1
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
2
|
Korangath P, Jin L, Yang CT, Healy S, Guo X, Ke S, Grüttner C, Hu C, Gabrielson K, Foote J, Clarke R, Ivkov R. Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer. ACS NANO 2024; 18:10509-10526. [PMID: 38564478 PMCID: PMC11025112 DOI: 10.1021/acsnano.3c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-β (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.
Collapse
Affiliation(s)
- Preethi Korangath
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Lu Jin
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Chun-Ting Yang
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Sean Healy
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xin Guo
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Suqi Ke
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | | | - Chen Hu
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | - Kathleen Gabrielson
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jeremy Foote
- Department
of Microbiology, School of Medicine, University
of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Clarke
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Robert Ivkov
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Cao X, Xu Y, Zhou C, Huo J, Su S, Liu L, Zhu Z, Li L, Jia W, Wang C, Zhen M. Oral Immunotherapy Reshapes Intestinal Immunosuppression via Metabolic Reprogramming to Enhance Systemic Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302910. [PMID: 37884486 PMCID: PMC10724426 DOI: 10.1002/advs.202302910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Tumor immunotherapy offers a new paradigm to treat cancer; however, the existing regimens are accompanied by the dilemma of insufficient therapeutic outcomes and off-target adverse effects. The intestinal immune system contains a bulk of immune cells, which can be important contributors to the maintenance of systemic immune homeostasis. However, manipulating intestinal immunity to achieve systemic anti-tumor immunity is extremely challenging. Here, an oral immunotherapy strategy is reported using immune-enhancing fullerenes (IEF) that can reinvigorate anti-tumor immunity via immune cell-metabolic reprogramming of intestinal immune cells. Findings show that IEF can remodel anti-inflammatory macrophages into tumor-killing macrophages by regulating the energy metabolism pathway from oxidative phosphorylation (OXPHOS) to glycolysis. Consequently, IEF can reprogram the immunosuppressive intestinal immunity and enhance sys temic immunity in vivo, thereby boosting anti-tumor immunity and converting "cold" tumors into "hot" tumors. Oral immunotherapy strategy, modulating autoimmune cells in the intestine and achieving systemic anti-tumor immunity, can ensure safe and efficient tumor immunotherapy.
Collapse
Affiliation(s)
- Xinran Cao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuan Xu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chen Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shenge Su
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lei Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziran Zhu
- University of Chinese Academy of SciencesBeijing100049China
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Lei Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wang Jia
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunru Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W, Zhang Q, Zhang X, Liang H, Lee APW, Shao L, Xiu J. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21:140. [PMID: 37118804 PMCID: PMC10148422 DOI: 10.1186/s12951-023-01899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/16/2023] [Indexed: 04/30/2023] Open
Abstract
Atherosclerosis is one of the most common types of cardiovascular disease and is driven by lipid accumulation and chronic inflammation in the arteries, which leads to stenosis and thrombosis. Researchers have been working to design multifunctional nanomedicines with the ability to target, diagnose, and treat atherosclerosis, but recent studies have also identified that nanomaterials can cause atherosclerosis. Therefore, this review aims to outline the molecular mechanisms and physicochemical properties of nanomaterials that promote atherosclerosis. By analyzing the toxicological effects of nanomaterials on cells involved in the pathogenesis of atherosclerosis such as vascular endothelial cells, vascular smooth muscle cells and immune cells, we aim to provide new perspectives for the prevention and treatment of atherosclerosis, and raise awareness of nanotoxicology to advance the clinical translation and sustainable development of nanomaterials.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiming Xiu
- Guangdong Medical University, Dongguan, 523808, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinlu Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Alex Pui-Wai Lee
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Jiancheng Xiu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
7
|
Effects of Magnetic Nanoparticles on the Functional Activity of Human Monocytes and Dendritic Cells. Int J Mol Sci 2023; 24:ijms24021358. [PMID: 36674876 PMCID: PMC9864373 DOI: 10.3390/ijms24021358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The use of nanoparticles in medicine is sometimes hampered by their potential to activate immune cells, eliciting inflammation or allergy. We investigated whether magnetic nanoparticles (MNPs) or biomimetic magnetic nanoparticles (BMNPs) affect relevant activities of human monocytes. We found that the nanoparticles neither elicited the production of pro-inflammatory mediators IL-6 and TNFα by resting monocytes (when BMNP dose < 300 μg/mL) nor enhanced their secretion induced by R848, a molecule engaging virus-recognizing receptors, or bacterial lipopolysaccharide (LPS). MNPs and BMNPs neither induced the generation of reactive oxygen species (ROS), nor affected the ROS production elicited by the NADPH oxidase activator phorbol myristate acetate (PMA) or the fungal derivative β-glucan. BMNPs, but not MNPs, caused an up-regulation of the maturation markers CD80, CD83, and CD86 in immature monocyte-derived dendritic cells (DCs), whereas both nanoparticles did not affect the LPS-induced expression of these markers. Moreover, the nanoparticles were greedily ingested by monocytes and DCs without altering their viability. Therefore, these nanoparticles are candidates for medical applications because they do not activate pro-inflammatory activities of monocytes. Furthermore, their ability to stimulate DC maturation could be used for the design of vaccines. Moreover, harmlessly engulfed nanoparticles could be vehicles to carry molecules inside the immune cells to regulate the immune response.
Collapse
|
8
|
Wang W, Jiang Y, Huang Z, Nguyen HVT, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022; 144:23332-23339. [PMID: 36126328 PMCID: PMC10440729 DOI: 10.1021/jacs.2c07382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymer conjugation has been widely used to improve the stability and pharmacokinetics of therapeutic biomacromolecules; however, conventional methods to generate such conjugates often use disperse and/or achiral polymers with limited functionality. The heterogeneity of such conjugates may lead to manufacturing variability, poorly controlled biological performance, and limited ability to optimize structure-property relationships. Here, using insulin as a model therapeutic polypeptide, we introduce a strategy for the synthesis of polymer-protein conjugates based on discrete, chiral polymers synthesized through iterative exponential growth (IEG). These conjugates eliminate manufacturing variables originating from polymer dispersity and poorly controlled absolute configuration. Moreover, they offer tunable molecular features, such as conformational rigidity, that can be modulated to impact protein function, enabling faster or longer-lasting blood glucose responses in diabetic mice when compared to PEGylated insulin and the commercial insulin variant Lantus. Furthermore, IEG-insulin conjugates showed no signs of decreased activity, immunogenicity, or toxicity following repeat dosing. This work represents a significant step toward the synthesis of precise synthetic polymer-biopolymer conjugates and reveals that fine tuning of synthetic polymer structure may be used to optimize such conjugates in the future.
Collapse
Affiliation(s)
- Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhihao Huang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Manuel Hartweg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Masamichi Shirakura
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - K. Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Cheng LY, Huang MS, Zhong HG, Ru HM, Mo SS, Wei CY, Su ZJ, Mo XW, Yan LH, Tang WZ. MTUS1 is a promising diagnostic and prognostic biomarker for colorectal cancer. World J Surg Oncol 2022; 20:257. [PMID: 35962436 PMCID: PMC9375397 DOI: 10.1186/s12957-022-02702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The morbidity and mortality of colorectal cancer (CRC) remain high, posing a serious threat to human life and health. The early diagnosis and prognostic evaluation of CRC are two major challenges in clinical practice. MTUS1 is considered a tumour suppressor and can play an important role in inhibiting cell proliferation, migration, and tumour growth. Moreover, the expression of MTUS1 is decreased in different human cancers, including CRC. However, the biological functions and molecular mechanisms of MTUS1 in CRC remain unclear. Methods In the present study, data from The Cancer Genome Atlas (TCGA) database were analysed using R statistical software (version 3.6.3.) to evaluate the expression of MTUS1 in tumour tissues and adjacent normal tissues using public databases such as the TIMER and Oncomine databases. Then, 38 clinical samples were collected, and qPCR was performed to verify MTUS1 expression. We also investigated the relationship between MTUS1 expression and clinicopathological characteristics and elucidated the diagnostic and prognostic value of MTUS1 in CRC. In addition, the correlation between MTUS1 expression and immune infiltration levels was identified using the TIMER and GEPIA databases. Furthermore, we constructed and analysed a PPI network and coexpression modules of MTUS1 to explore its molecular functions and mechanisms. Results CRC tissues exhibited lower levels of MTUS1 than normal tissues. The logistic regression analysis indicated that the expression of MTUS1 was associated with N stage, TNM stage, and neoplasm type. Moreover, CRC patients with low MTUS1 expression had poor overall survival (OS). Multivariate analysis revealed that the downregulation of MTUS1 was an independent prognostic factor and was correlated with poor OS in CRC patients. MTUS1 expression had good diagnostic value based on ROC analysis. Furthermore, we identified a group of potential MTUS1-interacting proteins and coexpressed genes. GO and KEGG enrichment analyses showed that MTUS1 was involved in multiple cancer-related signalling pathways. Moreover, the expression of MTUS1 was significantly related to the infiltration levels of multiple cells. Finally, MTUS1 expression was strongly correlated with various immune marker sets. Conclusions Our results indicated that MTUS1 is a promising biomarker for predicting the diagnosis and prognosis of CRC patients. MTUS1 can also become a new molecular target for tumour immunotherapy.
Collapse
Affiliation(s)
- Lin-Yao Cheng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Mao-Sen Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Ge Zhong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Ming Ru
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chun-Yin Wei
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Jie Su
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
10
|
Grebowski J, Litwinienko G. Metallofullerenols in biomedical applications. Eur J Med Chem 2022; 238:114481. [PMID: 35665690 DOI: 10.1016/j.ejmech.2022.114481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; The Military Medical Training Center, 6-Sierpnia 92, 90-646, Lodz, Poland.
| | | |
Collapse
|
11
|
Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107652. [PMID: 35451183 DOI: 10.1002/smll.202107652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro de l'ITI Neurostra, CNRS UAR 3156, University of Strasbourg, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, ISIS, Université de Strasbourg, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
12
|
Paladhi A, Rej A, Sarkar D, Singh R, Bhattacharyya S, Sarkar PK, Kar PK, Manna PP, Hira SK. Nanoscale Diamond-Based Formulation as an Immunomodulator and Potential Therapeutic for Lymphoma. Front Pharmacol 2022; 13:852065. [PMID: 35444547 PMCID: PMC9014173 DOI: 10.3389/fphar.2022.852065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Integrative medicine practices, such as Ayurveda, are popular in India and many South Asian countries, yet basic research to investigate the concepts, procedures, and medical benefits of ayurvedic products has received little attention and is not fully understood. Here, we report a functional nanodiamond-based traditional Ayurvedic herbomineral formulation, Heerak Bhasma (Ayu_ND), for the treatment of solid tumors called Dalton’s lymphoma generated in CD1 mice. Ayu_ND-mediated immunostimulation significantly reduces tumor cell proliferation and induces apoptosis aided by the active participation of dendritic cells. Immunomodulatory Ayu_ND treatment is highly immunostimulatory and drives dendritic cells to produce TNF-α. Treatment with Ayu_ND significantly reduces the tumor volume, inhibits metastasis in distant vascularized organs, and increases the life span of tumor-bearing animals compared with untreated littermates. These events were associated with elevated serum levels of the protective cytokines IFN-γ and TNF-α and downregulated the disease, exacerbating TGF-β. Ayu_ND-mediated therapeutic success was also accompanied by the depletion of regulatory T cells and enhanced vaccine-induced T-cell immunity, guided by the restoration of the memory CD8+ T-cell pool and prevention of PD-1-mediated T cell exhaustion. The results provide a basis for further evaluation of ayurvedic formulations and drug efficacy in treating cancers.
Collapse
Affiliation(s)
- Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Abhinandan Rej
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Debanjan Sarkar
- Immunobiology Lab, Department of Zoology, Sidho Kanho Birsha University, Purulia, India
| | - Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sankar Bhattacharyya
- Immunobiology Lab, Department of Zoology, Sidho Kanho Birsha University, Purulia, India
| | - Prasanta Kumar Sarkar
- Department of Rasashastra, J. B. Roy State Ayurvedic Medical College and Hospital, Kolkata, India
| | - Pulak Kanti Kar
- Department of Panchakarma, J. B. Roy State Ayurvedic Medical College and Hospital, Kolkata, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
13
|
Chen H, Zhang Y, Li L, Guo R, Shi X, Cao X. Effective CpG Delivery Using Zwitterion-Functionalized Dendrimer-Entrapped Gold Nanoparticles to Promote T Cell-Mediated Immunotherapy of Cancer Cells. BIOSENSORS 2022; 12:71. [PMID: 35200332 PMCID: PMC8869692 DOI: 10.3390/bios12020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Recently, cell-based immunotherapy has become one of the most promising ways to completely eliminate cancer. The major challenge is to effectively promote a proper immune response to kill the cancer cells by activated T cells. This study investigated the effect of T cell-mediated immunotherapy trigged by Au DENPs-MPC (zwitterion 2-methacryloyloxyethyl phosphorylcholine (MPC)-functionalized dendrimer-entrapped gold nanoparticles) loading oli-godeoxynucleotides (ODN) of unmethylated cytosine guanine dinucleotide (CPG). Here, we first synthesized Au DENPs-MPC, evaluated their capability to compress and transfect CpG-ODN to bone marrow dendritic cells (BMDCs), and investigated the potential to use T cells stimulated by matured BMDCs to inhibit the growth of tumor cells. The developed Au DENPs-MPC could apparently reduce the toxicity of Au DENPs, and enhanced transfer CpG-ODN to the BMDCs for the maturation as demonstrated by the 44.41-48.53% increase in different surface maturation markers. The transwell experiments certificated that ex vivo activated T cells display excellent anti-tumor ability, which could effectively inhibit the growth of tumor cells. These results suggest that Au DENPs-MPC can deliver CpG-ODN efficiently to enhance the antigen presentation ability of BMDCs to activate T cells, indicating that T cells-based immunotherapy mediated by Au DENPs-MPC loaded with CpG-ODN may become the most promising treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| |
Collapse
|
14
|
The Molecular Mechanism of Human Voltage-Dependent Anion Channel 1 Blockade by the Metallofullerenol Gd@C82(OH)22: An In Silico Study. Biomolecules 2022; 12:biom12010123. [PMID: 35053271 PMCID: PMC8773804 DOI: 10.3390/biom12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
The endohedral metallofullerenol Gd@C82(OH)22 has been identified as a possible antineoplastic agent that can inhibit both the growth and metastasis of cancer cells. Despite these potentially important effects, our understanding of the interactions between Gd@C82(OH)22 and biomacromolecules remains incomplete. Here, we study the interaction between Gd@C82(OH)22 and the human voltage-dependent anion channel 1 (hVDAC1), the most abundant porin embedded in the mitochondrial outer membrane (MOM), and a potential druggable target for novel anticancer therapeutics. Using in silico approaches, we observe that Gd@C82(OH)22 molecules can permeate and form stable interactions with the pore of hVDAC1. Further, this penetration can occur from either side of the MOM to elicit blockage of the pore. The binding between Gd@C82(OH)22 and hVDAC1 is largely driven by long-range electrostatic interactions. Analysis of the binding free energies indicates that it is thermodynamically more favorable for Gd@C82(OH)22 to bind to the hVDAC1 pore when it enters the channel from inside the membrane rather than from the cytoplasmic side of the protein. Multiple factors contribute to the preferential penetration, including the surface electrostatic landscape of hVDAC1 and the unique physicochemical properties of Gd@C82(OH)22. Our findings provide insights into the potential molecular interactions of macromolecular biological systems with the Gd@C82(OH)22 nanodrug.
Collapse
|
15
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
16
|
Shapoval O, Sulimenko V, Klebanovych A, Rabyk M, Shapoval P, Kaman O, Rydvalová E, Filipová M, Dráberová E, Dráber P, Horák D. Multimodal fluorescently labeled polymer-coated GdF 3 nanoparticles inhibit degranulation in mast cells. NANOSCALE 2021; 13:19023-19037. [PMID: 34755752 DOI: 10.1039/d1nr06127e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anastasiya Klebanovych
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavlo Shapoval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, Sv. Yura Sq. 9, 79013 Lviv, Ukraine
| | - Ondřej Kaman
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 112/10, 162 00 Prague 6, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
17
|
Functionalized Gadofullerene Ameliorates Impaired Glycolipid Metabolism in Type 2 Diabetic Mice. J Genet Genomics 2021; 49:364-376. [PMID: 34687945 DOI: 10.1016/j.jgg.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese MKR mouse T2DM models. In both mouse models, the diabetic phenotypes including hyperglycemia, impaired glucose tolerance and insulin sensitivity were ameliorated following 2 or 4 weeks of i.p. administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist 10 days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for re-balancing gluconeogenesis and glycogen synthesis in vivo and in vitro. In addition, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.
Collapse
|
18
|
Feray A, Guillet E, Szely N, Hullo M, Legrand FX, Brun E, Rabilloud T, Pallardy M, Biola-Vidamment A. Synthetic amorphous silica nanoparticles promote human dendritic cell maturation and CD4 + T-lymphocyte activation. Toxicol Sci 2021; 185:105-116. [PMID: 34633463 DOI: 10.1093/toxsci/kfab120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Innate immune cells such as dendritic cells (DCs) sense and engulf nanomaterials potentially leading to an adverse immune response. Indeed, as described for combustion-derived particles, nanomaterials could be sensed as danger signals, enabling DCs to undergo a maturation process, migrate to regional lymph nodes and activate naive T-lymphocytes. Synthetic amorphous silica nanoparticles (SAS-NPs) are widely used as food additives, cosmetics, and construction materials. This work aimed to evaluate in vitro the effects of manufactured SAS-NPs, produced by thermal or wet routes, on human DCs functions and T-cell activation. Human monocyte-derived DCs (moDCs) were exposed for 16 hours to three endotoxin-free test materials: fumed silica NPs from Sigma-Aldrich (#S5505) or the JRC Nanomaterial Repository (NM-202) and colloidal Ludox®TMA NPs. Cell viability, phenotypical changes, cytokines production, internalization, and allogeneic CD4+ T-cells proliferation were evaluated. Our results showed that all SAS-NPs significantly upregulated the surface expression of CD86 and CD83 activation markers. Secretions of pro-inflammatory cytokines (CXCL-8 and CXCL-12) were significantly enhanced in a dose-dependent manner in the moDCs culture supernatants by all SAS-NPs tested. In an allogeneic co-culture, fumed silica-activated moDCs significantly increased T-lymphocyte proliferation at all T-cell:DC ratios compared to unloaded moDCs. Moreover, analysis of co-culture supernatants regarding the production of T-cell-derived cytokines showed a significant increase of IL-9 and IL-17A and F, as well as an upregulation of IL-5, consistent with the pro-inflammatory phenotype of treated-moDCs. Taken together, these results suggest that SAS-NPs could induce functional moDCs maturation and play a role in the immunization process against environmental antigens.
Collapse
Affiliation(s)
- Alexia Feray
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Eléonore Guillet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Marie Hullo
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - François-Xavier Legrand
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296, Châtenay-Malabry, France
| | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Thierry Rabilloud
- UMR CNRS 5249, Laboratoire de Chimie et Biologie des Métaux, CEA-Grenoble, 17 avenue des Martyrs, 38 054 Grenoble Cedex 09, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Armelle Biola-Vidamment
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| |
Collapse
|
19
|
Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021; 22:10009. [PMID: 34576180 PMCID: PMC8468472 DOI: 10.3390/ijms221810009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
20
|
Ye L, Kollie L, Liu X, Guo W, Ying X, Zhu J, Yang S, Yu M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021; 26:molecules26113252. [PMID: 34071369 PMCID: PMC8198614 DOI: 10.3390/molecules26113252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.
Collapse
Affiliation(s)
- Lianjie Ye
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
| | - Larwubah Kollie
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xing Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xiangxian Ying
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jun Zhu
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Shengjie Yang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Correspondence:
| |
Collapse
|
21
|
Li X, Wang C. The potential biomedical platforms based on the functionalized Gd@C
82
nanomaterials. VIEW 2020. [DOI: 10.1002/viw2.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
22
|
Chen T, Li L, Lin X, Yang Z, Zou W, Chen Y, Xu J, Liu D, Wang X, Lin G. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS2/ZnS quantum dots. Nanotoxicology 2020; 14:372-387. [DOI: 10.1080/17435390.2019.1708495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaotan Lin
- Department of Family Planning, Second Clinical Medical College of Jinan University; Shenzhen People’s Hospital, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Wenyi Zou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yajing Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Jiangyao Xu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongmeng Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
23
|
Chen H, Fan Y, Hao X, Yang C, Peng Y, Guo R, Shi X, Cao X. Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector. J Mater Chem B 2020; 8:5052-5063. [DOI: 10.1039/d0tb00678e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PEGylated Au DENPs ({(Au0)25-G5·NH2-mPEG20}) are synthesized and used as a novel nonviral vector to deliver CpG to mature BMDCs for the subsequent activation of T cells for adoptive tumor immunotherapy.
Collapse
Affiliation(s)
- Huan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xinxin Hao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Chao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yucheng Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
24
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
25
|
Wang T, Wang C. Functional Metallofullerene Materials and Their Applications in Nanomedicine, Magnetics, and Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901522. [PMID: 31131986 DOI: 10.1002/smll.201901522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Endohedral metallofullerenes exhibit combined properties from carbon cages as well as internal metal moieties and have great potential in a wide range of applications as molecule materials. Along with the breakthrough of mass production of metallofullerenes, their applied research has been greatly developed with more and more new functions and practical applications. For gadolinium metallofullerenes, their water-soluble derivatives have been demonstrated with antitumor activity and unprecedented tumor vascular-targeting therapy. Metallofullerene water-soluble derivatives also can be applied to treat reactive oxygen species (ROS)-induced diseases due to their high antioxidative activity. For magnetic metallofullerenes, the internal electron spin and metal species bring about spin sensitivity, molecular magnets, and spin quantum qubits, which have many promising applications. Metallofullerenes are significant candidates for fabricating useful electronic devices because of their various electronic structures. This Review provides a summary of the metallofullerene studies reported recently, in the fields of tumor inhibition, tumor vascular-targeting therapies, antioxidative activity, spin probes, single-molecule magnets, spin qubits, and electronic devices. This is not an exhaustive summary and there are many other important study results regarding metallofullerenes. All of this research has revealed the irreplaceable role of metallofullerene materials.
Collapse
Affiliation(s)
- Taishan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
26
|
Li J, Chen L, Su H, Yan L, Gu Z, Chen Z, Zhang A, Zhao F, Zhao Y. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. NANOSCALE 2019; 11:14528-14539. [PMID: 31364651 DOI: 10.1039/c9nr04129j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a "particulate medicine" to highlight its distinctions from conventional "molecular medicine", with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ren J, Cai R, Wang J, Daniyal M, Baimanov D, Liu Y, Yin D, Liu Y, Miao Q, Zhao Y, Chen C. Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. NANO LETTERS 2019; 19:4692-4701. [PMID: 31244235 DOI: 10.1021/acs.nanolett.9b01774] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
When a nanomedicine is administrated into the human body, biomolecules in biological fluids, particularly proteins, form a layer on the surface of the nanoparticle known as a "personalized protein corona". An understanding of the formation and behavior of the personalized protein corona not only benefits the nanotherapy treatment efficacy but also can aid in disease diagnosis. Here we used Gd@C82(OH)22 nanoparticles, a nanomedicine effective against several types of cancer, as a model nanomedicine to investigate the natural protein fingerprint of the personalized protein corona formed in 10 human lung squamous cell carcinoma patients. Our analysis revealed a specific biomarker, complement component C1q, in lung cancer personalized protein coronas, abundantly bound to Gd@C82(OH)22 NPs. This binding altered the secondary structure of C1q protein and led to the activation of an innate immune response, which could be exploited for cancer immune therapy. On the basis of this finding, we provide a new strategy for the development of precision nanomedicine derived from opsonization of a unique protein fingerprint within patients. This approach overcomes the common pitfall of protein corona formation and exploits the corona proteins to generate a precision nanomedicine and diagnostic tool.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Muhammad Daniyal
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Dongtao Yin
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Yang Liu
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
28
|
Guan M, Zhou Y, Liu S, Chen D, Ge J, Deng R, Li X, Yu T, Xu H, Sun D, Zhao J, Zou T, Wang C, Shu C. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials 2019; 213:119218. [PMID: 31136911 DOI: 10.1016/j.biomaterials.2019.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Efficient treatment of primary tumor and preventing cancer metastasis present intriguing alternatives to cancer therapy. Herein, for the first time, we reported the photo-triggered nano-gadofullerene (Gd@C82-Ala, abbreviated Gd-Ala) induced malignant tumor vascular disruption by shortening the light interval between Gd-Ala administration and light illumination, where oxygen in blood vessels was employed efficiently to produce cytotoxic reactive oxygen species (ROS). The produced ROS could not only destroy the tumor cells but also devastate the vascular endothelial cells corresponding to the loss of intercellular junctions and vessels disruption. Notably, the irradiated Gd-Ala could enhance dendritic cells (DCs) maturation, which further secreted tumor necrosis factor-α (TNF-α) and interleukin-12 (IL)-12, and then activated T lymphocytes by up-regulation of cluster of differentiation CD4+ and CD8+ T lymphocytes. Furthermore, the down-regulation of matrix metalloprotein 2 (MMP2) and MMP9 also reduce the rate of tumor metastasis. This work explored a new biomedical application of gadofullerene, thereby providing a smart carbon nanomaterial candidate for tumor ablation and inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ruijun Deng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Sun
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajia Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
29
|
Xu J, Wang H, Hu Y, Zhang YS, Wen L, Yin F, Wang Z, Zhang Y, Li S, Miao Y, Lin B, Zuo D, Wang G, Mao M, Zhang T, Ding J, Hua Y, Cai Z. Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801233. [PMID: 31016106 PMCID: PMC6468974 DOI: 10.1002/advs.201801233] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/04/2018] [Indexed: 05/28/2023]
Abstract
Fullerene C60 nanocrystals (nano-C60) possess various attractive bioactivities, including autophagy induction and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) activation. CaMKIIα is a multifunctional protein kinase involved in many cellular processes including tumor progression; however, the biological effects of CaMKIIα activity modulated by nano-C60 in tumors have not been reported, and the relationship between CaMKIIα activity and autophagic degradation remains unclear. Herein, nano-C60 is demonstrated to elicit reactive oxygen species (ROS)-dependent cytotoxicity and persistent activation of CaMKIIα in osteosarcoma (OS) cells. CaMKIIα activation, in turn, produces a protective effect against cytotoxicity from nano-C60 itself. Inhibition of CaMKIIα activity by either the chemical inhibitor KN-93 or CaMKIIα knockdown dramatically promotes the anti-OS effect of nano-C60. Moreover, inhibition of CaMKIIα activity causes lysosomal alkalinization and enlargement, and impairs the degradation function of lysosomes, leading to autophagosome accumulation. Importantly, excessive autophagosome accumulation and autophagic degradation blocking are shown to play an important role in KN-93-enhanced-OS cell death. The synergistic anti-OS efficacy of KN-93 and nano-C60 is further revealed in an OS-xenografted murine model. The results demonstrate that CaMKIIα inhibition, along with the suppression of autophagic degradation, presents a promising strategy for improving the antitumor efficacy of nano-C60.
Collapse
Affiliation(s)
- Jing Xu
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yi Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life SciencesUniversity of Science and Technology of China96 Jinzhai StreetHefei230026P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Longping Wen
- School of MedicineSouth China University of TechnologyNanobio LaboratoryInstitutes for Life SciencesSouth China University of Technology381 Wushan StreetGuangzhou510006P. R. China
| | - Fei Yin
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhuoying Wang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yingchao Zhang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yanyan Miao
- Key Laboratory of Gene Engineering of the Ministry of EducationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen University135 West Xingang StreetGuangzhou510275P. R. China
| | - Binhui Lin
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Gangyang Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Min Mao
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yingqi Hua
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhengdong Cai
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| |
Collapse
|
30
|
Yu T, Zhen M, Li J, Zhou Y, Ma H, Jia W, Wang C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans 2019; 48:7884-7890. [DOI: 10.1039/c9dt00800d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A proposed molecular mechanism of the anti-apoptosis effect of GF-Ala through a mitochondria mediated pathway.
Collapse
Affiliation(s)
- Tong Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Haijun Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
31
|
Liu J, Feng X, Chen Z, Yang X, Shen Z, Guo M, Deng F, Liu Y, Zhang H, Chen C. The adjuvant effect of C 60(OH) 22 nanoparticles promoting both humoral and cellular immune responses to HCV recombinant proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:753-759. [PMID: 30678964 DOI: 10.1016/j.msec.2018.12.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis c virus (HCV) infection is one of major causes for chronic liver diseases worldwide and could lead to death. Development of effective HCV vaccines is a powerful auxiliary method of existing treatments. Adjuvants are necessary for modern vaccines to promote immune responses. Among the various nanomaterials that have been developed, multihydroxylated fullerene (C60(OH)22) has been proved as an efficient adjuvant for human immunodeficiency virus DNA vaccine. Here, we utilized three types of HCV recombinant proteins as antigens to investigate the activity of C60(OH)22 as a protein vaccine adjuvant. The proteins were carried by C60(OH)22 in a way of surface adsorption and self-assemble encapsulation. C60(OH)22 at a relatively low dose was sufficient to promote both humoral and cellular immune responses to HCV protein antigens and reduce the usage of antigen. These results demonstrated the positive adjuvant properties of C60(OH)22 when applied to protein vaccines.
Collapse
Affiliation(s)
- Jing Liu
- The College of Life Sciences, Northwest University, Xi'an 710069, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoyan Feng
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiqin Yang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Ziyi Shen
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Heqiu Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
32
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the major health problems all over the world and conventional therapeutic approaches have failed to attain an effective cure. Tumor microenvironments (TME) present a unique challenge in tumor therapy due to their complex structures and multiple components, which also serve as the soil for tumor growth, development, invasion, and migration. The complex TME includes immune cells, fibrous collagen structures, and tortuous blood vessels, in which conventional therapeutic approaches are rendered useless. State-of-the-art nanotechnologies have potential to cope with the threats of malignant tumors. With unique physiochemical properties, carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes, and carbon quantum dots, offer opportunities to resolve the hurdles, by targeting not only cancer cells but also the TME. This review summarizes the progress about CNM-based cancer therapy strategies, which mainly focuses on both the treatment for cancer cells and TME-targeted modulation. In the last, the challenges for TME-based therapy via CNMs are discussed, which will be important in guiding current basic research to clinical translation in the future.
Collapse
Affiliation(s)
- Jabran Saleem
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| |
Collapse
|
34
|
Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy. Front Oncol 2018; 8:404. [PMID: 30319969 PMCID: PMC6167641 DOI: 10.3389/fonc.2018.00404] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles in the orchestration of the innate and adaptive immune system. Targeting DCs by nanotechnology stands as a promising strategy for cancer immunotherapy. The physicochemical properties of nanoparticles (NPs) influence their interactions with DCs, thus altering the immune outcome of DCs by changing their functions in the processes of maturation, homing, antigen processing and antigen presentation. In this review, we summarize the recent progress in targeting DCs using NPs as a drug delivery carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the physicochemical properties of NPs affect DCs' functions. Finally, the molecular pathways in DCs that are affected by NPs are also discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yan Xin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China.,School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
35
|
Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm 2018; 542:253-265. [PMID: 29555438 DOI: 10.1016/j.ijpharm.2018.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Crosstalk among immune cells has attracted considerable attention with the advent of immunotherapy as a novel therapeutic approach for challenging diseases, especially cancer, which is the leading cause of mortality worldwide. Dendritic cells-the key antigen-presenting cells-play a pivotal role in immunological response by presenting exogenous epitopes to T cells, which induces the self-defense mechanisms of the body. Furthermore, nanotechnology has provided promising ways for diagnosing and treating cancer in the last decade. The progress in nanoparticle drug carrier development, combined with enhanced understanding of the immune system, has enabled harnessing of anti-tumor immunity. This review focuses on the recent advances in nanotechnology that have improved the therapeutic efficacy of immunotherapies, with emphasis on dendritic cell physiology and its role in presenting antigens and eliciting therapeutic T cell response.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
36
|
Study on the antigenicity of metallofullerenol: antibody production, characterization, and its enzyme immunoassay application. Anal Bioanal Chem 2017; 409:6575-6581. [DOI: 10.1007/s00216-017-0606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
37
|
Zhou Y, Deng R, Zhen M, Li J, Guan M, Jia W, Li X, Zhang Y, Yu T, Zou T, Lu Z, Guo J, Sun L, Shu C, Wang C. Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials 2017; 133:107-118. [DOI: 10.1016/j.biomaterials.2017.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 11/16/2022]
|
38
|
Himly M, Mills-Goodlet R, Geppert M, Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front Immunol 2017; 8:471. [PMID: 28487697 PMCID: PMC5403887 DOI: 10.3389/fimmu.2017.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
39
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|
40
|
Gómez-Gallego DM, Urcuqui-Inchima S, Hernández JC. Efecto inmunomodulador de nanopartículas usadas en nanomedicina. IATREIA 2016. [DOI: 10.17533/udea.iatreia.v29n4a06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Guan M, Li J, Jia Q, Ge J, Chen D, Zhou Y, Wang P, Zou T, Zhen M, Wang C, Shu C. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Adv Healthc Mater 2016; 5:2283-94. [PMID: 27385651 DOI: 10.1002/adhm.201600402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Nanocarbons such as carbon nanotubes, graphene derivatives, and carbon nanohorns have illustrated their potential uses as cancer theranostics owing to their intrinsic fluorescence or NIR absorbance as well as superior cargo loading capacity. However, some problems still need to be addressed, such as the fates and long-term toxicology of different nanocarbons in vivo and the improvement of their performance in various biomedical imaging-guided cancer therapy systems. Herein, a versatile and clearable nanocarbon theranostic based on carbon dots (CDs) and gadolinium metallofullerene nanocrystals (GFNCs) is first developed, in which GFNCs enhance the tumor accumulation of CDs, and CDs enhance the relaxivity of GFNCs, leading to an efficient multimodal imaging-guided photodynamic therapy in vivo without obvious long-term toxicity. Furthermore, biochemical analysis reveals that the novel nanotheranostic can harmlessly eliminate from the body in a reasonable period of time after exerting diagnostic and therapeutic function.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Jie Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Mingming Zhen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| |
Collapse
|
42
|
Maji M, Mazumder S, Bhattacharya S, Choudhury ST, Sabur A, Shadab M, Bhattacharya P, Ali N. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells. Sci Rep 2016; 6:27206. [PMID: 27251373 PMCID: PMC4890172 DOI: 10.1038/srep27206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.
Collapse
Affiliation(s)
- Mithun Maji
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Saumyabrata Mazumder
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Souparno Bhattacharya
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Somsubhra Thakur Choudhury
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abdus Sabur
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Md Shadab
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Pradyot Bhattacharya
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Nahid Ali
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
43
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
44
|
Guan WJ, Zhao P, Li QZ, Nagase S, Ehara M, Zhao X. Sc3N@Cs(39715)–C82: a missing isomer linked to Sc3N@C2v(39718)–C82 by a single step Stone–Wales transformation. RSC Adv 2016. [DOI: 10.1039/c6ra12774f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Density functional theory combined with statistical mechanics calculations indicate that Sc3N@C2v(39718)–C82 and Sc3N@Cs(39715)–C82 linked by a single Stone–Wales transformation can be obtained at the fullerene formation temperature region.
Collapse
Affiliation(s)
- Wen-Juan Guan
- Institute for Chemical Physics and Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment
- Xi'an Jiaotong University
- Xi'an 710049
| | - Pei Zhao
- Institute for Chemical Physics and Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment
- Xi'an Jiaotong University
- Xi'an 710049
| | - Qiao-Zhi Li
- Institute for Chemical Physics and Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment
- Xi'an Jiaotong University
- Xi'an 710049
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | | | - Xiang Zhao
- Institute for Chemical Physics and Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
45
|
Pohlit H, Bellinghausen I, Schömer M, Heydenreich B, Saloga J, Frey H. Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release. Biomacromolecules 2015; 16:3103-11. [PMID: 26324124 DOI: 10.1021/acs.biomac.5b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last decades, the number of allergic patients has increased dramatically. Allergen-specific immunotherapy (SIT) is the only available cause-oriented therapy so far. SIT reduces the allergic symptoms, but also exhibits some disadvantages; that is, it is a long-lasting procedure and severe side effects like anaphylactic shock can occur. In this work, we introduce a method to encapsulate allergens into nanoparticles to avoid severe side effects during SIT. Degradable nanocarriers combine the advantage of providing a physical barrier between the encapsulated cargo and the biological environment as well as responding to certain local stimuli (like pH) to release their cargo. This work introduces a facile strategy for the synthesis of acid-labile poly(ethylene glycol) (PEG)-macromonomers that degrade at pH 5 (physiological pH inside the endolysosome) and can be used for nanocarrier synthesis. The difunctional, water-soluble PEG dimethacrylate (PEG-acetal-DMA) macromonomers with cleavable acetal units were analyzed with 1H NMR, SEC, and MALDI-ToF-MS. Both the allergen and the macromonomers were entrapped inside liposomes as templates, which were produced by dual centrifugation (DAC). Radical polymerization of the methacrylate units inside the liposomes generated allergen-loaded PEG nanocarriers. In vitro studies demonstrated that dendritic cells (DCs) internalize the protein-loaded, nontoxic PEG-nanocarriers. Furthermore, we demonstrate by cellular antigen stimulation tests that the nanocarriers effectively shield the allergen cargo from detection by immunoglobulins on the surface of basophilic leucocytes. Uptake of nanocarriers into DCs does not lead to cell maturation; however, the internalized allergen was capable to induce T cell immune responses.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany.,Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Martina Schömer
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bärbel Heydenreich
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
46
|
Li X, Ren H, Yang X, Song J. Exploring the chemical bonding, infrared and UV-vis absorption spectra of OH radicals adsorption on the smallest fullerene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:258-265. [PMID: 25766372 DOI: 10.1016/j.saa.2015.02.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
In the present work, the density-functional theory calculations were performed on C20 hydroxylated fullerene. B3LYP functionals with 6-31G(d,p) basis set were utilized to gain insight into the bonding characters and intramolecular interactions of hydroxyl groups adsorbed on the cage. Interestingly, we observed that the C20 cage has the bonding patterns with spherical orbitals configuration [1S(2)1P(6)1D(10)1F(2)], and the adsorbed hydroxyl groups significantly affect the chemical bonding of the cage surface. Analysis of vertical electron affinities and vertical ionization potentials indicates that the polyhydroxylated derivative with eight hydroxyl groups is more stable than others. The intramolecular interaction of these derivatives considered here reveals that the more the hydroxyl groups in derivatives, the stronger the interaction in stabilizing structures. On the basis of theoretical studies, the hydroxyl groups largely enhance the infrared intensities, especially for the polyhydroxylated derivatives.
Collapse
Affiliation(s)
- Xiaojun Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi Province, PR China.
| | - Hongjiang Ren
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi Province, PR China.
| | - Xiaohui Yang
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi Province, PR China.
| | - Jing Song
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi Province, PR China
| |
Collapse
|
47
|
Omlor AJ, Nguyen J, Bals R, Dinh QT. Nanotechnology in respiratory medicine. Respir Res 2015; 16:64. [PMID: 26021823 PMCID: PMC4456054 DOI: 10.1186/s12931-015-0223-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 11/11/2022] Open
Abstract
Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.
Collapse
Affiliation(s)
- Albert Joachim Omlor
- Department of Experimental Pneumology and Allergology, Saarland University Hospital and Saarland University Faculty of Medicine, Kirrberger Strasse, Geb. 61.4, 66421, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY Buffalo, New York, USA
| | - Robert Bals
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Hospital and Saarland University Faculty of Medicine, Kirrberger Strasse, Geb. 61.4, 66421, Homburg/Saar, Germany. .,Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Homburg/Saar, Germany.
| |
Collapse
|
48
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 826] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
49
|
Balogh LP. Caging cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:867-9. [DOI: 10.1016/j.nano.2015.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 02/05/2023]
|
50
|
Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 2015; 53:574-82. [PMID: 25890753 DOI: 10.1016/j.biomaterials.2015.02.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/04/2023]
Abstract
Phagocytes are important players in host exposure to nanomaterials. Macrophages in particular are believed to be among the "first responders" and primary cell types that uptake and process nanoparticles, mediating host biological responses by subsequent interactions with inflammatory signaling pathways and immune cells. However, variations in local microenvironmental cues can significantly change the functional and phenotype of these cells, impacting nanoparticle uptake and overall physiological response. Herein we focus on describing the response of specific RAW 264.7 macrophage phenotypes (M1, INF-gamma/LPS induced and M2, IL-4 induced) to Stöber silica nanoparticle exposure in vitro and how this response might correlate with macrophage response to nanoparticles in vivo. It was observed that variations in macrophage phenotype produce significant differences in macrophage morphology, silica nanoparticle uptake and toxicity. High uptake was observed in M1, versus low uptake in M2 cells. M2 cells also displayed more susceptibility to concentration dependent proliferative effects, suggesting potential M1 involvement in in vivo uptake. Nanoparticles accumulated within liver and spleen tissues, with high association with macrophages within these tissues and an overall Th1 response in vivo. Both in vitro and in vivo studies are consistent in demonstrating that silica nanoparticles exhibit high macrophage sequestration, particularly those with Th1/M1 phenotype and in clearance organs. This sequestration and phenotypic response should be a primary consideration when designing new Stöber silica nanoparticle systems, as it might affect the overall efficacy.
Collapse
|