1
|
Adillon E, Peters JC. A Carborane-Derived Proton-Coupled Electron Transfer Reagent. J Am Chem Soc 2024; 146:30204-30211. [PMID: 39466817 PMCID: PMC11544690 DOI: 10.1021/jacs.4c09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Reagents capable of concerted proton-electron transfer (CPET) reactions can access reaction pathways with lower reaction barriers compared to stepwise pathways involving electron transfer (ET) and proton transfer (PT). To realize reductive multielectron/proton transformations involving CPET, one approach that has shown recent promise involves coupling a cobaltocene ET site with a protonated arylamine Brønsted acid PT site. This strategy colocalizes the electron/proton in a matter compatible with a CPET step and net reductive electrocatalysis. To probe the generality of such an approach a class of C,C'-diaryl-o-carboranes is herein explored as a conceptual substitute for the cobaltocene subunit, with an arylamine linkage still serving as a colocalized Brønsted base suitable for protonation. The featured o-carborane (PhCbPhN) can be reduced and protonated to generate an N-H bond with a weak effective bond dissociation free energy (BDFEeff) of 31 kcal/mol, estimated with measured thermodynamic data. This N-H bond is among the lowest measured element-H bonds for analyzed nonmetal compounds. Distinct solid-state crystal structures of the one- and two-electron reduced forms of diaryl-o-carboranes are disclosed to gain insight into their well-behaved redox characteristics. The singly reduced, protonated form of the diaryl-o-carborane can mediate multi-ET/PT reductions of azoarenes, diphenylfumarate, and nitrotoluene. In contrast to the aforementioned cobaltocene system, available mechanistic data disclosed herein support these reactions occurring by a rate-limiting ET step and not a CPET step. A relevant hydrogen evolution reaction (HER) reaction was also studied, with data pointing to a PT/ET/PT mechanism, where the reduced carborane core is itself highly stable to protonation.
Collapse
Affiliation(s)
- Enric
H. Adillon
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
2
|
Peng Y, Wang G, Klare HFT, Oestreich M. Ring Contraction of Saturated Cyclic Amines and Rearrangement of Acyclic Amines Through Their Corresponding Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202410483. [PMID: 38953245 DOI: 10.1002/anie.202410483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/03/2024]
Abstract
Compared to modifications at the molecular periphery, skeletal adjustments present greater challenges. Within this context, skeletal rearrangement technology stands out for its significant advantages in rapidly achieving structural diversity. Yet, the development of this technology for ring contraction of saturated cyclic amines remains exceedingly rare. While most existing methods rely on specific substitution patterns to achieve ring contraction, there is a persistent demand for a more general strategy for substitution-free cyclic amines. To address this issue, we report a B(C6F5)3-catalyzed skeletal rearrangement of hydroxylamines with hydrosilanes. This methodology, when combined with the N-hydroxylation of amines, enables the regioselective ring contraction of cyclic amines and proves equally effective for rapid reorganization of acyclic amine skeletons. By this, the direct scaffold hopping of drug molecules and the strategic deletion of carbon atoms are achieved in a mild manner. Based on mechanistic experiments and density functional theory calculations, a possible mechanism for this process is proposed.
Collapse
Affiliation(s)
- Yi Peng
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
3
|
Yáñez M, Mó O, Montero-Campillo MM, Alkorta I, Elguero J. Hydride and halide abstraction reactions behind the enhanced basicity of Be and Mg clusters with nitrogen bases. J Comput Chem 2024. [PMID: 39340246 DOI: 10.1002/jcc.27509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
In this study, we investigate the protonation effects on the structure, relative stability and basicity of complexes formed by the interaction of monomers and dimers of BeX2 and MgX2 (X = H, F) with NH3, CH2NH, HCN, and NC5H5 bases. Calculations were performed using the M06-2X/aug-cc-pVTZ formalism, along with QTAIM, ELF and NCI methods for electron density analysis and MBIE and LMO-EDA energy decomposition analyses for interaction enthalpies. The protonation of the MH2- and M2H4-Base complexes occurs at the negatively charged hydrogen atoms of the MH2 and M2H4 moieties through typical hydride abstraction reactions, while protonation at the N atom of the base is systematically less exothermic. The preference for the hydride transfer mechanism is directly associated with the significant exothermicity of H2 formation through the interaction between H- and H+, and the high hydride donor ability of these complexes. The basicity of both, MH2 and M2H4 compounds increases enormously upon association with the corresponding bases, with the increase exceeding 40 orders of magnitude in terms of ionization constants. Due to the smaller exothermicity of HF formation, the basicity of fluorides is lower than that of hydrides. In Be complexes, the protonation at the N atom of the base dominates over the fluoride abstraction mechanism. However, for the Mg complexes the fluoride abstraction mechanism is energetically the most favorable process, reflecting the greater facility of Mg complexes to lose F-.
Collapse
Affiliation(s)
- Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Zhai X, Xue M, Zhao Q, Zheng Q, Song D, Tung CH, Wang W. Water-catalyzed iron-molybdenum carbyne formation in bimetallic acetylene transformation. Nat Commun 2024; 15:7729. [PMID: 39232032 PMCID: PMC11375111 DOI: 10.1038/s41467-024-52116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Transition metal carbyne complexes are of fundamental importance in carbon-carbon bond formation, alkyne metathesis, and alkyne coupling reactions. Most reported iron carbyne complexes are stabilized by incorporating heteroatoms. Here we show the synthesis of bioinspired FeMo heterobimetallic carbyne complexes by the conversion of C2H2 through a diverse series of intermediates. Key reactions discovered include the reduction of a μ-η2:η2-C2H2 ligand with a hydride to produce a vinyl ligand (μ-η1:η2-CH = CH2), tautomerization of the vinyl ligand to a carbyne (μ-CCH3), and protonation of either the vinyl or the carbyne compound to form a hydrido carbyne heterobimetallic complex. Mechanistic studies unveil the pivotal role of H2O as a proton shuttle, facilitating the proton transfer that converts the vinyl group to a bridging carbyne.
Collapse
Affiliation(s)
- Xiaofang Zhai
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Minghui Xue
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Qiuting Zhao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Qiucui Zheng
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
5
|
Ai CR, Liu L, Wang XC. Borane-Catalyzed Enantioselective α-Alkylation of Unactivated 2-Alkylbenzoxazoles with Electron-Deficient Olefins. J Am Chem Soc 2024; 146:24663-24669. [PMID: 39163278 DOI: 10.1021/jacs.4c09067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chiral borane-catalyzed reactions have recently emerged as a powerful tool for the enantioselective production of chiral scaffolds. In this study, we demonstrated for the first time that a chiral bisborane catalyst can be used for the α-functionalization of 2-alkylazaarenes; specifically, we accomplished unprecedented highly enantioselective α-alkylation of unactivated 2-alkylbenzoxazoles with electron-deficient olefins. The strong Lewis acidity and the steric bulk of the bisborane catalyst were essential to the observed reactivity and selectivity.
Collapse
Affiliation(s)
- Chong-Ren Ai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
7
|
Durfy CS, Zurakowski JA, Drover MW. A Blueprint for Secondary Coordination Sphere Editing: Approaches Toward Lewis-Acid Assisted Carbon Dioxide Co-Activation. CHEMSUSCHEM 2024; 17:e202400039. [PMID: 38358843 DOI: 10.1002/cssc.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Carbon dioxide (CO2) is a potent greenhouse gas of environmental concern. Seeking to offer a solution to the "CO2-problem", the chemistry community has turned a focus toward transition metal complexes which can activate, reduce, and convert CO2 into carbon-based products. The design of such systems involves judicious selection of both metal and accompanying donor ligand; in part, these efforts are motivated by biological metalloenzymes that undertake similar transformations. As a design element, metal-ligand cooperativity, which leverages intramolecular interactions between a transition metal and an adjacent secondary ligand site, has been acknowledged as a vitally important component by the CO2 activation community. These systems offer a "push-pull" style of activation where electron density is chaperoned onto CO2 with an accompanying electrophile, such as a Lewis-acid, playing the role of acceptor. This pairing allows for the stabilization of reactive CxHyOz-containing intermediates and can bias CO2 product selectivity. In the laboratory, chemists can test hypotheses and ideas, enabling rationalization of why a given pairing of transition metal/Lewis-acid leads to selective CO2 reduction outcomes. This Concept identifies literature examples and highlights key design properties, allowing interested contributors to design, create, and implement novel systems for productive transformations of a small molecule (CO2) with huge potential impact.
Collapse
Affiliation(s)
- Connor S Durfy
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario, Canada, N6A 3K7
| | - Joseph A Zurakowski
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario, Canada, N6A 3K7
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada, N9B 3P4
| | - Marcus W Drover
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
8
|
Marron DP, Galvin CM, Dressel JM, Waymouth RM. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation. J Am Chem Soc 2024; 146:17075-17083. [PMID: 38864712 DOI: 10.1021/jacs.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.
Collapse
Affiliation(s)
- Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| |
Collapse
|
9
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Cruz TFC, Loupy V, Veiros LF. Zinc-Catalyzed Hydroboration of Carbon Dioxide Amplified by Borane-Tethered Heteroscorpionate Bis(Pyrazolyl)methane Ligands. Inorg Chem 2024; 63:8244-8256. [PMID: 38656156 PMCID: PMC11080050 DOI: 10.1021/acs.inorgchem.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The borane-functionalized (BR2) bis(3,5-dimethylpyrazolyl)methane (LH) ligands 1a (BR2: 9-borabicyclo[3.3.1]nonane or 9-BBN), 1b (BR2: BCy2), and 1c (BR2: B(C6F5)2) were synthesized by the allylation-hydroboration of LH. Metalation of 1a,b with ZnCl2 yielded the heteroscorpionate dichloride complexes [(1a,b)ZnCl2] 3a,b. The reaction of 1a with ZnEt2 led to the formation of the zwitterionic complex [Et(1a)ZnEt(THF)] 5. The reaction of complex 3a with two equivalents of KHBEt3 under a carbon dioxide (CO2) atmosphere gave rise to the formation of the dimeric bis(formate) complex [(1a)Zn(OCHO)2]2 8, in which its borane moieties intermolecularly stabilize the formate ligands of opposite metal centers. The allylated precursor Lallyl and its zinc dichloride, diethyl and bis(formate) complexes [(Lallyl)ZnCl2] 2, [(Lallyl)ZnEt2] 4, and [(Lallyl)Zn(OCHO)2] 7 were also isolated. The catalyst systems composed of 1 mol % of 3a or 3b and two equivalents of KHBEt3 hydroborated CO2 at 1 bar with pinacolborane (HBPin) to the methanol-level product H3COBPin (and PinBOBPin) in yields of 42 or 86%, respectively. The catalyst systems using the unfunctionalized complex [(LH)ZnCl2] 6 and KHBEt3 or KHBEt3/nOctBR2 (BR2: 9-BBN or BCy2) hydroborated CO2 to H3COBPin but in 2.5- to 6-fold lower activities than those exhibited by 3a,b/KHBEt3. The hydroboration of CO2 using 8 as a catalyst led to yields of 39-43%, comparable to those obtained with 3a/KHBEt3. The results confirmed that the catalytic intermediates benefit from the incorporated boranes' intra- or intermolecular stabilizations.
Collapse
Affiliation(s)
- Tiago F. C. Cruz
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Valentin Loupy
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Luís F. Veiros
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| |
Collapse
|
11
|
Chirila A, Hu Y, Linehan JC, Dixon DA, Wiedner ES. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones. J Am Chem Soc 2024; 146:6866-6879. [PMID: 38437011 DOI: 10.1021/jacs.3c13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.
Collapse
Affiliation(s)
- Andrei Chirila
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqin Hu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - John C Linehan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eric S Wiedner
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Durin G, Berthet JC, Thuéry P, Nicolas E, Cantat T. Metal-Free Catalytic Hydrogenolysis of Chlorosilanes into Hydrosilanes with "Inverse" Frustrated Lewis Pairs. Chemistry 2023; 29:e202302155. [PMID: 37665089 DOI: 10.1002/chem.202302155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
The challenging metal-free catalytic hydrogenolysis of silyl chlorides to hydrosilanes is unlocked by using an inverse frustrated Lewis pair (FLP), combining a mild Lewis acid (Cy2 BCl) and a strong phosphazene base (BTPP) in mild conditions (10 bar of H2 , r. t.). In the presence of a stoichiometric amount of the base, the hydrosilanes R3 SiH (R=Me, Et, Ph) are generated in moderate to high yields (up to 95 %) from their chlorinated counterparts. A selective formation of the valuable difunctional monohydride Me2 SiHCl is also obtained from Me2 SiCl2 . A mechanism is proposed based on stoichiometric experiments and DFT calculations; it highlights the critical role of borohydride species generated by the heterolytic splitting of H2 .
Collapse
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | | | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Ojo OS, Steel HJ, Miras HN. Expeditious access to cis-β-aryl, γ-alkyl disubstituted (±)-γ-butyrolactones via nickel-hydride catalysis. Org Biomol Chem 2023; 21:6738-6742. [PMID: 37551644 DOI: 10.1039/d3ob00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The 1,4-reduction of β- and γ-substituted butenolides using 5 mol% of NiCl2·6H2O and NaBH4 in MeOH for rapid access to cis-β,γ-disubstituted γ-butyrolactones is described. The reaction was selective for cis-products, which were obtained in good to excellent yields. This study showcased the influence of steric hindrance and angle strain on the diastereoselectivity outcome of conjugate reductions facilitated by in situ generated nickel-hydride.
Collapse
Affiliation(s)
- O Stephen Ojo
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Hannah J Steel
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
14
|
De Angelis L, Haug GC, Rivera G, Biswas S, Al-Sayyed A, Arman H, Larionov O, Doyle MP. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J Am Chem Soc 2023; 145:13059-13068. [PMID: 37294869 PMCID: PMC10755600 DOI: 10.1021/jacs.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.
Collapse
Affiliation(s)
- Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Mexico
| | - Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
15
|
Calvo-Molina A, del Horno E, Jover J, Pérez-Redondo A, Yélamos C, Zapata R. Monocyclopentadienyltitanium(III) Complexes with Hydridoborato Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Adrián Calvo-Molina
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Estefanía del Horno
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Rosa Zapata
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
Alharbi MM, van Ingen Y, Roldan A, Kaehler T, Melen RL. Synthesis and lewis acidity of fluorinated triaryl borates. Dalton Trans 2023; 52:1820-1825. [PMID: 36661186 DOI: 10.1039/d2dt04095f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A series of fluorinated triaryl borates B(OArF)3 (ArF = 2-FC6H4, 3-FC6H4, 4-FC6H4, 2,4-F2C6H3, 3,5-F2C6H3, 2,3,4-F3C6H2, 2,4,6-F3C6H2, 3,4,5-F3C6H2) have been prepared and isolated from the reactions of the mono-, di-, or tri-fluorophenol with BCl3. The Lewis acidity of these borates has been determined by NMR spectroscopic and theoretical methods and compared to their well-established borane counterpart.
Collapse
Affiliation(s)
- Mashael M Alharbi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK. .,Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Tanja Kaehler
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
17
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Bahmani Jalali H, De Trizio L, Manna L, Di Stasio F. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chem Soc Rev 2022; 51:9861-9881. [PMID: 36408788 PMCID: PMC9743785 DOI: 10.1039/d2cs00490a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Colloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives. In this regard, indium arsenide (InAs) QDs are one of the best candidates as they can absorb and emit light in the whole near infrared spectral range and they are RoHS-compliant, with recent trends suggesting that there is a renewed interest in this class of materials. This review focuses on colloidal InAs QDs and aims to provide an up-to-date overview spanning from their synthesis and surface chemistry to post-synthesis modifications. We provide a comprehensive overview from initial synthetic methods to the most recent developments on the ability to control the size, size distribution, electronic properties and carrier dynamics. Then, we describe doping and alloying strategies applied to InAs QDs as well as InAs based heterostructures. Furthermore, we present the state-of-the-art applications of InAs QDs, with a particular focus on bioimaging and field effect transistors. Finally, we discuss open challenges and future perspectives.
Collapse
Affiliation(s)
- Houman Bahmani Jalali
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
19
|
Clarke J, Seo Y, Gagné MR, Bender TA. Achieving Site-Selective C–O Bond Reduction for High-Value Cellulosic Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua Clarke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Youngran Seo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R. Gagné
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Trandon A. Bender
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
20
|
Ratanasak M, Murata T, Adachi T, Hasegawa J, Ema T. Mechanism of BPh
3
‐Catalyzed N‐Methylation of Amines with CO
2
and Phenylsilane: Cooperative Activation of Hydrosilane. Chemistry 2022; 28:e202202210. [DOI: 10.1002/chem.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Manussada Ratanasak
- Institute for Catalysis Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
| | - Takumi Murata
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| | - Taishin Adachi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| | - Jun‐ya Hasegawa
- Institute for Catalysis Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| |
Collapse
|
21
|
Mousanezhad S, Davoodi J. Mechanical loading of graphene quantum dots on
Staphylococcus aureus
surface protein G: A molecular dynamics study. Biopolymers 2022; 113:e23526. [DOI: 10.1002/bip.23526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jamal Davoodi
- Department of Physics University of Zanjan Zanjan Iran
| |
Collapse
|
22
|
Fraser DAX, Turner ZR, Cooper RT, Buffet JC, Green JC, O'Hare D. Multimetallic Permethylpentalene Hydride Complexes. Inorg Chem 2022; 61:12207-12218. [PMID: 35878422 PMCID: PMC9367693 DOI: 10.1021/acs.inorgchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of group 4 permethylpentalene (Pn* = C8Me6) hydride complexes are explored; in all cases, multimetallic hydride clusters were obtained. Group 4 lithium metal hydride clusters were obtained when reacting the metal dihalides with hydride transfer reagents such as LiAlH4, and these species featured an unusual hexagonal bipyramidal structural motif. Only the zirconium analogue was found to undergo hydride exchange in the presence of deuterium. In contrast, a trimetallic titanium hydride cluster was isolated on reaction of the titanium dialkyl with hydrogen. This diamagnetic, mixed valence species was characterized in the solid state, as well as by solution electron paramagnetic resonance and nuclear magnetic resonance spectroscopy. The structure was further probed and corroborated by density functional theory calculations, which illustrated the formation of a metal-cluster bonding orbital responsible for the diamagnetism of the complex. These permethylpentalene hydride complexes have divergent structural motifs and reactivity in comparison with related classical cyclopentadienyl analogues.
Collapse
Affiliation(s)
- Duncan A X Fraser
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zoë R Turner
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert T Cooper
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jean-Charles Buffet
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jennifer C Green
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Dermot O'Hare
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
23
|
Shinohara K, Tsurugi H, Mashima K. N-Methylation of Aniline Derivatives with CO 2 and Phenylsilane Catalyzed by Lanthanum Hydridotriarylborate Complexes bearing a Nitrogen Tridentate Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koichi Shinohara
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
24
|
Durin G, Fontaine A, Berthet JC, Nicolas E, Thuéry P, Cantat T. Metal-Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes. Angew Chem Int Ed Engl 2022; 61:e202200911. [PMID: 35315969 DOI: 10.1002/anie.202200911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/13/2023]
Abstract
The metal-free catalytic hydrogenolysis of silyl triflates and halides (I, Br) to hydrosilanes is unlocked by using arylborane Lewis acids as catalysts. In the presence of a nitrogen base, the catalyst acts as a Frustrated Lewis Pair (FLP) able to split H2 and generate a boron hydride intermediate capable of reducing (pseudo)halosilanes. This metal-free organocatalytic system is competitive with metal-based catalysts and enables the formation of a variety of hydrosilanes at room temperature in high yields (>85 %) under a low pressure of H2 (≤10 bar).
Collapse
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Albane Fontaine
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Jean-Claude Berthet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| |
Collapse
|
25
|
Durin G, Fontaine A, Berthet J, Nicolas E, Thuéry P, Cantat T. Metal‐Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Albane Fontaine
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | | | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| |
Collapse
|
26
|
Shlian DG, Amemiya E, Parkin G. Synthesis of bis(2-pyridylthio)methyl zinc hydride and catalytic hydrosilylation and hydroboration of CO 2. Chem Commun (Camb) 2022; 58:4188-4191. [PMID: 35266933 DOI: 10.1039/d1cc06963b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of bis(2-pyridylthio)methane with Me2Zn and Zn[N(SiMe3)2]2 afford [Bptm]ZnMe and [Bptm]ZnN(SiMe3)2, thereby providing access to a variety of other [Bptm]ZnX derivatives, including the zinc hydride complex [Bptm]ZnH, which serves as a catalyst for the reduction of CO2 and other carbonyl compounds via hydrosilylation and hydroboration.
Collapse
Affiliation(s)
- Daniel G Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
27
|
Ilic S, Gesiorski JL, Weerasooriya RB, Glusac KD. Biomimetic Metal-Free Hydride Donor Catalysts for CO 2 Reduction. Acc Chem Res 2022; 55:844-856. [PMID: 35201767 DOI: 10.1021/acs.accounts.1c00708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic reduction of carbon dioxide to fuels and value-added chemicals is of significance for the development of carbon recycling technologies. One of the main challenges associated with catalytic CO2 reduction is product selectivity: the formation of carbon monoxide, molecular hydrogen, formate, methanol, and other products occurs with similar thermodynamic driving forces, making it difficult to selectively reduce CO2 to the target product. Significant scientific effort has been aimed at the development of catalysts that can suppress the undesired hydrogen evolution reaction and direct the reaction toward the selective formation of the desired products, which are easy to handle and store. Inspired by natural photosynthesis, where the CO2 reduction is achieved using NADPH cofactors in the Calvin cycle, we explore biomimetic metal-free hydride donors as catalysts for the selective reduction of CO2 to formate. Here, we outline our recent findings on the thermodynamic and kinetic parameters that control the hydride transfer from metal-free hydrides to CO2. By experimentally measuring and theoretically calculating the thermodynamic hydricities of a range of metal-free hydride donors, we derive structural and electronic factors that affect their hydride-donating abilities. Two dominant factors that contribute to the stronger hydride donors are identified to be (i) the stabilization of the positive charge formed upon HT via aromatization or by the presence of electron-donating groups and (ii) the destabilization of hydride donors through the anomeric effect or in the presence of significant structural constrains in the hydride molecule. Hydride donors with appropriate thermodynamic hydricities were reacted with CO2, and the formation of the formate ion (the first reduction step in CO2 reduction to methanol) was confirmed experimentally, providing an important proof of principle that organocatalytic CO2 reduction is feasible. The kinetics of hydride transfer to CO2 were found to be slow, and the sluggish kinetics were assigned in part to the large self-exchange reorganization energy associated with the organic hydrides in the DMSO solvent. Finally, we outline our approaches to the closure of the catalytic cycle via the electrochemical and photochemical regeneration of the hydride (R-H) from the conjugate hydride acceptors (R+). We illustrate how proton-coupled electron transfer can be efficiently utilized not only to lower the electrochemical potential at which the hydride regeneration takes place but also to suppress the unwanted dimerization that neutral radical intermediates tend to undergo. Overall, this account provides a summary of important milestones achieved in organocatalytic CO2 reduction and provides insights into the future research directions needed for the discovery of inexpensive catalysts for carbon recycling.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jonathan L. Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ravindra B. Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Ksenija D. Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
28
|
Thompson BL, Kieffer IA, Heiden ZM. Utilization of BODIPY-based redox events to manipulate the Lewis acidity of fluorescent boranes. Chem Commun (Camb) 2022; 58:2646-2649. [PMID: 34981098 DOI: 10.1039/d1cc06400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report describes the implementation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye into the ligand framework of a borane. The redox-active nature of the BODIPY dye is utilized to generate a family of molecular boranes that are capable of exhibiting tunable Lewis acidities through BODIPY-based redox events.
Collapse
Affiliation(s)
- Brena L Thompson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Ian A Kieffer
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Zachariah M Heiden
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
29
|
Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs. Catalysts 2022. [DOI: 10.3390/catal12020201] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chemistry of frustrated Lewis pair (FLP) is widely explored in the activation of small molecules, the hydrogenation of CO2, and unsaturated organic species. A survey of several experimental works on the activation of small molecules by FLPs and the related mechanistic insights into their reactivity from electronic structure theory calculation are provided in the present review, along with the catalytic hydrogenation of CO2. The mechanistic insight into H2 activation is thoroughly discussed, which may provide a guideline to design more efficient FLP for H2 activation. FLPs can activate other small molecules like, CO, NO, CO2, SO2, N2O, alkenes, alkynes, etc. by cooperative action of the Lewis centers of FLPs, as revealed by several computational analyses. The activation barrier of H2 and other small molecules by the FLP can be decreased by utilizing the aromaticity criterion in the FLP as demonstrated by the nucleus independent chemical shift (NICS) analysis. The term boron-ligand cooperation (BLC), which is analogous to the metal-ligand cooperation (MLC), is invoked to describe a distinct class of reactivity of some specific FLPs towards H2 activation.
Collapse
|
30
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
31
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
32
|
Golub IE, Filippov OA, Belkova NV, Epstein LM, Shubina ES. The Mechanism of Halogenation of Decahydro-closo-Decaborate Dianion by Hydrogen Chloride. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Del Horno E, Jover J, Mena M, Pérez-Redondo A, Yélamos C. Low-Valent Titanium Species Stabilized with Aluminum/Boron Hydride Fragments. Chemistry 2021; 28:e202103085. [PMID: 34735025 DOI: 10.1002/chem.202103085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Low-valent titanium species were prepared by reaction of [TiCp*X3 ] (Cp*=η5 -C5 Me5 ; X=Cl, Br, Me) with LiEH4 (E=Al, B) or BH3 (thf), and their structures elucidated by experimental and theoretical methods. The treatment of trihalides [TiCp*X3 ] with LiAlH4 in ethereal solvents (L) leads to the hydride-bridged heterometallic complexes [{TiCp*(μ-H)}2 {(μ-H)2 AlX(L)}2 ] (L=thf, X=Cl, Br; L=OEt2 , X=Cl). Density functional theory (DFT) calculations for those compounds reveal an open-shell singlet ground state with a Ti-Ti bond and can be described as titanium(II) species. The theoretical analyses also show strong interactions between the Ti-Ti bond and the empty s orbitals of the Al atom of the AlH2 XL fragments, which behave as σ-accepting (Z-type) ligands. Analogous reactions of [TiCp*X3 ] with LiBH4 (2 and 3 equiv.) in tetrahydrofuran at room temperature and at 85 °C lead to the titanium(III) compounds [{TiCp*(BH4 )(μ-X)}2 ] (X=Cl, Br) and [{TiCp*(BH4 )(μ-BH4 )}2 ], respectively. The treatment of [TiCp*Me3 ] with 4 and 5 equiv. of BH3 (thf) produces the diamagnetic [{TiCp*(BH3 Me)}2 (μ-B2 H6 )] and paramagnetic [{TiCp*(μ-B2 H6 )}2 ] complexes, respectively.
Collapse
Affiliation(s)
- Estefanía Del Horno
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| |
Collapse
|
34
|
Zhang J, Yang JD, Cheng JP. Recent progress in reactivity study and synthetic application of N-heterocyclic phosphorus hydrides. Natl Sci Rev 2021; 8:nwaa253. [PMID: 34691616 PMCID: PMC8288402 DOI: 10.1093/nsr/nwaa253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
N-heterocyclic phosphines (NHPs) have recently emerged as a new group of promising catalysts for metal-free reductions, owing to their unique hydridic reactivity. The excellent hydricity of NHPs, which rivals or even exceeds those of many metal-based hydrides, is the result of hyperconjugative interactions between the lone-pair electrons on N atoms and the adjacent σ*(P–H) orbital. Compared with the conventional protic reactivity of phosphines, this umpolung P–H reactivity leads to hydridic selectivity in NHP-mediated reductions. This reactivity has therefore found many applications in the catalytic reduction of polar unsaturated bonds and in the hydroboration of pyridines. This review summarizes recent progress in studies of the reactivity and synthetic applications of these phosphorus-based hydrides, with the aim of providing practical information to enable exploitation of their synthetically useful chemistry.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Ritter F, Morris LJ, McCabe KN, Spaniol TP, Maron L, Okuda J. Deaggregation of Zinc Dihydride by Lewis Acids Including Carbon Dioxide in the Presence of Nitrogen Donors. Inorg Chem 2021; 60:15583-15592. [PMID: 34591456 DOI: 10.1021/acs.inorgchem.1c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thermally sensitive polymeric zinc dihydride [ZnH2]n can conveniently be prepared by the reaction of ZnEt2 with [AlH3(NEt3)]. When reacted with CO2 (1 bar) in the presence of chelating N-donor ligands Ln = N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), N,N,N',N″,N''-pentamethyldiethylenetriamine (PMDTA), and 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (Me4TACD), insertion into the Zn-H bond readily occurred. Depending on the denticity n, formates [(Ln)Zn(OCHO)2] were isolated and structurally characterized, either as a molecule (Ln = TMEDA, TMPDA, PMDTA) or a charge-separated ion pair [(Ln)Zn(OCHO)][OCHO] (Ln = Me4TACD). The reaction of [ZnH2]n with the mild Lewis acid BPh3 in the presence of chelating N-donor ligands Ln gave a series of hydridotriphenylborates, either as a contact ion pair [(L2)Zn(H)(HBPh3)] (L2 = TMEDA, TMPDA) or a separated ion pair [(Ln)Zn(H)][HBPh3] (Ln = PMDTA, Me4TACD). In the crystal, the contact ion pair [(TMEDA)Zn(H)(HBPh3)] showed a bent Zn-H-B bridge indicative of a delocalized Zn-H-B interaction. In contrast, a linear Zn-H-B bridge for [(TMPDA)Zn(H)(HBPh3)] was observed, suggesting a contact ion pair. In THF solution, both complexes show an exchange with free BPh3 as well as [HBPh3]-. DFT calculations suggest the presence of [HBPh3]- anion with a highly polarized B-H bond that interacts with the Lewis acidic zinc hydride cation [(L2)Zn(H)]+. The hydridotriphenylborates [(Ln)Zn(H)(HBPh3)] underwent CO2 insertion to give (formato)zinc (formoxy)triphenylborate complexes [(Ln)Zn(OCHO)][(OCHO)BPh3] (Ln = TMPDA, PMDTA, Me4TACD). For Ln = TMEDA, a dinuclear complex [(Ln)2Zn2(μ-OCHO)3][(OCHO)BPh3] was isolated. Hydridotriphenylborates [(Ln)Zn(H)(HBPh3)] catalyzed the hydrosilylation of CO2 (1 bar) by nBuMe2SiH in THF at 70 °C to give formoxysilane and (methoxy)silane.
Collapse
Affiliation(s)
- Florian Ritter
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Louis J Morris
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Karl N McCabe
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
36
|
Alkhater MF, Alherz AW, Musgrave CB. Diazaphospholenes as reducing agents: a thermodynamic and electrochemical DFT study. Phys Chem Chem Phys 2021; 23:17794-17802. [PMID: 34382635 DOI: 10.1039/d1cp02193a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazaphospholenes have emerged as a promising class of metal-free hydride donors and have been implemented as molecular catalysts in several reduction reactions. Recent studies have also verified their radical reactivity as hydrogen atom donors. Experimental quantification of the hydricities and electrochemical properties of this unique class of hydrides has been limited by their sensitivity towards oxidation in open air and moist environments. Here, we implement quantum chemical density functional theory calculations to analyze the electrochemical catalytic cycle of diazaphospholenes in acetonitrile. We report computed hydricities, reduction potentials, pKa values, and bond dissociation free energies (BDFEs) for 64 P-based hydridic catalysts generated by functionalizing 8 main structures with 8 different electron donating/withdrawing groups. Our results demonstrate that a wide range of hydricities (29-66 kcal mol-1) and BDFEs (58-81 kcal mol-1) are attainable by functionalizing diazaphospholenes. Compared to the more common carbon-based hydrides, diazaphospholenes are predicted to require less negative reduction potentials to electrochemically regenerate hydrides with an equivalent hydridic strength, indicating their higher energy efficiency in the tradeoff between thermodynamic ability and reduction potential. We show that the tradeoff between the reducing ability and the energetic cost of regeneration can be optimized by varying the BDFE and the reorganization energy associated with hydride transfer (λHT), where lower BDFE and λHT correspond to more efficient catalysts. Aromatic phosphorus hydrides with predicted BDFEs of ∼62 kcal mol-1 and λHT's of ∼20 kcal mol-1 are found to require less negative reduction potentials than dihydropyridines and benzimidazoles with predicted BDFEs of ∼68 and ∼84 kcal mol-1 and λHT's of ∼40 and ∼50 kcal mol-1, respectively.
Collapse
Affiliation(s)
- Mohammed F Alkhater
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | | | |
Collapse
|
37
|
Bailey GA, Agapie T. Terminal Mo Carbide and Carbyne Reactivity: H2 Cleavage, B–C Bond Activation, and C–C Coupling. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gwendolyn A. Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Belkova NV, Filippov OA, Osipova ES, Safronov SV, Epstein LM, Shubina ES. Influence of phosphine (pincer) ligands on the transition metal hydrides reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Anderson ID, Riskowski RA, Ackerson CJ. Observable but Not Isolable: The RhAu 24 (PET) 181+ Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004078. [PMID: 33174675 DOI: 10.1002/smll.202004078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The synthesis and characterization of RhAu24 (PET)18 (PET = 2-phenylethanethiol) is described. The cluster is cosynthesized with Au25 (PET)18 and rhodium thiolates in a coreduction of RhCl3 , HAuCl4 , and PET. Rapid decomposition of RhAu24 (PET)18 occurs when purified from the other reaction products, precluding the study of isolated cluster. Mixtures containing RhAu24 (PET)18 , Au25 (PET)18 , and rhodium thiolates are therefore characterized. Mass spectrometry, X-ray photoelectron spectroscopy, and chromatography methods suggest a combination of charge-charge and metallophilic interactions among Au25 (PET)181- , rhodium thiolates and RhAu24 (PET)18 resulting in stabilization of RhAu24 (PET)18 . The charge of RhAu24 (PET)18 is assigned as 1+ on the basis of its stoichiometric 1:1 presence with anionic Au25 (PET)18 , and its stability is contextualized within the superatom electron counting rules. This analysis concludes that the Rh atom absorbs one superatomic electron to close its d-shell, giving RhAu24 (PET)181+ a superatomic electron configuration of 1S2 1P4 . Overall, an updated framework for rationalizing open d-shell heterometal dopant electronics in thiolated gold nanoclusters emerges.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan A Riskowski
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
40
|
Golub IE, Filippov OA, Belkova NV, Epstein LM, Shubina ES. The Reaction of Hydrogen Halides with Tetrahydroborate Anion and Hexahydro- closo-hexaborate Dianion. Molecules 2021; 26:molecules26123754. [PMID: 34202981 PMCID: PMC8235096 DOI: 10.3390/molecules26123754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of the consecutive halogenation of the tetrahydroborate anion [BH4]− by hydrogen halides (HX, X = F, Cl, Br) and hexahydro-closo-hexaborate dianion [B6H6]2− by HCl via electrophile-induced nucleophilic substitution (EINS) was established by ab initio DFT calculations [M06/6-311++G(d,p) and wB97XD/6-311++G(d,p)] in acetonitrile (MeCN), taking into account non-specific solvent effects (SMD model). Successive substitution of H− by X− resulted in increased electron deficiency of borohydrides and changes in the character of boron atoms from nucleophilic to highly electrophilic. This, in turn, increased the tendency of the B–H bond to transfer a proton rather than a hydride ion. Thus, the regularities established suggested that it should be possible to carry out halogenation more selectively with the targeted synthesis of halogen derivatives with a low degree of substitution, by stabilization of H2 complex, or by carrying out a nucleophilic substitution of B–H bonds activated by interaction with Lewis acids (BL3).
Collapse
|
41
|
Long PW, Oestreich M. B(C 6F 5) 3-Catalyzed Diastereoselective Formal (4 + 1)-Cycloaddition of Vinylcyclopropanes and Et 2SiH 2. Org Lett 2021; 23:4834-4837. [PMID: 34076451 DOI: 10.1021/acs.orglett.1c01565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formal (4 + 1)-cycloaddition of vinylcyclopropanes and Et2SiH2 to afford 3,4-disubstituted silolanes is reported. The reaction sequence commences with the known B(C6F5)3-catalyzed alkene hydrosilylation with dihydrosilanes. Cleavage of the remaining Si-H bond in the hydrosilylation product assisted by B(C6F5)3 leads to formation of a cyclopropane-stabilized silylium ion. The activated cyclopropane ring is then opened by the in situ-generated borohydride accompanied by ring closure to the silolane. The diastereoselectivity is rationalized by a mechanistic model.
Collapse
Affiliation(s)
- Peng-Wei Long
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
42
|
Chang K, Del Rosal I, Zheng X, Maron L, Xu X. Hydrosilylative reduction of carbon dioxide by a homoleptic lanthanum aryloxide catalyst with high activity and selectivity. Dalton Trans 2021; 50:7804-7809. [PMID: 34100492 DOI: 10.1039/d1dt01074c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient tandem hydrosilylation of CO2, which uses a combination of a simple, homoleptic lanthanum aryloxide and B(C6F5)3, was performed. Use of a less sterically hindered silane led to an exclusive reduction of CO2 to CH4, with a turnover frequency of up to 6000 h-1 at room temperature. The catalytic system is robust, and 19 400 turnovers could be achieved with 0.005 mol% loading of lanthanum. The reaction outcome depended highly on the nature of the silane reductant used. Selective production of the formaldehyde equivalent, i.e., bis(silyl)acetal, without over-reduction, was observed when a sterically bulky silane was used. The reaction mechanism was elucidated by stoichiometric reactions and DFT calculations.
Collapse
Affiliation(s)
- Kejian Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Xizhou Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
43
|
Erdmann P, Greb L. Multidimensional Lewis Acidity: A Consistent Data Set of Chloride, Hydride, Methide, Water and Ammonia Affinities for 183 p-Block Element Lewis Acids. Chemphyschem 2021; 22:935-943. [PMID: 33755288 PMCID: PMC8252043 DOI: 10.1002/cphc.202100150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Indexed: 11/17/2022]
Abstract
The computed fluoride ion affinity (FIA) is a widely applied descriptor to gauge Lewis acidity. Like every other single-parameter Lewis acidity scale, the FIA metric suffers from the one-dimensionality, that prohibits addressing Lewis acidity by the multidimensionality it inherently requires (i. e., reference Lewis base dependency). However, a systematic screening of computed affinities other than the FIA is much less developed. Herein, we extended our CCSD(T)/CBS benchmark of different density functionals and the DLPNO-CCSD(T) method for chloride (CIA), methide (MIA), hydride (HIA), water (WA), and ammonia (AA) affinities. The best performing methods are subsequently applied to yield nearly 800 affinities for 183 p-block element compounds of group 13-16 with an estimated accuracy of <10 kJ mol-1 . The study's output serves as a consistent library for qualitative analyses and a training set for future statistical approaches. A first holistic correlation analysis underscores the need for a multidimensional description of Lewis acidity.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg
| |
Collapse
|
44
|
Hong DH, Ferreira RB, Catalano VJ, García-Serres R, Shearer J, Murray LJ. Access to Metal Centers and Fluxional Hydride Coordination Integral for CO 2 Insertion into [Fe 3(μ-H) 3] 3+ Clusters. Inorg Chem 2021; 60:7228-7239. [PMID: 33900076 DOI: 10.1021/acs.inorgchem.1c00244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CO2 insertion into tri(μ-hydrido)triiron(II) clusters ligated by a tris(β-diketiminate) cyclophane is demonstrated to be balanced by sterics for CO2 approach and hydride accessibility. Time-resolved NMR and UV-vis spectra for this reaction for a complex in which methoxy groups border the pocket of the hydride donor (Fe3H3L2, 4) result in a decreased activation barrier and increased kinetic isotope effect consistent with the reduced sterics. For the ethyl congener Fe3H3L1 (2), no correlation is found between rate and reaction solvent or added Lewis acids, implying CO2 coordination to an Fe center in the mechanism. The estimated hydricity (50 kcal/mol) based on observed H/D exchange with BD3 requires Fe-O bond formation in the product to offset an endergonic CO2 insertion. μ3-hydride coordination is noted to lower the activation barrier for the first CO2 insertion event in DFT calculations.
Collapse
Affiliation(s)
- Dae Ho Hong
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ricardo B Ferreira
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Vincent J Catalano
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249), F-38054 Grenoble, France
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
45
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
46
|
Thompson BL, Heiden ZM. Tuning the reduction potentials of benzoquinone through the coordination to Lewis acids. Phys Chem Chem Phys 2021; 23:9822-9831. [PMID: 33908513 DOI: 10.1039/d1cp01266e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electron transfer promoted by the coordination of a substrate molecule to a Lewis acid or hydrogen bonding group is a critical step in many biological and catalytic transformations. This computational study investigates the nature of the interaction between benzoquinone and one and two Lewis acids by examining the influence of Lewis acid strength on the ability to alter the two reduction potentials of the coordinated benzoquinone molecule. To investigate this interaction, the coordination of the neutral (Q), singly reduced ([Q]˙-), and doubly reduced benzoquinone ([Q]2-) molecule to eight Lewis acids was analyzed. Coordination of benzoquinone to a Lewis acid became more favorable by 25 kcal mol-1 with each reduction of the benzoquinone fragment. Coordination of benzoquinone to a Lewis acid also shifted each of the reduction potentials of the coordinated benzoquinone anodically by 0.50 to 1.5 V, depending on the strength of the Lewis acid, with stronger Lewis acids exhibiting a larger effect on the reduction potential. Coordination of a second Lewis acid further altered each of the reduction potentials by an additional 0.70 to 1.6 V. Replacing one of the Lewis acids with a proton resulted in the ability to modify the pKa of the protonated Lewis acid-Q/[Q]˙-/[Q]2- adducts by about 10 pKa units, in addition to being able to alter the ability to transfer a hydrogen atom by 10 kcal mol-1, and the capacity to transfer a hydride by about 30 kcal mol-1.
Collapse
Affiliation(s)
- Brena L Thompson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
47
|
Manankandayalage C, Unruh DK, Krempner C. Small Molecule Activation with Intramolecular "Inverse" Frustrated Lewis Pairs. Chemistry 2021; 27:6263-6273. [PMID: 33567143 DOI: 10.1002/chem.202005143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/29/2021] [Indexed: 12/25/2022]
Abstract
The intramolecular "inverse" frustrated Lewis pairs (FLPs) of general formula 1-BR2 -2-[(Me2 N)2 C=N]-C6 H4 (3-6) [BR2 =BMes2 (3), BC12 H8 , (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H-H, C-H, N-H, O-H, Si-H, B-H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR2 )-2-[(Me2 N)2 C=NH]-C6 H4 (R=Ph, H) and reacted with ammonia, BnNH2 and pyrrolidine, to generate the FLP adducts 1-(R2 HN→BR2 )-2-[(Me2 N)2 C=NH]-C6 H4 , where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H2 CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H2 , HBPin and PhSiH3 to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.
Collapse
Affiliation(s)
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
48
|
Kunihiro K, Heyte S, Paul S, Roisnel T, Carpentier JF, Kirillov E. Ruthenium-Catalyzed Coupling Reactions of CO 2 with C 2 H 4 and Hydrosilanes towards Silyl Esters. Chemistry 2021; 27:3997-4003. [PMID: 33378130 DOI: 10.1002/chem.202005083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Indexed: 11/10/2022]
Abstract
A series of in situ-prepared catalytic systems incorporating RuII precursors and bidentate phosphine ligands has been probed in the reductive carboxylation of ethylene in the presence of triethylsilane as reductant. The catalytic production of propionate and acrylate silyl esters was evidenced by high-throughput screening (HTS) and implemented in batch reactor techniques. The most promising catalyst systems identified were made of Ru(H)(Cl)(CO)(PPh3 )3 and 1,4-bis(dicyclohexylphosphino)butane (DCPB) or 1,1'-ferrocene-diyl-bis(cyclohexylphosphine) (DCPF). A marked influence of water on the acrylate/propionate selectivity was noted. Turnover numbers [mol mol(Ru)-1 ] up to 16 for acrylate and up to 68 for propionate were reached under relatively mild conditions (20 bar, 100 °C, 0.5 mol % Ru, 40 mol % H2 O vs. HSiEt3 ). Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Kana Kunihiro
- CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Univ. Rennes, 35042, Rennes Cedex, France
| | - Svetlana Heyte
- CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000, Lille, France
| | - Sébastien Paul
- CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000, Lille, France
| | - Thierry Roisnel
- CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Univ. Rennes, 35042, Rennes Cedex, France
| | - Jean-François Carpentier
- CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Univ. Rennes, 35042, Rennes Cedex, France
| | - Evgueni Kirillov
- CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Univ. Rennes, 35042, Rennes Cedex, France
| |
Collapse
|
49
|
Zhai X, Pang M, Feng L, Jia J, Tung CH, Wang W. Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex. Chem Sci 2021; 12:2885-2889. [PMID: 34164054 PMCID: PMC8179412 DOI: 10.1039/d0sc06787c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report on the first isolation and structural characterization of an iron phosphinoimino-borane complex Cp*Fe(η2-H2B
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NC6H4PPh2) by dehydrogenation of iron amido-borane precursor Cp*Fe(η1-H3B–NHC6H4PPh2). Significantly, regeneration of the amido-borane complex has been realized by protonation of the iron(ii) imino-borane to the amino-borane intermediate [Cp*Fe(η2-H2B–NHC6H4PPh2)]+ followed by hydride transfer. These new iron species are efficient catalysts for 1,2-selective transfer hydrogenation of quinolines with ammonia borane. Dehydrogenation of an amido-borane iron complex provides an imino-borane complex. Regeneration of the amido-borane precursor was achieved by protonation of the imino-borane followed by hydride transfer to the amino-borane intermediate.![]()
Collapse
Affiliation(s)
- Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Maofu Pang
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China .,College of Chemistry, Beijing Normal University No. 19 Xinjiekouwai St Beijing 100875 China
| |
Collapse
|
50
|
Coffinet A, Zhang D, Vendier L, Bontemps S, Simonneau A. Borane-catalysed dinitrogen borylation by 1,3-B-H bond addition. Dalton Trans 2021; 50:5582-5589. [PMID: 33908973 DOI: 10.1039/d1dt00317h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The borylation of ligated dinitrogen by 1,3-B-H bond addition over a W-N[triple bond, length as m-dash]N unit using various hydroboranes has been examined. In a previous study, we have shown that Piers' borane (1) reacted with the tungsten dinitrogen complex 2 to afford a boryldiazenido-hydrido-tungsten species. The ease and mildness of this reaction have encouraged us to extend its scope, with the working hypothesis that 1 could potentially catalyse the 1,3-B-H bond addition of other hydroboranes. Under productive reaction conditions, dicyclohexylborane (HBCy2) and diisopinocampheylborane (HBIpc2) underwent retro-hydroboration to give cyclohexylborane (H2BCy) or isopinocampheylborane (H2BIpc), respectively; these monoalkylboranes act as N2-borylating agents in the presence of a catalytic amount of 1. Under similar conditions, 9-borabicyclononane (9-BBN) slowly adds over the W-N[triple bond, length as m-dash]N unit without rearrangement to a monoalkylborane. Catecholborane (HBcat) undergoes the 1,3-B-H bond addition without the need for a catalyst. We were not able to build more than one covalent B-N bond between the terminal N of the N2 ligand and the boron reagent with this methodology.
Collapse
Affiliation(s)
- Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Dan Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| |
Collapse
|