1
|
Eftekharifar M, Heidari R, Mohaghegh N, Najafabadi AH, Heidari H. Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy. Adv Drug Deliv Rev 2025; 222:115604. [PMID: 40354939 DOI: 10.1016/j.addr.2025.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/15/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we explore key innovations in photoactivated therapeutic programming of carbon-based nanomaterials (CBNs), focusing on their diverse nanostructural configurations and their exceptional photothermal, photochemical, and photoacoustic properties. These attributes position CBNs as remarkable phototherapeutic agents, capable of addressing critical challenges in targeted cancer therapy through their precision, multifunctionality, and adaptability to specific therapeutic modalities. We will explore their diverse derivatives, and the role of chemical augmentation and site-specific surface functionalisation, which are pivotal in optimising the targeting and efficacy of phototherapeutic interventions. The biological and physical relevance of this ever-growing library of nanomaterials in targeted phototherapy will be thoroughly explored. Dynamic photo-triggering of the underlying molecular mechanisms of action e.g., energy conversion modalities lie at the heart of these therapeutic innovations. We will further discuss the tunability and programming of these carriers and structure-function alterations at specific therapeutic wavelengths. The application space of phototherapies is thoroughly mapped exploring the three primary approaches of photothermal therapy, photodynamic therapy and photochemical internalisation as well as emerging techniques and promising multimodal approaches that combine two or more of these processes. The specificity of the target tissue site and the approach under study forms another critical focus area of this review, with an emphasis on three types of cancer-breast cancer, lung cancer, and gliomas-that have demonstrated some of the most promising outcomes from photomedicine. We also provide a perspective on in vitro and in vivo validation and preclinical testing of CBNs for phototherapeutic applications. Finally, we reflect on the potential of CBNs to revolutionise targeted cancer therapy through data-driven materials design and integration with computational tools for biophysical performance optimisation. The exciting integration of machine learning into nanoparticle research and phototherapy has potential to fundamentally transform the landscape of nanomedicine. These techniques ranging from supervised learning algorithms such as random forests and support vector machines to more advanced neural networks and deep learning, can enable unprecedented precision in predicting, optimising, and tailoring the properties of nanoparticles for targeted applications. The transformative impact of photoactivated CBNs in advancing cancer treatment, paves the way for their clinical application and widespread adoption in personalised photomedicine. We conclude with a section on the current challenges facing the reproducibility, manufacturing throughput, and biocompatibility of these nanostructured materials including their long-term effects in trials and degradation profiles in biological systems as evaluated in vitro and in vivo.
Collapse
Affiliation(s)
| | - Reza Heidari
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90024, USA
| | | | - Hossein Heidari
- Institute for Materials Discovery, University College London, London E20 2AE, UK.
| |
Collapse
|
2
|
Peng L, Chang L, Bai R, Sun Q, Zhang Y, Liu H, Ma C, Lin J, Han B. Zwitterion polymer-modified graphene oxides enhance antibacterial activity with improved biocompatibility and osteogenesis: An in vitro study. REACT FUNCT POLYM 2025; 212:106229. [DOI: 10.1016/j.reactfunctpolym.2025.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Yari-Ilkhchi A, Hamidi N, Mahkam M, Ebrahimi-Kalan A. Graphene-based materials: an innovative approach for neural regeneration and spinal cord injury repair. RSC Adv 2025; 15:9829-9853. [PMID: 40165920 PMCID: PMC11956154 DOI: 10.1039/d4ra07976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Spinal cord injury (SCI), the most serious disease affecting the central nervous system (CNS), is one of contemporary medicine's most difficult challenges, causing patients to suffer physically, emotionally, and socially. However, due to recent advances in medical science and biomaterials, graphene-based materials (GBMs) have tremendous potential in SCI therapy due to their wonderful and valuable properties, such as physicochemical properties, extraordinary electrical conductivity, distinct morphology, and high mechanical strength. This review discusses SCI pathology and GBM characteristics, as well as recent in vitro and in vivo findings on graphenic scaffolds, electrodes, and injectable achievements for SCI improvement using neuroprotective and neuroregenerative techniques to improve neural structural and functional repair. Additionally, it suggests possible ideas and desirable products for graphene-based technological advances, intending to reach therapeutic importance for SCI.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
- Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Istanbul Technical University Maslak 34469 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University 34956 Istanbul Turkey
| | - Nazila Hamidi
- Department of Chemistry and Biochemistry, The University of Tulsa Tulsa OK 74104 USA
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science, Tabriz University of Medical Sciences 5166614733 Tabriz Iran
| |
Collapse
|
4
|
Shenasa N, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzor A, Salah Mansoor A, Athab ZH, Bayat H, Diznab FA. Review of carbonaceous nanoparticles for antibacterial uses in various dental infections. Nanotoxicology 2025; 19:180-215. [PMID: 39885656 DOI: 10.1080/17435390.2025.2454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis. Additionally, several locally administered antimicrobials have been suggested for dentistry in surgical and non-surgical applications. The main drawbacks are increased antimicrobial resistance, the risk of upsetting the natural microbiota, and hypersensitivity responses. Because of their unique physiochemical characteristics, nanoparticles (NPs) can circumvent antibiotic-resistance mechanisms and exert antimicrobial action via a variety of new bactericidal routes. Because of their anti-microbial properties, carbon-based NPs are becoming more and more effective antibacterial agents. Periodontitis, mouth infections, PI, dentin and root infections, and other dental diseases are among the conditions that may be treated using carbon NPs (CNPs) like graphene oxide and carbon dots. An outline of the scientific development of multifunctional CNPs concerning oral disorders will be given before talking about the significant influence of CNPs on dental health. Some of these illnesses include Periodontitis, oral infections, dental caries, dental pulp disorders, dentin and dental root infections, and PI. We also review the remaining research and application barriers for carbon-based NPs and possible future problems.
Collapse
Affiliation(s)
- Naghmeh Shenasa
- Science Endodontics Department, Shahrekord University of Medical, Shahrekord, Iran
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Hannaneh Bayat
- Dental Surgery, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Abedi Diznab
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li X, Qian Y, Lu X, Xu M, He S, Zhang J, Song S. Iodine-131 radioembolization boosts the immune activation enhanced by icaritin/resiquimod in hepatocellular carcinoma. J Control Release 2025; 378:849-863. [PMID: 39730069 DOI: 10.1016/j.jconrel.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Transarterial radioembolization (TARE) is a recommended locoregional strategy for intermediate hepatocellular carcinoma (HCC), whereas, the effect is insufficient to reverse the immunosuppression tumor microenvironment, and the overall benefits for patients remain to be improved. In this study, a multifunctional microsphere (MS) 131I-ICT/R848-MS is developed to propose an approach combined with TARE, icaritin (ICT) and immune modulator resiquimod (R848). ICT and iodine-131 (131I) radiation can induce immunogenic cell death, which, in combination with R848, will boost dendritic cell (DC) maturation. Decellularized liver model and SPECT/CT imaging revealed high specificity and long retention of microspheres. Radioactive distribution of 131I in tumor on 7 d following 131I-MS injection was over 7 times of that in normal liver tissue (4.26 ± 1.21 % ID/g vs 0.57 ± 0.23 % ID/g). 131I-ICT/R848-MS embolization brought significant immune activation, where the ratio of cytotoxic T lymphocytes to regulatory T cells in tumor sites upregulated from 1.75 ± 0.20 to 24.31 ± 1.79, and DC maturation in lymph nodes increased from 8.90 ± 1.51 % to 34.70 ± 3.12 %. Enhanced anti-tumor efficacy with no relapse was proved in rat orthotopic N1S1 HCC models. These results demonstrated the great potential of this multifunctional embolic agent to treat HCC through transarterial radio-immuno-chemoembolization (TARICE).
Collapse
Affiliation(s)
- Xinyi Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Yuyi Qian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Xin Lu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Mingzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:191-211. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
7
|
Sánchez-Cepeda A, Pazos MC, Leonardo PA, Ingrid SC, Correa-Araujo LS, María de Lourdes CG, Vera-Graziano R. Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application. RSC Adv 2024; 14:39804-39819. [PMID: 39697249 PMCID: PMC11651288 DOI: 10.1039/d4ra05889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests. The in vitro biocompatibility, viability, and cell proliferation of the poly-l-lysine (POLYL) functionalized scaffold were investigated using Wharton Jelly mesenchymal stem cells (hWJ-MSCs) and confirmed by XPS. The incorporation of GO/TCP bioceramics into the PLA polymer matrix increased the mechanical strength and provided a thermal barrier during the fusion treatments that the polymeric material undergoes during its manufacturing. The results show that the functionalization of the scaffold with POLYL allows improving the cell adhesion, proliferation and differentiation of hWJ-MSCs. The resulting scaffold PLA/GO/TCP/POLYL exhibits enhanced structural integrity and osteogenic cues, rendering it a promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Angela Sánchez-Cepeda
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - M Carolina Pazos
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa Tunja Boyacá Colombia
| | - Prieto-Abello Leonardo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Silva-Cote Ingrid
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Luz Stella Correa-Araujo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Chávez García María de Lourdes
- Facultad de Química, Laboratorio de Materiales Cerámicos, Universidad Nacional Autónoma de México UNAM Avda. Universidad 3000, C.U. Coyoacán Ciudad de México 04510 Mexico
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
8
|
Madhusudhan A, Suhagia TA, Sharma C, Jaganathan SK, Purohit SD. Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review. Polymers (Basel) 2024; 16:3318. [PMID: 39684062 DOI: 10.3390/polym16233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems. CNTs, with their exceptional mechanical strength and conductivity, enhance rheological properties, facilitating their use as bioinks in supporting complex 3D bioprinting tasks for neural, bone, and cardiac tissues by mimicking the natural structure of tissues. CDs offer fluorescence capabilities for theranostic applications, integrating imaging and therapeutic functions. AC enhances mechanical strength, biocompatibility, and antibacterial effectiveness, making it suitable for wound healing and electroactive scaffolds. Despite these promising features, challenges remain, such as optimizing nanoparticle concentrations, ensuring biocompatibility, achieving uniform dispersion, scaling up production, and integrating multiple functionalities. Addressing these challenges through continued research and development is crucial for advancing the clinical and industrial applications of these innovative hydrogels.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN67TS, UK
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
9
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
10
|
Shen H, Ouyang Y, Zhang L, Li J, Wang S. Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1757. [PMID: 39513837 PMCID: PMC11548044 DOI: 10.3390/nano14211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The application of nanomaterials in tumor therapy is increasingly widespread, offering more possibilities for enhanced tumor therapy. However, the unclear biological distribution and metabolism of nanomaterials may lead to immune rejection or inflammatory reactions, posing numerous challenges to their clinical translation. The rich diversity and multifaceted functions of blood cells offer promising biological avenues for enhancing the application of nanoparticles in cancer therapy. Blood cell membranes, being made of naturally found components in the body, exhibit significant biocompatibility, which can reduce the body's immune rejection response, extend the drug's residence time in the bloodstream, and enhance its bioavailability. Integrating blood cell membranes with nanomaterials enhances tumor therapy by improving targeted delivery, prolonging circulation time, and evading immune responses. This review summarizes recent advancements in the application of blood cell membrane-coated nanomaterials for antitumor therapy, with a particular focus on their use in photodynamic and photothermal treatments. Additionally, it explores their potential for synergistic effects when combined with other therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Jing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.S.); (L.Z.)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.S.); (L.Z.)
| |
Collapse
|
11
|
Cui M, Zhang J, Han P, Shi L, Li X, Zhang Z, Bao H, Ma Y, Tao Z, Dong X, Fu L, Wu Y. Two-dimensional nanomaterials: A multifunctional approach for robust for diabetic wound repair. Mater Today Bio 2024; 28:101186. [PMID: 39221220 PMCID: PMC11364902 DOI: 10.1016/j.mtbio.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.
Collapse
Affiliation(s)
- Mingming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, China
| | - Pengfei Han
- Clinical Laboratory, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xing Li
- Department of Clinical Laboratory, The Quzhou Afiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, 324000, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Haihua Bao
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yubo Ma
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Li Fu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
12
|
Flasz B, Tarnawska M, Kędziorski A, Napora-Rutkowski Ł, Szczygieł J, Gajda Ł, Nowak N, Augustyniak M. Ascorbic Acid and Graphene Oxide Exposure in the Model Organism Acheta domesticus Can Change the Reproduction Potential. Molecules 2024; 29:4594. [PMID: 39407524 PMCID: PMC11478226 DOI: 10.3390/molecules29194594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The use of nanoparticles in the industry carries the risk of their release into the environment. Based on the presumption that the primary graphene oxide (GO) toxicity mechanism is reactive oxygen species production in the cell, the question arises as to whether well-known antioxidants can protect the cell or significantly reduce the effects of GO. This study focused on the possible remedial effect of vitamin C in Acheta domesticus intoxicated with GO for whole lives. The reproduction potential was measured at the level of Vitellogenin (Vg) gene expression, Vg protein expression, hatching success, and share of nutrition in the developing egg. There was no simple relationship between the Vg gene's expression and the Vg protein content. Despite fewer eggs laid in the vitamin C groups, hatching success was high, and egg composition did not differ significantly. The exceptions were GO20 and GO20 + Vit. C groups, with a shift in the lipid content in the egg. Most likely, ascorbic acid impacts the level of Vg gene expression but does not affect the production of Vg protein or the quality of eggs laid. Low GO concentration in food did not cause adverse effects, but the relationship between GO toxicity and its concentration should be investigated more thoroughly.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Natalia Nowak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| |
Collapse
|
13
|
Safari F, Bardania H, Dehshahri A, Hallaj-Nezhadi S, Asfaram A, Mohammadi V, Baneshi M, Bahramianpour S, Akrami N, Khalvati B, Mirzaei A. Targeted delivery of interleukin-12 plasmid into HepG2 cells through folic acid conjugated graphene oxide nanocarrier. Biotechnol Prog 2024; 40:e3473. [PMID: 38757348 DOI: 10.1002/btpr.3473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Successful gene therapy relies on carriers to transfer genetic materials with high efficiency and low toxicity in a targeted manner. To enhance targeted cell binding and uptake, we developed and synthesized a new gene delivery vector based on graphene oxide (GO) modified by branched polyethyleneimine (BPEI) and folic acid (FA). The GO-PEI-FA nanocarriers exhibit lower toxicity compared to unmodified PEI, as well as having the potential to efficiently condense and protect pDNA. Interestingly, increasing the polymer content in the polyplex formulation improved plasmid transfer ability. Substituting graphene oxide for PEI at an N/P ratio of 10 in the HepG2 and THP1 cell lines improved hIL-12 expression by up to approximately eightfold compared to simple PEI, which is twice as high as GO-PEI-FA in Hek293 at the same N/P ratio. Therefore, the GO-PEI-FA described in this study may serve as a targeting nanocarrier for the delivery of the hIL-12 plasmid into cells overexpressing folic acid receptors, such as those found in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Farshad Safari
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Hallaj-Nezhadi
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Vahid Mohammadi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia, Canada
| | - Sima Bahramianpour
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Negar Akrami
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ali Mirzaei
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
14
|
Pi J, Chen D, Wang J, Yang E, Yang J, Liu Y, Yu J, Xia J, Huang X, Chen L, Ruan Y, Xu JF, Yang F, Shen L. Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy. Pharmacol Res 2024; 208:107379. [PMID: 39218421 DOI: 10.1016/j.phrs.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.
Collapse
Affiliation(s)
- Jiang Pi
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Enzhuo Yang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA; Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xueqin Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lingming Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
16
|
Liu M, Zou J, Li H, Zhou Y, Lv Q, Cheng Q, Liu J, Wang L, Wang Z. Orally administrated liquid metal agents for inflammation-targeted alleviation of inflammatory bowel diseases. SCIENCE ADVANCES 2024; 10:eadn1745. [PMID: 38996026 PMCID: PMC11244529 DOI: 10.1126/sciadv.adn1745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.
Collapse
Affiliation(s)
- Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jinhui Zou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heli Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfan Zhou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jia Liu
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Farrokhi T, Gkikas M. NanoGraphene Clot: A New Fibrinogen-Mimic Hemostatic Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34783-34797. [PMID: 38949260 DOI: 10.1021/acsami.4c09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 μM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.
Collapse
Affiliation(s)
- Tannaz Farrokhi
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
18
|
Hou M, Liu L, Zhang Y, Pan Y, Ding N, Zhang Y. In vivo study of chelating agent-modified nano zero-valent iron: Biodistribution and toxicity in mice. WATER RESEARCH 2024; 257:121649. [PMID: 38718655 DOI: 10.1016/j.watres.2024.121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.
Collapse
Affiliation(s)
- Minhui Hou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Linwei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuqing Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ning Ding
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
20
|
Ding X, Pang Y, Liu Q, Zhang H, Wu J, Lei J, Zhang T. GO-PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306483. [PMID: 38229561 DOI: 10.1002/smll.202306483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/03/2024] [Indexed: 01/18/2024]
Abstract
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaomeng Ding
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanting Pang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haopeng Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jialin Lei
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
21
|
Han R, He H, Lu Y, Lu H, Shen S, Wu W. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release 2024; 370:256-276. [PMID: 38679163 DOI: 10.1016/j.jconrel.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.
Collapse
Affiliation(s)
- Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Huiping Lu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
22
|
Uzdrowska K, Knap N, Gulczynski J, Kuban-Jankowska A, Struck-Lewicka W, Markuszewski MJ, Bączek T, Izycka-Swieszewska E, Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int J Nanomedicine 2024; 19:3973-3989. [PMID: 38711615 PMCID: PMC11073537 DOI: 10.2147/ijn.s447397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.
Collapse
Affiliation(s)
- Katarzyna Uzdrowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jacek Gulczynski
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | | | | - Tomasz Bączek
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, 80-416, Poland
| | - Ewa Izycka-Swieszewska
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | |
Collapse
|
23
|
Dey T, Ghosh A, Sanyal A, Charles CJ, Pokharel S, Nair L, Singh M, Kaity S, Ravichandiran V, Kaur K, Roy S. Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer. Biomed Mater 2024; 19:032003. [PMID: 38574581 DOI: 10.1088/1748-605x/ad3abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for theirin vivoandin vitrointerventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.
Collapse
Affiliation(s)
- Tanima Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Anushikha Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Arka Sanyal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | | | - Sahas Pokharel
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
- Department of Pharmacy & Biomolecular Science, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| |
Collapse
|
24
|
Kang L, Sun T, Liu S, Zhao H, Zhao Y. Porphyrin Derivative with Binary Properties of Photodynamic Therapy and Water-Dependent Reversible Photoacidity Therapy for Treating Hypoxic Tumor. Adv Healthc Mater 2024; 13:e2303856. [PMID: 38221719 DOI: 10.1002/adhm.202303856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Porphyrin photosensitizers are the classic drugs in clinical photodynamic therapy (PDT), but the hypoxia of tumor environment and the rapid oxygen consumption of PDT severely weaken their therapeutic effect. A recently reported water-dependent reversible photoacidity therapy (W-RPAT) is O2-independence, providing a solution for the treatment of hypoxic tumors. In this work, TPP-O-PEG5, a porphyrin derivative with binary properties of PDT and W-RPAT, is designed and synthesized for the first time. The nanoparticles (NPs) of TPP-O-PEG5 encapsulated with DSPE-mPEG2000, an amphiphilic polymer approved by Food and Drug Administration, can simultaneously produce reactive oxygen species and H+ under irradiation of a 660 nm laser, and revert the H+ back under darkness, presenting strong phototoxicity to multiple tumor cell lines with no obvious difference between the IC50 values tested under normoxic (≈20% O2) and hypoxic (<0.5% O2) conditions. Excitingly, in vivo experiments show that the therapeutic effect of TPP-O-PEG5 NPs on large hypoxic tumors is better than that of NPe6, a clinical porphin PDT drug. This work provides a novel strategy for porphyrin photosensitizers to break through the limitation of hypoxic environment, and significantly improve the phototherapeutic effect on hypoxic tumors.
Collapse
Affiliation(s)
- Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
25
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
26
|
Liu S, Sun T, Chou W, Zhao H, Zhao Y. A design strategy of pure Type-I thiadiazolo[3,4-g]quinoxaline-based photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 265:116059. [PMID: 38134744 DOI: 10.1016/j.ejmech.2023.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Most photosensitizers (PSs) for photodynamic therapy (PDT) can generate singlet oxygen through transferring energy with oxygen, called Type-II PSs. However, the microenvironment of solid tumor is usually anoxic. Type-I PSs can generate reactive oxygen species (ROS) through transferring electron to substrate, showing more efficient in PDT. But pure Type-I PSs are very rare. The relationship between PSs' chemical structure and Type-I mechanism has not been explicitly stated. In this study, two thiadiazolo [3,4-g]quinoxaline (TQ) PSs (PsCBz-1 and PsCBz-2) are synthesized through introducing carbazole groups to the 4,9-position of TQ backbone. Comparing with their prototype PS, 4,9-dibrominated TQ (TQs-4), the introduction of carbazole groups reverses the reaction mechanism of PSs from pure Type-II to pure Type-I. Excitingly, the water-dispersible nanoparticles (NPs) of PsCBz-1 can achieve strong phototoxicity in vitro under both normoxia and hypoxia through Type-I mechanism. In addition, PsCBz-1 NPs also exhibits remarkable PDT antitumor effect in vivo. This study provides a feasible design strategy for pure Type-I PSs.
Collapse
Affiliation(s)
- Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China.
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
27
|
Li Y, Xiao H, Qin X, Zhang H, Zheng Y, Cai R, Pang W. Carboxyfullerene C60 preserves porcine sperm by enhancing antioxidant capacity and inhibiting apoptosis and harmful bacteria. J Anim Sci 2024; 102:skae196. [PMID: 39008364 PMCID: PMC11345516 DOI: 10.1093/jas/skae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/13/2024] [Indexed: 07/17/2024] Open
Abstract
This study used a porcine model to systematically investigate whether carboxyfullerene C60(CF-C60) can be used for sperm preservation. The results indicated that CF-C60 supplementation can preserve porcine sperm quality during storage at 17 °C. This effect was attributable to an improvement in the antioxidant capacity of sperm through a decrease in the reactive oxygen species (ROS) level. Additionally, CF-C60 can maintain mitochondrial function, inhibit sperm apoptosis through the ROS/Cytochrome C (Cyt C)/Caspase 3 signaling pathway, and mediate suppression of bacterial growth through the effects of ROS. Finally, the results of artificial insemination experiments indicated that insemination with CF-C60-treated sperm can increase the total number of offspring born and reduce the number of deformed piglets. Thus, CF-C60 is safe for use as a component of semen diluent for sperm storage.
Collapse
Affiliation(s)
- Yuqing Li
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoqi Xiao
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Qin
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haize Zhang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Cai
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Mandal P, Ghosh SK. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18713-18729. [PMID: 38096427 DOI: 10.1021/acs.langmuir.3c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Graphene-based nanomaterials (GNMs) have captured increasing attention in the recent advancement of materials science and nanotechnology owing to their excellent physicochemical properties. Despite having unquestionable advances, the application of GNMs in biological and medical sciences is still limited due to the lack of knowledge and precise control over their interaction with the biological milieu. The cellular membrane is the first barrier with which GNMs interact before entering a cell. Therefore, understanding how they interact with cell membranes is important from the perspective of safe use in biological and biomedical fields. In this review, we systematically summarize the recent efforts in predicting the interactions between GNMs and model cellular membranes. This review provides insights into how GNMs interact with lipid membranes and self-assemble in and around them. Both the computational simulations and experimental observations are summarized. The interactions are classified depending on the physicochemical properties (structure, chemistry, and orientation) of GNMs and various model membranes. The thermodynamic parameters, structural details, and supramolecular forces are listed to understand the interactions which would help circumvent potential risks and provide guidance for safe use in the future. At the end of this review, future prospective and emerging challenges in this research field are discussed.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
29
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
30
|
Zabihi F, Tu Z, Kaessmeyer S, Schumacher F, Rancan F, Kleuser B, Boettcher C, Ludwig K, Plendl J, Hedtrich S, Vogt A, Haag R. Efficient skin interactions of graphene derivatives: challenge, opportunity or both? NANOSCALE ADVANCES 2023; 5:5923-5931. [PMID: 37881716 PMCID: PMC10597544 DOI: 10.1039/d3na00574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Interactions between graphene, with its wide deployment in consumer products, and skin, the body's largest organ and first barrier, are highly relevant with respect to toxicology and dermal delivery. In this work, interaction of polyglycerol-functionalized graphene sheets, with 200 nm average lateral size and different surface charges, and human skin was studied and their potential as topical delivery systems were investigated. While neutral graphene sheets showed no significant skin interaction, their positively and negatively charged counterparts interacted with the skin, remaining in the stratum corneum. This efficient skin interaction bears a warning but also suggests a new topical drug delivery strategy based on the sheets' high loading capacity and photothermal property. Therefore, the immunosuppressive drug tacrolimus was loaded onto positively and negatively charged graphene sheets, and its release measured with and without laser irradiation using liquid chromatography tandem-mass spectrometry. Laser irradiation accelerated the release of tacrolimus, due to the photothermal property of graphene sheets. In addition, graphene sheets with positive and negative surface charges were loaded with Nile red, and their ability to deliver this cargo through the skin was investigated. Graphene sheets with positive surface charge were more efficient than the negatively charged ones in enhancing Nile red penetration into the skin.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
- The Sixth Affiliated Hospital of Sun Yat-sen University Guangzhou Guangdong China
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin Germany
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern 3012 Bern Switzerland
| | - Fabian Schumacher
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin 14195 Berlin Germany
| | - Fiorenza Rancan
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Burkhard Kleuser
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin 14195 Berlin Germany
| | - Christoph Boettcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin Germany
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia 2405 Wesbrook Mall V6T1Z3 Vancouver Canada
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin Lindenberger Weg 80 13125 Berlin Germany
| | - Annika Vogt
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
| |
Collapse
|
31
|
Li Z, Ma Y, Ren Y, Lin X, Su Z, Zhang S. Thermal-triggered loading and GSH-responsive releasing property of HBc particles for drug delivery. J Control Release 2023; 362:784-796. [PMID: 37003490 DOI: 10.1016/j.jconrel.2023.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Hepatitis B core protein virus-like particles (HBc VLPs) have attracted wide attentions using as drug delivery vehicles, due to its excellent stability and easy in large scale production. Here in the present work, we report unique thermal-triggered loading and glutathione-responsive releasing property of the HBc particles for anticancer drug delivery. Through reversible temperature-dependent hole gating of the HBc particle capsid, about 4248 doxorubicin (DOX) were successfully encapsulated inside nanocage of a single nanoparticle at high HBc recovery of 83.2%, by simply incubating the DOX with HBc at 70 °C for 90 min. The new strategy was significantly superior to the disassembly-reassembly methods, which can only yield 3556 DOX loading at 52.3% HBc recovery. The thermal-sensitive drug entry channel in HBc was analyzed by molecular dynamic simulations, and the G113, G117 and R127 were identified as the key amino acid residues that are not conducive to the entrance of DOX but sensitive to temperature. Especially, the ΔGbind of R127 become even higher at high temperature, mutation of the R127 would be the first choice to make the drug entry thermodynamically easier. Due to plenty of disulfide bonds linking the HBc subunits, the HBc particles loaded with DOX exhibited intrinsic glutathione (GSH) responsivity for efficient controlled release in tumor sites. To further increase the tumor-targeting effect of the drug, Cyclo(Arg-Gly-Asp-d-Tyr-Lys) peptide was conjugated to the surface of HBc through a PEG linker. The prepared HBc-based anticancer drug showed significantly improved stability, tumor specificity, and in vivo anticancer activity on MCF7-bearing Balb/c-nu mice. Overall, our work demonstrated that the HBc VLPs can be an ideal drug carrier to fulfill requirement of the intelligent loading and "on demand" release of the therapeutic agents for efficient cancer therapy with minimal adverse effects.
Collapse
Affiliation(s)
- Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
32
|
Qi K, Sun B, Liu SY, Zhang M. Research progress on carbon materials in tumor photothermal therapy. Biomed Pharmacother 2023; 165:115070. [PMID: 37390711 DOI: 10.1016/j.biopha.2023.115070] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
At present, cancer remains one of the leading causes of human death worldwide, and surgery, radiotherapy and chemotherapy are still the main methods of cancer treatment. However, these treatments have their drawbacks. Surgical treatment often struggles with the complete removal of tumor tissue, leading to a high risk of cancer recurrence. Additionally, chemotherapy drugs have a significant impact on overall health and can easily result in drug resistance. The high risk and mortality of cancer and other reasons promote scientific researchers to unremittingly develop and find a more accurate and faster diagnosis strategy and effective cancer treatment method. Photothermal therapy, which utilizes near-infrared light, offers deeper tissue penetration and minimal damage to surrounding healthy tissues. Compared to conventional radiotherapy and other treatment methods, photothermal therapy boasts several advantages, including high efficiency, non-invasiveness, simplicity, minimal toxicity, and fewer side effects. Photothermal nanomaterials can be categorized as either organic or inorganic materials. This review primarily focuses on the behavior of carbon materials as inorganic materials and their role in tumor photothermal treatment. Furthermore, the challenges faced by carbon materials in photothermal treatment are discussed.
Collapse
Affiliation(s)
- Kezhen Qi
- Department of Pharmacy, Dali University, Dali, Yunnan 671000, PR China
| | - Bin Sun
- Department of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Shu-Yuan Liu
- Department of Pharmacy, Dali University, Dali, Yunnan 671000, PR China.
| | - Manjie Zhang
- Department of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
33
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
34
|
Ristic B, Bosnjak M, Misirkic Marjanovic M, Stevanovic D, Janjetovic K, Harhaji-Trajkovic L. The Exploitation of Lysosomes in Cancer Therapy with Graphene-Based Nanomaterials. Pharmaceutics 2023; 15:1846. [PMID: 37514033 PMCID: PMC10383369 DOI: 10.3390/pharmaceutics15071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively. Furthermore, because GNMs prevent bound fluorescent agents from emitting light, their separation in lysosomes may enable tumor cell identification and therapy monitoring. In this review, we explain how the characteristics of the lysosomal microenvironment and the unique features of tumor cell lysosomes can be exploited for GNM-based cancer therapy.
Collapse
Affiliation(s)
- Biljana Ristic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Maja Misirkic Marjanovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Kristina Janjetovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
35
|
Islam F, Khan FA, Khan NM, Ahmad S, Alsaiari AA, Almehmadi M, Ahmad N, Ul-Haq Z, Jan AK, Allahyani M, Alsharif A, Falade EO. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS OMEGA 2023; 8:20550-20560. [PMID: 37323383 PMCID: PMC10268258 DOI: 10.1021/acsomega.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.
Collapse
Affiliation(s)
- Fawad Islam
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Mehmood Khan
- Department
of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Amer Alsaiari
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Abdul Khaliq Jan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mamdouh Allahyani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebenezer Ola Falade
- Institute
of Food Science and Technology, Chinese
Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
36
|
Ibrahim MAA, Hamad MHA, Mahmoud AHM, Mekhemer GAH, Sidhom PA, Sayed SRM, Moussa NAM, Rabee AIM, Dabbish E, Shoeib T. Adsorption of Favipiravir on pristine graphene nanosheets as a drug delivery system: a DFT study. RSC Adv 2023; 13:17465-17475. [PMID: 37304808 PMCID: PMC10253565 DOI: 10.1039/d3ra03227b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The efficiency of pristine graphene (GN) in the delivery process of the Favipiravir (FPV) anti-COVID-19 drug was herein revealed within the FPV⋯GN complexes in perpendicular and parallel configurations in terms of the density functional theory (DFT) method. Adsorption energy findings unveiled that the parallel configuration of FPV⋯GN complexes showed higher desirability than the perpendicular one, giving adsorption energy up to -15.95 kcal mol-1. This favorability could be interpreted as a consequence of the contribution of π-π stacking to the overall strength of the adsorption process in the parallel configuration. Frontier molecular orbitals (FMO) findings demonstrated the ability of the GN nanosheet to adsorb the FPV drug by the alteration in the EHOMO, ELUMO, and Egap values before and after the adsorption process. Based on Bader charge results, the FPV drug and GN sheet exhibited electron-donating and -accepting characters, respectively, which was confirmed by the negative sign of the computed charge transfer (Qt) values. The FPV(R)⋯T@GN complex showed the most desirable Qt value of -0.0377e, which was in synoptic with the adsorption energy pattern. Electronic properties of GN were also altered after the adsorption of the FPV drug in both configurations, with more observable changes in the parallel one. Interestingly, the Dirac point of the GN sheet coincided with the Fermi level after the adsorption process, indicating that the adsorption process unaffected the presence of the Dirac point. The occurrence of the adsorption process was also noticed by the existence of new bands and peaks in the band structure and DOS plots, respectively. Short recovery time rendered the GN nanosheet an efficient FPV drug delivery system. The obtained findings provide new insight into the biomedical applications of the GN sheet as a promising drug delivery system.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
- School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa
| | - Manar H A Hamad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Amna H M Mahmoud
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Gamal A H Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Abdallah I M Rabee
- Leibniz-Institut für Katalyse Albert-Einstein-Str. 29 A 18059 Rostock Germany
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo New Cairo 11835 Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
37
|
Castagnola V, Deleye L, Podestà A, Jaho E, Loiacono F, Debellis D, Trevisani M, Ciobanu DZ, Armirotti A, Pisani F, Flahaut E, Vazquez E, Bramini M, Cesca F, Benfenati F. Interactions of Graphene Oxide and Few-Layer Graphene with the Blood-Brain Barrier. NANO LETTERS 2023; 23:2981-2990. [PMID: 36917703 PMCID: PMC10103300 DOI: 10.1021/acs.nanolett.3c00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Lieselot Deleye
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alice Podestà
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Edra Jaho
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabrizio Loiacono
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Martina Trevisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Experimental Medicine, Università
degli Studi di Genova, 16132 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Pisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
UMR 5085, CNRS-INP-UPS, Université
Toulouse 3 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Ester Vazquez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Mattia Bramini
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Cell Biology, Universidad de Granada, C. Fuentenueva s/n, 18071 Granada, Spain
| | - Fabrizia Cesca
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
38
|
Fan Y, Pan D, Yang M, Wang X. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161412. [PMID: 36621508 DOI: 10.1016/j.scitotenv.2023.161412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Emerging pollutants (EPs) have become a global concern, attracting tremendous attention because of serious threats to human and animal health. EP diversity emanates from their behaviour and ability to enter the body via multiple pathways and exhibit completely different distribution, transport, and excretion. To better understand the in vivo behaviour of EPs, we reviewed radiolabelling and in vivo radionuclide imaging tracking of various EPs, including micro- and nano-plastics, perfluoroalkyl substances, metal oxides, pharmaceutical and personal care products, and so on. Because this accurate and quantitative imaging approach requires the labelling of radionuclides onto EPs, the main strategies for radiolabelling were reviewed, such as synthesis with radioactive precursors, element exchange, proton beam activation, and modification. Spatial and temporal biodistribution of various EPs was summarised in a heat map, revealing that the absorption, transport, and excretion of EPs are markedly related to their type, size, and pathway into the body. These findings implicate the potential toxicity of diverse EPs in organs and tissues. Finally, we discussed the potential and challenges of radionuclide imaging tracking of EPs, which can be considered in future EPs studies.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
39
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
40
|
Aitbelale R, Timesli A. Effect of functionalized graphene addition on mechanical and thermal properties of high density polyethylene. JOURNAL OF POLYMER ENGINEERING 2023. [DOI: 10.1515/polyeng-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Abstract
High density polyethylene (HDPE)/graphene nanocomposites were successfully synthesized by compounding of HDPE, as polymer matrix, with hexamethylenediamine functionalized graphene. The resulting nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA) techniques. SEM characterization confirmed the good dispersion (homogeneous and uniform) of graphene in the polyethylene matrix. The TGA technique revealed a slight improvement in thermal resistance. Functionalized graphene improved a better thermal stability of HDPE (up to 6 °C) than non-functionalized graphene (up to 2 °C). Mechanical tensile and torsion tests showed that HDPE/functionalized graphene nanocomposites exhibit high tensile strength and low torsional strength compared to HDPE/non-functionalized graphene nanocomposites. Compared to pure HDPE, the Young’s modulus increased by 80% and 30%, whereas, the torsion modulus increased by about 34% and 44% for the HDPE/functionalized and HDPE/non-functionalized graphene, respectively. Regardless of this increase, it can be seen that the torsion modulus of HDPE/non-functionalized graphene is much higher than that of HDPE/functionalized graphene.
Collapse
Affiliation(s)
- Rachid Aitbelale
- Laboratory of Catalysis and Corrosion of Materials, Department of Chemistry, Faculty of Sciences , University of Chouaïb Doukkali , 24000 El Jadida , Morocco
| | - Abdelaziz Timesli
- AICSE Laboratory , National Higher School of Arts and Crafts (ENSAM CASABLANCA), Hassan II University of Casablanca , 20670 Casablanca , Morocco
| |
Collapse
|
41
|
Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS APPLIED BIO MATERIALS 2023; 6:1323-1338. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Roqya Najafi-Taher
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 11114115, Iran
| | - Zahra Beiram Zadeh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Mohammad Tanhaei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
42
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
43
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
44
|
Wang F, Li N, Wang W, Ma L, Sun Y, Wang H, Zhan J, Yu D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe 3O 4 and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int J Nanomedicine 2023; 18:881-897. [PMID: 36844435 PMCID: PMC9948638 DOI: 10.2147/ijn.s393507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2β, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250002, People’s Republic of China
| | - Wenbo Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Long Ma
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Shandong Normal University, Jinan, 250014, People’s Republic of China
| | - Yaru Sun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Affiliated Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Hong Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China,Correspondence: Jinhua Zhan, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China, Email
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China,Dexin Yu, Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China, Tel +86-18560081629, Fax +86-531-86927544, Email
| |
Collapse
|
45
|
Photo-Antibacterial Activity of Two-Dimensional (2D)-Based Hybrid Materials: Effective Treatment Strategy for Controlling Bacterial Infection. Antibiotics (Basel) 2023; 12:antibiotics12020398. [PMID: 36830308 PMCID: PMC9952232 DOI: 10.3390/antibiotics12020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.
Collapse
|
46
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
47
|
Feng Y, Lao J, Zou J, Zhu Z, Li D, Liu G, Mao L. Interaction of Graphitic Carbon Nitride with Cell Membranes: Probing Phospholipid Extraction and Lipid Bilayer Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17663-17673. [PMID: 36456188 DOI: 10.1021/acs.est.2c05560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how nanomaterials interact with cell membranes has important implications for ecotoxicology and human health. Here, we investigated the interactions between graphitic carbon nitride (g-C3N4, CN) and red blood cells, a plausible contact target for nanoparticles when they enter the bloodstream. Through a hemolysis assay, the cytotoxicity of CN derived from different precursors was quantitatively assessed, which is highly related to the surface area of CN. Reactive oxygen species (ROS) generation and lipid peroxidation detection confirmed that CN causes rapid cell membrane rupture by a physical interaction mechanism rather than ROS-related chemical oxidation. Dye leakage assay and theoretical simulation indicated that the less-layered CN is prone to folding inward to wrap and extract lipid molecules from cell membranes. The electron-rich inherent pores of CN play a dominant role in capturing the headgroups of phospholipids, whereas the hydrophobic interaction is critical for the anchoring of lipid tails. Our further experimental evidence demonstrated that the destructive extraction of phospholipids from cell membranes by CN occurs primarily in the outer leaflet, and phosphatidylcholine is the most easily extracted lipid. Moreover, the formation of protein corona on CN was found to decrease the nonspecific interactions but increase steric repulsion, thus mitigating CN cytotoxicity. Overall, our data provide a molecular basis for CN's cytotoxicity.
Collapse
Affiliation(s)
- Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiayong Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiale Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Daguang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
48
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
49
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
50
|
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4955-4976. [PMID: 39634304 PMCID: PMC11501915 DOI: 10.1515/nanoph-2022-0574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2024]
Abstract
Phototherapy attracts increasing interest for broad bio-applications due to its noninvasive and highly selective nature. Owing to their good biocompatibility, unique optoelectronic properties and size/surface effects, carbon nanomaterials show great promise for phototherapy. Various carbon nanomaterials have been demonstrated as efficient phototherapy agents for a large variety of phototherapeutic applications, including cancer treatment, anti-bacteria, and Alzheimer's disease. This review summarizes the recent progress of carbon nanomaterials for phototherapy. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|