1
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
2
|
Online hyphenation of centrifugal partition chromatography with countercurrent chromatography (CPC-CCC) and its application to the separation of saturated alkylresorcinols. Anal Bioanal Chem 2022; 414:5043-5051. [PMID: 35639138 PMCID: PMC9234026 DOI: 10.1007/s00216-022-04136-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Centrifugal partition chromatography (CPC) and countercurrent chromatography (CCC) are two preparative techniques mainly used for the isolation and purification of natural products. While CPC benefits from a larger sample capacity, CCC typically provides better peak resolutions and hereby higher purities. In this study, we aimed to combine both advantages by the direct linking of CPC and CCC which was achieved by installation of switching valves and connection tube. The hyphenated CPC-CCC setup was tested with major alkylresorcinols which were obtained from a transesterified and hydrogenated rye extract. Injections of 1- and 5-g samples into the individual CCC system confirmed the limited sample capacity because of immediate flooding with the 5-g sample (total loss of stationary phase). In comparison, the CPC system was stable with 5- and 10-g samples but the peak resolution with 1-g sample was poorer than with the CCC system. Injections of 5- and 10-g samples into the CPC-CCC system were successful. However, a sample load of 10 g resulted in lower purities of the alkylresorcinols (80% or less) due to peak tailing. By contrast, injection of 5-g sample provided high amounts of ~ 1.2 g alkylresorcinols with purities of > 95%.
Collapse
|
3
|
Jimoh TO, Costa BC, Chansriniyom C, Chaotham C, Chanvorachote P, Rojsitthisak P, Likhitwitayawuid K, Sritularak B. Three New Dihydrophenanthrene Derivatives from Cymbidium ensifolium and Their Cytotoxicity against Cancer Cells. Molecules 2022; 27:molecules27072222. [PMID: 35408617 PMCID: PMC9000781 DOI: 10.3390/molecules27072222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
From the aerial parts of Cymbidium ensifolium, three new dihydrophenanthrene derivatives, namely, cymensifins A, B, and C (1−3) were isolated, together with two known compounds, cypripedin (4) and gigantol (5). Their structures were elucidated by analysis of their spectroscopic data. The anticancer potential against various types of human cancer cells, including lung, breast, and colon cancers as well as toxicity to normal dermal papilla cells were assessed via cell viability and nuclear staining assays. Despite lower cytotoxicity in lung cancer H460 cells, the higher % apoptosis and lower % cell viability were presented in breast cancer MCF7 and colon cancer CaCo2 cells treated with 50 µM cymensifin A (1) for 24 h compared with the treatment of 50 µM cisplatin, an available chemotherapeutic drug. Intriguingly, the half-maximum inhibitory concentration (IC50) of cymensifin A in dermal papilla cells at >200 µM suggested its selective anticancer activity. The obtained information supports the further development of a dihydrophenanthrene derivative from C. ensifolium as an effective chemotherapy with a high safety profile for the treatment of various cancers.
Collapse
Affiliation(s)
- Tajudeen O. Jimoh
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.J.); (B.C.C.)
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala P.O. Box 7689, Uganda
| | - Bruno Cesar Costa
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.J.); (B.C.C.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.L.)
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.L.)
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.L.)
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
4
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
5
|
Malca-Garcia GR, Liu Y, Nikolić D, Friesen JB, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fitoterapia 2022; 156:105016. [PMID: 34416305 PMCID: PMC8742771 DOI: 10.1016/j.fitote.2021.105016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
The importance of Trifolium pratense L. as a dietary supplement and its use in traditional medicine prompted the preparation of a thorough metabolite profile. This included the identification and quantitation of principal constituents as well as low abundant metabolites that constitute the residual complexity (RC) of T. pratense bioactives. The purity and RC of isoflavonoid fractions from standardized red clover extract (RCE) was determined using an off-line combination of countercurrent separation (CCS) and two orthogonal analytical methodologies: quantitative 1H NMR spectroscopy with external calibration (EC-qHNMR) and LC-MS. A single-step hydrostatic CCS methodology (Centrifugal Partition Chromatography [CPC]) was developed that fractionated the isoflavonoids with a hexanes-ethyl acetate-methanol-water (HEMWat) 5.5/4.5/5/5, v/v solvent system (SS) into 75 fractions containing 3 flavonolignans, 2 isoflavonoid glycosides, as well as 17 isoflavonoids and related compounds. All metabolites were identified and quantified by qHNMR spectroscopy. The data led to the creation of a complete isoflavonoid profile to complement the biological evaluation. For example, fraction 69 afforded 90.5% w/w biochanin A (17), with 0.33% w/w of prunetin (16), and 0.76% w/w of maackiain (15) as residual components. Fraction 27 with 89.4% w/w formononetin (13) as the major component had, in addition, a residual complexity consisting of 3.37%, 0.73%, 0.68% w/w of pseudobaptigenin (11), kaempferol (10) and pratensein (8), respectively. Despite the relatively high resolving power of CPC, and not unexpectedly, the chromatographic fractions retained varying degrees of the original metabolomic diversity. Collectively, the extent of metabolomic diversity should be recognized and used to guide the development of isolation strategies, especially when generating samples for bioactivity evaluation. The simultaneous structural and quantitative characterization enabled by qNMR, supported by LC-MS measurements, enables the evaluation of a relatively large number of individual fractions and, thereby, advances both the chemical and biological evaluation of active principles in complex natural products.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Yang Liu
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division Street, River Forest, IL 60305, USA
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
7
|
Malca-Garcia GR, Liu Y, Dong H, Nikolić D, Friesen JB, Lankin DC, McAlpine J, Chen SN, Dietz BM, Pauli GF. Auto-hydrolysis of red clover as "green" approach to (iso)flavonoid enriched products. Fitoterapia 2021; 152:104878. [PMID: 33757846 DOI: 10.1016/j.fitote.2021.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division, River Forest, IL 60305, United States
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - James McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
8
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Li T, Hu S, Pang X, Wang J, Yin J, Li F, Wang J, Yang X, Xia B, Liu Y, Song W, Guo S. The marine-derived furanone reduces intracellular lipid accumulation in vitro by targeting LXRα and PPARα. J Cell Mol Med 2020; 24:3384-3398. [PMID: 31981312 PMCID: PMC7131916 DOI: 10.1111/jcmm.15012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have demonstrated that commercially available lipid-lowering drugs cause various side effects; therefore, searching for anti-hyperlipidaemic compounds with lower toxicity is a research hotspot. This study was designed to investigate whether the marine-derived compound, 5-hydroxy-3-methoxy-5-methyl-4-butylfuran-2(5H)-one, has an anti-hyperlipidaemic activity, and the potential underlying mechanism in vitro. Results showed that the furanone had weaker cytotoxicity compared to positive control drugs. In RAW 264.7 cells, the furanone significantly lowered ox-LDL-induced lipid accumulation (~50%), and its triglyceride (TG)-lowering effect was greater than that of liver X receptor (LXR) agonist T0901317. In addition, it significantly elevated the protein levels of peroxisome proliferator-activated receptors (PPARα) and ATP-binding cassette (ABC) transporters, which could be partially inhibited by LXR antagonists, GSK2033 and SR9243. In HepG2 cells, it significantly decreased oleic acid-induced lipid accumulation, enhanced the protein levels of low-density lipoprotein receptor (LDLR), ABCG5, ABCG8 and PPARα, and reduced the expression of sterol regulatory element-binding protein 2 (~32%). PPARα antagonists, GW6471 and MK886, could significantly inhibit the furanone-induced lipid-lowering effect. Furthermore, the furanone showed a significantly lower activity on the activation of the expression of lipogenic genes compared to T0901317. Taken together, the furanone exhibited a weak cytotoxicity but had powerful TC- and TG-lowering effects most likely through targeting LXRα and PPARα, respectively. These findings indicate that the furanone has a potential application for the treatment of dyslipidaemia.
Collapse
Affiliation(s)
- Ting Li
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Shu‐Mei Hu
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Xiao‐Yan Pang
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Jun‐feng Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Jia‐Yu Yin
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Fa‐Hui Li
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Jin Wang
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Xiao‐Qian Yang
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Bin Xia
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Yong‐Hong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Wei‐Guo Song
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| | - Shou‐Dong Guo
- Institute of Lipid Metabolism and AtherosclerosisSchool of PharmacyInnovative Drug Research CentreWeifang Medical UniversityWeifangChina
| |
Collapse
|
10
|
Zhang J, Tyler HL, Haron MH, Jackson CR, Pasco DS, Pugh ND. Macrophage activation by edible mushrooms is due to the collaborative interaction of toll-like receptor agonists and dectin-1b activating beta glucans derived from colonizing microorganisms. Food Funct 2019; 10:8208-8217. [PMID: 31701990 DOI: 10.1039/c9fo01707k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research supports the theory that the microbiome of plants and mushrooms produce potent activators of pathogen recognition receptors which are principal contributors to the stimulation of macrophages. We have previously reported that the in vitro macrophage stimulatory activity of water-soluble extracts from 13 different types of edible mushrooms is predominantly due to bacterial components originating from the naturally occurring bacterial communities within these materials. The purpose of the current study was to further investigate the bacterial-dependent activity of the water-soluble extracts and assess whether these 13 types of mushrooms contain water-insoluble beta glucans that activate the dectin-1b signaling pathway. Activity of the water-soluble extracts was predominantly due to Toll-like receptor 2 (TLR2) and TLR4 agonists. For dectin-1b-dependent activity (indicative of water-insoluble beta glucans), culinary mushrooms (Agaricus bisporus varieties) were essentially inactive, whereas most of the medicinal mushrooms (Lentinula edodes, Grifola frondosa, Hypsizygus marmoreus varieties, Flammulina velutipes) exhibited potent activation. A. bisporus samples with no detectable dectin-1b-dependent activity had yeast colony forming units that were 687 times lower than L. edodes exhibiting high activity, indicating that the active insoluble beta glucans are derived from colonizing yeast. In addition, co-stimulation of macrophages with the TLR agonists and insoluble beta glucan was found to result in a synergistic enhancement of in vitro cytokine production. Taken together, these findings indicate that the in vitro macrophage activating potential of edible mushrooms is due to the collaborative interaction of water-soluble TLR agonists (derived from colonizing bacteria) and water-insoluble beta glucans (derived from colonizing yeast).
Collapse
Affiliation(s)
- Jin Zhang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, P.O. Box 1848, University, MS 38677-1848, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Dzul-Beh ADJ, García-Sosa K, Uc-Cachón AH, Bórquez J, Loyola LA, Barrios-García HB, Peña-Rodríguez LM, Molina-Salinas GM. In vitro growth inhibition and bactericidal activity of spathulenol against drug-resistant clinical isolates of Mycobacterium tuberculosis. REVISTA BRASILEIRA DE FARMACOGNOSIA 2019. [DOI: 10.1016/j.bjp.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li C, Lin J, Wu P, Zhao R, Zou J, Zhou M, Jia L, Shao J. Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy. Bioconjug Chem 2018; 29:3495-3502. [DOI: 10.1021/acs.bioconjchem.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Li
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Pengyu Wu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Junjie Zou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Min Zhou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
13
|
Choules MP, Klein LL, Lankin DC, McAlpine JB, Cho SH, Cheng J, Lee H, Suh JW, Jaki BU, Franzblau SG, Pauli GF. Residual Complexity Does Impact Organic Chemistry and Drug Discovery: The Case of Rufomyazine and Rufomycin. J Org Chem 2018; 83:6664-6672. [PMID: 29792329 PMCID: PMC6006449 DOI: 10.1021/acs.joc.8b00988] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Residual complexity (RC) involves
the impact of subtle but critical structural and biological features on drug lead validation, including unexplained effects related to unidentified impurities. RC commonly plagues drug discovery efforts due to the inherent imperfections
of chromatographic separation methods. The new diketopiperazine, rufomyazine
(6), and the previously known antibiotic, rufomycin (7), represent a prototypical case of RC that (almost) resulted
in the misassignment of biological activity. The case exemplifies
that impurities well below the natural abundance of 13C
(1.1%) can be highly relevant and calls for advanced analytical characterization
of drug leads with extended molar dynamic ranges of >1:1,000 using
qNMR and LC-MS. Isolated from an actinomycete strain, 6 was originally found to be active against Mycobacterium
tuberculosis with a minimum inhibitory concentration (MIC)
of 2 μg/mL and high selectivity. As a part of lead validation,
the dipeptide was synthesized and surprisingly found to be inactive.
The initially observed activity was eventually attributed to
a very minor contamination (0.24% [m/m]) with a highly active cyclic
peptide (MIC ∼ 0.02 μM), subsequently identified as an
analogue of 7. This study illustrates the serious implications
RC can exert on organic chemistry and drug discovery, and what efforts
are vital to improve lead validation and efficiency, especially in
NP-related drug discovery programs.
Collapse
|
14
|
Synthesis and antimycobacterial activity of triterpeni≿ A-ring azepanes. Eur J Med Chem 2017; 143:464-472. [PMID: 29202408 DOI: 10.1016/j.ejmech.2017.11.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023]
Abstract
A series of A-ring azepanones and azepanes derived from betulonic, oleanonic and ursonic acids was synthesized and evaluated for their in vitro antimycobacterial activities against M. tuberculosis (MTB) H37Rv and SDR-TB in the National Institute of Allergy and Infectious Diseases. Triterpenic A-azepano-28-hydroxy-derivatives were synthesized by the reduction with LiAlH4 of triterpenic azepanones available from the Beckmann rearrangement of the corresponding C3-oximes. Modification of azepanes at NH-group and atoms С12, C20, C28 and C29 of triterpenic core led to the derivatives with oxo, epoxy, aminopropyl, oximino and acyl substituents. The primary assay of tested triterpenoids against MTB H37Rv demonstrated their MIC values ranged from 3.125 to >200 μM. Ursane type A-azepano-28-cinnamoates were the most active being 2 and 4 times more efficient than the initial 28-hydroxy-derivative. The follow-up testing revealed A-azepano-28-cinnamoyloxybetulin as a leader compound with MIC 2 and MBC 4 μM against MTB H37Rv and MICs 4, 1 and 1 μM against INH, RIF and OFX resistant strains, respectively. Five oleanane and ursane azepanes pronounced better activity than isoniazid against INH-R1 and rifampicin against INH-R2 strains. This work opens a new direction in the design and synthesis of new antitubercular agents basing on azepanotriterpenoids.
Collapse
|
15
|
Rozimamat R, Kehrimen N, Gao J, Ma HR, Aisa HA. Two new triterpenes from Euphorbia alatavica. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:966-973. [PMID: 28366017 DOI: 10.1080/10286020.2017.1307835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
A phytochemical investigation on Euphorbia alatavica Boiss resulted in the isolation of nine compounds, including two new ones, alatavolide and alatavoic acid (1-2). Chemical structures of these compounds were established on the basis of 1D, 2D NMR, and HR-MS techniques, and by comparison with data reported in the literature. Compounds 1, 2, 4, 6, 8, and 9 were screened for cytotoxicity using the MTT assay. Among these compounds, the new compound 2 showed moderate cytotoxicity against Hela, MCF-7 and A549 cell lines (IC50 values of 16.4 ± 3.2, 14.5 ± 2.8, 22.3 ± 3.1 μM, respectively), while the known compound 8 exhibited the most potent cytotoxicity with the IC50 values of 6.5 ± 3.1, 1.9 ± 0.9, 8.6 ± 3.5 μM, respectively.
Collapse
Affiliation(s)
- Rushangul Rozimamat
- a Key Laboratory of Plant Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
- c University of the Chinese Academy of Sciences , Beijing 100039 , China
| | - Nurmuhammat Kehrimen
- b State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Jie Gao
- a Key Laboratory of Plant Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Hai-Rong Ma
- b State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Haji Akber Aisa
- a Key Laboratory of Plant Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
- b State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| |
Collapse
|
16
|
Singh A, Venugopala KN, Khedr MA, Pillay M, Nwaeze KU, Coovadia Y, Shode F, Odhav B. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. J Biomol Struct Dyn 2017; 35:2654-2664. [PMID: 28278765 DOI: 10.1080/07391102.2016.1227725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Buddleja saligna (family Buddlejaceae) is a medicinal plant endemic to South Africa. Two isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were isolated from the leaves of B. saligna using silica gel column chromatography. Compounds oleanolic acid and ursolic acid were subjected to derivatization with acetic anhydride in the presence of pyridine to obtain oleanolic acid-3-acetate and ursolic acid-3-acetate, respectively. The structures of these compounds were fully characterized by detailed nuclear magnetic resonance (NMR) investigations, which included 1H and 13C NMR. Molecular docking studies predicted the free binding energy of the four triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of M. tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against Mycobacterium smegmatis, M. tuberculosis H37Rv (ATCC 25177), clinical isolates of multi-drug-resistant M. tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) using the Micro Alamar Blue Assay. Ursolic acid was isolated from this plant for the first time.
Collapse
Affiliation(s)
- Alveera Singh
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Katharigatta N Venugopala
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
| | - Mohammed A Khedr
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
- c Faculty of Pharmacy, Department of Pharmaceutical Chemistry , Helwan University , Ein Helwan, Cairo 11795 , Egypt
| | - Mellendran Pillay
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Kenneth U Nwaeze
- e Faculty of Pharmacy, Department of Pharmaceutical Chemistry , University of Lagos , Lagos 100213 , Nigeria
| | - Yacoob Coovadia
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Francis Shode
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Bharti Odhav
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| |
Collapse
|
17
|
Moreno-Anzúrez NE, Marquina S, Alvarez L, Zamilpa A, Castillo-España P, Perea-Arango I, Torres PN, Herrera-Ruiz M, Díaz García ER, García JT, Arellano-García J. A Cytotoxic and Anti-inflammatory Campesterol Derivative from Genetically Transformed Hairy Roots of Lopezia racemosa Cav. (Onagraceae). Molecules 2017; 22:E118. [PMID: 28085103 PMCID: PMC6155711 DOI: 10.3390/molecules22010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
The genetically transformed hairy root line LRT 7.31 obtained by infecting leaf explants of Lopezia racemosa Cav with the Agrobacterium rhizogenes strain ATCC15834/pTDT, was evaluated to identify the anti-inflammatory and cytotoxic compounds reported previously for the wild plant. After several subcultures of the LRT 7.31 line, the bio-guided fractionation of the dichloromethane-methanol (1:1) extract obtained from dry biomass afforded a fraction that showed important in vivo anti-inflammatory, and in vitro cytotoxic activities. Chemical separation of the active fraction allowed us to identify the triterpenes ursolic (1) and oleanolic (2) acids, and (23R)-2α,3β,23,28-tetrahydroxy-14,15-dehydrocampesterol (3) as the anti-inflammatory principles of the active fraction. A new molecule 3 was characterized by spectroscopic analysis of its tetraacetate derivative 3a. This compound was not described in previous reports of callus cultures, in vitro germinated seedlings and wild plant extracts of whole L. racemosa plants. The anti-inflammatory and cytotoxic activities displayed by the fraction are associated to the presence of compounds 1-3. The present study reports the obtaining of the transformed hairy roots, the bioguided isolation of the new molecule 3, and its structure characterization.
Collapse
Affiliation(s)
- Norma Elizabeth Moreno-Anzúrez
- Centro Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| | - Silvia Marquina
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur (IMSS), Argentina No. 1, Xochitepec Centro C.P. 62790, Morelos, Mexico.
| | - Patricia Castillo-España
- Centro Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| | - Irene Perea-Arango
- Centro Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| | - Pilar Nicasio Torres
- Centro de Investigación Biomédica del Sur (IMSS), Argentina No. 1, Xochitepec Centro C.P. 62790, Morelos, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur (IMSS), Argentina No. 1, Xochitepec Centro C.P. 62790, Morelos, Mexico.
| | - Edgar Rolando Díaz García
- Centro de Investigación Biomédica del Sur (IMSS), Argentina No. 1, Xochitepec Centro C.P. 62790, Morelos, Mexico.
| | - Jaime Tortoriello García
- Centro de Investigación Biomédica del Sur (IMSS), Argentina No. 1, Xochitepec Centro C.P. 62790, Morelos, Mexico.
| | - Jesús Arellano-García
- Centro Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col, Chamilpa C.P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
18
|
Coulerie P, Ratinaud Y, Moco S, Merminod L, Naranjo Pinta M, Boccard J, Bultot L, Deak M, Sakamoto K, Queiroz EF, Wolfender JL, Barron D. Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. JOURNAL OF NATURAL PRODUCTS 2016; 79:2856-2864. [PMID: 27792327 DOI: 10.1021/acs.jnatprod.6b00628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To identify natural bioactive compounds from complex mixtures such as plant extracts, efficient fractionation for biological screening is mandatory. In this context, a fully automated workflow based on two-dimensional liquid chromatography (2D-LC × LC) was developed, allowing for the production of hundreds of semipure fractions per extract. Moreover, the ELSD response was used for online sample weight estimation and automated concentration normalization for subsequent bioassays. To evaluate the efficiency of this protocol, an enzymatic assay was developed using AMP-activated protein kinase (AMPK). The activation of AMPK by nonactive extracts spiked with biochanin A, a known AMPK activator, was enhanced greatly when the fractionation workflow was applied compared to screening crude spiked extracts. The performance of the workflow was further evaluated on a red clover (Trifolium pratense) extract, which is a natural source of biochanin A. In this case, while the crude extract or 1D chromatography fractions failed to activate AMPK, semipure fractions containing biochanin A were readily localized when produced by the 2D-LC×LC-ELSD workflow. The automated fractionation methodology presented demonstrated high efficiency for the detection of bioactive compounds at low abundance in plant extracts for high-throughput screening. This procedure can be used routinely to populate natural product libraries for biological screening.
Collapse
Affiliation(s)
- Paul Coulerie
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Yann Ratinaud
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Sofia Moco
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Loraine Merminod
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Martine Naranjo Pinta
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Laurent Bultot
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Maria Deak
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Kei Sakamoto
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Denis Barron
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| |
Collapse
|
19
|
Chettu SK, Madhu RB, Raolji GB, Babu KR, Rao NSK, Gopalakrishnan S, Ismail A, Reddy GB, Shafi S. First total synthesis of cyclodepsipeptides clavatustide A and B and their enantiomers. RSC Adv 2016. [DOI: 10.1039/c6ra08861a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The enantiopure synthesis of clavatustides A (1) and B (3) were accomplished by a seven step synthetic protocol starting from commercially available (R)-phenyllactic acid.
Collapse
Affiliation(s)
- Suresh Kumar Chettu
- GVK Biosciences Private Limited
- Medicinal Chemistry Laboratory
- Hyderabad 500076
- India
| | | | | | - Korupolu Raghu Babu
- Andhra University
- Department of Engineering Chemistry
- Andhra University College of Engineering (A)
- Vishakhapatnam 530003
- India
| | - N. S. Kameswara Rao
- GVK Biosciences Private Limited
- Medicinal Chemistry Laboratory
- Hyderabad 500076
- India
| | | | - Ayesha Ismail
- National Institute of Nutrition
- Hyderabad-500007
- India
| | | | - Syed Shafi
- Department of Chemistry
- New Delhi-110062
- India
| |
Collapse
|
20
|
Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery? J Med Chem 2015; 59:1671-90. [PMID: 26505758 PMCID: PMC4791574 DOI: 10.1021/acs.jmedchem.5b01009] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
High-throughput biology has contributed
a wealth of data on chemicals,
including natural products (NPs). Recently, attention was drawn to
certain, predominantly synthetic, compounds that are responsible for
disproportionate percentages of hits but are false actives. Spurious
bioassay interference led to their designation as pan-assay interference
compounds (PAINS). NPs lack comparable scrutiny,
which this study aims to rectify. Systematic mining of 80+ years of
the phytochemistry and biology literature, using the NAPRALERT database,
revealed that only 39 compounds represent the NPs most reported by
occurrence, activity, and distinct activity. Over 50% are not explained
by phenomena known for synthetic libraries, and all had manifold ascribed
bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative
distributions of ∼200,000 NPs uncovered that NP research follows
power-law characteristics typical for behavioral phenomena. Projection
into occurrence–bioactivity–effort space produces the
hyperbolic black hole of NPs, where IMPs populate the high-effort
base.
Collapse
Affiliation(s)
| | | | - J Brent Friesen
- Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University , River Forest, Illinois 60305, United States
| | | | | | | |
Collapse
|
21
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
22
|
Friesen JB, McAlpine JB, Chen SN, Pauli GF. Countercurrent Separation of Natural Products: An Update. JOURNAL OF NATURAL PRODUCTS 2015; 78:1765-96. [PMID: 26177360 PMCID: PMC4517501 DOI: 10.1021/np501065h] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Indexed: 05/02/2023]
Abstract
This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod. 2008, 71, 1489-1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources.
Collapse
Affiliation(s)
- J. Brent Friesen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
- Physical
Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - James B. McAlpine
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Guido F. Pauli
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| |
Collapse
|
23
|
Analysis and improved characterization of minor antioxidants from leaves of Malus doumeri using a combination of major constituents’ knockout with high-performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 2015; 1398:57-65. [DOI: 10.1016/j.chroma.2015.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
|
24
|
Oliveira TT, Campos KM, Cerqueira-Lima AT, Cana Brasil Carneiro T, da Silva Velozo E, Ribeiro Melo ICA, Figueiredo EA, de Jesus Oliveira E, de Vasconcelos DFSA, Pontes-de-Carvalho LC, Alcântara-Neves NM, Figueiredo CA. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. ACTA ACUST UNITED AC 2015; 23:18. [PMID: 25890178 PMCID: PMC4344790 DOI: 10.1186/s40199-015-0098-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Asthma is an inflammatory condition characterized by airway hyperresponsiveness and chronic inflammation. The resolution of inflammation is an essential process to treat this condition. In this study we investigated the effect of Allium cepa L. extract (AcE) and quercetin (Qt) on cytokine and on smooth muscle contraction in vitro and its therapeutic potential in a murine model of asthma. METHODS AcE was obtained by maceration of Allium cepa L. and it was standardized in terms of quercetin concentration using high performance liquid chromatography (HPLC). In vitro, using AcE 10, 100 or 1000 μg/ml or Qt 3.5, 7.5, 15 μg/ml, we measured the concentration of cytokines in spleen cell culture supernatants, and the ability to relax tracheal smooth muscle from A/J mice. In vivo, Blomia tropicalis (BT)-sensitized A/J mice were treated with AcE 100, 1000 mg/kg or 30 mg/kg Qt. We measured cell influx in bronchoalveolar lavage (BAL), eosinophil peroxidase (EPO) in lungs, serum levels of Bt-specific IgE, cytokines levels in BAL, and lung histology. RESULTS We observed a reduction in the production of inflammatory cytokines, a relaxation of tracheal rings, and a reduction in total number of cells in BAL and EPO in lungs by treatment with AcE or Qt. CONCLUSION AcE and Qt have potential as antiasthmatic drugs, as they possess both immunomodulatory and bronchodilatory properties.
Collapse
Affiliation(s)
| | - Keina Maciele Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dahlin JL, Nissink JWM, Strasser JM, Francis S, Higgins L, Zhou H, Zhang Z, Walters MA. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J Med Chem 2015; 58:2091-113. [PMID: 25634295 PMCID: PMC4360378 DOI: 10.1021/jm5019093] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, Minnesota 55905, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reynolds WF, Mazzola EP. Nuclear magnetic resonance in the structural elucidation of natural products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2015; 100:223-309. [PMID: 25632562 DOI: 10.1007/978-3-319-05275-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
27
|
Pauli GF, Chen SN, Simmler C, Lankin DC, Gödecke T, Jaki BU, Friesen JB, McAlpine JB, Napolitano JG. Importance of purity evaluation and the potential of quantitative ¹H NMR as a purity assay. J Med Chem 2014; 57:9220-31. [PMID: 25295852 PMCID: PMC4255677 DOI: 10.1021/jm500734a] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
In any biomedical and chemical context,
a truthful description of chemical constitution requires coverage
of both structure and purity. This qualification affects all drug
molecules, regardless of development stage (early discovery to approved
drug) and source (natural product or synthetic). Purity assessment
is particularly critical in discovery programs and whenever
chemistry is linked with biological and/or therapeutic outcome. Compared
with chromatography and elemental analysis, quantitative NMR (qNMR)
uses nearly universal detection and provides a versatile and orthogonal
means of purity evaluation. Absolute qNMR with flexible calibration
captures analytes that frequently escape detection (water, sorbents).
Widely accepted structural NMR workflows require minimal or no adjustments
to become practical 1H qNMR (qHNMR) procedures with simultaneous
qualitative and (absolute) quantitative capability. This study reviews
underlying concepts, provides a framework for standard qHNMR purity
assays, and shows how adequate accuracy and precision are achieved
for the intended use of the material.
Collapse
Affiliation(s)
- Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy and ‡Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Merging bioactivity with liquid chromatography-mass spectrometry-based chemometrics to identify minor immunomodulatory compounds from a Micronesian adaptogen, Phaleria nisidai. J Chromatogr A 2014; 1364:74-82. [DOI: 10.1016/j.chroma.2014.08.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023]
|
29
|
Heidary Navid M, Laszczyk-Lauer MN, Reichling J, Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1273-1280. [PMID: 25172789 DOI: 10.1016/j.phymed.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 05/05/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
Antiviral agents frequently applied for treatment of herpesvirus infections include acyclovir and its derivatives. The antiviral effect of a triterpene extract of birch bark and its major pentacyclic triterpenes, i.e. betulin, lupeol and betulinic acid against acyclovir-sensitive and acyclovir-resistant HSV type 1 strains was examined. The cytotoxic effect of a phytochemically defined birch bark triterpene extract (TE) as well as different pentacyclic triterpenes was analyzed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. TE, betulin, lupeol and betulinic acid exhibited high levels of antiviral activity against HSV-1 in viral suspension tests with IC50 values ranging between 0.2 and 0.5 μg/ml. Infectivity of acyclovir-sensitive and clinical isolates of acyclovir-resistant HSV-1 strains was significantly reduced by all tested compounds and a direct concentration- and time-dependent antiherpetic activity could be demonstrated. In order to determine the mode of antiviral action, TE and the compounds were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had low effect on virus multiplication. Minor virucidal activity of triterpenes was observed, however both TE and tested compounds exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Pentacyclic triterpenes inhibit acyclovir-sensitive and acyclovir-resistant clinical isolates of HSV-1 in the early phase of infection.
Collapse
Affiliation(s)
- M Heidary Navid
- Department of Infectious Diseases, Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | - J Reichling
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - P Schnitzler
- Department of Infectious Diseases, Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Riihinen KR, Ou ZM, Gödecke T, Lankin DC, Pauli GF, Wu CD. The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. Fitoterapia 2014; 97:78-86. [DOI: 10.1016/j.fitote.2014.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
|
31
|
Simmler C, Nikolić D, Lankin DC, Yu Y, Friesen JB, van Breemen RB, Lecomte A, Le
Quémener C, Audo G, Pauli G. Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice. JOURNAL OF NATURAL PRODUCTS 2014; 77:1806-16. [PMID: 25080313 PMCID: PMC4143180 DOI: 10.1021/np5001945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 05/03/2023]
Abstract
Licorice botanicals are produced from the roots of Glycyrrhiza species (Fabaceae), encompassing metabolites of both plant and rhizobial origin. The composition in both primary and secondary metabolites (1°/2°Ms) reflects the physiologic state of the plant at harvest. Interestingly, the relative abundance of 1°Ms vs 2°Ms in licorice extracts remains undetermined. A centrifugal partition chromatography (CPC) method was developed to purify liquiritin derivatives that represent major bioactive 2°Ms and to concentrate the polar 1°Ms from the crude extract of Glycyrrhiza uralensis. One objective was to determine the purity of the generated reference materials by orthogonal UHPLC-UV/LC-MS and qHNMR analyses. The other objectives were to evaluate the presence of 1°Ms in purified 2°Ms and define their mass balance in a crude botanical extract. Whereas most impurities could be assigned to well-known 1°Ms, p-hydroxybenzylmalonic acid, a new natural tyrosine analogue, was also identified. Additionally, in the most polar fraction, sucrose and proline represented 93% (w/w) of all qHNMR-quantified 1°Ms. Compared to the 2°Ms, accounting for 11.9% by UHPLC-UV, 1°Ms quantified by qHNMR defined an additional 74.8% of G. uralensis extract. The combined orthogonal methods enable the mass balance characterization of licorice extracts and highlight the relevance of 1°Ms, and accompanying metabolites, for botanical quality control.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Dejan Nikolić
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - David C. Lankin
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Yang Yu
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - J. Brent Friesen
- Physical
Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Richard B. van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Alicia Lecomte
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Céline Le
Quémener
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Grégoire Audo
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Guido
F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| |
Collapse
|
32
|
New triterpenic acids from Uncaria rhynchophylla: Chemistry, NO-inhibitory activity, and tandem mass spectrometric analysis. Fitoterapia 2014; 96:39-47. [DOI: 10.1016/j.fitote.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/19/2022]
|
33
|
Dahlin JL, Walters MA. The essential roles of chemistry in high-throughput screening triage. Future Med Chem 2014; 6:1265-90. [PMID: 25163000 PMCID: PMC4465542 DOI: 10.4155/fmc.14.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
34
|
Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 2014; 5:282. [PMID: 24987390 PMCID: PMC4060556 DOI: 10.3389/fmicb.2014.00282] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities.
Collapse
Affiliation(s)
- Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food CanadaAgassiz, BC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
35
|
Schinkovitz A, Kaur A, Urban E, Zehl M, Páchniková G, Wang Y, Kretschmer N, Slaninová I, Pauli GF, Franzblau SG, Krupitza G, Bauer R, Kopp B. Cytotoxic constituents from Lobaria scrobiculata and a comparison of two bioassays for their evaluation. JOURNAL OF NATURAL PRODUCTS 2014; 77:1069-1073. [PMID: 24725159 DOI: 10.1021/np4008574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lichens are resilient organisms, known for their unique profiles of secondary metabolites and for exhibiting antioxidative, antibacterial, and cytotoxic effects. Analyzing the cytotoxic potential of Lobaria scrobiculata, a bioassay-guided fractionation strategy yielded seven known metabolites, with two of these compounds, 2 and 3, exhibiting cytotoxicity against HL-60 cells. In order to verify the potential impact of degradation on observed bioactivity, a purity and stability evaluation was conducted. The consistency of results obtained by the water-soluble tetrazolium salt-1 assay and trypan blue cytotoxicity assay was evaluated for selected compounds.
Collapse
Affiliation(s)
- Andreas Schinkovitz
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna , Althanstraße 14, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dahlin JL, Sinville R, Solberg J, Zhou H, Han J, Francis S, Strasser JM, John K, Hook DJ, Walters MA, Zhang Z. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation. PLoS One 2013; 8:e78877. [PMID: 24260132 PMCID: PMC3832525 DOI: 10.1371/journal.pone.0078877] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS) for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7%) were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could serve as chemical probes or leads for a new class of antifungals targeting an epigenetic enzyme.
Collapse
Affiliation(s)
- Jayme L. Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Rondedrick Sinville
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jonathan Solberg
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Subhashree Francis
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica M. Strasser
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristen John
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Derek J. Hook
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael A. Walters
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
37
|
Gödecke T, Napolitano JG, Rodríguez-Brasco MF, Chen SN, Jaki BU, Lankin DC, Pauli GF. Validation of a generic quantitative (1)H NMR method for natural products analysis. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:581-97. [PMID: 23740625 PMCID: PMC3990190 DOI: 10.1002/pca.2436] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 05/19/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR) spectroscopy is increasingly employed in the quantitative analysis and quality control (QC) of natural products (NP) including botanical dietary supplements (BDS). The establishment of QC protocols based on quantitative (1) H NMR (qHNMR) requires method validation. OBJECTIVE Develop and validate a generic qHNMR method. Optimize acquisition and processing parameters, with specific attention to the requirements for the analysis of complex NP samples, including botanicals and purity assessment of NP isolates. METHODS In order to establish the validated qHNMR method, samples containing two highly pure reference materials were used. The influence of acquisition and processing parameters on the method validation was examined, and general aspects of method validation of qHNMR methods discussed. Subsequently, the method established was applied to the analysis of two NP samples: a purified reference compound and a crude mixture. RESULTS The accuracy and precision of qHNMR using internal or external calibration were compared, using a validated method suitable for complex samples. The impact of post-acquisition processing on method validation was examined using three software packages: TopSpin, Mnova and NUTS. The dynamic range of the qHNMR method developed was 5000:1 with a limit of detection (LOD) of better than 10 µm. The limit of quantification (LOQ) depends on the desired level of accuracy and experiment time spent. CONCLUSION This study revealed that acquisition parameters, processing parameters and processing software all contribute to qHNMR method validation. A validated method with a high dynamic range and general workflow for qHNMR analysis of NP is proposed.
Collapse
Affiliation(s)
- Tanja Gödecke
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - José G. Napolitano
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - María F. Rodríguez-Brasco
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Birgit U. Jaki
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - David C. Lankin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
38
|
Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou SS, Chen X, Yang CH. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 2013; 79:5424-36. [PMID: 23770912 PMCID: PMC3754148 DOI: 10.1128/aem.00845-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022] Open
Abstract
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Chengfang Zhang
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Yan Li
- Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Quan Zeng
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Akihiro Yamazaki
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - William Hutchins
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Shan-Shan Zhou
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Xin Chen
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
39
|
Abstract
Over the past 28 years there have been several thousand publications describing the use of 2D NMR to identify and characterize natural products. During this time period, the amount of sample needed for this purpose has decreased from the 20-50 mg range to under 1 mg. This has been due to both improvements in NMR hardware and methodology. This review will focus on mainly methodology improvements, particularly in pulse sequences, acquisition and processing methods which are particularly relevant to natural product research, with lesser discussion of hardware improvements.
Collapse
|
40
|
Qiu F, Cai G, Jaki BU, Lankin DC, Franzblau SG, Pauli GF. Quantitative purity-activity relationships of natural products: the case of anti-tuberculosis active triterpenes from Oplopanax horridus. JOURNAL OF NATURAL PRODUCTS 2013; 76:413-419. [PMID: 23356207 DOI: 10.1021/np3007809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study provides an extension of the previously developed concept of purity-activity relationships (PARs) and enables the quantitative evaluation of the effects of multiple minor components on the bioactivity of residually complex natural products. The anti-tuberculosis active triterpenes from the Alaskan ethnobotanical Oplopanax horridus were selected as a case for the development of the quantitative PAR (QPAR) concept. The residual complexity of the purified triterpenes was initially evaluated by 1D- and 2D-NMR and identified as a combination of structurally related and unrelated impurities. Using a biochemometric approach, the qHNMR purity and anti-TB activity of successive chromatographic fractions of O. horridus triterpenes were correlated by linear regression analysis to generate a mathematical QPAR model. The results demonstrate that impurities, such as widely occurring monoglycerides, can have a profound impact on the observed antimycobacterial activity of triterpene-enriched fractions. The QPAR concept is shown to be capable of providing a quantitative assessment in situations where residually complex constitution contributes toward the biological activity of natural products.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pauli GF, Chen SN, Friesen JB, McAlpine JB, Jaki BU. Analysis and purification of bioactive natural products: the AnaPurNa study. JOURNAL OF NATURAL PRODUCTS 2012; 75:1243-55. [PMID: 22620854 PMCID: PMC3381453 DOI: 10.1021/np300066q] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Based on a meta-analysis of data mined from almost 2000 publications on bioactive natural products (NPs) from >80000 pages of 13 different journals published in 1998-1999, 2004-2005, and 2009-2010, the aim of this systematic review is to provide both a survey of the status quo and a perspective for analytical methodology used for isolation and purity assessment of bioactive NPs. The study provides numerical measures of the common means of sourcing NPs, the chromatographic methodology employed for NP purification, and the role of spectroscopy and purity assessment in NP characterization. A link is proposed between the observed use of various analytical methodologies, the challenges posed by the complexity of metabolomes, and the inescapable residual complexity of purified NPs and their biological assessment. The data provide inspiration for the development of innovative methods for NP analysis as a means of advancing the role of naturally occurring compounds as a viable source of biologically active agents with relevance for human health and global benefit.
Collapse
Affiliation(s)
- Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
42
|
Riihinen KR, Gödecke T, Pauli GF. Purification of berry flavonol glycosides by long-bed gel permeation chromatography. J Chromatogr A 2012; 1244:20-7. [PMID: 22609168 DOI: 10.1016/j.chroma.2012.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
While Sephadex LH-20 gel is frequently employed as a stationary phase during pre-separations and in open column chromatography systems, its separation power in long-bed gel permeation chromatography (GPC) applications is much less prevalent. Aimed at the characterization of bioactive constituents, a long-bed GPC protocol was established for lingonberry juice concentrate. The method included pre-fractionation over HP-20 resin to eliminate sugars and organic acids as well as a major part of other predominant berry flavonoids (anthocyanins, flavan-3-ols and proanthocyanidins), prior to the elution of the fraction containing 10% (w/w) of quercetin glycosides (QGs). Subsequently, seven major QGs were purified using a 10-m Sephadex LH-20 system and isocratic elution with methanol. The total mass recovery was 99.3±1.4%, after eluting the highly-retained compounds from the employed pre-column with 70% acetone. Injecting 1070 mg per run, the yield of purified QGs ranged from 2 to 6 mg per collected single fraction. The LC-UV/PDA purities of isolated Q-3-O-α-rhamnoside and Q-3-O-β-galactoside were 82 and 94 area% at 250 nm, while the three Q-pentosides showed purities of 59, 30, and 57 area%. By comparison, purity assessment of these isolates by quantitative ¹H NMR (total integral and modified 100% method) led to significantly lower purities of 70 and 52% for Q-rha and Q-gal and 38, 25 and 46% for Q-pentosides, respectively. This can be explained by the presence of hidden residual complexity (RC), which is revealed by the quantitative NMR method. This finding has potentially broader implication as it reveals an unexpected degree of RC in GPC fractions. Despite remarkable separation power for congeneric flavonoids, long-bed GPC on Sephadex LH-20 produces materials, which require careful analysis of purity before interpreting bioassay results.
Collapse
Affiliation(s)
- Kaisu R Riihinen
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612-7231, USA.
| | | | | |
Collapse
|
43
|
Pauli GF, Gödecke T, Jaki BU, Lankin DC. Quantitative 1H NMR. Development and potential of an analytical method: an update. JOURNAL OF NATURAL PRODUCTS 2012; 75:834-51. [PMID: 22482996 PMCID: PMC3384681 DOI: 10.1021/np200993k] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative (1)H NMR (qHNMR) methodology and its applications in the analysis of natural products. Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research.
Collapse
Affiliation(s)
- Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
44
|
Qiu F, Imai A, McAlpine JB, Lankin DC, Burton I, Karakach T, Farnsworth NR, Chen SN, Pauli GF. Dereplication, residual complexity, and rational naming: the case of the Actaea triterpenes. JOURNAL OF NATURAL PRODUCTS 2012; 75:432-43. [PMID: 22320430 PMCID: PMC3392135 DOI: 10.1021/np200878s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The genus Actaea (including Cimicifuga) has been the source of ∼200 cycloartane triterpenes. While they are major bioactive constituents of complementary and alternative medicines, their structural similarity is a major dereplication problem. Moreover, their trivial names seldom indicate the actual structure. This project develops two new tools for Actaea triterpenes that enable rapid dereplication of more than 170 known triterpenes and facilitates elucidation of new compounds. A predictive computational model based on classification binary trees (CBTs) allows in silico determination of the aglycone type. This tool utilizes the Me (1)H NMR chemical shifts and has potential to be applicable to other natural products. Actaea triterpene dereplication is supported by a new systematic naming scheme. A combination of CBTs, (1)H NMR deconvolution, characteristic (1)H NMR signals, and quantitative (1)H NMR (qHNMR) led to the unambiguous identification of minor constituents in residually complex triterpene samples. Utilizing a 1.7 mm cryo-microprobe at 700 MHz, qHNMR enabled characterization of residual complexity at the 10-20 μg level in a 1-5 mg sample. The identification of five co-occurring minor constituents, belonging to four different triterpene skeleton types, in a repeatedly purified natural product emphasizes the critical need for the evaluation of residual complexity of reference materials, especially when used for biological assessment.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Ayano Imai
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - James B. McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - David C. Lankin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Ian Burton
- Institute for Marine Biosciences, National Research Council, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Tobias Karakach
- Institute for Marine Biosciences, National Research Council, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Norman R. Farnsworth
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| |
Collapse
|
45
|
Recent advances in antitubercular natural products. Eur J Med Chem 2012; 49:1-23. [DOI: 10.1016/j.ejmech.2011.12.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022]
|
46
|
Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:593403. [PMID: 22454670 PMCID: PMC3292206 DOI: 10.1155/2012/593403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/24/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022]
Abstract
We analyzed the antimycobacterial activity of the hexane extract of rhizomes from Aristolochia elegans. Some compounds of this extract were purified and tested against a group of drug-resistant Mycobacterium tuberculosis strains. We also evaluated their antiprotozoal activities. The hexane extract was active against M. tuberculosis H37Rv at a MIC = 100 μg mL(-1); the pure compounds eupomatenoid-1, fargesin, and (8R,8'R,9R)-cubebin were active against M. tuberculosis H37Rv (MIC = 50 μg mL(-1)), while fargesin presented activity against three monoresistant strains of M. tuberculosis H37Rv and a MDR clinical isolate of M. tuberculosis (MIC < 50 μg mL(-1)). Both the extract and eupomatenoid-1 were very active against E. histolytica and G. lamblia (IC(50) < 0.624 μg mL(-1)); in contrast, fargesin and (8R,8'R,9R)-cubebin were moderately active (IC(50) < 275 μg mL(-1)). In this context, two compounds responsible for the antimycobacterial presented by A. elegans are fargesin and cubebin, although others may exert this activity also. In addition to the antimycobacterial activity, the hexane extract has important activity against E. histolytica and G. lamblia, and eupomatenoid-1 is one of the compounds responsible for the antiparasite activity.
Collapse
|
47
|
Kazakova OB, Medvedeva NI, Samoilova IA, Baikova IP, Tolstikov GA, Kataev VE, Mironov VF. Conjugates of several lupane, oleanane, and ursane triterpenoids with the antituberculosis drug isoniazid and pyridinecarboxaldehydes. Chem Nat Compd 2011. [DOI: 10.1007/s10600-011-0050-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Andreeva OV, Sharipova RR, Strobykina IY, Lodochnikova OA, Dobrynin AB, Babaev VM, Chestnova RV, Mironov VF, Kataev VE. Hybrid compounds of ent-beyerane diterpenoid isosteviol with pyridinecarboxylic acid hydrazides. Synthesis, structure, and antitubercular activity. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363211080111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Abstract
AbstractBacterial resistance to antibiotics is increasing at an alarming rate and many commonly used antibiotics are no longer effective. Thus, there is considerable interest in investigating novel antibacterial compounds, such as the plant-derived pentacyclic triterpenoids, including oleanolic acid (OA), ursolic acid (UA) and their derivatives. These compounds can be isolated from many medicinal and crop plants and their antibacterial, antiviral, antiulcer and anti-inflammatory effects are well documented. OA and UA are active against many bacterial species, particularly Gram-positive species, including mycobacteria. They inhibit bacterial growth and survival, and the spectrum of minimal inhibitory concentration (MIC) values is very broad. In addition, OA, UA and their derivatives display potent antimutagenic activity. Studies to identify the cellular targets and molecular mechanisms of OA and UA action were initiated a few years ago and it has already been demonstrated that both acids influence bacterial gene expression, the formation and maintenance of biofilms, cell autolysis and peptidoglycan turnover. Before these compounds can be used clinically as antimicrobial agents, further extensive studies are required to determine their cytotoxicity and the optimum mode of their application.
Collapse
|
50
|
Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 2009; 10:3400-3419. [PMID: 20111686 PMCID: PMC2812829 DOI: 10.3390/ijms10083400] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/21/2009] [Accepted: 07/27/2009] [Indexed: 12/01/2022] Open
Abstract
To protect themselves, plants accumulate an armoury of antimicrobial secondary metabolites. Some metabolites represent constitutive chemical barriers to microbial attack (phytoanticipins) and others inducible antimicrobials (phytoalexins). They are extensively studied as promising plant and human disease-controlling agents. This review discusses the bioactivity of several phytoalexins and phytoanticipins defending plants against fungal and bacterial aggressors and those with antibacterial activities against pathogens affecting humans such as Pseudomonas aeruginosa and Staphylococcus aureus involved in respiratory infections of cystic fibrosis patients. The utility of plant products as “antibiotic potentiators” and “virulence attenuators” is also described as well as some biotechnological applications in phytoprotection.
Collapse
|