1
|
Chen R, Sandeman L, Nankivell V, Tan JTM, Rashidi M, Psaltis PJ, Zheng G, Bursill C, McLaughlin RA, Li J. Detection of atherosclerotic plaques with HDL-like porphyrin nanoparticles using an intravascular dual-modality optical coherence tomography and fluorescence system. Sci Rep 2024; 14:12359. [PMID: 38811670 PMCID: PMC11136962 DOI: 10.1038/s41598-024-63132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.
Collapse
Affiliation(s)
- Rouyan Chen
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Victoria Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mohammad Rashidi
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, ON, M5G 1L7, Toronto, Canada
| | - Christina Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert A McLaughlin
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Jamgotchian L, Devel L, Thai R, Poupel L, Huby T, Gautier E, Le Goff W, Lesnik P, Gravel E, Doris E. Targeted delivery of LXR-agonists to atherosclerotic lesions mediated by polydiacetylene micelles. NANOSCALE 2023; 15:18864-18870. [PMID: 37966726 DOI: 10.1039/d3nr04778d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report the development of compact and stabilized micelles incorporating a synthetic LXR agonist prodrug for the passive targeting of atherosclerotic lesions and therapeutic intervention. In vivo studies showed that the nanohybrid micelles exhibited favorable pharmacokinetics/biodistribution and were able to upregulate, to some extent, LXR target genes with no alteration of lipid metabolism.
Collapse
Affiliation(s)
- Lucie Jamgotchian
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMOS, 91191 Gif-sur-Yvette, France.
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMOS, 91191 Gif-sur-Yvette, France.
| | - Lucie Poupel
- Inovarion, 251 rue saint Jacques, 75005 Paris, France
| | - Thierry Huby
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Emmanuel Gautier
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Wilfried Le Goff
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Philippe Lesnik
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
5
|
Liu Y, Xia P, Yan F, Yuan M, Yuan H, Du Y, Yan J, Song Q, Zhang T, Hu D, Shen Y. Engineered Extracellular Vesicles for Delivery of an IL-1 Receptor Antagonist Promote Targeted Repair of Retinal Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302962. [PMID: 37518765 DOI: 10.1002/smll.202302962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Retinal degeneration (RD) is an irreversible blinding disease that seriously affects patients' daily activities and mental health. Targeting hyperactivated microglia and regulating polarization are promising strategies for treating the disease. Mesenchymal stem cell (MSC) transplantation is proven to be an effective treatment due to its immunomodulatory and regenerative properties. However, the low efficiency of cell migration and integration of MSCs remains a major obstacle to clinical use. The goal of this study is to develop a nanodelivery system that targets hyperactivated microglia and inhibits their release of proinflammatory factors, to achieve durable neuroprotection. This approach is to engineer extracellular vesicles (EVs) isolated from MSC, modify them with a cyclic RGD (cRGD) peptide on their surface, and load them with an antagonist of the IL-1 receptor, anakinra. Comparing with non-engineered EVs, it is observed that engineered cRGD-EVs exhibit an increased targeting efficiency against hyperactivated microglia and strongly protected photoreceptors in experimental RD cells and animal models. This study provides a strategy to improve drug delivery to degenerated retinas and offers a promising approach to improve the treatment of RD through targeted modulation of the immune microenvironment via engineered cRGD-EVs.
Collapse
Affiliation(s)
- Yizong Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, P. R. China
| | - Feiyue Yan
- Frontier Science Center of Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Man Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Haitao Yuan
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, P. R. China
| | - Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Jiangbo Yan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Qiulin Song
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Danping Hu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
- Frontier Science Center of Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
6
|
Li Y, Wang J, Xie J. Biomimetic nanoparticles targeting atherosclerosis for diagnosis and therapy. SMART MEDICINE 2023; 2:e20230015. [PMID: 39188346 PMCID: PMC11236035 DOI: 10.1002/smmd.20230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/28/2023] [Indexed: 08/28/2024]
Abstract
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.
Collapse
Affiliation(s)
- Yuyu Li
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute of Heart, Lung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Jifang Wang
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of CardiologyDrum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jun Xie
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
7
|
Martínez-Parra L, Piñol-Cancer M, Sanchez-Cano C, Miguel-Coello AB, Di Silvio D, Gomez AM, Uriel C, Plaza-García S, Gallego M, Pazos R, Groult H, Jeannin M, Geraki K, Fernández-Méndez L, Urkola-Arsuaga A, Sánchez-Guisado MJ, Carrillo-Romero J, Parak WJ, Prato M, Herranz F, Ruiz-Cabello J, Carregal-Romero S. A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque. ACS NANO 2023; 17:13811-13825. [PMID: 37399106 PMCID: PMC10900527 DOI: 10.1021/acsnano.3c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.
Collapse
Affiliation(s)
- Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Marina Piñol-Cancer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Ana B Miguel-Coello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Desirè Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Ana M Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Raquel Pazos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Hugo Groult
- Biotechnologies et Chimie des Bioressources pour la Santé, Littoral Environment et Sociétés (LIENSs Laboratory), UMR CNRS 7266, 17000 La Rochelle, France
| | - Marc Jeannin
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR-CNRS 7536, La Rochelle Université, 7356 La Rochelle, France
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - María Jesús Sánchez-Guisado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Juliana Carrillo-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Basque Res & Technol Alliance BRTA, GAIKER, Technol Ctr, 48170 Zamudio, Spain
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid 28006, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Groner J, Tognazzi M, Walter M, Fleischmann D, Mietzner R, Ziegler CE, Goepferich AM, Breunig M. Encapsulation of Pioglitazone into Polymer-Nanoparticles for Potential Treatment of Atherosclerotic Diseases. ACS APPLIED BIO MATERIALS 2023. [PMID: 37145591 DOI: 10.1021/acsabm.2c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atherosclerosis is one of the most urgent global health subjects, causes millions of deaths worldwide, and is associated with enormous healthcare costs. Macrophages are the root cause for inflammatory onset and progression of the disease but are not addressed by conventional therapy. Therefore, we used pioglitazone, which is a drug initially used for diabetes therapies, but at the same time has great potential regarding the mitigation of inflammation. As yet, this potential of pioglitazone cannot be exploited, as drug concentrations at the target site in vivo are not sufficient. To overcome this shortcoming, we established PEG-PLA/PLGA-based nanoparticles loaded with pioglitazone and tested them in vitro. Encapsulation of the drug was analyzed by HPLC and revealed an outstanding encapsulation efficiency of 59% into the nanoparticles, which were 85 nm in size and had a PDI of 0.17. Further, uptake of our loaded nanoparticles in THP-1 macrophages was comparable to the uptake of unloaded nanoparticles. On the mRNA level, pioglitazone-loaded nanoparticles were superior to the free drug by 32% in increasing the expression of the targeted receptor PPAR-γ. Thereby the inflammatory response in macrophages was ameliorated. In this study, we take the first step toward an anti-inflammatory, causal antiatherosclerotic therapy, using the potential of the already established drug pioglitazone, and enable it to enrich at the target site by using nanoparticles. An additional crucial feature of our nanoparticle platform is the versatile modifiability of ligands and ligand density, to achieve an optimal active targeting effect in the future.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Martina Tognazzi
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
- University of Parma, Via Università 12, 43121 Parma, Italy
| | - Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Christian E Ziegler
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Li J, Centurion F, Chen R, Gu Z. Intravascular Imaging of Atherosclerosis by Using Engineered Nanoparticles. BIOSENSORS 2023; 13:319. [PMID: 36979531 PMCID: PMC10046792 DOI: 10.3390/bios13030319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Atherosclerosis is a leading cause of morbidity and mortality, and high-risk atherosclerotic plaques can result in myocardial infarction, stroke, and/or sudden death. Various imaging and sensing techniques (e.g., ultrasound, optical coherence tomography, fluorescence, photoacoustic) have been developed for scanning inside blood vessels to provide accurate detection of high-risk atherosclerotic plaques. Nanoparticles have been utilized in intravascular imaging to enable targeted detection of high-risk plaques, to enhance image contrast, and in some applications to also provide therapeutic functions of atherosclerosis. In this paper, we review the recent progress on developing nanoparticles for intravascular imaging of atherosclerosis. We discuss the basic nanoparticle design principles, imaging modalities and instrumentations, and common targets for atherosclerosis. The review is concluded and highlighted with discussions on challenges and opportunities for bringing nanoparticles into in vivo (pre)clinical intravascular applications.
Collapse
Affiliation(s)
- Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rouyan Chen
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Liang X, Li H, Li X, Tian X, Zhang A, Luo Q, Duan J, Chen Y, Pang L, Li C, Liang XJ, Zeng Y, Yang J. Highly sensitive H 2O 2-scavenging nano-bionic system for precise treatment of atherosclerosis. Acta Pharm Sin B 2023; 13:372-389. [PMID: 36815039 PMCID: PMC9939301 DOI: 10.1016/j.apsb.2022.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
In atherosclerosis, chronic inflammatory processes in local diseased areas may lead to the accumulation of reactive oxygen species (ROS). In this study, we devised a highly sensitive H2O2-scavenging nano-bionic system loaded with probucol (RPP-PU), to treat atherosclerosis more effectively. The RPP material had high sensitivity to H2O2, and the response sensitivity could be reduced from 40 to 10 μmol/L which was close to the lowest concentration of H2O2 levels of the pathological environment. RPP-PU delayed the release and prolonged the duration of PU in vivo. In Apolipoprotein E deficient (ApoE‒/‒) mice, RPP-PU effectively eliminated pathological ROS, reduced the level of lipids and related metabolic enzymes, and significantly decreased the area of vascular plaques and fibers. Our study demonstrated that the H2O2-scavenging nano-bionic system could scavenge the abundant ROS in the atherosclerosis lesion, thereby reducing the oxidative stress for treating atherosclerosis and thus achieve the therapeutic goals with atherosclerosis more desirably.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xuanling Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Medical College of Qinghai University, Xining 810016, China
| | - Xinxin Tian
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Aiai Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, China
| | - Qingzhi Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yong Zeng
- Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, China,Corresponding authors.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Corresponding authors.
| |
Collapse
|
12
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ, Huang NP. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. NANOSCALE 2022; 14:8709-8726. [PMID: 35673987 DOI: 10.1039/d1nr06514a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ming-Jie Xu
- Nanjing University Medical School, Nanjing, 210093, China
| | - Lin Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning-Cong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yue Hang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Cong-Jia Shan
- Nanjing University Medical School, Nanjing, 210093, China
| | | | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
13
|
Zhao R, Ning X, Wang M, Wang H, Xing G, Wang L, Lu C, Yu A, Wang Y. A ROS-Responsive Simvastatin Nano-Prodrug and its Fibronectin-Targeted Co-Delivery System for Atherosclerosis Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25080-25092. [PMID: 35618653 DOI: 10.1021/acsami.2c02354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoprodrugs with responsive release properties integrate the advantages of stimuli-responsive prodrugs and nanotechnology. They would provide ultimate opportunity in fighting atherosclerosis. In this study, we synthesized a redox-responsive nanoprodrug of simvastatin (TPTS) by conjugating α-tocopherol polyethylene glycol derivative to the pharmacophore of simvastatin with a thioketal linker. TPTS formed nanoparticles and released parent simvastatin in the presence of hydrogen peroxide. Moreover, by taking advantage of the self-assembly behavior of TPTS, we developed a fibronectin-targeted delivery system (TPTS/C/T) to codelivery simvastatin prodrug and ticagrelor. In vitro and in vivo experiments indicated that TPTS and TPTS/C/T had good stability, which could reduce off-target leakage of drugs. They greatly inhibited the M1-type polarization of macrophages; reduced intracellular reactive oxygen species level and inflammatory cytokine; and TNF-α, MCP-1, and IL-1β were secreted by macrophage cells, thus providing enhanced anti-inflammatory and antioxidant effects compared with free simvastatin. TPTS/C/T realized targeted drug release to plaques and synergistic therapeutic effects of simvastatin and ticagrelor on atherosclerosis treatment in an ApoE-/- mouse model, resulting in excellent atherosclerosis therapeutic efficacy and a promising biosafety profile. Therefore, this study provides a new method for manufacturing statin nanodrugs and a new design idea for related responsive drug release nanosystems for atherosclerosis.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyue Ning
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengqi Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Xing
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Wang
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Ao Yu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Huang C, Huang W, Zhang L, Zhang C, Zhou C, Wei W, Li Y, Zhou Q, Chen W, Tang Y. Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics 2022; 14:pharmaceutics14051083. [PMID: 35631669 PMCID: PMC9146689 DOI: 10.3390/pharmaceutics14051083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lifen Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA;
| | - Wei Wei
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Yongsheng Li
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Correspondence: (Q.Z.); (Y.T.)
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
- Correspondence: (Q.Z.); (Y.T.)
| |
Collapse
|
15
|
Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102519. [PMID: 35038590 DOI: 10.1016/j.nano.2022.102519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
A main pathogenic factor of atherosclerosis is the local oxidative stress microenvironment. Probucol (PU) has anti-inflammatory, antioxidative and hypolipidemic effects, showing great potential to treat atherosclerosis. However, its low bioavailability limits its development. Herein, PU was encapsulated to form RP-PU with star-shaped polymers and red blood cell membranes. Star-shaped polymers show lower solution viscosity, a smaller hydrodynamic radius and a higher drug loading content than linear polymers. RP-PU had a good sustained-release effect and excellent biocompatibility. RP-PU can be efficiently internalized by cells to improve biodistribution. ApoE-/- mice were treated with RP-PU, and the contents of lipids and related metabolic enzymes were effectively reduced. The collagen fibers in the aortic root sections were reduced by RP-PU compared with control and PU. Moreover, RP-PU inhibited foam cell formation, decreased ICAM-1 and MCP-1 expression and delayed lesion formation. Consequently, RP-PU biomimetic nanoparticles can be developed as an anti-atherosclerotic nanotherapeutic.
Collapse
|
16
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
17
|
Sun W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H, Zhou W. Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnology 2022; 20:88. [PMID: 35183183 PMCID: PMC8858544 DOI: 10.1186/s12951-022-01296-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/05/2022] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of vascular diseases that severely threats the human health due to the lack of efficient therapeutic methods. During the development and progress of AS, macrophages play critical roles, which are polarized into pro-inflammatory M1 phenotype to excrete abundant cytokines and overproduce reactive oxygen species (ROS), and take up excess amount of lipid to form foam cells. In this work, we developed a MnO2-based nanomedicine to re-educate macrophages for targeting AS therapy. The MnO2 was one-pot synthesized under mild condition, showing intrinsic catalase-mimic activity for self-oxygenation by using endogenous H2O2 as substrate. Moreover, the mesoporous structure as well as the abundant metal coordination sites in MnO2 structure facilitated the loading of an anti-AS drug of curcumin (Cur), achieving extraordinarily high drug loading capacity of 54%. Cur displayed a broad spectrum of anti-oxidant and anti-inflammatory capabilities to repolarize M1 macrophages into M2 phenotype, and the catalytic MnO2 recovered the function of lipid efflux transporter to remove lipid from cells by suppressing HIF-1α. Collectively, the nanocarrier and the payload drug functioned as an all-active nanoplatform to synergistically alleviate the syndromes of AS. In ApoE−/− mice model, the nanosystem could significantly prolong the circulation half-life of Cur by sixfold, and enhance drug accumulation in atherosclerotic lesion by 3.5-fold after intravenous injection by virtue of surface hyaluronic acid (HA) modification. As a result, a robust anti-AS efficacy was achieved as evidenced by the decrease of atherosclerotic lesion, plaque area, lipid level.
Collapse
|
18
|
Wu N, Tu Y, Fan G, Ding J, Luo J, Wang W, Zhang C, Yuan C, Zhang H, Chen P, Tan S, Xiao H. Enhanced photodynamic therapy/photothermotherapy for nasopharyngeal carcinoma via a tumour microenvironment-responsive self-oxygenated drug delivery system. Asian J Pharm Sci 2022; 17:253-267. [PMID: 35582639 PMCID: PMC9091608 DOI: 10.1016/j.ajps.2022.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
The hypoxic nature of tumours limits the efficiency of oxygen-dependent photodynamic therapy (PDT). Hence, in this study, indocyanine green (ICG)-loaded lipid-coated zinc peroxide (ZnO2) nanoparticles (ZnO2@Lip-ICG) was constructed to realize tumour microenvironment (TME)-responsive self-oxygen supply. Near infrared light irradiation (808 nm), the lipid outer layer of ICG acquires sufficient energy to produce heat, thereby elevating the localised temperature, which results in accelerated ZnO2 release and apoptosis of tumour cells. The ZnO2 rapidly generates O2 in the TME (pH 6.5), which alleviates tumour hypoxia and then enhances the PDT effect of ICG. These results demonstrate that ZnO2@Lip-ICG NPs display good oxygen self-supported properties and outstanding PDT/PTT characteristics, and thus, achieve good tumour proliferation suppression.
Collapse
Affiliation(s)
- Nan Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Luo
- Zhejiang Fenghong New Material Co. Ltd., Huzhou 313300, China
| | - Wei Wang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Corresponding authors.
| | - Chong Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Caiyan Yuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Handan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding authors.
| |
Collapse
|
19
|
Basak S, Khare HA, Kempen PJ, Kamaly N, Almdal K. Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. NANOSCALE ADVANCES 2022; 4:742-753. [PMID: 36131819 PMCID: PMC9418007 DOI: 10.1039/d1na00631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 μg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.
Collapse
Affiliation(s)
- Suman Basak
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Harshvardhan Ajay Khare
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen Copenhagen 2200 Denmark
| | - Paul J Kempen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| |
Collapse
|
20
|
Chen L, Zhou Z, Hu C, Maitz MF, Yang L, Luo R, Wang Y. Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9845459. [PMID: 35118420 PMCID: PMC8791388 DOI: 10.34133/2022/9845459] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerosis, the principle cause of cardiovascular disease (CVD) worldwide, is mainly characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Atherogenesis is associated with the upregulation of CD47, a key antiphagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or "efferocytosis." Here, we have developed platelet membrane-coated mesoporous silicon nanoparticles (PMSN) as a drug delivery system to target atherosclerotic plaques with the delivery of an anti-CD47 antibody. Briefly, the cell membrane coat prolonged the circulation of the particles by evading the immune recognition and provided an affinity to plaques and atherosclerotic sites. The anti-CD47 antibody then normalized the clearance of diseased vascular tissue and further ameliorated atherosclerosis by blocking CD47. In an atherosclerosis model established in ApoE-/- mice, PMSN encapsulating anti-CD47 antibody delivery significantly promoted the efferocytosis of necrotic cells in plaques. Clearing the necrotic cells greatly reduced the atherosclerotic plaque area and stabilized the plaques reducing the risk of plaque rupture and advanced thrombosis. Overall, this study demonstrated the therapeutic advantages of PMSN encapsulating anti-CD47 antibodies for atherosclerosis therapy, which holds considerable promise as a new targeted drug delivery platform for efficient therapy of atherosclerosis.
Collapse
Affiliation(s)
- Liang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Zhongyi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Manfred F. Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Jiang T, Xu L, Zhao M, Kong F, Lu X, Tang C, Yin C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials 2021; 280:121324. [PMID: 34933253 DOI: 10.1016/j.biomaterials.2021.121324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease caused by atherosclerosis is a leading cause of morbidity and mortality worldwide. Owing to the synergistic regulation of cholesterol metabolism and lesion inflammation, the simultaneous administration of statins and nucleic acids is expected to alleviate atherosclerosis. In this work, we prepared atorvastatin- and galactose-modified trimethyl chitosan nanoparticles (GTANPs) with dual targeting to hepatocytes and lesional macrophages for encapsulating Baf60a siRNA (siBaf60a) and anti-miR-33 pDNA (pAnti-miR-33), attaining the effective codelivery of statins and nucleic acids. We demonstrated that GTANPs/siBaf60a and GTANPs/pAnti-miR-33 had in vitro antiinflammatory and lipid regulating efficacy. In ApoE-knockout atherosclerotic mice, intravenously injected GTANPs/siBaf60a synergistically reduced the plasma cholesterol and atherosclerotic plaque area; more importantly, orally delivered GTANPs/pAnti-miR-33 synergistically increased the levels of plasma high-density lipoprotein cholesterol (HDL-C) and antiinflammatory cytokines, resulting in a satisfactory antiatherosclerotic outcome. Our results suggest that codelivery of statins and nucleic acids provides a promising strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ting Jiang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lu Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mengxin Zhao
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fei Kong
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinrong Lu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
22
|
Boada CA, Zinger A, Rohen S, Martinez JO, Evangelopoulos M, Molinaro R, Lu M, Villarreal-Leal RA, Giordano F, Sushnitha M, De Rosa E, Simonsen JB, Shevkoplyas S, Taraballi F, Tasciotti E. LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Front Bioeng Biotechnol 2021; 9:794676. [PMID: 34926432 PMCID: PMC8672093 DOI: 10.3389/fbioe.2021.794676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein-based drug delivery is a promising approach to develop safe nanoparticles capable of targeted drug delivery for various diseases. In this work, we have synthesized a lipid-based nanoparticle (NPs) that we have called “Aposomes” presenting native apolipoprotein B-100 (apoB-100), the primary protein present in Low-Density Lipoproteins (LDL) on its surface. The aposomes were synthesized from LDL isolated from blood plasma using a microfluidic approach. The synthesized aposomes had a diameter of 91 ± 4 nm and a neutral surface charge of 0.7 mV ± mV. Protein analysis using western blot and flow cytometry confirmed the presence of apoB-100 on the nanoparticle’s surface. Furthermore, Aposomes retained liposomes’ drug loading capabilities, demonstrating a prolonged release curve with ∼80% cargo release at 4 hours. Considering the natural tropism of LDL towards the atherosclerotic plaques, we evaluated the biological properties of aposomes in a mouse model of advanced atherosclerosis. We observed a ∼20-fold increase in targeting of plaques when comparing aposomes to control liposomes. Additionally, aposomes presented a favorable biocompatibility profile that showed no deviation from typical values in liver toxicity markers (i.e., LDH, ALT, AST, Cholesterol). The results of this study demonstrate the possibilities of using apolipoprotein-based approaches to create nanoparticles with active targeting capabilities and could be the basis for future cardiovascular therapies.
Collapse
Affiliation(s)
- Christian A Boada
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, México, Mexico
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Engineering Medicine, Texas A&M University, Houston, TX, United States.,Laboratory for Bioinspired NanoEngineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Scott Rohen
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Jonathan O Martinez
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Michael Evangelopoulos
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Roberto Molinaro
- IRCCS Ospedale San Raffaele srl, Milan, Italy.,Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ramiro Alejandro Villarreal-Leal
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, México, Mexico
| | - Federica Giordano
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Manuela Sushnitha
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Enrica De Rosa
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Jens B Simonsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sergey Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Francesca Taraballi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- San Raffaele University, Rome and IRCCS San Raffaele Hospital, Rome, Italy
| |
Collapse
|
23
|
Miller HA, Schake MA, Bony BA, Curtis ET, Gee CC, McCue IS, Ripperda TJ, Chatzizisis YS, Kievit FM, Pedrigi RM. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS One 2021; 16:e0260606. [PMID: 34882722 PMCID: PMC8659666 DOI: 10.1371/journal.pone.0260606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| |
Collapse
|
24
|
Bazban-Shotorbani S, Gavins F, Kant K, Dufva M, Kamaly N. A Biomicrofluidic Screening Platform for Dysfunctional Endothelium‐Targeted Nanoparticles and Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Salime Bazban-Shotorbani
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| | - Felicity Gavins
- Department of Life Sciences Centre for Inflammation Research and Translational Medicine (CIRTM) Brunel University London London UB8 3PH UK
| | - Krishna Kant
- Department of Physical Chemistry Biomedical Research Center of Galicia (CINBIO) University of Vigo Vigo 36310 Spain
| | - Martin Dufva
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
| | - Nazila Kamaly
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| |
Collapse
|
25
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
26
|
Peters EB, Karver MR, Sun K, Gillis DC, Biswas S, Clemons TD, He W, Tsihlis ND, Stupp SI, Kibbe MR. Self-Assembled Peptide Amphiphile Nanofibers for Controlled Therapeutic Delivery to the Atherosclerotic Niche. ADVANCED THERAPEUTICS 2021; 4:2100103. [PMID: 34926792 PMCID: PMC8680456 DOI: 10.1002/adtp.202100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Atherosclerotic plaque remains the leading contributor to cardiovascular disease and requires invasive surgical procedures for its removal. Nanomedicine offers a minimally invasive approach to alleviate plaque burden by targeted therapeutic delivery. However, nanocarriers are limited without the ability to sense and respond to the diseased microenvironment. In this study, targeted self-assembled peptide amphiphile (PA) nanofibers were developed that cleave in response to biochemical cues expressed in atherosclerotic lesions-reactive oxygen species (ROS) and intracellular glutathione-to deliver a liver X receptor agonist (LXR) to enhance macrophage cholesterol efflux. The PAs released LXR in response to physiological levels of ROS and reducing agents and could be co-assembled with plaque-targeting PAs to form nanofibers. The resulting LXR PA nanofibers promoted cholesterol efflux from macrophages in vitro as well as LXR alone and with lower cytotoxicity. Further, the ApoA1-LXR PA nanofibers targeted plaque within an atherosclerotic mouse model in vivo and activated ATP-binding cassette A1 (ABCA1) expression as well as LXR alone with reduced liver toxicity. Taken together, these results demonstrate the potential of self-assembled PA nanofibers for controlled therapeutic delivery to the atherosclerotic niche.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Kui Sun
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Gillis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suvendu Biswas
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wenhan He
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol 2021; 56:101536. [PMID: 34862118 PMCID: PMC8811479 DOI: 10.1016/j.smim.2021.101536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
Theranostics, literally derived from the combination of the words diagnostics and therapy, is an emerging field of clinical and preclinical research, where contrast agents, drugs and diagnostic techniques are combined to simultaneously diagnose and treat pathologies. Nanoparticles are extensively employed in theranostics due to their potential to target specific organs and their multifunctional capacity. In this review, we will discuss the current state of theranostic nanomedicine, providing key examples of its application in the imaging and treatment of cardiovascular inflammation.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
28
|
Ma B, Xu H, Wang Y, Yang L, Zhuang W, Li G, Wang Y. Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35410-35421. [PMID: 34286950 DOI: 10.1021/acsami.1c08552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is one of the leading causes of cardiovascular diseases and is triggered by endothelial damage, local lipid cumulation, and inflammation. Despite the conventional medication treatment, nanosized drug carriers have become promising candidates for efficient drug delivery with lower side effects. However, the development of problems in nanocarriers such as drug leakage, accumulating efficiency, and accurate drug release, as well as the specific recognition of atherosclerotic plaques, still needs to be checked. In this study, a lipid-specific fluorophore (LFP) has been designed, which is further packaged with a reactive oxygen species (ROS)-responsive prednisolone (Pred) prodrug copolymer [PMPC-P(MEMA-co-PDMA)] to self-assemble into LFP@PMMP micelles. LFP@PMMP can be further coated with red blood cell (RBC) membrane to obtain surface-biomimetic nanoparticles (RBC/LFP@PMMP), demonstrating prolonged circulation, minimal drug leakage, and better accumulation at the plaques. With ROS responsiveness, RBC/LFP@PMMP can be interrupted at inflammatory atherosclerotic tissue with overexpressed ROS, followed by the dissociation of Pred from the polymer backbone and the release of LFP to combine with the rich lipid in the plaques. An accurate anti-inflammation and lipid-specific fluorescent imaging of atherosclerotic lesions was performed and further proven on ApoE-/- mice; this holds prospective potential for atherosclerosis theranostics.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weihua Zhuang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Akhmedov S, Afanasyev S, Trusova M, Postnikov P, Rogovskaya Y, Grakova E, Kopeva K, Carreon Paz RK, Balakin S, Wiesmann HP, Opitz J, Kruppke B, Beshchasna N, Popov S. Chemically Modified Biomimetic Carbon-Coated Iron Nanoparticles for Stent Coatings: In Vitro Cytocompatibility and In Vivo Structural Changes in Human Atherosclerotic Plaques. Biomedicines 2021; 9:biomedicines9070802. [PMID: 34356866 PMCID: PMC8301308 DOI: 10.3390/biomedicines9070802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.
Collapse
Affiliation(s)
- Shamil Akhmedov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
- Correspondence: (S.A.); (M.T.); (N.B.); Tel.: +7-3822-558142 (S.A.); +7-9069-583171 (T.M.); +49-351-88815619 (N.B.)
| | - Sergey Afanasyev
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
| | - Marina Trusova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Correspondence: (S.A.); (M.T.); (N.B.); Tel.: +7-3822-558142 (S.A.); +7-9069-583171 (T.M.); +49-351-88815619 (N.B.)
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yulia Rogovskaya
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
| | - Elena Grakova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
| | - Kristina Kopeva
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
| | - Rosa Karen Carreon Paz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (R.K.C.P.); (S.B.); (J.O.)
| | - Sascha Balakin
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (R.K.C.P.); (S.B.); (J.O.)
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany; (H.-P.W.); (B.K.)
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (R.K.C.P.); (S.B.); (J.O.)
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany; (H.-P.W.); (B.K.)
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (R.K.C.P.); (S.B.); (J.O.)
- Correspondence: (S.A.); (M.T.); (N.B.); Tel.: +7-3822-558142 (S.A.); +7-9069-583171 (T.M.); +49-351-88815619 (N.B.)
| | - Sergey Popov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute, 634012 Tomsk, Russia; (S.A.); (Y.R.); (E.G.); (K.K.); (S.P.)
| |
Collapse
|
30
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Si-Mohamed SA, Sigovan M, Hsu JC, Tatard-Leitman V, Chalabreysse L, Naha PC, Garrivier T, Dessouky R, Carnaru M, Boussel L, Cormode DP, Douek PC. In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT. Radiology 2021; 300:98-107. [PMID: 33944628 PMCID: PMC8217298 DOI: 10.1148/radiol.2021203968] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background Macrophage burden is a major factor in the risk of atherosclerotic plaque rupture, and its evaluation remains challenging with molecular noninvasive imaging approaches. Photon-counting CT (PCCT) with k-edge imaging aims to allow for the specific detection of macrophages using gold nanoparticles. Purpose To perform k-edge imaging in combination with gold nanoparticles to detect and quantify the macrophage burden within the atherosclerotic aortas of rabbits. Materials and Methods Atherosclerotic and control New Zealand white rabbits were imaged before and at several time points up to 2 days after intravenous injection of gold nanoparticles (3.5 mL/kg, 65 mg gold per milliliter). Aortic CT angiography was performed at the end of the follow-up using an intravenous injection of an iodinated contrast material. Gold k-edge and conventional CT images were reconstructed for qualitative and quantitative assessment of the macrophage burden. PCCT imaging results were compared with findings at histologic examination, quantitative histomorphometry, transmission electron microscopy, and quantitative inductively coupled plasma optical emission spectrometry. Pearson correlations between the macrophage area measured in immunostained sections and the concentration of gold and attenuation measured in the corresponding PCCT sections were calculated. Results Seven rabbits with atherosclerosis and four control rabbits without atherosclerosis were analyzed. In atherosclerotic rabbits, calcifications were observed along the aortic wall before injection. At 2 days after injection of gold nanoparticles, only gold k-edge images allowed for the distinction of plaque enhancement within calcifications and for lumen enhancement during angiography. A good correlation was observed between the gold concentration measured within the wall and the macrophage area in 35 plaques (five per rabbit) (r = 0.82; 95% CI: 0.67, 0.91; P < .001), which was higher than that observed on conventional CT images (r = 0.41; 95% CI: 0.09, 0.65; P = .01). Transmission electron microscopy and inductively coupled plasma optical emission spectrometry analyses confirmed the gold k-edge imaging findings. Conclusion Photon-counting CT with gold nanoparticles allowed for the noninvasive evaluation of both molecular and anatomic information in vivo in rabbits with atherosclerotic plaques. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Leiner in this issue.
Collapse
Affiliation(s)
- Salim A Si-Mohamed
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Monica Sigovan
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Jessica C Hsu
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Valérie Tatard-Leitman
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Lara Chalabreysse
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Pratap C Naha
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Thibaut Garrivier
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Riham Dessouky
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Miruna Carnaru
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Loic Boussel
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - David P Cormode
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Philippe C Douek
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| |
Collapse
|
32
|
Shen M, Li H, Yao S, Wu X, Liu S, Yang Q, Zhang Y, Du J, Qi S, Li Y. Shear stress and ROS-responsive biomimetic micelles for atherosclerosis via ROS consumption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112164. [PMID: 34082967 DOI: 10.1016/j.msec.2021.112164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Reactive oxygen species (ROS) are well-known important initiating factors required for atherosclerosis formation, which leads to endothelial dysfunction and plaque formation. Most of the existing antithrombotic therapies use ROS-responsive drug delivery systems, which have a certain therapeutic effect but cannot eliminate excess ROS. Therefore, the atherosclerosis cannot be treated from the source. Moreover, nanoparticles are easily cleared by the immune system during blood circulation, which is not conducive to long-term circulation. In this study, we developed an intelligent response system that could simultaneously respond to ROS and the shear stress microenvironment of atherosclerotic plaques. This system was formed by red blood cells (RBCs) and simvastatin-loaded micelles (SV MC). The micelles consisted of poly(glycidyl methacrylate)-polypropylene sulfide (PGED-PPS). The hydrophobic PPS could react with excess ROS to become hydrophilic, which forced the micelle rupture, resulting in drug release. Most importantly, PPS could also significantly deplete the ROS level, realizing the synergistic treatment of atherosclerosis with drugs and materials. The positively charged SV MC and negatively charged RBCs were self-assembled through electrostatic adsorption to obtain SV MC@RBCs. The SV MC@RBCs could respond to the high shear stress at the atherosclerotic plaque, and the shear stress induced SV MC desorption from the RBC surface. Using biomimetic methods to evade the SV MC@RBCs elimination by the immune system and to reduce the ROS plays a vital role in improving atherosclerosis treatment. The results of in vitro and in vivo experiments showed that SV MC@RBCs could effectively treat atherosclerosis. Moreover, not only does the SV MC@RBCs system avoid the risk of bleeding, but it also has excellent in vivo safety. The study results indicate that the SV MC@RBCs system is a promising therapeutic nanomedicine for treating ROS-related diseases.
Collapse
Affiliation(s)
- Meili Shen
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Shunyu Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaodong Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shun Liu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanjiao Zhang
- The First Bethune Hospital of Jilin University, Changchun 130012, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Shaolong Qi
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
33
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
34
|
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021; 170:312-339. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.
Collapse
Affiliation(s)
- Flávia Castro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria José Silveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
35
|
Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, Zhong Y, Qiu J, McGinty S, Pontrelli G, Liao X, Wu W, Wang G. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Am J Cancer Res 2021; 11:164-180. [PMID: 33391468 PMCID: PMC7681077 DOI: 10.7150/thno.47841] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Methods: Based on macrophage "homing" into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs). Subsequently, the physical properties of the MM/RAPNPs were characterized. The biocompatibility and biological functions of MM/RAPNPs were determined in vitro. Finally, in AS mouse models, the targeting characteristics, therapeutic efficacy and safety of the MM/RAPNPs were examined. Results: The advanced MM/RAPNPs demonstrated good biocompatibility. Due to the MM coating, the nanoparticles effectively inhibited the phagocytosis by macrophages and targeted activated endothelial cells in vitro. In addition, MM-coated nanoparticles effectively targeted and accumulated in atherosclerotic lesions in vivo. After a 4-week treatment program, MM/RAPNPs were shown to significantly delay the progression of AS. Furthermore, MM/RAPNPs displayed favorable safety performance after long-term administration. Conclusion: These results demonstrate that MM/RAPNPs could efficiently and safely inhibit the progression of AS. These biomimetic nanoparticles may be potential drug delivery systems for safe and effective anti-AS applications.
Collapse
|
36
|
Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin 2021; 42:10-17. [PMID: 32457416 DOI: 10.1038/s41401-020-0436-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.
Collapse
|
37
|
Willemink MJ, Coolen BF, Dyvorne H, Robson PM, Bander I, Ishino S, Pruzan A, Sridhar A, Zhang B, Balchandani P, Mani V, Strijkers GJ, Nederveen AJ, Leiner T, Fayad ZA, Mulder WJM, Calcagno C. Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T. PLoS One 2020; 15:e0241779. [PMID: 33315867 PMCID: PMC7735577 DOI: 10.1371/journal.pone.0241779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Accurate quantification and characterization of atherosclerotic plaques with MRI requires high spatial resolution acquisitions with excellent image quality. The intrinsically better signal-to-noise ratio (SNR) at high-field clinical 7T compared to the widely employed lower field strengths of 1.5 and 3T may yield significant improvements to vascular MRI. However, 7T atherosclerosis imaging also presents specific challenges, related to local transmit coils and B1 field inhomogeneities, which may overshadow these theoretical gains. We present the development and evaluation of 3D, black-blood, ultra-high resolution vascular MRI on clinical high-field 7T in comparison lower-field 3T. These protocols were applied for in vivo imaging of atherosclerotic rabbits, which are often used for development, testing, and validation of translatable cardiovascular MR protocols. Eight atherosclerotic New Zealand White rabbits were imaged on clinical 7T and 3T MRI scanners using 3D, isotropic, high (0.63 mm3) and ultra-high (0.43 mm3) spatial resolution, black-blood MR sequences with extensive spatial coverage. Following imaging, rabbits were sacrificed for validation using fluorescence imaging and histology. Image quality parameters such as SNR and contrast-to-noise ratio (CNR), as well as morphological and functional plaque measurements (plaque area and permeability) were evaluated at both field strengths. Using the same or comparable imaging parameters, SNR and CNR were in general higher at 7T compared to 3T, with a median (interquartiles) SNR gain of +40.3 (35.3-80.1)%, and a median CNR gain of +68.1 (38.5-95.2)%. Morphological and functional parameters, such as vessel wall area and permeability, were reliably acquired at 7T and correlated significantly with corresponding, widely validated 3T vessel wall MRI measurements. In conclusion, we successfully developed 3D, black-blood, ultra-high spatial resolution vessel wall MRI protocols on a 7T clinical scanner. 7T imaging was in general superior to 3T with respect to image quality, and comparable in terms of plaque area and permeability measurements.
Collapse
Affiliation(s)
- Martin J. Willemink
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hadrien Dyvorne
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Philip M. Robson
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ilda Bander
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Seigo Ishino
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alison Pruzan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthi Sridhar
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bei Zhang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Venkatesh Mani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Willem J. M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Modak M, Frey MA, Yi S, Liu Y, Scott EA. Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease. Curr Opin Biotechnol 2020; 66:59-68. [PMID: 32682272 PMCID: PMC7744313 DOI: 10.1016/j.copbio.2020.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of global mortality, accounting for pathologies that are primarily of atherosclerotic origin and driven by specific cell populations. A need exists for effective, non-invasive methods to assess the risk of potentially fatal major adverse cardiovascular events (MACE) before occurrence and to monitor post-interventional outcomes such as tissue regeneration. Molecular imaging has widespread applications in CVD diagnostic assessment, through modalities including magnetic resonance imaging (MRI), positron emission tomography (PET), and acoustic imaging methods. However, current gold-standard small molecule contrast agents are not cell-specific, relying on non-specific uptake to facilitate imaging of biologic processes. Nanomaterials can be engineered for targeted delivery to specific cell populations, and several nanomaterial systems have been developed for pre-clinical molecular imaging. Here, we review recent advances in nanoparticle-mediated approaches for imaging of cellular processes in cardiovascular disease, focusing on efforts to detect inflammation, assess lipid accumulation, and monitor tissue regeneration.
Collapse
Affiliation(s)
- Mallika Modak
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Molly A Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Sijia Yi
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Yugang Liu
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Liu Y, Liu Y, Zang J, Abdullah AAI, Li Y, Dong H. Design Strategies and Applications of ROS-Responsive Phenylborate Ester-Based Nanomedicine. ACS Biomater Sci Eng 2020; 6:6510-6527. [PMID: 33320631 DOI: 10.1021/acsbiomaterials.0c01190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS)-responsive nanomedicine has been extensively developed to improve the therapeutic effects while reducing the systemic toxicity. ROS, as important biological metabolites and signaling molecules, are known to overexpress in most of tumors and inflammations. Among various ROS-sensitive moieties, phenylborate ester (PBAE) with easy modifiable structure and excellent biocompatibility, represents one of the most ROS-sensitive structures. To harness it as a switch, the past several years had witnessed a booming of ROS-sensitive PBAE-based nanomedicine for various medical purposes. Much of the efforts were devoted to exploiting the potential in the management of antitumor and anti-inflammation. This review first summarizes the design strategies of PBAE in the construction of nanomedicine, with PBAE acting as not only the ROS-responsive unit, but also the roles of hydrophobic backbone or bridging segment in the macromolecular structures. The ROS-responsive mechanisms are then briefly discussed. Afterward, we focus on the introduction of the state-of-the-art research on ROS-responsive PBAE-based nanomedicine for antitumor and anti-inflammation applications. The conclusion and future perspectives of ROS-responsive nanomedicine are also provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yiqiong Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Jie Zang
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | | | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
40
|
Liao Y, Zhang Y, Blum NT, Lin J, Huang P. Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications. NANOSCALE HORIZONS 2020; 5:1293-1302. [PMID: 32608425 DOI: 10.1039/d0nh00267d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rapid clearance and capture by the immune system pose a big challenge in targeted drug delivery using nanocarriers. Cell membrane coating endows nanoplatforms with prolonged blood circulation, enhanced immune escape, and improved targeting capability. However, monotypic cell membrane fails to meet the omnifarious needs of biomedical applications. The combination of different types of cell membranes provides a promising solution to provide multifunctional biomimetic nanoplatforms. In this review, we first discuss the feasibility of constructing biomimetic hybrid membranes and summarize current methods of preparing biomimetic hybrid membrane-based nanoplatforms (BHMNs) and their biomedical applications including drug delivery, cancer detection, detoxification, and cancer vaccines. Finally, the prospects and challenges of utilizing BHMNs for personalized medicine are also discussed.
Collapse
Affiliation(s)
- Yunyan Liao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | | | | | | | | |
Collapse
|
41
|
Wu G, Wei W, Zhang J, Nie W, Yuan L, Huang Y, Zuo L, Huang L, Xi X, Xie HY. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials 2020; 250:119963. [DOI: 10.1016/j.biomaterials.2020.119963] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
|
42
|
|
43
|
Benne N, Martins Cardoso R, Boyle AL, Kros A, Jiskoot W, Kuiper J, Bouwstra J, Van Eck M, Slütter B. Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques. Adv Healthc Mater 2020; 9:e2000043. [PMID: 32329226 DOI: 10.1002/adhm.202000043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is characterized by the retention of lipids in foam cells in the arterial intima. The liver X receptor (LXR) agonist GW3965 is a promising therapeutic compound, since it induces reverse cholesterol transport in foam cells. However, hepatic LXR activation increases plasma and liver lipid levels, inhibiting its clinical development. Herein, a formulation that specifically enhances GW3965 deposition in the atherosclerotic lesion is aimed to be developed. GW3965 is encapsulated in liposomes functionalized with the cyclic peptide Lyp-1 (CGNKRTRGC), which binds the p32 receptor expressed on foam cells. These liposomes show preferential uptake by foam cells in vitro and higher accumulation in atherosclerotic plaques in mice compared to non-targeted liposomes as determined by in vivo imaging. Flow cytometry analysis of plaques reveals increased retention of Lyp-1 liposomes in atherosclerotic plaque macrophages compared to controls (p < 0.05). Long term treatment of established plaques in LDLR -/- mice with GW3965-containing Lyp-1 liposomes significantly reduces plaque macrophage content by 50% (p < 0.01). Importantly, GW3965-containing Lyp-1 liposomes do not increase plasma or hepatic lipid content. Thus, GW3965-containing Lyp-1 liposomes successfully target the atherosclerotic macrophages allowing plaque stabilization without commonly observed side effects of LXR agonists.
Collapse
Affiliation(s)
- Naomi Benne
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Renata Martins Cardoso
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
| | - Wim Jiskoot
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Johan Kuiper
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Joke Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Miranda Van Eck
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Bram Slütter
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, The Netherlands
| |
Collapse
|
44
|
Brusini R, Dormont F, Cailleau C, Nicolas V, Peramo A, Varna M, Couvreur P. Squalene-based nanoparticles for the targeting of atherosclerotic lesions. Int J Pharm 2020; 581:119282. [PMID: 32259640 DOI: 10.1016/j.ijpharm.2020.119282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Native low-density lipoproteins (LDL) naturally accumulate at atherosclerotic lesions and are thought to be among the main drivers of atherosclerosis progression. Numerous nanoparticular systems making use of recombinant lipoproteins have been developed for targeting atherosclerotic plaque. These innovative formulations often require complicated purification and synthesis procedures which limit their eventual translation to the clinics. Recently, squalenoylation has appeared as a simple and efficient technique for targeting agents to endogenous lipoproteins through a bioconjugation approach. In this study, we have developed a fluorescent squalene bioconjugate to evaluate the biodistribution of squalene-based nanoparticles in an ApoE-/- model of atherosclerosis. By accumulating in LDL endogenous nanoparticles, the squalene bioconjugation could serve as an efficient targeting platform for atherosclerosis. Indeed, in this proof of concept, we show that our squalene-rhodamine (SQRho) nanoparticles, could accumulate in the aortas of atherosclerotic animals. Histological evaluation confirmed the presence of atherosclerotic lesions and the co-localization of SQRho bioconjugates at the lesion sites.
Collapse
Affiliation(s)
- Romain Brusini
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Flavio Dormont
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Catherine Cailleau
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Valerie Nicolas
- IPSIT, Microscopy Facility, University of Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Arnaud Peramo
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Mariana Varna
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
45
|
Calcagno C, Pérez-Medina C, Mulder WJM, Fayad ZA. Whole-Body Atherosclerosis Imaging by Positron Emission Tomography/Magnetic Resonance Imaging: From Mice to Nonhuman Primates. Arterioscler Thromb Vasc Biol 2020; 40:1123-1134. [PMID: 32237905 DOI: 10.1161/atvbaha.119.313629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease due to atherosclerosis is still the main cause of morbidity and mortality worldwide. This disease is a complex systemic disorder arising from a network of pathological processes within the arterial vessel wall, and, outside of the vasculature, in the hematopoietic system and organs involved in metabolism. Recent years have seen tremendous efforts in the development and validation of quantitative imaging technologies for the noninvasive evaluation of patients with atherosclerotic cardiovascular disease. Specifically, the advent of combined positron emission tomography and magnetic resonance imaging scanners has opened new exciting opportunities in cardiovascular imaging. In this review, we will describe how combined positron emission tomography/magnetic resonance imaging scanners can be leveraged to evaluate atherosclerotic cardiovascular disease at the whole-body level, with specific focus on preclinical animal models of disease, from mouse to nonhuman primates. We will broadly describe 3 major areas of application: (1) vascular imaging, for advanced atherosclerotic plaque phenotyping and evaluation of novel imaging tracers or therapeutic interventions; (2) assessment of the ischemic heart and brain; and (3) whole-body imaging of the hematopoietic system. Finally, we will provide insights on potential novel technical developments which may further increase the relevance of integrated positron emission tomography/magnetic resonance imaging in preclinical atherosclerosis studies.
Collapse
Affiliation(s)
- Claudia Calcagno
- From the BioMedical Engineering and Imaging Institute (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Department of Radiology (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY
| | - Carlos Pérez-Medina
- From the BioMedical Engineering and Imaging Institute (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Department of Radiology (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.P.-M.)
| | - Willem J M Mulder
- From the BioMedical Engineering and Imaging Institute (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Department of Radiology (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Department of Oncological Sciences (W.J.M.M.), Icahn School of Medicine at Mount Sinai, NY.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
| | - Zahi A Fayad
- From the BioMedical Engineering and Imaging Institute (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY.,Department of Radiology (C.C., C.P.-M., W.J.M.M., Z.A.F.), Icahn School of Medicine at Mount Sinai, NY
| |
Collapse
|
46
|
Chin DD, Poon C, Trac N, Wang J, Cook J, Joo J, Jiang Z, Maria NSS, Jacobs RE, Chung EJ. Collagenase-Cleavable Peptide Amphiphile Micelles as a Novel Theranostic Strategy in Atherosclerosis. ADVANCED THERAPEUTICS 2020; 3:1900196. [PMID: 34295964 PMCID: PMC8294202 DOI: 10.1002/adtp.201900196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 11/10/2022]
Abstract
Atherosclerosis is an inflammatory disease characterized by plaques that can cause sudden myocardial infarction upon rupture. Such rupture-prone plaques have thin fibrous caps due to collagenase degradation, and a noninvasive diagnostic tool and targeted therapy that can identify and treat vulnerable plaques and may inhibit the onset of acute cardiac events. Toward this goal, monocyte-binding, collagenase-inhibiting, and gadolinium-modified peptide amphiphile micelles (MCG PAMs) are developed. Monocyte chemoattractant protein-1 (MCP-1) binds to C-C chemokine receptor-2 expressed on pathological cell types present within plaques. Through the peptide binding motif of MCP-1, MCG PAMs bind to monocytes and vascular smooth muscle cells in vitro. Moreover, using magnetic resonance imaging, MCG PAMs show enhanced targeting and successful detection of plaques in diseased mice in vivo and act as contrast agents for molecular imaging. Through the collagenase-cleaving peptide sequence of collagen [VPMS-MRGG], MCG PAMs can compete for collagenases that degrade the fibrous cap of plaques, providing therapy. MCG PAM-treated mice show increased fibrous cap thickness by 61% and 113% histologically compared to nontargeting micelle- or PBS-treated mice (p = 0.0075 and 0.001, respectively). Overall, this novel multimodal nanoparticle offers new theranostic opportunities for noninvasive diagnosis and treatment of atherosclerotic plaques.
Collapse
Affiliation(s)
- Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Zhangjingyi Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Naomi Sulit Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic, Institute and Keck School of Medicine, University of Southern California, Los Angeles 90033 CA, USA
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic, Institute and Keck School of Medicine, University of Southern California, Los Angeles 90033 CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| |
Collapse
|
47
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
48
|
Wu Y, Zhang Y, Dai L, Wang Q, Xue L, Su Z, Zhang C. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J Control Release 2019; 316:236-249. [DOI: 10.1016/j.jconrel.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023]
|
49
|
Multimodal molecular imaging of atherosclerosis: Nanoparticles functionalized with scFv fragments of an anti-αIIbβ3 antibody. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102082. [DOI: 10.1016/j.nano.2019.102082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/04/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
50
|
Scavenger receptor-AI-targeted ultrasmall gold nanoclusters facilitate in vivo MR and ex vivo fluorescence dual-modality visualization of vulnerable atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:81-94. [DOI: 10.1016/j.nano.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 01/02/2023]
|