainly by direct penetration of cell walls. Amine-functionalized MSNPs move spontaneously in and out of plant cells by dynamic exchange with a residence time of 20 ± 5 min, suggesting promise as a biomolecule nanoharvesting platform for plant organ cultures.
Collapse
Affiliation(s)
- Md Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Madeleine Fugate
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| |
Collapse
|
42
|
Pisonero J, Traub H, Cappella B, Álvarez-Llamas C, Méndez A, Richter S, Encinar JR, Costa-Fernandez JM, Bordel N. Exploring quantitative cellular bioimaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS. Talanta 2021; 227:122162. [PMID: 33714466 DOI: 10.1016/j.talanta.2021.122162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
Quantitative bioimaging of Quantum Dots (QDs) uptake in single cells by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a challenging task due to the high sensitivity and high spatial resolution required, and to the lack of matrix-matched reference materials. In this work, high spatially resolved quantitative bioimaging of CdSe/ZnS QDs uptake in single HT22 mouse hippocampal neuronal cells and in single HeLa human cervical carcinoma cells is novelty investigated combining: (a) the use of a ns-LA-ICP-Sector Field (SF)MS unit with mono-elemental fast and sensitive single pulse response for 114Cd+; and (b) the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of these QDs to obtain a response factor that allows quantification of elemental bioimages. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy (AFM) to determine their volume and thickness distribution. Moreover, operating conditions (e.g. spot size, energy per laser pulse, etc.) are optimized to completely ablate the cells and pL droplets at high spatial resolution. Constant operating conditions for the analysis of the single cells and calibrating samples is employed to reduce potential fractionation effects related to mass load effects in the ICP. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single HT22 and HeLa cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus.
Collapse
Affiliation(s)
- J Pisonero
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain.
| | - H Traub
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - B Cappella
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - C Álvarez-Llamas
- Department of Analytical Chemistry, University of Malaga, 29071, Málaga, Spain
| | - A Méndez
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| | - S Richter
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - J Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - J M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - N Bordel
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| |
Collapse
|
43
|
Stan MS, Badea S, Hermenean A, Herman H, Trica B, Sbarcea BG, Dinischiotu A. New Insights into the Cell Death Signaling Pathways Triggered by Long-Term Exposure to Silicon-Based Quantum Dots in Human Lung Fibroblasts. NANOMATERIALS 2021; 11:nano11020323. [PMID: 33513804 PMCID: PMC7911990 DOI: 10.3390/nano11020323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
This report is the first research study that aims to explore the molecular mechanisms involved in the in vitro pulmonary cytotoxicity triggered by long-term exposure to silicon-based quantum dots (QDs). Human lung fibroblasts (MRC-5 cell line) were exposed to 5 µg/mL silicon-based QDs for 5 weeks and the concentration was increased up to 40 µg/mL QDs during the next 4 weeks. Cell viability and population doubling level were calculated based on Trypan blue staining. The expression levels of proteins were established by Western blotting and the telomeres’ length was determined through Southern blotting. Prolonged exposure of lung fibroblasts to QDs reduced the cell viability by 10% compared to untreated cells. The level of p53 and apoptosis-inducing factor (AIF) expression increased during the exposure, the peak intensity being registered after the seventh week. The expressions of autophagy-related proteins, Beclin-1 and LC-3, were higher compared to untreated cells. Regarding the protein expression of Nrf-2, a progressive decrease was noticed, suggesting the downregulation of a cytoprotective response to oxidative stress. In contrast, the heat shock proteins’ (HSPs) expression was increased or maintained near the control level during QDs exposure in order to promote cell survival. Furthermore, the telomeres’ length was not reduced during this exposure, indicating that QDs did not induce cellular senescence. In conclusion, our study shows that silicon-based QDs triggered the activation of apoptotic and autophagy pathways and downregulation of survival signaling molecules as an adaptive response to cellular stress which was not associated with telomeres shortening.
Collapse
Affiliation(s)
- Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Str., 011061 Bucharest, Romania
| | - Smaranda Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Hildegard Herman
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Beatrice G. Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania
- Correspondence: (B.G.S.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Correspondence: (B.G.S.); (A.D.)
| |
Collapse
|
44
|
Souza SO, Lira RB, Cunha CRA, Santos BS, Fontes A, Pereira G. Methods for Intracellular Delivery of Quantum Dots. Top Curr Chem (Cham) 2021; 379:1. [PMID: 33398442 DOI: 10.1007/s41061-020-00313-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods-electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes-discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area. Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).
Collapse
Affiliation(s)
- Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Cássia R A Cunha
- Laboratório Federal de Defesa Agropecuária em Pernambuco, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, CCEN, UFPE, Av. Jornalista Anibal Fernandes, S/N, Recife, 50740-560, PE, Brazil.
| |
Collapse
|
45
|
Liang K, Qu S, Li Y, Tan LL, Shang L. Surface chemistry regulates the optical properties and cellular interactions of ultrasmall MoS 2 quantum dots for biomedical applications. J Mater Chem B 2021; 9:5682-5690. [PMID: 34212168 DOI: 10.1039/d1tb00647a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molybdenum disulfide quantum dots (MoS2 QDs) have drawn increasing attention owing to their distinct optical properties and potential applications in many fields such as biosensing, photocatalysis and cell imaging. Elucidating the relationship between the surface chemistry of MoS2 QDs and their optical properties as well as biological behaviors is critical for their practical applications, which remain largely unclear. Herein, by adopting a sulfur vacancy modification strategy, a toolbox of MoS2 QDs functionalized with different thiolate ligands was prepared. The effect of surface chemistry on the optical properties of MoS2 QDs was systematically explored by various spectroscopic techniques, revealing the important role of surface ligands in defining their absorption band gap and luminescence quantum yield. Furthermore, cellular experiments showed that the cytotoxicity and intracellular fate (i.e., lysosomal accumulation) of MoS2 QDs are closely related to the properties of surface ligands. Our results underscore the important roles of surface ligands in regulating the properties and biological interactions of these QDs, which will facilitate the future development of MoS2-based materials with precisely controlled functions for biomedical applications.
Collapse
Affiliation(s)
- Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Yixiao Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China and NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
46
|
Bejgum BC, Donovan MD. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa. Mol Pharm 2020; 18:429-440. [PMID: 33346666 DOI: 10.1021/acs.molpharmaceut.0c01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A wide variety of colloidal delivery systems, including polymeric nanoparticles, metal colloids, liposomes, and microemulsions have been reported to enhance the delivery of therapeutic agents across the nasal mucosa. The mechanisms involved in the uptake of these nanomaterials, especially ultrafine nanomaterials (diameters < 20 nm) through the nasal mucosa are not well understood. Fluorescent quantum dots (QDs) were used to investigate the uptake of ultrafine nanoparticles by bovine respiratory and olfactory mucosal tissues following in vitro exposure, and an inductively coupled plasma optical emission spectroscopy method was developed to quantify the amount of QDs localized within the tissues. QDs do not biodegrade or release their core materials and, as a result, this method allowed for the direct quantification of the nanoparticles themselves, rather than the measurement of a potentially dissociated drug or label. The results demonstrated that carboxylate-modified QDs (COOH-QDs) showed ∼2.5-fold greater accumulation in the epithelial and submucosal regions of olfactory tissues compared to that in respiratory tissues. Endocytic inhibitory studies showed that clathrin-dependent endocytosis, macropinocytosis, and caveolae-dependent endocytic process are all involved in the uptake of COOH-QDs into the respiratory tissues. In olfactory tissues, clathrin-dependent endocytosis is the major endocytic pathway involved in the uptake of COOH-QDs. Additional energy-independent pathways also appeared to allow the transfer of COOH-QDs within the olfactory mucosa. When polyethylene glycol-modified QDs known as PEGylated QDs (PEG-QDs) of similar size, ∼15 nm, were investigated, no nanoparticles were detected in the tissues suggesting that the PEG corona limits the interactions with endocytic and other uptake processes in the nasal epithelium. The capacity for nanoparticle uptake observed in the nasal mucosa, along with the ability of significant numbers of nanoparticles to enter the olfactory tissues using nonenergy-dependent pathways show that the pathways for ultrafine nanoparticle uptake in the nasal tissues have both drug delivery and toxicologic consequences. This places an increased importance on the careful selection of nanoparticle components and drugs intended for intranasal administration.
Collapse
Affiliation(s)
- Bhanu C Bejgum
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
47
|
Zucker RM, Ortenzio J, Degn LL, Boyes WK. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS One 2020; 15:e0240268. [PMID: 33259485 PMCID: PMC7707489 DOI: 10.1371/journal.pone.0240268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 μg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons: 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.
Collapse
Affiliation(s)
- Robert M. Zucker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Jayna Ortenzio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Laura L. Degn
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - William K. Boyes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| |
Collapse
|
48
|
Chen X, Zhang R, Sun J, Simth N, Zhao M, Lee J, Ke Q, Wu X. A novel assessment system of toxicity and stability of CuO nanoparticles via copper super sensitive Saccharomyces cerevisiae mutants. Toxicol In Vitro 2020; 69:104969. [PMID: 32805373 DOI: 10.1016/j.tiv.2020.104969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CuO nanoparticles (CuO-NPs) toxicity in organisms is contributed mainly through the copper uptake by both the ionic and nanoparticle form. However, the relative uptake ratio and bioavailability of the two different forms is not well known due to a lack of sensitive and effective assessment systems. We developed a series of both copper resistant and hyper sensitive Saccharomyces cerevisiae mutants to investigate and compare the effects of CuO-NPs and dissolved copper (CuCl2), on the eukaryote with the purpose of quantitating the relative contributions of nanoparticles and dissolved species for Cu uptake. We observed the toxicity of 10 mM CuO-NPs for copper sensitive strains is equal to that of 0.5 mM CuCl2 and the main toxic effect is most likely generated from oxidative stress through reactive oxygen species (ROS) production. About 95% CuO-NPs exist in nanoparticle form under neutral environmental conditions. Assessing the cellular metal content of wild type and copper transporter 1(CTR1) knock out cells showed that endocytosis is the major absorption style for CuO-NPs. This study also found a similar toxicity of Ag for both 10 mM Ag-NPs and 0.2 mM AgNO3 in the copper super sensitive strains. Our study revealed the absorption mechanism of soluble metal based nanomaterials CuO-NPs and Ag-NPs as well as provided a sensitive and delicate system to precisely evaluate the toxicity and stability of nanoparticles.
Collapse
Affiliation(s)
- Xueqing Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Ruixia Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Jing Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Nathan Simth
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664
| | - Miaoyun Zhao
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664
| | - Jaekwon Lee
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664
| | - Qinfei Ke
- College of Life Sciences, Shanghai Normal University, Shanghai, China 200234.
| | - Xiaobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, China 200234.
| |
Collapse
|
49
|
Liu N, Tang M. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122606. [PMID: 32516645 DOI: 10.1016/j.jhazmat.2020.122606] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 05/18/2023]
Abstract
Currently, there are a great quantity type of quantum dots (QDs) that has been developed by researchers. Depending on the core material, they can be roughly divided into cadmium, silver, indium, carbon and silicon QDs. And studies on the toxicity of QDs are also increasing rapidly, but in vivo tests in model animals fail to reach a consistent conclusion. Therefore, we review the literatures dealing with the cytotoxicity of QDs in mammalian cells in vitro. After a short summary of the application characteristics of five types of QDs, the fate of QDs in cells will be discussed, ranging from the uptake, transportation, sublocation and excretion. A substantial part of the review will be focused on in vitro toxicity, in which the type of QDs is combined with their adverse effect and toxic mechanism. Because of their different luminescent properties, different subcellular fate, and different degree of cytotoxicity, we provide an overview on the balance of optical stability and biocompatibility of QDs and give a short outlook on future direction of cytotoxicology of QDs.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, PR China.
| |
Collapse
|
50
|
Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110951. [PMID: 32678752 DOI: 10.1016/j.ecoenv.2020.110951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The growing use of rare-earth doped upconversion nanoparticles (UCNPs) has caused increasing concern about their biosafety. Here, to understand the toxicity of UCNPs and their mechanism in HepG2 cells, we systematically study the cytotoxicity, uptake and elimination behaviors of three types of UCNPs combined multiple cytotoxicity evaluation means with inductively coupled plasma mass spectrometry (ICP-MS) detection. Sodium yttrium fluoride, doped with 18% (molar ratio) ytterbium and 2% erbium (NaYF4: Yb3+, Er3+) was selected as the model UCNPs with two sizes (35 and 55 nm), and the poly(acrylic acid) and polyethylenimine were selected as the representatives of negative and positive surface coating of UCNPs, respectively. UCNPs were found to induce cytotoxicity in time- and dose-dependent manners, which might be mediated by reactive oxygen species generation and oxidative stress. Apoptosis, inflammation, and metabolic process were enhanced after cells exposed to 200 mg/L UCNPs for 48 h. Increase in the protein levels of cleaved caspased-9, cleaved caspase-3 and Bax and decrease in the anti-apoptotic protein, Bcl-2 suggested that the mitochondria mediated pathway was involved in UCNP-induced apoptosis. With the aid of ICP-MS, it demonstrated that the cytotoxicity was associated with internalized amount of UCNPs, which largely relied on their surface properties rather than size in the tested range. By comparing UCNPs with Y3+ ions, it demonstrated that NPs properties played a nonnegligible role in the cytotoxicity of UCNPs. These findings provide new insights for fundamental understanding of cytotoxicity of UCNPs and may contribute to more rational use of these materials in the future.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|