1
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Song D, Song CW, Cho SH, Kwon TY, Jung H, Park KH, Kim J, Seo J, Yoo J, Kim M, Lee GR, Hwang J, Lee HM, Shin J, Shin JH, Jung YS, Chang J. Highly Tunable, Nanomaterial-Functionalized Structural Templating of Intracellular Protein Structures Within Biological Species. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406492. [PMID: 39535386 PMCID: PMC11727137 DOI: 10.1002/advs.202406492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Inside living organisms, proteins are self-assembled into diverse 3D structures optimized for specific functions. This structure-function relationship can be exploited to synthesize functional materials through biotemplating and depositing functional materials onto protein structures. However, conventional biotemplating faces limitations due to the predominantly intracellular existence of proteins and associated challenges in achieving tunability while preserving functionality. In this study, Conversion to Advanced Materials via labeled Biostructures (CamBio), an integrated biotemplating platform that involves labeling target protein structures with antibodies followed by the growth of functional materials, ensuring outstanding nanostructure tunability is proposed. Protein-derived plasmonic nanostructures created by CamBio can serve as precise quantitative tools for assessing target species is demonstrated. The assessment is achieved through highly tunable and efficient surface-enhanced Raman spectroscopy (SERS). CamBio enables the formation of dense nanogap hot spots among metal nanoparticles, templated by diverse fibrous proteins comprising densely repeated monomers. Furthermore, iterative antibody labeling strategies to adjust the antibody density surrounding targets, amplifying the number of nanogaps and consequently improving SERS performance are employed. Finally, cell-patterned substrates and whole meat sections as SERS substrates, confirming their easily accessible, cost-effective, scalable preparation capabilities and dimensional tunability are incorporated.
Collapse
Affiliation(s)
- Dae‐Hyeon Song
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Chang Woo Song
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Seunghee H. Cho
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Tae Yoon Kwon
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Hoeyun Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Ki Hyun Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jiyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Junyoung Seo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jaeyoung Yoo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Minjoon Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Gyu Rac Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jisung Hwang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jonghwa Shin
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jennifer H. Shin
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Yeon Sik Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Jae‐Byum Chang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
- Bioimaging Data Curation CenterSeoul03760South Korea
| |
Collapse
|
3
|
Hardy M, Kashani Zadeh H, Tzouchas A, Vasefi F, MacKinnon N, Bearman G, Sokolov Y, Haughey SA, Elliott CT. Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:2813-2823. [PMID: 39723219 PMCID: PMC11667728 DOI: 10.1021/acsfoodscitech.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 12/28/2024]
Abstract
Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted K-nearest neighbors, and an ensemble bagged tree method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 ± 0.51%), while single-mode ML analyses (fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 ± 10.1%). Single-mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence data set of four variables (wavelengths) could predict "fresh" and "spoilt" salmon fillet based on a subtle peak redshift as the fillet aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of fish freshness within the context of rapid spectroscopic analyses.
Collapse
Affiliation(s)
- Mike Hardy
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Hossein Kashani Zadeh
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
- Biomedical
Engineering Program, University of North
Dakota, Grand Forks, North Dakota 58202, United States
| | - Angelis Tzouchas
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Fartash Vasefi
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Nicholas MacKinnon
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Gregory Bearman
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Yaroslav Sokolov
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Simon A. Haughey
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Christopher T. Elliott
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| |
Collapse
|
4
|
Almehmadi L, Lednev IK. Surface-Enhanced Raman Spectroscopy at the Interface between Drug Discovery and Personalized Medicine. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18135-18143. [PMID: 39502800 PMCID: PMC11533196 DOI: 10.1021/acs.jpcc.4c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024]
Abstract
Personalized medicine and drug discovery are different, yet overlapping, fields, and information from each field is exchanged to improve the other. The current methods used for devising personalized therapeutic plans and developing drug discovery applications are costly, time-consuming, and complex; thus, their applicability is limited in both fields. However, surface-enhanced Raman spectroscopy (SERS) offers potential solutions to current challenges. This Mini-Review explores the utility of SERS in drug discovery and personalized medicine. The Mini-Review starts with a brief overview of these fields, including the main challenges and current methods, and then explores examples where SERS has been used to overcome some of the main challenges in both fields. It ends with brief conclusions, perspectives, and current challenges limiting the practical application of SERS.
Collapse
Affiliation(s)
- Lamyaa
M. Almehmadi
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
5
|
Yu S, Dai W, Su C, Milosavic N, Wang Z, Wang X, Zhu Y, He M, Landry DW, Stojanovic MN, Lin Q. An Internally Attached Aptameric Graphene Nanosensor for Sensitive Vasopressin Measurement in Critical Patient Monitoring. ACS Sens 2024; 9:4915-4923. [PMID: 39268764 DOI: 10.1021/acssensors.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This paper presents an aptameric graphene nanosensor for rapid and sensitive measurement of arginine vasopressin (AVP) toward continuous monitoring of critical care patients. The nanosensor is a field-effect transistor (FET) with monolayer graphene as the conducting channel and is functionalized with a new custom-designed aptamer for specific AVP recognition. Binding between the aptamer and AVP induces a change in the carrier density in the graphene and resulting in measurable changes in FET characteristics for determination of the AVP concentration. The aptamer, based on the natural enantiomer D-deoxyribose, possess optimized kinetic binding properties and is attached at an internal position to the graphene for enhanced sensitivity to low concentrations of AVP. Experimental results show that this aptameric graphene nanosensor is highly sensitive (with a limit of detection of 0.3 pM and a resolution of 0.1 pM) to AVP, and rapidly responsive (within 90 s) to both increasing and decreasing AVP concentration changes. The device is also reversable (within 4%), repeatable (within 4%) and reproducible (within 5%) in AVP measurements.
Collapse
Affiliation(s)
- Shifeng Yu
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenting Dai
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Chao Su
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
- Department of Power and Energy Engineering, Xian Jiaotong University, Xian, Shaanxi 710049, China
| | - Nenad Milosavic
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Ziran Wang
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Xuejun Wang
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Yibo Zhu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Maogang He
- Department of Power and Energy Engineering, Xian Jiaotong University, Xian, Shaanxi 710049, China
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Milan N Stojanovic
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Eiamchai P, Juntagran C, Somboonsaksri P, Waiwijit U, Eisiri J, Samarnjit J, Kaewseekhao B, Limwichean S, Horprathum M, Reechaipichitkul W, Nuntawong N, Faksri K. Determination of latent tuberculosis infection from plasma samples via label-free SERS sensors and machine learning. Biosens Bioelectron 2024; 250:116063. [PMID: 38290379 DOI: 10.1016/j.bios.2024.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Effective diagnostic tools for screening of latent tuberculosis infection (LTBI) are lacking. We aim to investigate the performance of LTBI diagnostic approaches using label-free surface-enhanced Raman spectroscopy (SERS). We used 1000 plasma samples from Northeast Thailand. Fifty percent of the samples had tested positive in the interferon-gamma release assay (IGRA) and 50 % negative. The SERS investigations were performed on individually prepared protein specimens using the Raman-mapping technique over a 7 × 7 grid area under measurement conditions that took under 10 min to complete. The machine-learning analysis approaches were optimized for the best diagnostic performance. We found that the SERS sensors provide 81 % accuracy according to train-test split analysis and 75 % for LOOCV analysis from all samples, regardless of the batch-to-batch variation of the sample sets and SERS chip. The accuracy increased to 93 % when the logistic regression model was used to analyze the last three batches of samples, following optimization of the sample collection, SERS chips, and database. We demonstrated that SERS analysis with machine learning is a potential diagnostic tool for LTBI screening.
Collapse
Affiliation(s)
- Pitak Eiamchai
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Chadatan Juntagran
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| | - Pacharamon Somboonsaksri
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Uraiwan Waiwijit
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jukgarin Eisiri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Janejira Samarnjit
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Saksorn Limwichean
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wipa Reechaipichitkul
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand; Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
7
|
Kouz S, Raouafi A, Ouhibi A, Lorrain N, Essafi M, Mejri M, Raouafi N, Moadhen A, Guendouz M. Detection of SARS-CoV-2 N protein using AgNPs-modified aligned silicon nanowires BioSERS chip. RSC Adv 2024; 14:12071-12080. [PMID: 38628480 PMCID: PMC11019291 DOI: 10.1039/d4ra00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic had a strong impact on societies and economies worldwide and tests for high-performance detection of SARS-CoV-2 biomarkers are still needed for potential future outbreaks of the disease. In this paper, we present the different steps for the design of an aptamer-based surface-enhanced Raman scattering (BioSERS) sensing chip capable of detecting the coronavirus nucleocapsid protein (N protein) in spiked phosphate-buffered solutions and real samples of human blood serum. Optimization of the preparation steps in terms of the aptamer concentration used for the functionalization of the silver nanoparticles, time for affixing the aptamer, incubation time with target protein, and insulation of the silver active surface with cysteamine, led to a sensitive BioSERS chip, which was able to detect the N protein in the range from 1 to 75 ng mL-1 in spiked phosphate-buffered solutions with a detection limit of 1 ng mL-1 within 30 min. Furthermore, the BioSERS chip was used to detect the target protein in scarcely spiked human serum. This study demonstrates the possibility of a clinical application that can improve the detection limit and accuracy of the currently commercialized SARS-CoV-2 immunodiagnostic kit. Additionally, the system is modular and can be applied to detect other proteins by only changing the aptamer.
Collapse
Affiliation(s)
- Sadok Kouz
- Faculty of Sciences of Tunis, Laboratory of Nanomaterials Nanotechnology and Energy (L2NE), University of Tunis El Manar 2092 Tunis El Manar Tunisia
- UMR FOTON, CNRS, University of Rennes Enssat, BP 80518, 6 rue Kerampont F22305 Lannion France
| | - Amal Raouafi
- Faculty of Sciences of Tunis, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Sensor and Biosensors Group, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Awatef Ouhibi
- Faculty of Sciences of Tunis, Laboratory of Nanomaterials Nanotechnology and Energy (L2NE), University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Nathalie Lorrain
- UMR FOTON, CNRS, University of Rennes Enssat, BP 80518, 6 rue Kerampont F22305 Lannion France
| | - Makram Essafi
- Pasteur Institute of Tunis, University of Tunis El Manar LTCII LR11 IPT02 Tunis Tunisia
| | - Manel Mejri
- Pasteur Institute of Tunis, University of Tunis El Manar LTCII LR11 IPT02 Tunis Tunisia
| | - Noureddine Raouafi
- Faculty of Sciences of Tunis, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Sensor and Biosensors Group, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Adel Moadhen
- Faculty of Sciences of Tunis, Laboratory of Nanomaterials Nanotechnology and Energy (L2NE), University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Mohammed Guendouz
- UMR FOTON, CNRS, University of Rennes Enssat, BP 80518, 6 rue Kerampont F22305 Lannion France
| |
Collapse
|
8
|
Li B, Zappalá G, Dumont E, Boisen A, Rindzevicius T, Schmidt MN, Alstrøm TS. Nitroaromatic explosives' detection and quantification using an attention-based transformer on surface-enhanced Raman spectroscopy maps. Analyst 2023; 148:4787-4798. [PMID: 37602485 DOI: 10.1039/d3an00446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Rapidly and accurately detecting and quantifying the concentrations of nitroaromatic explosives is critical for public health and security. Among existing approaches, explosives' detection with Surface-Enhanced Raman Spectroscopy (SERS) has received considerable attention due to its high sensitivity. Typically, a preprocessed single spectrum that is the average of the entire or a selected subset of a SERS map is used to train various machine learning models for detection and quantification. Designing an appropriate averaging and preprocessing procedure for SERS maps across different concentrations is time-consuming and computationally costly, and the averaging of spectra may lead to the loss of crucial spectral information. We propose an attention-based vision transformer neural network for nitroaromatic explosives' detection and quantification that takes raw SERS maps as the input without any preprocessing. We produce two novel SERS datasets, 2,4-dinitrophenols (DNP) and picric acid (PA), and one benchmark SERS dataset, 4-nitrobenzenethiol (4-NBT), which have repeated measurements down to concentrations of 1 nM to illustrate the detection limit. We experimentally show that our approach outperforms or is on par with the existing methods in terms of detection and concentration prediction accuracy. With the produced attention maps, we can further identify the regions with a higher signal-to-noise ratio in the SERS maps. Based on our findings, the molecule of interest detection and concentration prediction using raw SERS maps is a promising alternative to existing approaches.
Collapse
Affiliation(s)
- Bo Li
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Giulia Zappalá
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Elodie Dumont
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Tomas Rindzevicius
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Mikkel N Schmidt
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Tommy S Alstrøm
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
9
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
10
|
Dominique NL, Jensen IM, Kaur G, Kotseos CQ, Boggess WC, Jenkins DM, Camden JP. Giving Gold Wings: Ultrabright and Fragmentation Free Mass Spectrometry Reporters for Barcoding, Bioconjugation Monitoring, and Data Storage. Angew Chem Int Ed Engl 2023; 62:e202219182. [PMID: 36853583 DOI: 10.1002/anie.202219182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Chandler Q Kotseos
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
11
|
Kozhina E, Bedin S, Martynov A, Andreev S, Piryazev A, Grigoriev Y, Gorbunova Y, Naumov A. Ultrasensitive Optical Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces. BIOSENSORS 2022; 13:46. [PMID: 36671881 PMCID: PMC9855407 DOI: 10.3390/bios13010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for "homeopathic" concentrations. We suggested solving this problem by SERS-mapping. We analyzed the distributions of SERS parameters for relatively "small" (malachite green (MG)) and "large" (phthalocyanine, H2Pc*) molecules. While fluctuations of spectra for "small" MG were negligible, noticeable distribution of spectra was observed for "large" H2Pc*. We show that the latter is due to a random arrangement of molecules with respect to "hot spot" areas, which have limited sizes, thus amplifying the lines corresponding to vibrations of different molecule parts. We have developed a method for engineering low-cost SERS substrates optimized for the best enhancement efficiency and a measurement protocol to obtain a reliable Raman spectrum, even for a countable number of large molecules randomly distributed over the substrate.
Collapse
Affiliation(s)
- Elizaveta Kozhina
- Laboratory of Plasmonics, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
| | - Sergey Bedin
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Alexander Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
| | - Stepan Andreev
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
| | - Alexey Piryazev
- Department of Chemistry, Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
- Research Center of Genetics and Life Sciences, Research Direction–Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Yuri Grigoriev
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Yulia Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Prosp., 31, 119991 Moscow, Russia
| | - Andrey Naumov
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for Spectroscopy of Electronic Spectra of Molecules, Institute for Spectroscopy RAS, Fizicheskaya Str. 5, 108840 Moscow, Troitsk, Russia
| |
Collapse
|
12
|
Nucera A, Grillo R, Rizzuto C, Barberi RC, Castriota M, Bürgi T, Caputo R, Palermo G. Effect of the Combination of Gold Nanoparticles and Polyelectrolyte Layers on SERS Measurements. BIOSENSORS 2022; 12:bios12100895. [PMID: 36291032 PMCID: PMC9599540 DOI: 10.3390/bios12100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/02/2023]
Abstract
In this study, polyelectrolyte (PE) layers are deposited on substrates made by glass covered with an array of gold nanoparticles (GNPs). In particular, the samples studied have 0 PE layers (GGPE0), 3 PE layers (GGPE3), 11 PE layers (GGPE11), and 21 PE layers (GGPE21). All samples have been studied by micro-Raman spectroscopy. An acetic acid solution (10% v/v) has been used as a standard solution in order to investigate the SERS effect induced by different numbers of PE layers in each sample. The Surface Enhancement Raman Spectroscopy (SERS) effect correlating to the number of PE layers deposited on the samples has been shown. This effect is explained in terms of an increase in the interaction between the photon of the laser source and the plasmonic band of the GNPs due to a change of the permittivity of the surrounding medium around the GNPs. The trends of the ratios of the intensities of the Raman bands of the acetic acid solution (acetic acid and water molecules) on the band at 1098 cm-1 ascribed to the substrates increase, and the number of PE layers increases.
Collapse
Affiliation(s)
- Antonello Nucera
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| | - Rossella Grillo
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Carmen Rizzuto
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| | - Riccardo Cristoforo Barberi
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| | - Marco Castriota
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Roberto Caputo
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| | - Giovanna Palermo
- Department of Physics, University of Calabria, Via Ponte Bucci, Cubo 31C, 87036 Rende, Cosenza, Italy
- CNR-Nanotec, Via Ponte Bucci, Cubo 33C, 87036 Rende, Cosenza, Italy
| |
Collapse
|
13
|
Nihal S, Guppy-Coles K, Gholami MD, Punyadeera C, Izake EL. Towards Label-free detection of viral disease agents through their cell surface proteins: Rapid screening SARS-CoV-2 in biological specimens. SLAS DISCOVERY 2022; 27:331-336. [PMID: 35667647 PMCID: PMC9166287 DOI: 10.1016/j.slasd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.
Collapse
|
14
|
Tabb JS, Rapoport E, Han I, Lombardi J, Green O. An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102528. [PMID: 35104673 DOI: 10.1016/j.nano.2022.102528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Lyme disease is the fastest growing vector-borne disease in the United States. However, current testing modalities are ill suited to detection of Lyme disease, leading to the diagnosis of many cases after treatment is effective. We present an improved, direct method Lyme disease diagnosis, where the Lyme specific biomarker Outer Surface Protein A (OspA) in clinical serum samples is identified using a diagnostic platform combining surface enhanced Raman scattering (SERS) and aptamers. Employing orthogonal projections to latent structures discriminant analysis, the system accurately identified 91% of serum samples from Lyme patients, and 96% of serum samples from symptomatic controls. In addition, the OspA limit-of-detection, determined to be 1 × 10-4 ng/mL, is greater than four orders of magnitude lower than that found in serum samples from early Lyme disease patients. The application of this platform to detect this difficult-to-diagnose disease suggests its potential for detecting other diseases that present similar difficulties.
Collapse
Affiliation(s)
| | | | - Il Han
- Ionica Sciences, Ithaca, NY, USA
| | - John Lombardi
- Department of Chemistry, The City College of New York, New York, NY, USA
| | | |
Collapse
|
15
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
17
|
Dong X, He Q, Li M, Wang X, Wang Y, Zhang W. Fluorescence and electrochemical detection of iodine vapor in the presence of high humidity using Ln-based MOFs. Dalton Trans 2021; 50:15567-15575. [PMID: 34668002 DOI: 10.1039/d1dt02839a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient detection of toxic radioiodine species emitted by nuclear-related activities and accidents is crucial for the health of the human body and safety of the environment. Herein we report that a series of stable Ln-based MOFs with BTC linkers (Ln-BTCs) could provide dual fluorescence and electrochemical response of iodine vapor in the presence of humidity. Iodine molecules could be attracted by the oxygen sites of carboxylate linkers and confined in the cavities of Ln-BTCs. Due to the photoinduced electron transfer effect, the fluorescence of Ln-BTCs is quenched drastically in the presence of iodine. Meanwhile, the conductivity of Ln-BTCs could reach an increase of 107 fold in magnitude after iodine trapping. Water molecules could also be trapped in Ln-BTCs, having interacted with the frameworks via hydrogen bonds, and reduce the iodine uptake capacity, but they cannot alter the fluorescence and conductive properties of Ln-BTCs as distinctly as iodine molecules could. Besides, Raman mapping suggests a diffusion coefficient of 1.5 × 10-14 m2 s-1 for iodine transport in the porous Eu-BTC. The dual fluorescence and electrochemical signal outputs show high sensitivity and attractive ability to reduce false positives, which could be useful for potential integration for sensing radioiodine vapor.
Collapse
Affiliation(s)
- Xiuting Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Menglin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China
| | - Xinpeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China
| | - Yuxin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China
| | - Wen Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China
| |
Collapse
|
18
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Göksel Y, Zor K, Rindzevicius T, Thorhauge Als-Nielsen BE, Schmiegelow K, Boisen A. Quantification of Methotrexate in Human Serum Using Surface-Enhanced Raman Scattering-Toward Therapeutic Drug Monitoring. ACS Sens 2021; 6:2664-2673. [PMID: 34143600 DOI: 10.1021/acssensors.1c00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic drug monitoring (TDM) can improve clinical care when using drugs with pharmacokinetic variability and a narrow therapeutic window. Rapid, reliable, and easy-to-use detection methods are required in order to decrease the time of analysis and can also enable TDM in resource-limited settings or even at bedside. Monitoring methotrexate (MTX), an anticancer drug, is critical since it is needed to follow the drug clearance rate and decide how to administer the rescue drug, leucovorin (LV), in order to avoid toxicity and even death. We show that with the optimized nanopillar-assisted separation (NPAS) method using surface-enhanced Raman scattering, we were able to measure MTX in PBS and serum in the linear range of 5-150 μM and confirmed that MTX detection can be carried out even in the presence of LV. Additionally, when NPAS was combined with centrifugal filtration, a quantification limit of 2.1 μM for MTX in human serum sample was achieved. The developed detection method enables fast detection (10 min) and quantification of MTX from human serum (>90% accuracy). Furthermore, we show the potential of the developed method for TDM, when quantifying MTX from clinical samples, collected from patients who are undergoing high-dose MTX therapy.
Collapse
Affiliation(s)
- Yaman Göksel
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Tomas Rindzevicius
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | | | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen 2100, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| |
Collapse
|
20
|
Lee E, Ryu S. Nucleation and Growth-Controlled Facile Fabrication of Gold Nanoporous Structures for Highly Sensitive Surface-Enhanced Raman Spectroscopy Applications. NANOMATERIALS 2021; 11:nano11061463. [PMID: 34205886 PMCID: PMC8227128 DOI: 10.3390/nano11061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
The fabrication of porous metal structures usually involves complicated processes such as lithography or etching. In this study, a facile and clean method based on thermal evaporation at high pressure is introduced, by which a highly porous, black colored structure of Au can be formed through the control of homogeneous nucleation and growth during evaporation. The deposited films have different morphologies, from columnar to nanoporous structures, depending on the working pressure. These porous structures consist of Au nanoparticle aggregates, and a large number of nano-gaps are found among the nanoparticles. Thus, these structures indicate a much higher intensity of surface-enhanced Raman spectroscopy (SERS) when compared with commercial SERS substrates. The SERS intensity depends on the working pressure and thickness. Even circumstances that can induce agglomeration of nanoparticle aggregates do not deteriorate the sensitivity of SERS. These nanoporous structures based on high-pressure thermal evaporation are expected to provide a new platform for the development of low-cost and highly sensitive chemical sensors.
Collapse
|
21
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
López-Lorente ÁI. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review. Anal Chim Acta 2021; 1168:338474. [PMID: 34051992 DOI: 10.1016/j.aca.2021.338474] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful technique for sensitive analysis which is attracting great attention in the last decades. In this review, different gold nanostructures that have been exploited for SERS analysis are described, ranging from gold nanospheres to anisotropic and complex-shaped gold nanostructures, in which the presence of high aspect ratio features leads to an increment of the electromagnetic field at the surface of the nanomaterial, resulting in enhanced SERS response. In addition to the shape of the nanostructure, the interparticle nanogaps play a prominent role in the SERS efficiency. In this sense, different approaches such as nanoaggregation and formation of assemblies and ordered structures lead to the creation of the so-called hot spots. SERS measurements may be performed in solution, while usually the nanostructures are deposited building a SERS substrate, which can be created via attachment of chemically prepared gold nanostructures, as well as via top-down physical methods. Among the classical supports for creating the SERS substrates, in the last years there is a trend towards the development of flexible supports based on polymers as well as paper. Finally, some recent applications of gold nanostructures-based SERS substrates within the analytical field are discussed to spotlight the potential of this technique in real-world analytical scenarios.
Collapse
Affiliation(s)
- Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
23
|
Kariper IA, Üstündağ Z, Caglayan MO. A sensitive spectrophotometric ellipsometry based Aptasensor for the vascular endothelial growth factor detection. Talanta 2020; 225:121982. [PMID: 33592730 DOI: 10.1016/j.talanta.2020.121982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023]
Abstract
A sensitive and selective, aptamer and spectroscopic ellipsometry based sensor is reported here for the early diagnosis of breast cancer, which is a common type of cancer following lung cancer. It was aimed to develop a single-step and label-free assay for the sensitive and selective detection of VEGF165. To this end, two different aptamers and spectroscopic ellipsometry were used. In the presented study, by determining the appropriate aptamer immobilization conditions, the spectroscopic ellipsometry technique was successfully applied for the detection of VEGF165 at the range of 1 pM-1000 pM in the buffer. Aptasensors have a detection limit of 5.81 pM and 4.29 pM, respectively.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Dumlupinar University, Chemistry Department, 43100, Kütahya, Turkey
| | | |
Collapse
|
24
|
Chen H, Park SG, Choi N, Moon JI, Dang H, Das A, Lee S, Kim DG, Chen L, Choo J. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron 2020; 167:112496. [PMID: 32818752 DOI: 10.1016/j.bios.2020.112496] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based aptasensors display high sensitivity for influenza A/H1N1 virus detection but improved signal reproducibility is required. Therefore, in this study, we fabricated a three-dimensional (3D) nano-popcorn plasmonic substrate using the surface energy difference between a perfluorodecanethiol (PFDT) spacer and the Au layer. This energy difference led to Au nanoparticle self-assembly; neighboring nanoparticles then created multiple hotspots on the substrate. The localized surface plasmon effects at the hot spots dramatically enhanced the incident field. Quantitative evaluation of A/H1N1 virus was achieved using the decrease of Raman peak intensity resulting from the release of Cy3-labeled aptamer DNAs from nano-popcorn substrate surfaces via the interaction between the aptamer DNA and A/H1N1 virus. The use of a Raman imaging technique involving the fast mapping of all pixel points enabled the reproducible quantification of A/H1N1 virus on nano-popcorn substrates. Average ensemble effects obtained by averaging all randomly distributed hot spots mapped on the substrate made it possible to reliably quantify target viruses. The SERS-based imaging aptasensor platform proposed in this work overcomes the issues inherent in conventional approaches (the time-consuming and labor-intensiveness of RT-PCR and low sensitivity and quantitative analysis limits of lateral flow assay kits). Our SERS-based assay for detecting A/H1N1 virus had an estimated limit of detection of 97 PFU mL-1 (approximately three orders of magnitude more sensitive than that determined by the enzyme-linked immunosorbent assay) and the approximate assay time was estimated to be 20 min. Thus, this approach provides an ultrasensitive, reliable platform for detecting viral pathogens.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Namhyun Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Anupam Das
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Seunghun Lee
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Do-Geun Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
25
|
Li N, Zong S, Zhang Y, Wang Z, Wang Y, Zhu K, Yang K, Wang Z, Chen B, Cui Y. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal Bioanal Chem 2020; 412:5707-5718. [PMID: 32632516 DOI: 10.1007/s00216-020-02790-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Human mucin-1 (MUC1) has attracted considerable attention owing to its overexpression in diverse malignancies. Here, for the rapid and efficient detection of MUC1, we present a SERS-colorimetric dual-mode aptasensor, by integrating SERS probes with magnetic separation, which has several distinctive advantages. Using such a dual-mode aptasensor, the colorimetric functionality is distinguishable by the naked eye, providing a fast and straightforward screening ability for the detection of MUC1. Moreover, SERS-based detection greatly improves the detection sensitivity, reaching a limit of detection of 0.1 U/mL. In addition, the combination of SERS and colorimetric method holds the advantages of these two techniques and thereby increases the reliability and efficiency of MUC1 detection. On the one hand, the magnetic nanobeads functionalized with MUC1-specific aptamer were utilized as an efficient capturing substrate for separating MUC1 from biological complex medium. On the other hand, the gold-silver core-shell nanoparticles modified with Raman reporters and the complementary sequences of MUC1 were used as the signal indicator, which could simultaneously report the SERS signal and colorimetric change. This strategy can achieve a good detection range and realize MUC1 analysis in real patients' samples. Thus, we anticipate that this kind of aptasensor would provide promising potential applications in the diagnosis and prognosis of cancers. Graphical abstract.
Collapse
Affiliation(s)
- Na Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yizhi Zhang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Zhile Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yujie Wang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
26
|
Akinoglu GE, Mir SH, Gatensby R, Rydzek G, Mokarian-Tabari P. Block Copolymer Derived Vertically Coupled Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23410-23416. [PMID: 32374582 DOI: 10.1021/acsami.0c03300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A surface-enhanced Raman spectroscopy sensing template consisting of gold-covered nanopillars is developed. The plasmonic slab consists of a perforated gold film at the base of the nanopillars and a Babinet complementary dot array on top of the pillars. The nanopillars were fabricated by the incorporation of an iron salt precursor into a self-assembled block copolymer thin film and subsequent reactive ion etching. The preparation is easy, scalable, and cost-effective. We report on the increase in surface-enhanced Raman scattering efficiency for smaller pillar heights and stronger coupling between the dot array and perforated gold film with average enhancement factors as high as 107. In addition, the block copolymer-derived templates show an excellent relative standard deviation of 8% in the measurement of the Raman intensity. Finite difference time domain simulations were performed to investigate the nature of the electromagnetic near-field enhancement and to identify plasmonic hot spots.
Collapse
Affiliation(s)
- Goekalp Engin Akinoglu
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Freie Universität Berlin, Department of Physics, 14195 Berlin, Germany
| | - Sajjad Husain Mir
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Riley Gatensby
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Gaulthier Rydzek
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Parvaneh Mokarian-Tabari
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
27
|
Phosphorylation-Dependent SERS Readout for Activity Assay of Protein Kinase A in Cell Extracts. NANOMATERIALS 2020; 10:nano10030575. [PMID: 32235706 PMCID: PMC7153394 DOI: 10.3390/nano10030575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Protein kinases are key regulators of cell function, the abnormal activity of which may induce several human diseases, including cancers. Therefore, it is of great significance to develop a sensitive and reliable method for assaying protein kinase activities in real biological samples. Here, we report the phosphorylation-dependent surface-enhanced Raman scattering (SERS) readout of spermine-functionalized silver nanoparticles (AgNPs) for protein kinase A (PKA) activity assay in cell extracts. In this assay, the presence of PKA would phosphorylate and alter the net charge states of Raman dye-labeled substrate peptides, and the resulting anionic products could absorb onto the AgNPs with cationic surface charge through electrostatic attraction. Meanwhile, the Raman signals of dyes labeled on peptides were strongly enhanced by the aggregated AgNPs with interparticle hot spots formed in assay buffer. The SERS readout was directly proportional to the PKA activity in a wide range of 0.0001-0.5 U·μL-1 with a detection limit as low as 0.00003 U·μL-1. Moreover, the proposed SERS-based assay for the PKA activity was successfully applied to monitoring the activity and inhibition of PKA in real biological samples, particularly in cell extracts, which would be beneficial for kinase-related disease diagnostics and inhibitor screening.
Collapse
|
28
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1565] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
29
|
Wang J, Koo KM, Wang Y, Trau M. Engineering State-of-the-Art Plasmonic Nanomaterials for SERS-Based Clinical Liquid Biopsy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900730. [PMID: 31832306 PMCID: PMC6891916 DOI: 10.1002/advs.201900730] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Precision oncology, defined as the use of the molecular understanding of cancer to implement personalized patient treatment, is currently at the heart of revolutionizing oncology practice. Due to the need for repeated molecular tumor analyses in facilitating precision oncology, liquid biopsies, which involve the detection of noninvasive cancer biomarkers in circulation, may be a critical key. Yet, existing liquid biopsy analysis technologies are still undergoing an evolution to address the challenges of analyzing trace quantities of circulating tumor biomarkers reliably and cost effectively. Consequently, the recent emergence of cutting-edge plasmonic nanomaterials represents a paradigm shift in harnessing the unique merits of surface-enhanced Raman scattering (SERS) biosensing platforms for clinical liquid biopsy applications. Herein, an expansive review on the design/synthesis of a new generation of diverse plasmonic nanomaterials, and an updated evaluation of their demonstrated SERS-based uses in liquid biopsies, such as circulating tumor cells, tumor-derived extracellular vesicles, as well as circulating cancer proteins, and tumor nucleic acids is presented. Existing challenges impeding the clinical translation of plasmonic nanomaterials for SERS-based liquid biopsy applications are also identified, and outlooks and insights into advancing this rapidly growing field for practical patient use are provided.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Kevin M. Koo
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Yuling Wang
- Department of Molecular SciencesARC Excellence Centre for Nanoscale BioPhotonicsFaculty of Science and EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Matt Trau
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
30
|
D’Apuzzo F, Sengupta RN, Overbay M, Aronoff JS, Rogacs A, Barcelo SJ. A Generalizable Single-Chip Calibration Method for Highly Quantitative SERS via Inkjet Dispense. Anal Chem 2019; 92:1372-1378. [DOI: 10.1021/acs.analchem.9b04535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fausto D’Apuzzo
- HP Inc., 1501 Page Mill Road, Palo Alto, California 94340, United States
| | | | - Milo Overbay
- HP Inc., 1501 Page Mill Road, Palo Alto, California 94340, United States
| | - Jason S. Aronoff
- HP Inc., 1501 Page Mill Road, Palo Alto, California 94340, United States
| | - Anita Rogacs
- HP Inc., 1501 Page Mill Road, Palo Alto, California 94340, United States
| | - Steven J. Barcelo
- HP Inc., 1501 Page Mill Road, Palo Alto, California 94340, United States
| |
Collapse
|
31
|
Raman Spectroscopy and Aptamers for a Label-Free Approach: Diagnostic and Application Tools. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2815789. [PMID: 31183028 PMCID: PMC6512054 DOI: 10.1155/2019/2815789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 01/04/2023]
Abstract
Raman spectroscopy is a powerful optical technique based on the inelastic scattering of incident light to assess the chemical composition of a sample, including biological ones. Medical diagnostic applications of Raman spectroscopy are constantly increasing to provide biochemical and structural information on several specimens, being not affected by water interference, and potentially avoiding the constraint of additional labelling procedures. New strategies have been recently developed to overcome some Raman limitations related, for instance, to the need to deal with an adequate quantity of the sample to perform a reliable analysis. In this regard, the use of metallic nanoparticles, the optimization of fiber optic probes, and other approaches can actually enhance the signal intensity compared to spontaneous Raman scattering. Moreover, to further increase the potential of this investigation technique, aptamers can be considered as a valuable means, being synthetic, short, single, or double-stranded oligonucleotides (RNAs or DNAs) that fold up into unique 3D structures to specifically bind to selected molecules, even at very low concentrations, and thus allowing an early diagnosis of a possible disease. Due to the paramount relevance of the topic, this review focuses on the main Raman spectroscopy techniques combined with aptamer arrays in the label-free mode, providing an overview on different applications to support healthcare management.
Collapse
|
32
|
Mun C, Linh VTN, Kwon JD, Jung HS, Kim DH, Park SG. Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform. NANOMATERIALS 2019; 9:nano9040619. [PMID: 30995760 PMCID: PMC6523801 DOI: 10.3390/nano9040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
This paper reports a highly sensitive and selective surface-enhanced Raman spectroscopy (SERS) sensing platform. We used a simple fabrication method to generate plasmonic hotspots through a direct maskless plasma etching of a polymer surface and the surface tension-driven assembly of high aspect ratio Ag/polymer nanopillars. These collapsed plasmonic nanopillars produced an enhanced near-field interaction via coupled localized surface plasmon resonance. The high density of the small nanogaps yielded a high plasmonic detection performance, with an average SERS enhancement factor of 1.5 × 107. More importantly, we demonstrated that the encapsulation of plasmonic nanostructures within nanofiltration membranes allowed the selective filtration of small molecules based on the degree of membrane swelling in organic solvents and molecular size. Nanofiltration membrane-encapsulated SERS substrates do not require pretreatments. Therefore, they provide a simple and fast detection of toxic molecules using portable Raman spectroscopy.
Collapse
Affiliation(s)
- ChaeWon Mun
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| | - Vo Thi Nhat Linh
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| | - Jung-Dae Kwon
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| | - Ho Sang Jung
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| | - Dong-Ho Kim
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| | - Sung-Gyu Park
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon 51508, Korea.
| |
Collapse
|
33
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Bartolowits M, Xin M, Petrov DP, Tague TJ, Davisson VJ. Multimeric Rhodamine Dye-Induced Aggregation of Silver Nanoparticles for Surface-Enhanced Raman Scattering. ACS OMEGA 2019; 4:140-145. [PMID: 30729221 PMCID: PMC6356857 DOI: 10.1021/acsomega.8b02970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Isotopic variants of Rhodamine 6G (R6G) have previously been used as a method of multiplexed detection for Surface Enhanced Raman Spectroscopy (SERS), including protein detection and quantification. Challenges exist, however, with producing long-term stable SERS signals with exposure to silver or gold metal surfaces without the use of additional protective coatings of nanomaterials. Here, novel rhodamine "dimers" and "trimers" have been created that demonstrate a higher avidity for metal nanoparticles and induce aggregation to create plasmonic "hotspots" as indicated by enhanced Raman scattering in situ. These aggregates can be formed in a colloid, on surfaces, or membrane substrates such as poly(vinylidene fluoride) for applications in biosciences. The integrity of the materials and Raman signals are maintained for months of time on different substrates. These dye materials should provide avenues for simplified in situ generation of sensors for Raman-based assays especially in settings requiring highly robust performance.
Collapse
Affiliation(s)
- Matthew
D. Bartolowits
- Amplified
Sciences, LLC, 1281 Win
Hentschel Blvd., West Lafayette, Indiana 47906, United
States
| | - Meiguo Xin
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dino P. Petrov
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas J. Tague
- Bruker
Optics, Inc., 19 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Vincent Jo Davisson
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- E-mail:
| |
Collapse
|
35
|
Abstract
Practical implementation of surfaced enhanced Raman spectroscopy (SERS) sensing is hindered by complexity of real-life samples, which often requires long and costly pretreatment and purification. Here, we present a novel nanopillar-assisted SERS chromatography (NPC-SERS) method for simultaneous quantitation of target molecules and analysis of complex, multicomponent fluids, e.g., human urine spiked with a model drug paracetamol (PAR). Gold-coated silicon nanopillar (AuNP) SERS substrates and a centrifugal microfluidic platform are tactfully combined, which allows (i) a precise and fully automated sample manipulation and (ii) spatial separation of different molecular species on the AuNP substrate. The NPC-SERS technique provides a novel approach for wetting the stationary phase (AuNP) using the "wicking effect", and thus minimizes dilution of analytes. Separation of PAR and the main human urine components (urea, uric acid, and creatinine) has been demonstrated. Quantitative detection of PAR with ultrawide linear dynamic range (0-500 ppm) is achieved by analyzing the spreading profiles of PAR on the AuNP surface. NPC-SERS transforms SERS into a sensing technique with general applicability, facilitating rapid and quantitative detection of analytes in complex biofluids, such as saliva, blood, and urine.
Collapse
Affiliation(s)
- Onur Durucan
- DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Kaiyu Wu
- DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Marlitt Viehrig
- DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Tomas Rindzevicius
- DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anja Boisen
- DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
36
|
Wang X, Park SG, Ko J, Xiao X, Giannini V, Maier SA, Kim DH, Choo J. Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surface-Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801623. [PMID: 30062764 DOI: 10.1002/smll.201801623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Indexed: 05/25/2023]
Abstract
A surface-enhanced Raman scattering-based mapping technique is reported for the highly sensitive and reproducible analysis of multiple mycotoxins. Raman images of three mycotoxins, ochratoxin A (OTA), fumonisin B (FUMB), and aflatoxin B1 (AFB1) are obtained by rapidly scanning the surface-enhanced Raman scattering (SERS) nanotags-anchoring mycotoxins captured on a nanopillar plasmonic substrate. In this system, the decreased gap distance between nanopillars by their leaning effects as well as the multiple hot spots between SERS nanotags and nanopillars greatly enhances the coupling of local plasmonic fields. This strong enhancement effect makes it possible to perform a highly sensitive detection of multiple mycotoxins. In addition, the high uniformity of the densely packed nanopillar substrate minimizes the spot-to-spot fluctuations of the Raman peak intensity in the scanned area when Raman mapping is performed. Consequently, this makes it possible to gain a highly reproducible quantitative analysis of mycotoxins. The limit of detections (LODs) are determined to be 5.09, 5.11, and 6.07 pg mL-1 for OTA, FUMB, and AFB1, and these values are approximately two orders of magnitude more sensitive than those determined by the enzyme-linked immunosorbent assays. It is believed that this SERS-based mapping technique provides a facile tool for the sensitive and reproducible quantification of various biotarget molecules.
Collapse
Affiliation(s)
- Xiaokun Wang
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Juhui Ko
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Xiaofei Xiao
- The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Vincenzo Giannini
- The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
- Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jaebum Choo
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| |
Collapse
|
37
|
Hassanain WA, Izake EL, Ayoko GA. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal Chem 2018; 90:10843-10850. [DOI: 10.1021/acs.analchem.8b02121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Waleed A. Hassanain
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Emad L. Izake
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Godwin A. Ayoko
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| |
Collapse
|
38
|
Wang Y, Jin Y, Xiao X, Zhang T, Yang H, Zhao Y, Wang J, Jiang K, Fan S, Li Q. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. NANOSCALE 2018; 10:15195-15204. [PMID: 29845168 DOI: 10.1039/c8nr01628c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A flexible and transparent film assembled from the cross-nanoporous structures of Au on PET (CNS of Au@PET) is developed as a versatile and effective SERS substrate for rapid, on-site trace analysis with high sensitivity. The fabrication of the CNS of Au can be achieved on a large scale at low cost by employing an etching process with super-aligned carbon nanotubes as a mask, followed by metal deposition. A strongly enhanced Raman signal with good uniformity can be obtained, which is attributed to the excitation of "hot spots" around the metal nanogaps and sharp edges. Using the CNS of Au@PET film as a SERS platform, real-time and on-site SERS detection of the food contaminant crystal violet (CV) is achieved, with a detection limit of CV solution on a tomato skin of 10-7 M. Owing to its ability to efficiently extract trace analytes, the resulting substrate also achieves detection of 4-ATP contaminants and thiram pesticides by swabbing the skin of an apple. A SERS detection signal for 4-ATP has a relative standard deviation of less than 10%, revealing the excellent reproducibility of the substrate. The flexible, transparent and highly sensitive substrates fabricated using this simple and cost-effective strategy are promising for practical application in rapid, on-site SERS-based detection.
Collapse
Affiliation(s)
- Yingcheng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shen X, Han K, Ma L, Gao M, Xu X, Luo J. Nano-Ag-forest based surface enhanced Raman spectroscopy (SERS) of confined acetic acid. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Zhang S, Xiong R, Mahmoud MA, Quigley EN, Chang H, El-Sayed M, Tsukruk VV. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18380-18389. [PMID: 29737825 DOI: 10.1021/acsami.8b04817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate that cellulose nanofiber (CNF) biomaterials with high transparency and mechanical robustness can be combined with gold nanorods to form a multifunctional porous membrane for dual-mode surface-enhanced Raman scattering (SERS) detection of both small molecules and cells. The nanoporous nature of the nanofiber membranes allows for effective molecular filtration and preconcentration of the analytes, further boosting the SERS performance. Specifically, because of the low fluorescence and Raman background of the CNF matrix, extremely low loading density of gold nanorods can be used. The nanorod assemblies within the CNF network can be resonantly driven by a 532 nm laser (transverse plasmonic mode) and near resonantly driven at by a 785 nm laser (longitudinal mode), facilitating dual operational modes at two excitation wavelengths. The shorter wavelength excitation mode yields better Raman scattering efficiency and has been demonstrated to be capable of detecting rhodamine 6G (R6G) dyes down to picomolar concentrations. On the other hand, the longer wavelength excitation mode provides autofluorescence suppression for the better detection of microorganisms such as Escherichia coli, shortening the required integration time from hours to minutes. Upon drastically lowering the spectral background noise and utilizing nanofiltration, the plasmonic CNF membranes reported here show significantly improved SERS sensitivity and detection fidelity as compared to traditional metal, metal oxide, synthetic polymer, and paper SERS substrates.
Collapse
Affiliation(s)
| | | | - Mahmoud A Mahmoud
- Chemical Engineering, Department of Biomedical Engineering , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | | | | | | | | |
Collapse
|
41
|
Bandarenka HV, Girel KV, Zavatski SA, Panarin A, Terekhov SN. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E852. [PMID: 29883382 PMCID: PMC5978229 DOI: 10.3390/ma11050852] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.
Collapse
Affiliation(s)
- Hanna V Bandarenka
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Kseniya V Girel
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Sergey A Zavatski
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Andrei Panarin
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| | - Sergei N Terekhov
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| |
Collapse
|
42
|
|
43
|
Thrombin Assessment on Nanostructured Label-Free Aptamer-Based Sensors: A Mapping Investigation via Surface-Enhanced Raman Spectroscopy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5293672. [PMID: 29750159 PMCID: PMC5884298 DOI: 10.1155/2018/5293672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 01/27/2023]
Abstract
Aptamers, synthetic single-stranded DNA or RNA molecules, can be regarded as a valuable improvement to develop novel ad hoc sensors to diagnose several clinical pathologies. Their intrinsic potential is related to the high specificity and sensitivity to the selected target biomarkers, being capable of detecting very low concentrations and thus allowing an early diagnosis of a possible disease. This kind of probe can be usefully integrated into a number of different devices in order to provide a reliable acquisition of the analyte and properly elaborate the related signal. The study presents the fabrication and characterization of a label-free aptamer sensor designed using a gold-coated silicon nanostructured substrate to map the target molecule by means of surface-enhanced Raman spectroscopy (SERS). As a proof, thrombin was used as a model at four different concentrations (i.e., 0.0873, 0.873, 8.73, and 87.3 nM). SERS mapping analysis was carried out considering each representative band of the aptamer-thrombin complex (centered at 822, 1140, and 1558 cm−1) and then combining them in order to acquire a comprehensive and unambiguous measure of the target. In both cases, a valuable correlation was evaluated, even if the first approach can suffer from some limitations in the third band related to lower definition of the characteristic peak compared to those in the other two bands.
Collapse
|
44
|
Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Ko J, Park SG, Lee S, Wang X, Mun C, Kim S, Kim DH, Choo J. Culture-Free Detection of Bacterial Pathogens on Plasmonic Nanopillar Arrays Using Rapid Raman Mapping. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6831-6840. [PMID: 29405055 DOI: 10.1021/acsami.7b15085] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We utilized a fast Raman spectral mapping technique for fast detection of bacterial pathogens. Three-dimensional (3D) plasmonic nanopillar arrays were fabricated using the nanolithography-free process consisting of maskless Ar plasma treatment of a polyethylene terephthalate substrate and subsequent metal deposition. Bacterial pathogens were immobilized on the positively charged poly(l-lysine)-coated 3D plasmonic substrate through electrostatic interactions. Then, the bacterial surfaces were selectively labeled with antibody-conjugated surface-enhanced Raman scattering (SERS) nanotags, and Raman mapping images were collected and statistically analyzed for quantitative analysis of bacteria. Salmonella typhimurium was selected as a model pathogen bacterium to confirm the efficacy of our SERS imaging technique. Minimum number of Raman mapping points with statistical reliability was determined to reduce assay time. It was possible to get a statistically reliable standard calibration curve for 529 pixels (laser spot with 60 μm interval), which required a total mapping time of 45 min to get a standard calibration curve for five different concentrations of bacteria in the 0 to 106 CFU/mL range. No amplification step was necessary for quantification because low-abundance target bacteria could be measured using the Raman spectral mapping technique. Therefore, this approach allows accurate quantification of bacterial pathogens without any culturing or enrichment process.
Collapse
Affiliation(s)
- Juhui Ko
- Department of Bionano Technology, Hanyang University , Ansan 15588, South Korea
| | - Sung-Gyu Park
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS) , Changwon 51508, South Korea
| | - Sangyeop Lee
- Department of Bionano Technology, Hanyang University , Ansan 15588, South Korea
| | - Xiaokun Wang
- Department of Bionano Technology, Hanyang University , Ansan 15588, South Korea
| | - Chaewon Mun
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS) , Changwon 51508, South Korea
| | - Sunho Kim
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS) , Changwon 51508, South Korea
| | - Dong-Ho Kim
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS) , Changwon 51508, South Korea
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University , Ansan 15588, South Korea
| |
Collapse
|
46
|
Abstract
In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5–30 min) and temperature (70–130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.
Collapse
|
47
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
48
|
Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29394-29411. [PMID: 28796479 PMCID: PMC5593307 DOI: 10.1021/acsami.7b01583] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
In an ideal plasmonic surface sensor, the bioactive area, where analytes are recognized by specific biomolecules, is surrounded by an area that is generally composed of a different material. The latter, often the surface of the supporting chip, is generally hard to be selectively functionalized, with respect to the active area. As a result, cross talks between the active area and the surrounding one may occur. In designing a plasmonic sensor, various issues must be addressed: the specificity of analyte recognition, the orientation of the immobilized biomolecule that acts as the analyte receptor, and the selectivity of surface coverage. The objective of this tutorial review is to introduce the main rational tools required for a correct and complete approach to chemically functionalize plasmonic surface biosensors. After a short introduction, the review discusses, in detail, the most common strategies for achieving effective surface functionalization. The most important issues, such as the orientation of active molecules and spatial and chemical selectivity, are considered. A list of well-defined protocols is suggested for the most common practical situations. Importantly, for the reported protocols, we also present direct comparisons in term of costs, labor demand, and risk vs benefit balance. In addition, a survey of the most used characterization techniques necessary to validate the chemical protocols is reported.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health
Science, University Magna Graecia of Catanzaro, Viale Europa−Loc. Germaneto, 88100 Catanzaro, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Sara Perotto
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Informatics,
Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli Studi di Genova, Via Balbi 5, 16126 Genova, Italy
| | | | - Laura Lovato
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
49
|
Plasmonic substrates for surface enhanced Raman scattering. Anal Chim Acta 2017; 984:19-41. [DOI: 10.1016/j.aca.2017.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/04/2023]
|
50
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|