1
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Dey M, Bera S, Tyagi P, Pal L. Mechanisms and strategic prospects of cannabinoids use: Potential applications in antimicrobial food packaging-A review. Compr Rev Food Sci Food Saf 2025; 24:e70113. [PMID: 39840610 DOI: 10.1111/1541-4337.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
This review focuses on antimicrobial packaging for food safety, critically examining the activity and efficacy of cannabinoids against commonly found microorganisms and exploring their antimicrobial mechanisms. Specifically, the review considers cannabinoids derived from industrial hemp plants, which are characterized by low levels of psychoactive components. It also outlines viable strategies to control the sustained release of cannabinoids from the packaging, enabling extended storage and enhanced safety of food products. Research demonstrates that cannabinoids are effective against both foodborne bacteria and fungi, with their antimicrobial action primarily attributed to microbial membrane instability. Cannabinoids can be utilized to prepare effective antimicrobial films and edible coatings; however, the number of studies in this area remains limited. The potential of cannabinoids to contribute to intelligent packaging systems is also discussed, with an emphasis on the regulatory aspects and challenges associated with incorporating cannabinoids into food packaging. Finally, the review identifies future research directions to address current limitations and advance hemp-based antimicrobial food packaging solutions.
Collapse
Affiliation(s)
- Moumita Dey
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| | - Sharmita Bera
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| | - Preeti Tyagi
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
- Global R&D Transformation, Mars Snacking, Mars Wrigley, Chicago, Illinois, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Benes F, Binova Z, Zlechovcova M, Maly M, Stranska M, Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Res Int 2024; 190:114487. [PMID: 38945557 DOI: 10.1016/j.foodres.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
Collapse
Affiliation(s)
- Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
4
|
Geweda MM, Majumdar CG, Moore MN, Elhendawy MA, Radwan MM, Chandra S, ElSohly MA. Evaluation of dispensaries' cannabis flowers for accuracy of labeling of cannabinoids content. J Cannabis Res 2024; 6:11. [PMID: 38461280 PMCID: PMC10924369 DOI: 10.1186/s42238-024-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/15/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Cannabis policies have changed drastically over the last few years with many states enacting medical cannabis laws, and some authorizing recreational use; all against federal laws. As a result, cannabis products are marketed in dispensaries in different forms, most abundantly as flowers intended for smoking and sometimes vaping. All samples used in this study were obtained directly from law enforcement. The sample collection process was facilitated and funded by the National Marijuana Initiative (NMI), part of the High-Intensity Drug Trafficking Area (HIDTA) program. This initial report focuses on cannabis flowers. Similar studies with other cannabis products will be the subject of a future report. METHODS A total of 107 Δ9-THC cannabis flower samples were collected by law enforcement from adult commercial use cannabis dispensaries, located in three different states (Colorado, Oregon, and California) and analyzed in this study for cannabinoid concentration. Samples were analyzed by GC-FID following our previously published procedure. DISCUSSION The label claims for total Δ9-THC content ranged from 12.04 to 58.20% w/w, while GC-FID results showed a concentration ranging from 12.95 to 36.55% w/w. Of the evaluated 107 products, only 32 samples have Δ9-THC content within ± 20% of the labeled content. However, the remaining 75 samples were found to be out of the ± 20% acceptance criteria. The degree of agreement for the tested samples using ± 20% tolerance with label claims was only 30%. The results of this study indicate that there is a need for more stringent regulations to ensure that product labeling is accurate, as 70% of the evaluated products did not meet the ± 20% acceptance criteria. This highlights the importance of healthcare professionals and patients being vigilant about the Δ9-THC content, as inaccurate labeling of cannabis products could potentially result in adverse health effects. Furthermore, there is a pressing need for more rigorous regulation of commercial cannabis products in the United States.
Collapse
Affiliation(s)
- Mona M Geweda
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Chandrani G Majumdar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Malorie N Moore
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mostafa A Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, University, 38677, USA
- Department of Agricultural Biotechnology, Damietta University, Damietta, 34517, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
5
|
Wolfe TJ, Kruse NA, Radwan MM, Wanas AS, Sigworth KN, ElSohly MA, Hammer NI. A study of major cannabinoids via Raman spectroscopy and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123133. [PMID: 37473664 DOI: 10.1016/j.saa.2023.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Cannabinoids, a class of molecules specific to the cannabis plant, are some of the most relevant molecules under study today due to their widespread use and varying legal status. Here, we present Raman spectra of a series of eleven cannabinoids and compare them to simulated spectra from density functional theory computations. The studied cannabinoids include three cannabinoid acids (Δ9-THC acid, CBD acid, and CBG acid) and eight neutral ones (Δ9-THC, CBD, CBG, CBDVA, CBDV, Δ8-THC, CBN and CBC). All cannabinoids have been isolated from cannabis plant gown at the University of Mississippi. The data presented in this work represents the most resolved experimental and highest-level simulated spectra available to date for each cannabinoid. All cannabinoids displayed higher peak separation in the experimental spectra than CBGA, which is most likely attributable to physical composition of the samples. The overall agreement between the experimental and simulated spectra is good, however for certain vibrational modes, especially those in the -OH stretching region, deviations are observed due to hydrogen bonding, suggesting that the OH stretching region is a good probe for decarboxylation reactions in these and related species.
Collapse
Affiliation(s)
- Trevor J Wolfe
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Amira S Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Kalee N Sigworth
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA.
| |
Collapse
|
6
|
Gilmore AM, Elhendawy MA, Radwan MM, Kidder LH, Wanas AS, Godfrey M, Hildreth JB, Robinson AE, ElSohly MA. Absorbance-Transmittance Excitation Emission Matrix Method for Quantification of Major Cannabinoids and Corresponding Acids: A Rapid Alternative to Chromatography for Rapid Chemotype Discrimination of Cannabis sativa Varieties. Cannabis Cannabinoid Res 2023; 8:911-922. [PMID: 35486823 PMCID: PMC10589469 DOI: 10.1089/can.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Phytocannabinoids naturally occur in the cannabis plant (Cannabis sativa), and Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) predominate. There is a need for rapid inexpensive methods to quantify total THC (for statutory definition) and THC-CBD ratio (for classification into three chemotypes). This study explores the capabilities of a spectroscopic technique that combines ultraviolet-visible and fluorescence, absorbance-transmittance excitation emission matrix (A-TEEM). Methods: The A-TEEM technique classifies 49 dry flower extracts into three C. sativa chemotypes, and quantifies the total THC-CBD ratio, using validated gas chromatography (GC)-flame ionization (FID) and High-Performance Liquid Chromatography (HPLC) methods for reference. Multivariate methods used are principal components analysis for a chemotype classification, extreme gradient boost (XGB) discriminant analysis (DA) to classify unknown samples by chemotype, and XGB regression to quantify total THC and CBD content using GC-FID and HPLC data on the same samples. Results: The A-TEEM technique provides robust classification of C. sativa samples, predicting chemotype classification, defined by THC-CBD content, of unknown samples with 100% accuracy. In addition, A-TEEM can quantify total THC and CBD levels relevant to statutory determination, with limit of quantifications (LOQs) of 0.061% (THC) and 0.059% (CBD), and high cross-validation (>0.99) and prediction (>0.99), using a GC-FID method for reference data; and LOQs of 0.026% (THC) and 0.080% (CBD) with high cross-validation (>0.98) and prediction (>0.98), using an HPLC method for reference data. A-TEEM is highly predictive in separately quantifying acid and neutral forms of THC and CBD with HPLC reference data. Conclusions: The A-TEEM technique provides a sensitive method for the qualitative and quantitative characterization of the major cannabinoids in solution, with LOQs comparable with GC-FID and HPLC, and high values of cross-validation and prediction. As a spectroscopic technique, it is rapid, with data acquisition <45 sec per measurement; sample preparation is simple, requiring only solvent extraction. A-TEEM has the sensitivity to resolve and quantify cannabinoids in solution based on their unique spectral characteristics. Discrimination of legal and illegal chemotypes can be rapidly verified using XGB DA, and quantitation of statutory levels of total THC and total CBD comparable with GC-FID and HPLC can be obtained using XBD regression.
Collapse
Affiliation(s)
| | - Mostafa A. Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | | | - Amira S. Wanas
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
| | | | | | - Mahmoud A. ElSohly
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
7
|
Fordjour E, Manful CF, Sey AA, Javed R, Pham TH, Thomas R, Cheema M. Cannabis: a multifaceted plant with endless potentials. Front Pharmacol 2023; 14:1200269. [PMID: 37397476 PMCID: PMC10308385 DOI: 10.3389/fphar.2023.1200269] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Cannabis sativa, also known as "hemp" or "weed," is a versatile plant with various uses in medicine, agriculture, food, and cosmetics. This review attempts to evaluate the available literature on the ecology, chemical composition, phytochemistry, pharmacology, traditional uses, industrial uses, and toxicology of Cannabis sativa. So far, 566 chemical compounds have been isolated from Cannabis, including 125 cannabinoids and 198 non-cannabinoids. The psychoactive and physiologically active part of the plant is a cannabinoid, mostly found in the flowers, but also present in smaller amounts in the leaves, stems, and seeds. Of all phytochemicals, terpenes form the largest composition in the plant. Pharmacological evidence reveals that the plants contain cannabinoids which exhibit potential as antioxidants, antibacterial agents, anticancer agents, and anti-inflammatory agents. Furthermore, the compounds in the plants have reported applications in the food and cosmetic industries. Significantly, Cannabis cultivation has a minimal negative impact on the environment in terms of cultivation. Most of the studies focused on the chemical make-up, phytochemistry, and pharmacological effects, but not much is known about the toxic effects. Overall, the Cannabis plant has enormous potential for biological and industrial uses, as well as traditional and other medicinal uses. However, further research is necessary to fully understand and explore the uses and beneficial properties of Cannabis sativa.
Collapse
Affiliation(s)
- Eric Fordjour
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, ON, Canada
| | - Charles F. Manful
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Albert A. Sey
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, ON, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| |
Collapse
|
8
|
Araujo dos Santos N, Kerpel dos Santos M, Almirall J, Romão W. Cannabinomics studies – A review from colorimetric tests to modern analytical techniques: Part II. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Vadhel A, Kumar A, Bashir S, Malik T, Mohan A. Synergistic and non-synergistic impact of HAP-based nano fertilizer and PGPR for improved nutrient utilization and metabolite variation in hemp crops. ENVIRONMENTAL SCIENCE: NANO 2023; 10:3101-3110. [DOI: 10.1039/d3en00380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Nanofertilizer prepared with urea-hydroxyapatite amalgamation along with PGPR promotes urea availability over longer period of plant growth and reduces wasteful urea expense in soil, curtailing environmental pollution.
Collapse
Affiliation(s)
- Agrataben Vadhel
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Sabreen Bashir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
10
|
Zhang SS, Zhang NN, Guo TT, Sheen LY, Ho CT, Bai NS. The impact of phyto- and endo-cannabinoids on central nervous system diseases:A review. J Tradit Complement Med 2022; 13:30-38. [PMID: 36685079 PMCID: PMC9845650 DOI: 10.1016/j.jtcme.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background and aim Cannabis sativa L. is a medicinal plant with a long history. Phyto-cannabinoids are a class of compounds from C. sativa L. with varieties of structures. Endocannabinoids exist in the human body. This article provides an overview of natural cannabinoids (phyto-cannabinoids and endocannabinoids) with an emphasis on their pharmacology activities. Experimental procedure The keywords "Cannabis sativa L″, "cannabinoids", and "central nervous system (CNS) diseases" were used for searching and collecting pieces of literature from PubMed, ScienceDirect, Web of Science, and Google Scholar. The data were extracted and analyzed to explore the effects of cannabinoids on CNS diseases. Result and conclusion In this paper, schematic diagrams are used to intuitively show the phyto-cannabinoids skeletons' mutual conversion and pharmacological activities, with special emphasis on their relevant pharmacological activities on central nervous system (CNS) diseases. It was found that the endocannabinoid system and microglia play a crucial role in the treatment of CNS diseases. In the past few years, pharmacological studies focused on Δ9-THC, CBD, and the endocannabinoids system. It is expected to encourage new studies on a more deep exploration of other types of cannabinoids and the mechanism of their pharmacological activities in the future.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Tian-Tian Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA,Corresponding author.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,Corresponding author.
| |
Collapse
|
11
|
Žitek T, Kotnik P, Makoter T, Postružnik V, Knez Ž, Knez Marevci M. Optimisation of the Green Process of Industrial Hemp-Preparation and Its Extract Characterisation. PLANTS (BASEL, SWITZERLAND) 2022; 11:1749. [PMID: 35807701 PMCID: PMC9269414 DOI: 10.3390/plants11131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural medicines and products are becoming increasingly important in the pharmaceutical and food industries. The most important step in obtaining a natural remedy is the processing of the natural material. This study offers the separation of the industrial hemp plant into fractions by mechanical treatment, which has a significant impact on the selectivity of the obtained fractions. This study also offers a solution to reduce waste by fractionating industrial hemp, focusing on the fraction with the highest cannabinoid content (49.5% of CBD). The study confirmed the anticancer potential of the extract, which prevents further division of WM-266-4 melanoma cells at a concentration of 10-3 mg/mL. However, application of the extract (c = 10-3 mg/mL) to normal human epidermal melanocytes proved to be insignificant, as the metabolic activity of the cells was the same as in the control cell group.
Collapse
Affiliation(s)
- Taja Žitek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Teo Makoter
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Vesna Postružnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| |
Collapse
|
12
|
Martinelli G, Magnavacca A, Fumagalli M, DellʼAgli M, Piazza S, Sangiovanni E. Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids. PLANTA MEDICA 2022; 88:492-506. [PMID: 33851375 DOI: 10.1055/a-1420-5780] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.
Collapse
Affiliation(s)
- Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Andrea Magnavacca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Mario DellʼAgli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Chianese G, Sirignano C, Benetti E, Marzaroli V, Collado JA, de la Vega L, Appendino G, Muñoz E, Taglialatela-Scafati O. A Nrf-2 Stimulatory Hydroxylated Cannabidiol Derivative from Hemp ( Cannabis sativa). JOURNAL OF NATURAL PRODUCTS 2022; 85:1089-1097. [PMID: 35316044 PMCID: PMC9040056 DOI: 10.1021/acs.jnatprod.1c01198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Indexed: 05/27/2023]
Abstract
A phytochemical analysis of mother liquors obtained from crystallization of CBD from hemp (Cannabis sativa), guided by LC-MS/MS and molecular networking profiling and completed by isolation and NMR-based characterization of constituents, resulted in the identification of 13 phytocannabinoids. Among them, anhydrocannabimovone (5), isolated for the first time as a natural product, and three new hydroxylated CBD analogues (1,2-dihydroxycannabidiol, 6, 3,4-dehydro-1,2-dihydroxycannabidiol, 7, and hexocannabitriol, 8) were obtained. Hexocannabitriol (8) potently modulated, in a ROS-independent way, the Nrf2 pathway, outperforming all other cannabinoids obtained in this study and qualifying as a potential new chemopreventive chemotype against cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmina Sirignano
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | - Juan A. Collado
- Instituto
Maimónides de Investigación Biomédica de Córdoba
(IMIBIC), Avenida Menéndez
Pidal, s/n, 14004 Córdoba, Spain
- Departamento
de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain, and Hospital
Universitario Reina Sofía, 14014 Córdoba, Spain
| | - Lauren de la Vega
- Jacqui
Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, James Arnott Drive, Ninewells Hospital, DD2 1UB Dundee, U.K.
| | - Giovanni Appendino
- Dipartimento
di Scienze del Farmaco, Università
del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Eduardo Muñoz
- Instituto
Maimónides de Investigación Biomédica de Córdoba
(IMIBIC), Avenida Menéndez
Pidal, s/n, 14004 Córdoba, Spain
- Departamento
de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain, and Hospital
Universitario Reina Sofía, 14014 Córdoba, Spain
| | - Orazio Taglialatela-Scafati
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
14
|
Hemp and Its Derivatives as a Universal Industrial Raw Material (with Particular Emphasis on the Polymer Industry)-A Review. MATERIALS 2022; 15:ma15072565. [PMID: 35407897 PMCID: PMC9000560 DOI: 10.3390/ma15072565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
This review article provides basic information about cannabis, its structure, and its impact on human development at the turn of the century. It also contains a brief description of the cultivation and application of these plants in the basic branches of the economy. This overview is also a comprehensive collection of information on the chemical composition of individual cannabis derivatives. It contains the characteristics of the chemical composition as well as the physicochemical and mechanical properties of hemp fibers, oil, extracts and wax, which is unique compared to other review articles. As one of the few articles, it approaches the topic in a holistic and evolutionary way, moving through the plant’s life cycle. Its important element is examples of the use of hemp derivatives in polymer composites based on thermoplastics, elastomers and duroplasts and the influence of these additives on their properties, which cannot be found in other review articles on this subject. It indicates possible directions for further technological development, with particular emphasis on the pro-ecological aspects of these plants. It indicates the gaps and possible research directions in basic knowledge on the use of hemp in elastomers.
Collapse
|
15
|
Odieka AE, Obuzor GU, Oyedeji OO, Gondwe M, Hosu YS, Oyedeji AO. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022; 27:1689. [PMID: 35268790 PMCID: PMC8911748 DOI: 10.3390/molecules27051689] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.
Collapse
Affiliation(s)
- Anwuli Endurance Odieka
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Gloria Ukalina Obuzor
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria;
| | | | - Mavuto Gondwe
- Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Yiseyon Sunday Hosu
- Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
16
|
Shekhar C, Satyanarayana G. Pd‐Catalyzed Suzuki Coupling & NIS‐Mediated Dehydrogenative Cylco‐etherification: A Concise Approach to 6,6‐Disubstituted 6H‐benzo[c]chromenes & Total Synthesis of Didehydroconicol. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chander Shekhar
- Indian Institute of Technology Hyderabad Chemistry kandi 502285 sangareddy INDIA
| | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad Chemistry KandiSangareddy District 502 285 Hyderabad INDIA
| |
Collapse
|
17
|
Mirlohi S, Bladen C, Santiago M, Connor M. Modulation of Recombinant Human T-Type Calcium Channels by Δ 9-Tetrahydrocannabinolic Acid In Vitro. Cannabis Cannabinoid Res 2022; 7:34-45. [PMID: 33998881 PMCID: PMC8864432 DOI: 10.1089/can.2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, and CaV3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis and also directly modulates T-type ICa; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ9-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels. Materials and Methods: We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of ICa. Results: THCA and THC inhibited the peak current amplitude CaV3.1 with pEC50s of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of CaV3.1, and both drugs prolonged CaV3.1 deactivation kinetics. THCA (10 μM) inhibited CaV3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of CaV3.2. THC prolonged the deactivation time of CaV3.2, while THCA did not. THCA inhibited the peak current of CaV3.3 by 43%±2% (10 μM) but did not notably affect CaV3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in CaV3.3 steady-state inactivation. Discussion: THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia.,*Address correspondence to: Mark Connor, PhD, Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia,
| |
Collapse
|
18
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Datta S, Ramamurthy PC, Anand U, Singh S, Singh A, Dhanjal DS, Dhaka V, Kumar S, Kapoor D, Nandy S, Kumar M, Koshy EP, Dey A, Proćków J, Singh J. Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi J Biol Sci 2021; 28:7290-7313. [PMID: 34867033 PMCID: PMC8626265 DOI: 10.1016/j.sjbs.2021.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa, widely known as 'Marijuana' poses a dilemma for being a blend of both good and bad medicinal effects. The historical use of Cannabis for both medicinal and recreational purposes suggests it to be a friendly plant. However, whether the misuse of Cannabis and the cannabinoids derived from it can hamper normal body physiology is a focus of ongoing research. On the one hand, there is enough evidence to suggest that misuse of marijuana can cause deleterious effects on various organs like the lungs, immune system, cardiovascular system, etc. and also influence fertility and cause teratogenic effects. However, on the other hand, marijuana has been found to offer a magical cure for anorexia, chronic pain, muscle spasticity, nausea, and disturbed sleep. Indeed, most recently, the United Nations has given its verdict in favour of Cannabis declaring it as a non-dangerous narcotic. This review provides insights into the various health effects of Cannabis and its specialized metabolites and indicates how wise steps can be taken to promote good use and prevent misuse of the metabolites derived from this plant.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab 144001, India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Amritpal Singh
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Government Dental College and Hospital, Amphala, Jammu 180012, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vaishali Dhaka
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Manoj Kumar
- Department of Life Sciences, School of Natural Science, Central University of Jharkhand, Brambe, Ratu-Lohardaga Road Ranchi, Jharkhand 835205, India
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Joginder Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
20
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
21
|
Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021; 13:pharmaceutics13111823. [PMID: 34834237 PMCID: PMC8625816 DOI: 10.3390/pharmaceutics13111823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors. Recent research has shown that major phytocannabinoids and their derivatives also interact with non-cannabinoid receptors such as vanilloid receptor 1, transient receptor ankyrin 1 potential, peroxisome proliferator-activated receptor-gamma or glitazone receptor, G55 protein-coupled receptor, and nuclear receptor, producing pharmacological effects in diseases such as Alzheimer's, epilepsy, depression, neuropathic pain, cancer, and diabetes. Nonetheless, further studies are needed to elucidate the precise mechanisms of these compounds. Structure modulation of phytocannabinoids, in order to improve pharmacological effects, should not be limited to the exploration of cannabinoid receptors, and it should target other courses of action discovered through recent research.
Collapse
|
22
|
Abstract
Introduction: Cannabis is a valuable plant, cultivated by humans for millennia. However, it has only been in the past several decades that biologists have begun to clarify the interesting Cannabis biosynthesis details, especially the production of its fascinating natural products termed acidic cannabinoids. Discussion: Acidic cannabinoids can experience a common organic chemistry reaction known as decarboxylation, transforming them into structural analogues referred to as neutral cannabinoids with far different pharmacology. This review addresses acidic and neutral cannabinoid structural pairs, when and where acidic cannabinoid decarboxylation occurs, the kinetics and mechanism of the decarboxylation reaction as well as possible future directions for this topic. Conclusions: Acidic cannabinoid decarboxylation is a unique transformation that has been increasingly investigated over the past several decades. Understanding how acidic cannabinoid decarboxylation occurs naturally as well as how it can be promoted or prevented during harvesting or storage is important for the various stakeholders in Cannabis cultivation.
Collapse
Affiliation(s)
- Crist N Filer
- PerkinElmer Health Sciences Inc., Waltham, Massachusetts, USA
| |
Collapse
|
23
|
Tetrahydrocannabinether, A Novel Condensed Product of Δ9-THC from Cannabis sativa. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021; 26:2774. [PMID: 34066753 PMCID: PMC8125862 DOI: 10.3390/molecules26092774] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa is one of the oldest medicinal plants in the world. It was introduced into western medicine during the early 19th century. It contains a complex mixture of secondary metabolites, including cannabinoids and non-cannabinoid-type constituents. More than 500 compounds have been reported from C. sativa, of which 125 cannabinoids have been isolated and/or identified as cannabinoids. Cannabinoids are C21 terpeno-phenolic compounds specific to Cannabis. The non-cannabinoid constituents include: non-cannabinoid phenols, flavonoids, terpenes, alkaloids and others. This review discusses the chemistry of the cannabinoids and major non-cannabinoid constituents (terpenes, non-cannabinoid phenolics, and alkaloids) with special emphasis on their chemical structures, methods of isolation, and identification.
Collapse
Affiliation(s)
- Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Shahbaz Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA;
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
25
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
26
|
Rock EM, Parker LA. Constituents of Cannabis Sativa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:1-13. [PMID: 33332000 DOI: 10.1007/978-3-030-57369-0_1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified. There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified. Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder. This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
27
|
Žitek T, Leitgeb M, Golle A, Dariš B, Knez Ž, Knez Hrnčič M. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020; 25:E4992. [PMID: 33126621 PMCID: PMC7662229 DOI: 10.3390/molecules25214992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia;
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| |
Collapse
|
28
|
Li J, Wang G, Qin Y, Zhang X, Wang HF, Liu HW, Zhu LJ, Yao XS. Neuroprotective constituents from the aerial parts of Cannabis sativa L. subsp. sativa. RSC Adv 2020; 10:32043-32049. [PMID: 35518127 PMCID: PMC9056577 DOI: 10.1039/d0ra04565a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Five new compounds including three new cannabinoids, cannabisativas A-C (1-3), two new phenolic acids, (7Z,9Z)-cannabiphenolic acid A (4) and (8S,9Z)-cannabiphenolic acid B (5), together with twelve known compounds (6-17), were isolated from the aerial parts of Cannabis sativa L. subsp. sativa. The structures of 1-5 were established on the basis of extensive 1D, 2D NMR and HRESIMS analysis. The absolute configurations were determined by comparison between their experimental and calculated spectra of electronic circular dichroism (ECD) or the modified Mosher's method. The neuroprotective effects of the compounds 1-17 were evaluated on PC 12 cells. Compounds 12, 13 and 15 showed potential protective effects against H2O2-induced damage.
Collapse
Affiliation(s)
- Jia Li
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Guan Wang
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- State Key Laboratory of Biotherapy, Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Yu Qin
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xue Zhang
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Hai-Feng Wang
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Ling-Juan Zhu
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- State Key Laboratory of Biotherapy, Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Xin-Sheng Yao
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
29
|
Klahn P. Cannabinoids-Promising Antimicrobial Drugs orIntoxicants with Benefits? Antibiotics (Basel) 2020; 9:E297. [PMID: 32498408 PMCID: PMC7345649 DOI: 10.3390/antibiotics9060297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023] Open
Abstract
Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance. Extracts of Cannabis sativa have been used for the treatment of several diseasessince ancient times. However, its phytocannabinoid constituents are predominantly associated withpsychotropic effects and medical applications far beyond the treatment of infections. It has beendemonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositivebacteria including methicillin-resistant Staphylococcus aureus (MRSA). As first in vivoefficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promisingantimicrobial drug candidates or overhyped intoxicants with benefits.
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30,D-38106 Braunschweig, Germany
| |
Collapse
|
30
|
Fathordoobady F, Singh A, Kitts DD, Pratap Singh A. Hemp (Cannabis Sativa L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Farahnaz Fathordoobady
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anika Singh
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David D. Kitts
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap Singh
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Guo T, Liu Q, Hou P, Li F, Guo S, Song W, Zhang H, Liu X, Zhang S, Zhang J, Ho CT, Bai N. Stilbenoids and cannabinoids from the leaves of Cannabis sativa f. sativa with potential reverse cholesterol transport activity. Food Funct 2019; 9:6608-6617. [PMID: 30500001 DOI: 10.1039/c8fo01896k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new stilbenoids (1-3) and 16 known stilbenoids (4-6) and cannabinoids (7-19) were isolated from the leaves of hemp (Cannabis sativa L.). The structures of the three new compounds were identified as α,α'-dihydro-3',4,5'-trihydroxy-4'-methoxy-3-isopentenylstilbene (HM1), α,α'-dihydro-3,4',5-trihydroxy-4-methoxy-2,6-diisopentenylstilbene (HM2), and α,α'-dihydro-3',4,5'-trihydroxy-4'-methoxy-2',3-diisopentenylstilbene (HM3) by 1D and 2D NMR spectroscopy, LC-MS, and HRESIMS. The known α,α'-dihydro-3,4',5-trihydroxy-4,5'-diisopentenylstilbene (5) and combretastatin B-2 (6) were isolated for the first time from C. sativa f. sativa. These isolated compounds exhibited cytotoxic effects on human cancer cells via inhibiting the proliferation of cancer cells and inducing cell death. Among them, compounds 4, 5, 10, 12, 13, 15, and 19 displayed broad-spectrum cytotoxicity, and 1, 7, and 11 displayed selectivity in inhibition efficiency on MCF-7 and A549 cells, which suppressed the proliferation of cancer cells significantly by inducing cell death. The effects of compounds 1-3 on improving reverse cholesterol transport (RCT) were evaluated by isotope-tracing and western blotting. Results showed that the three stilbenoids showed a cytotoxicity above 1.0 mg L-1, especially that of HM3. They could improve [3H]-cholesterol efflux from Raw 264.7 macrophages to high density lipoproteins by enhancing the protein expression of ABCG1 and SR-B1, and HM1 and HM2 showed a significant difference compared with fenofibrate at 1.0 mg L-1. The three stilbenoids could also significantly improve the protein expression of ABCA1. Further study on HepG2 cells indicated that they improve the protein expression of LDLR, SR-B1 and CYP7A1, especially that of HM1 and HM3. However, they showed no significant effect on PCSK9. The above results indicated that these stilbenoids may elevate the transfer of cholesterol to hepatocytes by improving the protein expression of SR-B1 and LDLR, and the synthesis of bile acid by increasing the protein expression of CYP7A1. In conclusion, HM1 showed lower cytotoxicity and higher activity in improving the RCT-related protein expression. Our study suggests that it may be explored as a novel lipid-lowering drug and as a beneficial ingredient in health functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Falcão MAP, de Souza LS, Dolabella SS, Guimarães AG, Walker CIB. Zebrafish as an alternative method for determining the embryo toxicity of plant products: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35015-35026. [PMID: 30357668 DOI: 10.1007/s11356-018-3399-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The toxicological assessment of plant products and pharmaceutical chemicals is a necessary requirement to ensure that all compounds are safe to be exposed to humans. Many countries are trying to reduce the use of animals; thus, alternative techniques, such as ex vivo tests, in vitro assays, and ex uteri embryos, are used. Toxicological assays using zebrafish embryos are an advantageous technique because they are transparent, have rapid embryonic development, and do not require invasive techniques. This paper comprehensively reviews how toxicity testing with plant products is conducted in zebrafish embryos. The search terms zebra fish, Danio rerio, zebrafish, zebra danio, Brachydanio rerio, zebrafish, and embryos were used to search for English-language articles in PUBMED, SCOPUS, and WEB OF SCIENCE. Twelve articles on plant product toxicity studies using zebrafish were selected for reading and analysis. After analyzing the articles and comparing with results in mammals, it was possible to prove the similarity among the results and thus corroborate the further development of zebrafish as a valid tool in toxicity tests.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcão
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Lucas Santos de Souza
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Silvio Santana Dolabella
- Laboratory of Parasitology and Tropical Entomology, Department of Morphology, Federal University of Sergipe, Sâo Cristóvão, SE, Brazil
| | - Adriana Gibara Guimarães
- Laboratory of Neuroscience and Pharmacological Assays, Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
33
|
Zhu GY, Yang J, Yao XJ, Yang X, Fu J, Liu X, Bai LP, Liu L, Jiang ZH. (±)-Sativamides A and B, Two Pairs of Racemic Nor-Lignanamide Enantiomers from the Fruits of Cannabis sativa. J Org Chem 2018; 83:2376-2381. [DOI: 10.1021/acs.joc.7b02765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guo-Yuan Zhu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ji Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Yao
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xing Yang
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jing Fu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xin Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li-Ping Bai
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
34
|
Bysspectin A, an unusual octaketide dimer and the precursor derivatives from the endophytic fungus Byssochlamys spectabilis IMM0002 and their biological activities. Eur J Med Chem 2018; 145:717-725. [PMID: 29353723 DOI: 10.1016/j.ejmech.2018.01.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/21/2022]
Abstract
Bysspectin A (1), a polyketide-derived octaketide dimer with a novel carbon skeleton, and two new precursor derivatives, bysspectins B and C (2 and 3), were obtained from an organic extract of the endophytic fungus Byssochlamys spectabilis that had been isolated from a leaf tissue of the traditional Chinese medicinal plant Edgeworthia chrysantha, together with a known octaketide, paecilocin A (4). Their structures were determined by HRMS, 1D and 2D NMR spectroscopic analysis. A plausible route for their biosynthetic pathway is proposed. Compounds 1-3 were tested for their antimicrobial activities. Only compound 3 was weakly active against Escherichia coli and Staphyloccocus aureus with MIC values of 32 and 64 μg/mL, respectively. Further, the inhibitory effects on human carboxylesterases (hCE1, hCE2) of compounds 1 and 4 were evaluated. The results demonstrated that bysspectin A (1) was a novel and highly selective inhibitor against hCE2 with the IC50 value of 2.01 μM. Docking simulation also demonstrated that active compound 1 created interaction with the Ser-288 (the catalytic amino-acid in the catalytic cavity) of hCE2 via hydrogen bonding, revealing its highly selective inhibition toward hCE2.
Collapse
|
35
|
Nadal X, del Río C, Casano S, Palomares B, Ferreiro‐Vera C, Navarrete C, Sánchez‐Carnerero C, Cantarero I, Bellido ML, Meyer S, Morello G, Appendino G, Muñoz E. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 2017; 174:4263-4276. [PMID: 28853159 PMCID: PMC5731255 DOI: 10.1111/bph.14019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ9 -tetahydrocannabinol acid (Δ9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ9 -THCA through modulation of PPARγ pathways. EXPERIMENTAL APPROACH The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdhQ111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). KEY RESULTS Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdhQ111/Q111 cells and by mutHtt-q94 in N2a cells. Δ9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. CONCLUSIONS AND IMPLICATIONS Δ9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Carmen del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | | | | | - Irene Cantarero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | | | | | - Giovanni Appendino
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleNovaraItaly
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| |
Collapse
|
36
|
Lewis M, Yang Y, Wasilewski E, Clarke HA, Kotra LP. Chemical Profiling of Medical Cannabis Extracts. ACS OMEGA 2017; 2:6091-6103. [PMID: 30023762 PMCID: PMC6044620 DOI: 10.1021/acsomega.7b00996] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/06/2017] [Indexed: 05/06/2023]
Abstract
Medical cannabis has been legally available for patients in a number of countries. Licensed producers produce a variety of cannabis strains with different concentrations of phytocannabinoids. Phytocannabinoids in medical cannabis are decarboxylated when subjected to heating for consumption by the patients or when extracted for preparing cannabis derivative products. There is little understanding of the true chemical composition of cannabis extracts, changes occurring during heating of the extracts, and their relevance to pharmacological effects. We investigated the extract from a popular commercial strain of medical cannabis, prior to and after decarboxylation, to understand the chemical profiles. A total of up to 62 compounds could be identified simultaneously in the extract derived from commercial cannabis, including up to 23 phytocannabinoids. Upon heating, several chemical changes take place, including the loss of carboxylic group from the acidic phytocannabinoids. This investigation attempts to reveal the chemical complexity of commercial medical cannabis extracts and the differences in the chemical composition of the native extract and the one subjected to heat. Comprehensive chemical analyses of medical cannabis extracts are needed for standardization, consistency, and, more importantly, an informed employment of this substance for therapeutic purposes.
Collapse
Affiliation(s)
- Melissa
M. Lewis
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Yi Yang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Ewa Wasilewski
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Hance A. Clarke
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Anesthesia, Faculty of Medicine, University
of Toronto, Toronto, Ontario, Canada M5G 1E2
| | - Lakshmi P. Kotra
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- E-mail: . Tel. (416) 581-7601. #5-356, PMCRT/MaRS Center,
101 College Street, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
37
|
Nasir B, Fatima H, Ahmed M, Phull AR, Ihsan-ul-Haq. Cannabis: A Prehistoric Remedy for the Deficits of Existing and Emerging Anticancer Therapies. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:82-93. [DOI: 10.14218/jerp.2017.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:1-36. [PMID: 28120229 DOI: 10.1007/978-3-319-45541-9_1] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC). The plant's behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant. Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and cannabigerol (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products. Today, more than 560 constituents have been identified in cannabis. The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer's, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.
Collapse
Affiliation(s)
- Mahmoud A ElSohly
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, 38655, USA.
| | - Mohamed M Radwan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Waseem Gul
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, 38655, USA
| | - Suman Chandra
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ahmed Galal
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
39
|
McPartland JM, MacDonald C, Young M, Grant PS, Furkert DP, Glass M. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two. Cannabis Cannabinoid Res 2017; 2:87-95. [PMID: 28861508 PMCID: PMC5510775 DOI: 10.1089/can.2016.0032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Introduction:Cannabis biosynthesizes Δ9-tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ9-tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB1). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB1 and hCB2 was measured in competition binding assays, using transfected HEK cells and [3H]CP55,940. Efficacy at hCB1 and hCB2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB1 and hCB2, equating to approximate Ki values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB1 and 125-fold greater affinity at hCB2. In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB1, suggestive of weak agonist activity, and no measurable efficacy at hCB2. Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact—from its inevitable decarboxylation into THC—and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB1 or CB2.
Collapse
Affiliation(s)
- John M McPartland
- GW Pharmaceuticals, Salisbury, United Kingdom.,Department of Family Medicine, University of Vermont, Burlington, Vermont
| | - Christa MacDonald
- Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Michelle Young
- Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Phillip S Grant
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Wang M, Wang YH, Avula B, Radwan MM, Wanas AS, Mehmedic Z, van Antwerp J, ElSohly MA, Khan IA. Quantitative Determination of Cannabinoids in Cannabis and Cannabis Products Using Ultra-High-Performance Supercritical Fluid Chromatography and Diode Array/Mass Spectrometric Detection. J Forensic Sci 2016; 62:602-611. [DOI: 10.1111/1556-4029.13341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Mei Wang
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
| | - Yan-Hong Wang
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
| | - Bharathi Avula
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
| | - Mohamed M. Radwan
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
- Department of Pharmacognosy; Faculty of Pharmacy; University of Alexandria; Alexandria Egypt
| | - Amira S. Wanas
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
- Department of Pharmacognosy; Faculty of Pharmacy; Minia University; Minia Egypt
| | - Zlatko Mehmedic
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
| | | | - Mahmoud A. ElSohly
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
- Department of Pharmaceutics and Drug Delivery; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
- Division of Pharmacognosy; Department of BioMolecular Science; School of Pharmacy; University of Mississippi; Oxford MS 38677 USA
- Department of Pharmacognosy; College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
41
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
42
|
Eltahawy NA, Ibrahim AK, Radwan MM, Zaitone SA, Gomaa M, ElSohly MA, Hassanean HA, Ahmed SA. Mechanism of action of antiepileptic ceramide from Red Sea soft coral Sarcophyton auritum. Bioorg Med Chem Lett 2016; 25:5819-24. [PMID: 26577694 DOI: 10.1016/j.bmcl.2015.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Chemical investigation of the Red Sea soft coral Sarcophyton auritum led to the isolation and structure elucidation of a new ceramide N-((2S,3R,4E,6E)-1,3-dihydroxyhenicosa-4,6-dien-2-yl)tridecanamide (1). Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The anticonvulsant activity of the isolated ceramide was measured in vivo using the pentylenetetrazole (PTZ)-induced seizure model, where it successfully antagonized the lethality of pentylenetetrazole in mice. In addition, the isolated ceramide showed good anxiolytic activity when used in the light–dark transition box and the elevated plus maze compared to diazepam. The molecular modeling studies for the antiepileptic and antianxiety mechanism of the isolated ceramide suggested a CNS depressing activity possibly through GABA and serotonin receptors modulation. The pharmacological activity of the ceramide involved agonistic activity on GABA-A receptors but not 5HT3 receptors.
Collapse
Affiliation(s)
- Nermeen A Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Richardson KA, Hester AK, McLemore GL. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system. Neurotoxicol Teratol 2016; 58:5-14. [PMID: 27567698 DOI: 10.1016/j.ntt.2016.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the intrauterine milieu via the introduction of exogenous CBs alter the fetal ECSS, predisposing the offspring to abnormalities in cognition and altered emotionality. Based on recent experimental evidence that we will review here, we argue that young women who become pregnant should immediately take a "pregnant pause" from using marijuana.
Collapse
Affiliation(s)
- Kimberlei A Richardson
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Allison K Hester
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Gabrielle L McLemore
- Morgan State University, Department of Biology-SCMMS, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States.
| |
Collapse
|
44
|
Kitamura M, Aragane M, Nakamura K, Watanabe K, Sasaki Y. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay. J Nat Med 2016; 71:86-95. [PMID: 27535292 DOI: 10.1007/s11418-016-1031-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/06/2016] [Indexed: 12/22/2022]
Abstract
In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.
Collapse
Affiliation(s)
- Masashi Kitamura
- Laboratory of Molecular Pharmacognosy, Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Forensic Science Laboratory, Ishikawa Prefectural Police H.Q., 1-1 Kuratsuki, Kanazawa, Ishikawa, 920-8553, Japan
| | - Masako Aragane
- Medicinal Plant Garden, Tokyo Metropolitan Institute of Public Health, 21-1 Nakajima-cho, Kodaira-Shi, Tokyo, 187-0033, Japan
| | - Kou Nakamura
- Medicinal Plant Garden, Tokyo Metropolitan Institute of Public Health, 21-1 Nakajima-cho, Kodaira-Shi, Tokyo, 187-0033, Japan
| | - Kazuhito Watanabe
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Yohei Sasaki
- Laboratory of Molecular Pharmacognosy, Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
45
|
Moreno-Sanz G. Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ 9-Tetrahydrocannabinolic Acid A. Cannabis Cannabinoid Res 2016; 1:124-130. [PMID: 28861488 PMCID: PMC5549534 DOI: 10.1089/can.2016.0008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Δ9-tetrahydrocannabinolic acid A (THCA-A) is the acidic precursor of Δ9-tetrahydrocannabinol (THC), the main psychoactive compound found in Cannabis sativa. THCA-A is biosynthesized and accumulated in glandular trichomes present on flowers and leaves, where it serves protective functions and can represent up to 90% of the total THC contained in the plant. THCA-A slowly decarboxylates to form THC during storage and fermentation and can further degrade to cannabinol. Decarboxylation also occurs rapidly during baking of edibles, smoking, or vaporizing, the most common ways in which the general population consumes Cannabis. Contrary to THC, THCA-A does not elicit psychoactive effects in humans and, perhaps for this reason, its pharmacological value is often neglected. In fact, many studies use the term “THCA” to refer indistinctly to several acid derivatives of THC. Despite this perception, many in vitro studies seem to indicate that THCA-A interacts with a number of molecular targets and displays a robust pharmacological profile that includes potential anti-inflammatory, immunomodulatory, neuroprotective, and antineoplastic properties. Moreover, the few in vivo studies performed with THCA-A indicate that this compound exerts pharmacological actions in rodents, likely by engaging type-1 cannabinoid (CB1) receptors. Although these findings may seem counterintuitive due to the lack of cannabinoid-related psychoactivity, a careful perusal of the available literature yields a plausible explanation to this conundrum and points toward novel therapeutic perspectives for raw, unheated Cannabis preparations in humans.
Collapse
Affiliation(s)
- Guillermo Moreno-Sanz
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, California
| |
Collapse
|
46
|
|
47
|
Hanuš LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep 2016; 33:1357-1392. [DOI: 10.1039/c6np00074f] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabis sativaL. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.
Collapse
Affiliation(s)
- Lumír Ondřej Hanuš
- Institute for Drug Research
- School of Pharmacy
- Faculty of Medicine
- Hebrew University
- Jerusalem 91120
| | - Stefan Martin Meyer
- Phytoplant Research S. L
- Rabanales 21 – The Science and Technology Park of Cordoba
- Cordoba
- Spain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba
- Reina Sofía University Hospital
- Department of Cell Biology, Physiology and Immunology
- University of Córdoba
- Córdoba
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale
- 28100 Novara
- Italy
| |
Collapse
|
48
|
Kitamura M, Aragane M, Nakamura K, Watanabe K, Sasaki Y. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa. Biol Pharm Bull 2016; 39:1144-9. [DOI: 10.1248/bpb.b16-00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masashi Kitamura
- Laboratory of Molecular Pharmacognosy, Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
- Forensic Science Laboratory, Ishikawa Prefectural Police H.Q
| | - Masako Aragane
- Medicinal Plant Garden, Tokyo Metropolitan Institute of Public Health
| | - Kou Nakamura
- Medicinal Plant Garden, Tokyo Metropolitan Institute of Public Health
| | | | - Yohei Sasaki
- Laboratory of Molecular Pharmacognosy, Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
49
|
Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA. Minor oxygenated cannabinoids from high potency Cannabis sativa L. PHYTOCHEMISTRY 2015; 117:194-199. [PMID: 26093324 PMCID: PMC4883105 DOI: 10.1016/j.phytochem.2015.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/24/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Nine oxygenated cannabinoids were isolated from a high potency Cannabis sativa L. variety. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR, HRMS and GC-MS. These minor compounds include four hexahydrocannabinols, four tetrahydrocannabinols, and one hydroxylated cannabinol, namely 9α-hydroxyhexahydrocannabinol, 7-oxo-9α-hydroxyhexa-hydrocannabinol, 10α-hydroxyhexahydrocannabinol, 10aR-hydroxyhexahydrocannabinol, Δ(9)-THC aldehyde A, 8-oxo-Δ(9)-THC, 10aα-hydroxy-10-oxo-Δ(8)-THC, 9α-hydroxy-10-oxo-Δ(6a,10a)-THC, and 1'S-hydroxycannabinol, respectively. The latter compound showed moderate anti-MRSa (IC50 10.0 μg/mL), moderate antileishmanial (IC50 14.0 μg/mL) and mild antimalarial activity against Plasmodium falciparum (D6 clone) and P. falciparum (W2 clone) with IC50 values of 3.4 and 2.3 μg/mL, respectively.
Collapse
Affiliation(s)
- Safwat A Ahmed
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samir A Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, United States.
| | - Desmond Slade
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexendria, Egypt
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, United States.
| |
Collapse
|
50
|
RETRACTED ARTICLE: Functionalized benzyls as selective κ-OR agonists. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|