1
|
Escobedo A, Avalos-Flores L, Mojica L, Lugo-Cervantes E, Gschaedler A, Alcazar M. Native Mexican black bean purified anthocyanins fractionated by high-performance counter-current chromatography modulate inflammatory pathways. Food Chem 2024; 458:140216. [PMID: 38970958 DOI: 10.1016/j.foodchem.2024.140216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
In addition to their pigment properties, the potential health benefits of anthocyanins have made them a subject of interest in recent years. This study aimed to obtain purified anthocyanin fractions from native Mexican black bean cultivars using Amberlite XAD-7 resin column and HPCCC and evaluate their anti-inflammatory properties using RAW 264.7 cells. The major anthocyanins in the purified anthocyanin fractions were delphinidin 3-glucoside (61.8%), petunidin 3-glucoside (25.2%), and malvidin 3-glucoside (12.2%). Purified anthocyanin fractions at 12.5 μg/mL effectively prevented LPS-induced ERK1/ERK2 phosphorylation and reduced the protein expression of COX-2 and mRNA expression of iNOS. Results showed that purified anthocyanin fractions have the potential to modulate the inflammatory response by inhibiting the production of pro-inflammatory mediators through the ERK1/ERK2 and NF-κB pathways. This study suggests that anthocyanins from black beans could be used as a natural strategy to help modulate inflammation-associated diseases.
Collapse
Affiliation(s)
- Alejandro Escobedo
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico
| | - Lucero Avalos-Flores
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico
| | - Eugenia Lugo-Cervantes
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico
| | - Anne Gschaedler
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico
| | - Montserrat Alcazar
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero #1227, Col. El Bajío, 45019 Zapopan, Mexico.
| |
Collapse
|
2
|
Kupakuwana P, Singh G, Storey KB. DNA hypomethylation in wood frog liver under anoxia and dehydration stresses. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111005. [PMID: 38969165 DOI: 10.1016/j.cbpb.2024.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Wood frogs are freeze-tolerant vertebrates that can endure weeks to months frozen during the winter without breathing and with as much as 65% of total body water frozen as extracellular ice. Underlying tolerances of anoxia and of cellular dehydration support whole body freezing. One pro-survival mechanism employed by these frogs is epigenetic modifications via DNA hypomethylation processes facilitating transcriptional repression or activation. These processes involve proteins such as DNA Methyltransferases (DNMTs), Methyl Binding Domain proteins (MBDs), Ten-Eleven Translocases (TETs), and Thymine Deglycosylase (TDG). The present study evaluates the responses of these proteins to dehydration and anoxia stresses in wood frog liver. DNMT relative protein expression was reduced in liver, but nuclear DNMT activity did not change significantly under anoxia stress. By contrast, liver DNMTs and nuclear DNMT activity were upregulated under dehydration stress. These stress-specific differences were speculated to arise from Post-Translational Modifications (PTMs). DNMT3A and DNMT3B showed increased relative protein expression during recovery from dehydration and anoxia. Further, MBD1 was elevated during both conditions suggesting transcriptional repression. TET proteins showed varying responses to anoxia likely due to the absence of oxygen, a main substrate required by TETs. Similarly, TDG, an enzyme that corrects DNA damage, was downregulated under anoxia potentially due to lower levels of reactive oxygen species that damage DNA, but levels returned to normal during reperfusion of oxygen. Our results indicate differential stress-specific responses that indicate the need for more research in the DNA hypomethylation mechanisms employed by the wood frog during stress.
Collapse
Affiliation(s)
- Panashe Kupakuwana
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| | - Gurjit Singh
- Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada.
| |
Collapse
|
3
|
Raun SH, Braun JL, Karavaeva I, Henriquez-Olguín C, Ali MS, Møller LLV, Gerhart-Hines Z, Fajardo VA, Richter EA, Sylow L. Mild Cold Stress at Ambient Temperature Elevates Muscle Calcium Cycling and Exercise Adaptations in Obese Female Mice. Endocrinology 2024; 165:bqae102. [PMID: 39136248 DOI: 10.1210/endocr/bqae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/28/2024]
Abstract
CONTEXT Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. OBJECTIVE To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters. METHODS Lean or obese female mice were housed at standard ambient temperature (22 °C) or thermoneutrality (30 °C) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS Obese female mice housed at 22 °C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30 °C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22 °C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after ET independent of housing temperature. Independent of diet and training, 22 °C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, housing at 22 °C elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.
Collapse
Affiliation(s)
- Steffen H Raun
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jessica L Braun
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Carlos Henriquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mona S Ali
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lisbeth L V Møller
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Val A Fajardo
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lykke Sylow
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
4
|
Huang T, Chen X, He J, Zheng P, Luo Y, Wu A, Yan H, Yu B, Chen D, Huang Z. Eugenol mimics exercise to promote skeletal muscle fiber remodeling and myokine IL-15 expression by activating TRPV1 channel. eLife 2024; 12:RP90724. [PMID: 38913071 PMCID: PMC11196110 DOI: 10.7554/elife.90724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
5
|
Qin B, Lu G, Chen X, Zheng C, Lin H, Liu Q, Shang J, Feng G. H2B oncohistones cause homologous recombination defect and genomic instability through reducing H2B monoubiquitination in Schizosaccharomyces pombe. J Biol Chem 2024; 300:107345. [PMID: 38718864 PMCID: PMC11167522 DOI: 10.1016/j.jbc.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Canonical oncohistones are histone H3 mutations in the N-terminal tail associated with tumors and affect gene expression by altering H3 post-translational modifications (PTMs) and the epigenetic landscape. Noncanonical oncohistone mutations occur in both tails and globular domains of all four core histones and alter gene expression by perturbing chromatin remodeling. However, the effects and mechanisms of noncanonical oncohistones remain largely unknown. Here we characterized 16 noncanonical H2B oncohistones in the fission yeast Schizosaccharomyces pombe. We found that seven of them exhibited temperature sensitivities and 11 exhibited genotoxic sensitivities. A detailed study of two of these onco-mutants H2BG52D and H2BP102L revealed that they were defective in homologous recombination (HR) repair with compromised histone eviction and Rad51 recruitment. Interestingly, their genotoxic sensitivities and HR defects were rescued by the inactivation of the H2BK119 deubiquitination function of Ubp8 in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. The levels of H2BK119 monoubiquitination (H2Bub) in the H2BG52D and H2BP102L mutants are reduced in global genome and at local DNA break sites presumably due to enhanced recruitment of Ubp8 onto nucleosomes and are recovered upon loss of H2B deubiquitination function of the SAGA complex. Moreover, H2BG52D and H2BP102L heterozygotes exhibit genotoxic sensitivities and reduced H2Bub in cis. We therefore conclude that H2BG52D and H2BP102L oncohistones affect HR repair and genome stability via the reduction of H2Bub and propose that other noncanonical oncohistones may also affect histone PTMs to cause diseases.
Collapse
Affiliation(s)
- Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guangchun Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuejin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huanteng Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qi Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Storey EC, Holt I, Brown S, Synowsky S, Shirran S, Fuller HR. Proteomic characterization of human LMNA-related congenital muscular dystrophy muscle cells. Neuromuscul Disord 2024; 38:26-41. [PMID: 38554696 DOI: 10.1016/j.nmd.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.
Collapse
Affiliation(s)
- Emily C Storey
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Sharon Brown
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Silvia Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Sally Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK.
| |
Collapse
|
7
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Tánczos B, Vass V, Szabó E, Lovas M, Kattoub RG, Bereczki I, Borbás A, Herczegh P, Tósaki Á. Effects of H 2S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts. Eur J Pharm Sci 2024; 195:106721. [PMID: 38331005 DOI: 10.1016/j.ejps.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Hydrogen sulfide (H2S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H2S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H2S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H2S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 μM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H2S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively.
Collapse
Affiliation(s)
- Bence Tánczos
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Virág Vass
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Rasha Ghanem Kattoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary
| | - Ilona Bereczki
- HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Pál Herczegh
- HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| |
Collapse
|
9
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
10
|
Dong J, Xu Q, Qian C, Wang L, DiSciullo A, Lei J, Lei H, Yan S, Wang J, Jin N, Xiong Y, Zhang J, Burd I, Wang X. Fetal growth restriction exhibits various mTOR signaling in different regions of mouse placentas with altered lipid metabolism. Cell Biol Toxicol 2024; 40:15. [PMID: 38451382 PMCID: PMC10920423 DOI: 10.1007/s10565-024-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and can have significant impact on obstetric and neonatal outcomes. Increasing evidence has shown that the inhibited mechanistic target of rapamycin (mTOR) signaling in placenta is associated with FGR. However, interpretation of existing research is limited due to inconsistent methodologies and varying understanding of the mechanism by which mTOR activity contributes to FGR. Hereby, we have demonstrated that different anatomic regions of human and mouse placentas exhibited different levels of mTOR activity in normal compared to FGR pregnancies. When using the rapamycin-induced FGR mouse model, we found that placentas of FGR pregnancies exhibited abnormal morphological changes and reduced mTOR activity in the decidual-junctional layer. Using transcriptomics and lipidomics, we revealed that lipid and energy metabolism was significantly disrupted in the placentas of FGR mice. Finally, we demonstrated that maternal physical exercise during gestation in our FGR mouse model was associated with increased fetal and placental weight as well as increased placental mTOR activity and lipid metabolism. Collectively, our data indicate that the inhibited placental mTOR signaling contributes to FGR with altered lipid metabolism in mouse placentas, and maternal exercise could be an effective method to reduce the occurrence of FGR or alleviate the adverse outcomes associated with FGR.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| | - Qian Xu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Lu Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Alison DiSciullo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Hui Lei
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Yujing Xiong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jianhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
11
|
Pham TD, Verlander JW, Chen C, Pech V, Kim HI, Kim YH, Weiner ID, Milne GL, Zent R, Bock F, Brown D, Eaton A, Wall SM. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am J Physiol Renal Physiol 2024; 326:F202-F218. [PMID: 38059296 PMCID: PMC11198991 DOI: 10.1152/ajprenal.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.
Collapse
Affiliation(s)
- Truyen D Pham
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Chao Chen
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Vladimir Pech
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Hailey I Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Young Hee Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
- Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Amity Eaton
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Susan M Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Martinez SE, Pandey AV, Perez Jimenez TE, Zhu Z, Court MH. Pharmacogenomics of poor drug metabolism in greyhounds: Canine P450 oxidoreductase genetic variation, breed heterogeneity, and functional characterization. PLoS One 2024; 19:e0297191. [PMID: 38300925 PMCID: PMC10833530 DOI: 10.1371/journal.pone.0297191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Stephanie E. Martinez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Biomedical Research, University Children’s Hospital Bern, Switzerland and Translational Hormone Research Program, University of Bern, Bern, Switzerland
| | - Tania E. Perez Jimenez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zhaohui Zhu
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael H. Court
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
13
|
Félix L. A Chromogenic Quantification of Protein Expression in Zebrafish Larvae. Methods Mol Biol 2024; 2753:515-532. [PMID: 38285364 DOI: 10.1007/978-1-0716-3625-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Western blot is a versatile and widely used technique in many areas of molecular biology and biotechnology for studying different protein characteristics. In general, the Western blot technique involves the extraction of proteins from the samples such as cells or tissues, which, after denaturation, are separated by molecular size using electrophoresis. The protein is then transferred to a membrane, typically PVDF or nitrocellulose, which, after blocking, is probed with specific antibodies labeled with a detection agent. Overall, this allows the recognition and binding to the target protein allowing the visualization of bands, a step called immunodetection. Over the years, new approaches to the Western blotting technique have been proposed to overcome performance limitations.This chapter describes a routine procedure for protein evaluation in zebrafish (Danio rerio) larvae, a widely used animal model for predicting the toxicity of drugs, by using a chromogenic substrate and allowing the proper execution of the technique without the costly equipment needed for detection.
Collapse
Affiliation(s)
- Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal.
| |
Collapse
|
14
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Frumkin I, Laub MT. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. Nat Ecol Evol 2023; 7:2067-2079. [PMID: 37945946 PMCID: PMC10697842 DOI: 10.1038/s41559-023-02224-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
Cellular novelty can emerge when non-functional loci become functional genes in a process termed de novo gene birth. But how proteins with random amino acid sequences beneficially integrate into existing cellular pathways remains poorly understood. We screened ~108 genes, generated from random nucleotide sequences and devoid of homology to natural genes, for their ability to rescue growth arrest of Escherichia coli cells producing the ribonuclease toxin MazF. We identified ~2,000 genes that could promote growth, probably by reducing transcription from the promoter driving toxin expression. Additionally, one random protein, named Random antitoxin of MazF (RamF), modulated protein homeostasis by interacting with chaperones, leading to MazF proteolysis and a consequent loss of its toxicity. Finally, we demonstrate that random proteins can improve during evolution by identifying beneficial mutations that turned RamF into a more efficient inhibitor. Our work provides a mechanistic basis for how de novo gene birth can produce functional proteins that effectively benefit cells evolving under stress.
Collapse
Affiliation(s)
- Idan Frumkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Quiroga DT, Narvaéz Pardo JA, Zubiría MG, Barrales B, Muñoz MC, Giovambattista A, Dominici FP. Acute In Vivo Administration of Compound 21 Stimulates Akt and ERK1/2 Phosphorylation in Mouse Heart and Adipose Tissue. Int J Mol Sci 2023; 24:16839. [PMID: 38069161 PMCID: PMC10706736 DOI: 10.3390/ijms242316839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The angiotensin II type 2 (AT2) receptor has a role in promoting insulin sensitivity. However, the mechanisms underlying the AT2 receptor-induced facilitation of insulin are still not completely understood. Therefore, we investigated whether acute in vivo administration of AT2 receptor agonist compound 21 (C21) could activate insulin signaling molecules in insulin-target tissues. We report that, in male C57BL/6 mice, an acute (5 min, 0.25 mg/kg; i.v.) injection of C21 induces the phosphorylation of Akt and ERK1/2 at activating residues (Ser473 and Thr202/Tyr204, respectively) in both epididymal white adipose tissue (WAT) and heart tissue. In WAT, the extent of phosphorylation (p) of Akt and ERK1/2 induced by C21 was approximately 65% of the level detected after a bolus injection of a dose of insulin known to induce maximal activation of the insulin receptor (IR). In the heart, C21 stimulated p-Akt to a lesser extent than in WAT and stimulated p-ERK1/2 to similar levels to those attained by insulin administration. C21 did not modify p-IR levels in either tissue. We conclude that in vivo injection of the AT2 receptor agonist C21 activates Akt and ERK1/2 through a mechanism that does not involve the IR, indicating the participation of these enzymes in AT2R-mediated signaling.
Collapse
Affiliation(s)
- Diego T. Quiroga
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Jorge A. Narvaéz Pardo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - María G. Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Benjamín Barrales
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Marina C. Muñoz
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Fernando P. Dominici
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
17
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
18
|
Lewis M, Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. The α-arrestin SUP-13/ARRD-15 promotes isoform turnover of actin-interacting protein 1 in Caenorhabditis elegans striated muscle. PNAS NEXUS 2023; 2:pgad330. [PMID: 37869480 PMCID: PMC10590129 DOI: 10.1093/pnasnexus/pgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.
Collapse
Affiliation(s)
- Mario Lewis
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Pham T, Dollet L, Ali MS, Raun SH, Møller LL, Jafari A, Ditzel N, Andersen NR, Fritzen AM, Gerhart-Hines Z, Kiens B, Suomalainen A, Simpson SJ, Salling Olsen M, Kieser A, Schjerling P, Nieminen AI, Richter EA, Havula E, Sylow L. TNIK is a conserved regulator of glucose and lipid metabolism in obesity. SCIENCE ADVANCES 2023; 9:eadf7119. [PMID: 37556547 PMCID: PMC10411879 DOI: 10.1126/sciadv.adf7119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.
Collapse
Affiliation(s)
- T. C. Phung Pham
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucile Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona S. Ali
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H. Raun
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth L. V. Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Ditzel
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and University of Southern Denmark, Odense, Denmark
- Biomedical Laboratory, The Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Nicoline R. Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M. Fritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostic Center, Helsinki 00290, Finland
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
| | - Morten Salling Olsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Building 9312, Henrik Harpestrengs Vej 4C, Copenhagen 2100, Denmark
- Laboratory for Molecular Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnd Kieser
- Helmholtz Centre Munich–German Research Centre for Environmental Health, Research Unit Signaling and Translation, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anni I. Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Erik A. Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Berg P, Jensen T, Andersen JF, Svendsen SL, Modvig IM, Wang T, Frische S, Chow BKC, Malte H, Holst JJ, Sørensen MV, Leipziger J. Loss of the Secretin Receptor Impairs Renal Bicarbonate Excretion and Aggravates Metabolic Alkalosis in Mice during Acute Base-Loading. J Am Soc Nephrol 2023; 34:1329-1342. [PMID: 37344929 PMCID: PMC10400107 DOI: 10.1681/asn.0000000000000173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT During acute base excess, the renal collecting duct β -intercalated cells ( β -ICs) become activated to increase urine base excretion. This process is dependent on pendrin and cystic fibrosis transmembrane regulator (CFTR) expressed in the apical membrane of β -ICs. The signal that leads to activation of this process was unknown. Plasma secretin levels increase during acute alkalosis, and the secretin receptor (SCTR) is functionally expressed in β -ICs. We find that mice with global knockout for the SCTR lose their ability to acutely increase renal base excretion. This forces the mice to lower their ventilation to cope with this challenge. Our findings suggest that secretin is a systemic bicarbonate-regulating hormone, likely being released from the small intestine during alkalosis. BACKGROUND The secretin receptor (SCTR) is functionally expressed in the basolateral membrane of the β -intercalated cells of the kidney cortical collecting duct and stimulates urine alkalization by activating the β -intercalated cells. Interestingly, the plasma secretin level increases during acute metabolic alkalosis, but its role in systemic acid-base homeostasis was unclear. We hypothesized that the SCTR system is essential for renal base excretion during acute metabolic alkalosis. METHODS We conducted bladder catheterization experiments, metabolic cage studies, blood gas analysis, barometric respirometry, perfusion of isolated cortical collecting ducts, immunoblotting, and immunohistochemistry in SCTR wild-type and knockout (KO) mice. We also perfused isolated rat small intestines to study secretin release. RESULTS In wild-type mice, secretin acutely increased urine pH and pendrin function in isolated perfused cortical collecting ducts. These effects were absent in KO mice, which also did not sufficiently increase renal base excretion during acute base loading. In line with these findings, KO mice developed prolonged metabolic alkalosis when exposed to acute oral or intraperitoneal base loading. Furthermore, KO mice exhibited transient but marked hypoventilation after acute base loading. In rats, increased blood alkalinity of the perfused upper small intestine increased venous secretin release. CONCLUSIONS Our results suggest that loss of SCTR impairs the appropriate increase of renal base excretion during acute base loading and that SCTR is necessary for acute correction of metabolic alkalosis. In addition, our findings suggest that blood alkalinity increases secretin release from the small intestine and that secretin action is critical for bicarbonate homeostasis.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tobias Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Ida Maria Modvig
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Tobias Wang
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hans Malte
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen University, Copenhagen, Denmark
| | | | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM. Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 2023; 472:116573. [PMID: 37269932 DOI: 10.1016/j.taap.2023.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León-Del-Rio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Nonoguchi HA, Jin M, Narreddy R, Kouo TWS, Nayak M, Trenet W, Mandyam CD. Progenitor Cells Play a Role in Reinstatement of Ethanol Seeking in Adult Male and Female Ethanol Dependent Rats. Int J Mol Sci 2023; 24:12233. [PMID: 37569609 PMCID: PMC10419311 DOI: 10.3390/ijms241512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Female and male glial fibrillary acidic protein-thymidine kinase (GFAP-TK) transgenic rats were made ethanol dependent via a six-week chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. During the last week of CIE, a subset of male and female TK rats was fed valcyte to ablate dividing progenitor cells and continued the diet until the end of this study. Following week six, all CIE rats experienced two weeks of forced abstinence from CIE-ED, after which they experienced relapse to drinking, extinction, and reinstatement of ethanol seeking sessions. CIE increased ED in female and male rats, with females having higher ethanol consumption during CIE and relapse sessions compared with males. In both sexes, valcyte reduced the levels of Ki-67-labeled progenitor cells in the subgranular zone of the dentate gyrus and did not alter the levels in the medial prefrontal cortex (mPFC). Valcyte increased ED during relapse, increased lever responses during extinction and, interestingly, enhanced latency to extinguish ethanol-seeking behaviors in males. Valcyte reduced the reinstatement of ethanol-seeking behaviors triggered by ethanol cues in females and males. Reduced seeking by valcyte was associated with the normalization of cytokines and chemokines in plasma isolated from trunk blood, indicating a role for progenitor cells in peripheral inflammatory responses. Reduced seeking by valcyte was associated with increases in tight junction protein claudin-5 and oligodendrogenesis in the dentate gyrus and reduction in microglial activity in the dentate gyrus and mPFC in females and males, demonstrating a role for progenitor cells in the dentate gyrus in dependence-induced endothelial and microglial dysfunction. These data suggest that progenitor cells born during withdrawal and abstinence from CIE in the dentate gyrus are aberrant and could play a role in strengthening ethanol memories triggered by ethanol cues via central and peripheral immune responses.
Collapse
Affiliation(s)
| | - Michael Jin
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
24
|
Sleigh JN, Villarroel-Campos D, Surana S, Wickenden T, Tong Y, Simkin RL, Vargas JNS, Rhymes ER, Tosolini AP, West SJ, Zhang Q, Yang XL, Schiavo G. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 2023; 8:e157191. [PMID: 36928301 PMCID: PMC10243821 DOI: 10.1172/jci.insight.157191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - Tahmina Wickenden
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Jose Norberto S. Vargas
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | | | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
25
|
Loffing J, Pech V, Loffing-Cueni D, Abood DC, Kim YH, Chen C, Pham TD, Verlander JW, Wall SM. Pendrin abundance, subcellular distribution, and function are unaffected by either αENaC gene ablation or by increasing ENaC channel activity. Pflugers Arch 2023; 475:607-620. [PMID: 36977894 PMCID: PMC10105674 DOI: 10.1007/s00424-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
The intercalated cell Cl-/HCO3- exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function. The purpose of this study was therefore to determine if αENaC is expressed at the protein level in pendrin-positive intercalated cells and to determine if αENaC gene ablation or constitutively upregulating ENaC activity changes pendrin abundance, subcellular distribution, and/or function. We observed diffuse, cytoplasmic αENaC label in pendrin-positive intercalated cells from both mice and rats, with much lower label intensity in pendrin-negative, type A intercalated cells. However, while αENaC gene ablation within principal and intercalated cells of the CCD reduced Cl- absorption, it did not change pendrin abundance or subcellular distribution in aldosterone-treated mice. Further experiments used a mouse model of Liddle's syndrome to explore the effect of increasing ENaC channel activity on pendrin abundance and function. The Liddle's variant did not increase either total or apical plasma membrane pendrin abundance in aldosterone-treated or in NaCl-restricted mice. Similarly, while the Liddle's mutation increased total Cl- absorption in CCDs from aldosterone-treated mice, it did not significantly affect the change in Cl- absorption seen with pendrin gene ablation. We conclude that in rats and mice, αENaC localizes to pendrin-positive ICs where its physiological role remains to be determined. While pendrin modulates ENaC abundance, subcellular distribution, and function, ENaC does not have a similar effect on pendrin.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
| | - Vladimir Pech
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Delaney C Abood
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young Hee Kim
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Chao Chen
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Truyen D Pham
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jill W Verlander
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Susan M Wall
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Rehman S, Hadj-Moussa H, Hawkins L, Storey KB. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica. Cryobiology 2023; 110:44-48. [PMID: 36539050 DOI: 10.1016/j.cryobiol.2022.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The wood frog (Rana Sylvatica) can endure the sub-zero temperatures of winter by freezing up to 65% of total body water as extracellular ice and retreating into a prolonged hypometabolic state. Freeze survival requires the coordination of various adaptations, including a global suppression of metabolic functions and select activation of pro-survival genes. Transcription factors playing roles in metabolism, stress tolerance, and cell proliferation may assist in making survival in a frozen state possible. In this study, the role of Forkhead box 'other' (FOXO) transcription factors in freeze tolerance, and related changes to the insulin pathway, are investigated. Immunoblotting was used to assess total and phosphorylated amounts of FOXO proteins in wood frogs subjected to freezing for 24 h and thawed recovery for 8 h. Levels of active FOXO3 increased in brain, kidney, and liver during freezing and thawing, suggesting a need to maintain or enhance antioxidant defenses under these stresses. Results implicate FOXO involvement in the metabolic regulation of natural freeze tolerance.
Collapse
Affiliation(s)
- Saif Rehman
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Liam Hawkins
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Liu Z, Zhang L, Song Q, Song H, Xu Y, Lu J, Xu Q, Tang Y, Liu Y, Wang G, Lin X. Quantitative Proteomics Reveal the Inherent Antibiotic Resistance Mechanism against Norfloxacin Resistance in Aeromonas hydrophila. J Proteome Res 2023; 22:1193-1200. [PMID: 36856436 DOI: 10.1021/acs.jproteome.2c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recently, the prevalence of Aeromonas hydrophila antibiotic-resistant strains has been reported in aquaculture, but its intrinsic antibiotic resistance mechanisms are largely unknown. In the present study, a label-free proteomics technology was used to compare the differential protein abundances in response to norfloxacin (NOR) stress in A. hydrophila. The results showed that there were 186 proteins decreasing and 220 proteins increasing abundances in response to NOR stress. Bioinformatics analysis showed that the differentially expressed proteins were enriched in several biological processes, such as sulfur metabolism and homologous recombination. Furthermore, the antibiotic sensitivity assays showed that the deletion of AHA_0904, cirA, and cysI significantly decreased the resistance against NOR, whereas ΔAHA_1239, ΔcysA, ΔcysD, and ΔcysN significantly increased the resistance against NOR. Our results provide insights into NOR resistance mechanisms and indicate that AHA_0904, cirA, AHA_1239, and sulfur metabolism may play important roles in NOR resistance in A. hydrophila.
Collapse
Affiliation(s)
- Ziqiu Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunqi Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinlian Lu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaozhen Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuze Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Huang T, Chen X, Chen D, Yu B, He J, Yan H, Luo Y, Zheng P, Chen H, Huang Z. Eugenol promotes appetite through TRP channels mediated-CaMKK2/AMPK signaling pathway. Phytother Res 2023. [PMID: 36762415 DOI: 10.1002/ptr.7768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Rehman S, Varma A, Gupta A, Storey KB. The regulation of m 6A-related proteins during whole-body freezing of the freeze-tolerant wood frog. Biochem Cell Biol 2023; 101:77-86. [PMID: 36462217 DOI: 10.1139/bcb-2022-0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Rana sylvatica (also known as Boreorana sylvatica) is one of the few vertebrates that spend extreme winters showing no physiological signs of life. Up to 70% of the total body water of the wood frog freezes as extracellular ice. Survival in extreme conditions requires regulation at transcriptional and translational levels to activate prosurvival pathways. N6-methyladenosine (m6A) methylation is one of the most common RNA modifications, regulating transcript processing and translation by executing important functions that affect regulatory pathways in stress conditions. In the study, regulation of m6A-related proteins in the liver of R. sylvatica was analyzed during 24 h frozen and 8 h thaw conditions. Decreases in the activity of demethylases of 28.44 ± 0.4% and 24.1 ± 0.9% of control values in frozen and thaw tissues, respectively, were observed. Total protein levels of m6A methyltransferase complex components methyltransferase-like 14 and Wilm's tumor associated protein were increased by 1.28-fold and 1.42-fold, respectively, during freezing. Demethylase fat mass and obesity, however, showed a decreasing trend, with a significant decrease in abundance during recovery from frozen conditions. Levels of mRNA degraders YTHDF2 and YTHDC2 also decreased under stress. Overall, increased levels of m6A methylation complex components, and suppressed levels of readers/erasers, provide evidence for the potential role of RNA methylation in freezing survival and its regulation in a hypometabolic state.
Collapse
Affiliation(s)
- Saif Rehman
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anchal Varma
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Aakriti Gupta
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Macedo GC, Kreifeldt M, Goulding SP, Okhuarobo A, Sidhu H, Contet C. Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder. Neuropsychopharmacology 2023; 48:821-830. [PMID: 36670228 PMCID: PMC10066354 DOI: 10.1038/s41386-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.
Collapse
Affiliation(s)
- Giovana C Macedo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott P Goulding
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Faculty of Pharmacy, Department of Pharmacology & Toxicology, University of Benin, Benin City, Nigeria
| | - Harpreet Sidhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
31
|
Chen Z, Bordieanu B, Kesavan R, Lesner NP, Venigalla SSK, Shelton SD, DeBerardinis RJ, Mishra P. Lactate metabolism is essential in early-onset mitochondrial myopathy. SCIENCE ADVANCES 2023; 9:eadd3216. [PMID: 36598990 PMCID: PMC9812384 DOI: 10.1126/sciadv.add3216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Myopathies secondary to mitochondrial electron transport chain (ETC) dysfunction can result in devastating disease. While the consequences of ETC defects have been extensively studied in culture, little in vivo data are available. Using a mouse model of severe, early-onset mitochondrial myopathy, we characterized the proteomic, transcriptomic, and metabolic characteristics of disease progression. Unexpectedly, ETC dysfunction in muscle results in reduced expression of glycolytic enzymes in our animal model and patient muscle biopsies. The decrease in glycolysis was mediated by loss of constitutive Hif1α signaling, down-regulation of the purine nucleotide cycle enzyme AMPD1, and activation of AMPK. In vivo isotope tracing experiments indicated that myopathic muscle relies on lactate import to supply central carbon metabolites. Inhibition of lactate import reduced steady-state levels of tricarboxylic acid cycle intermediates and compromised the life span of myopathic mice. These data indicate an unexpected mode of metabolic reprogramming in severe mitochondrial myopathy that regulates disease progression.
Collapse
Affiliation(s)
- Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bogdan Bordieanu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas P. Lesner
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Sexual dimorphism in acute myocardial infarction-induced acute kidney injury: cardiorenal deteriorating effects of ovariectomy in premenopausal female mice. Clin Sci (Lond) 2023; 137:47-63. [PMID: 36519413 PMCID: PMC9816372 DOI: 10.1042/cs20220513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Acute kidney injury (AKI) is a common complication of cardiovascular diseases (CVDs) in both males and females, increasing mortality rate substantially. Premenopausal females appear to be more protected, suggesting a potential protective role of female sex hormones. Here, we tested the hypothesis that ovariectomy (OVX) eliminates the beneficial effect of female sex on renal protection following acute myocardial infarction (MI). Seven days post-MI, both sexes exhibited worsened kidney function and a substantial decrease in total kidney NAD levels. Unlike MI female mice, MI males showed exacerbated morphological alterations with increased proinflammatory, proapoptotic, and profibrotic biomarkers. The expression of NAD+ biosynthetic enzymes NAMPT and NMRK-1 was increased in MI females only, while males showed a substantial increase in NAD+ consuming enzyme PARP-1. OVX did not eliminate the female-sex protection of glomerular morphology but was associated with swelling of proximal convoluted tubules with MI as in males. With OVX, MI females had enhanced proinflammatory cytokine release, and a further decrease in creatinine clearance and urine output was observed. Our findings suggest that MI induced AKI in both sexes with pre-menopausal female mice being more protected. Ovariectomy worsens aspects of AKI in females after MI, which may portend increased risk for development of chronic kidney disease.
Collapse
|
33
|
Gray J, Fernández-Suárez ME, Falah M, Smith D, Smith C, Kaya E, Palmer AM, Fog CK, Kirkegaard T, Platt FM. Heat shock protein amplification improves cerebellar myelination in the Npc1 nih mouse model. EBioMedicine 2022; 86:104374. [PMID: 36455410 PMCID: PMC9713282 DOI: 10.1016/j.ebiom.2022.104374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare prematurely fatal lysosomal lipid storage disease with limited therapeutic options. The prominent neuropathological hallmarks include hypomyelination and cerebellar atrophy. We previously demonstrated the efficacy of recombinant human heat shock protein 70 (rhHSP70) in preclinical models of the disease. It reduced glycosphingolipid levels in the central nervous system (CNS), improving cerebellar myelination and improved behavioural phenotypes in Npc1nih (Npc1-/-) mice. Furthermore, treatment with arimoclomol, a well-characterised HSP amplifier, attenuated lysosomal storage in NPC patient fibroblasts and improved neurological symptoms in Npc1-/- mice. Taken together, these findings prompted the investigation of the effects of HSP amplification on CNS myelination. METHODS We administered bimoclomol daily or rhHSP70 6 times per week to Npc1-/- (BALB/cNctr-Npc1m1N/J, also named Npc1nih) mice by intraperitoneal injection from P7 through P34 to investigate the impact on CNS myelination. The Src-kinase inhibitor saracatinib was administered with/without bimoclomol twice daily to explore the contribution of Fyn kinase to bimoclomol's effects. FINDINGS Treatment with either bimoclomol or rhHSP70 improved myelination and increased the numbers of mature oligodendrocytes (OLs) as well as the ratio of active-to-inactive forms of phosphorylated Fyn kinase in the cerebellum of Npc1-/- mice. Additionally, treatment with bimoclomol preserved cerebellar weight, an effect that was abrogated when co-administered with saracatinib, an inhibitor of Fyn kinase. Bimoclomol-treated mice also exhibited increased numbers of immature OLs within the cortex. INTERPRETATION These data increase our understanding of the mechanisms by which HSP70 regulates myelination and provide further support for the clinical development of HSP-amplifying therapies in the treatment of NPC. FUNDING Funding for this study was provided by Orphazyme A/S (Copenhagen, Denmark) and a Pathfinder Award from The Wellcome Trust.
Collapse
Affiliation(s)
- James Gray
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Maysa Falah
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ecem Kaya
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ashley M Palmer
- Orphazyme A/S, Ole Maaloes Vej 3, Copenhagen DK-2200, Denmark
| | - Cathrine K Fog
- Orphazyme A/S, Ole Maaloes Vej 3, Copenhagen DK-2200, Denmark
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| |
Collapse
|
34
|
The impairment of plasma kallikrein action on homeostasis by kallikrein inhibitor comprising RGD sequence established a novel target in antithrombotic therapies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Tosolini AP, Sleigh JN, Surana S, Rhymes ER, Cahalan SD, Schiavo G. BDNF-dependent modulation of axonal transport is selectively impaired in ALS. Acta Neuropathol Commun 2022; 10:121. [PMID: 35996201 PMCID: PMC9396851 DOI: 10.1186/s40478-022-01418-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Axonal transport ensures long-range delivery of essential cargoes between proximal and distal compartments, and is needed for neuronal development, function, and survival. Deficits in axonal transport have been detected at pre-symptomatic stages in the SOD1G93A and TDP-43M337V mouse models of amyotrophic lateral sclerosis (ALS), suggesting that impairments in this critical process are fundamental for disease pathogenesis. Strikingly, in ALS, fast motor neurons (FMNs) degenerate first whereas slow motor neurons (SMNs) are more resistant, and this is a currently unexplained phenomenon. The main aim of this investigation was to determine the effects of brain-derived neurotrophic factor (BDNF) on in vivo axonal transport in different α-motor neuron (MN) subtypes in wild-type (WT) and SOD1G93A mice. We report that despite displaying similar basal transport speeds, stimulation of wild-type MNs with BDNF enhances in vivo trafficking of signalling endosomes specifically in FMNs. This BDNF-mediated enhancement of transport was also observed in primary ventral horn neuronal cultures. However, FMNs display selective impairment of axonal transport in vivo in symptomatic SOD1G93A mice, and are refractory to BDNF stimulation, a phenotype that was also observed in primary embryonic SOD1G93A neurons. Furthermore, symptomatic SOD1G93A mice display upregulation of the classical non-pro-survival truncated TrkB and p75NTR receptors in muscles, sciatic nerves, and Schwann cells. Altogether, these data indicate that cell- and non-cell autonomous BDNF signalling is impaired in SOD1G93A MNs, thus identifying a new key deficit in ALS.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
| | - James N Sleigh
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Stephen D Cahalan
- Comparative Neuromuscular Disease Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
36
|
Muñoz MC, Piazza VG, Burghi V, Giani JF, Martinez CS, Cicconi NS, Muia NV, Fang Y, Lavandero S, Sotelo AI, Bartke A, Pennisi PA, Dominici FP, Miquet JG. Insulin signaling in the heart is impaired by growth hormone: a direct and early event. J Mol Endocrinol 2022; 69:357-376. [PMID: 35608964 PMCID: PMC9339477 DOI: 10.1530/jme-21-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH. Despite the differences in the development of cardiomegaly and in the metabolic alterations among the three experimental mouse models analyzed, exposure to GH was consistently associated with a decreased response to acute insulin stimulation in the heart at the receptor level and through the PI3K/AKT pathway. Moreover, a blunted response to insulin stimulation of this signaling pathway was also observed in cultured cardiomyocytes of neonatal rats incubated with GH. Therefore, the key novel finding of this work is that impairment of insulin signaling in the heart is a direct and early event observed as a consequence of exposure to GH, which may play a major role in the development of cardiac pathology.
Collapse
Affiliation(s)
- Marina C Muñoz
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Verónica G Piazza
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Valeria Burghi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jorge F Giani
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Carolina S Martinez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nadia V Muia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Yimin Fang
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ana I Sotelo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Patricia A Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
37
|
Sontag F, Suvakov S, Garovic VD. Soluble urinary somatic angiotensin converting enzyme is overexpressed in patients with preeclampsia: a potential new marker for the disease? Hypertens Pregnancy 2022; 41:190-197. [PMID: 35997304 PMCID: PMC9771896 DOI: 10.1080/10641955.2022.2115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to identify and quantify urinary Angiotensin-Converting-Enzyme (ACE) in hypertensive disorders of pregnancy. METHODS Urine samples were analyzed by Western blot. Patients were classified into: normotensive pregnancy (N); preeclampsia and superimposed preeclampsia (PE+SPE); and gestational hypertension (GH). RESULTS Somatic ACE protein expression was higher in PE+SPE compared to N and GH. There was a positive correlation between ACE and urinary protein to creatinine ratio, systolic and diastolic blood pressures. CONCLUSION These results indicate ACE overexpression in the urine of preeclamptic patients and suggest that it may be a new marker for the disease.
Collapse
Affiliation(s)
- Fernando Sontag
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sonja Suvakov
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
| | - Vesna D Garovic
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
38
|
Quan X, Han Y, Lu P, Ding Y, Wang Q, Li Y, Wei J, Huang Q, Wang R, Zhao Y. Annexin V-Modified Platelet-Biomimetic Nanomedicine for Targeted Therapy of Acute Ischemic Stroke. Adv Healthc Mater 2022; 11:e2200416. [PMID: 35708176 DOI: 10.1002/adhm.202200416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.
Collapse
Affiliation(s)
- Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yuanfu Ding
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qingfu Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Jianwen Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qiaoxian Huang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
39
|
Wang D, Wu M, Zhang X, Li L, Lin M, Shi X, Zhao Y, Huang C, Li X. Hepatokine Fetuin B expression is regulated by leptin-STAT3 signalling and associated with leptin in obesity. Sci Rep 2022; 12:12869. [PMID: 35896788 PMCID: PMC9329397 DOI: 10.1038/s41598-022-17000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity is an expanding global public health problem and a leading cause of metabolic disorders. The hepatokine Fetuin B participates in regulating insulin resistance, glucose metabolism and liver steatosis. However, the mechanism underlying Fetuin B activation remains unclear. Our previous population-based study demonstrated a significant association between serum Fetuin B and body fat mass in an obese population, which indicates its potential in mediating obesity-related metabolic disorders. In the present study, we further revealed a significant correlation between Fetuin B and leptin, the classic adipokine released by expanding adipose tissue, in this obese population. Consistently, elevated Fetuin B and leptin levels were confirmed in diet-induced obese mice. Furthermore, an in vitro study demonstrated that the leptin signalling pathway directly activated the transcription and expression of Fetuin B in primary hepatocytes and AML12 cells in a STAT3-dependent manner. STAT3 binds to the response elements on FetuB promoter to directly activate FetuB transcription. Finally, the mediating effect of Fetuin B in insulin resistance induced by leptin was confirmed according to mediation analysis in this obese population. Therefore, our study identifies leptin-STAT3 as an upstream signalling pathway that activates Fetuin B and provides new insights into the pathogenic mechanisms of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, China
| | - Menghua Wu
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Mingzhu Lin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
40
|
Mincheva G, Gimenez-Garzo C, Izquierdo-Altarejos P, Martinez-Garcia M, Doverskog M, Blackburn TP, Hällgren A, Bäckström T, Llansola M, Felipo V. Golexanolone, a GABA A receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther 2022; 28:1861-1874. [PMID: 35880480 PMCID: PMC9532914 DOI: 10.1111/cns.13926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022] Open
Abstract
Aims Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1‐glutaminase‐GAT3 and TNFR1‐CCL2‐TrkB‐KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. Methods Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1‐glutaminase‐GAT3 and TNFR1‐CCL2‐TrkB‐KCC2 pathways, and cognitive and motor function were analyzed. Results Hyperammonemic rats show increased TNFα and reduced IL‐10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short‐term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short‐term memory. This was associated with reversal of the hyperammonemia‐enhanced activation in cerebellum of the TNFR1‐glutaminase‐GAT3 and TNFR1‐CCL2‐TrkB‐KCC2 pathways. Conclusion Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carla Gimenez-Garzo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Mar Martinez-Garcia
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | - Torbjörn Bäckström
- Umecrine Cognition AB, Solna, Sweden.,Umeå Neurosteroid Research Center, Clinical Sciences at Umeå University, Umeå, Sweden
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
41
|
Lipopolysaccharide Exposure Differentially Alters Plasma and Brain Inflammatory Markers in Adult Male and Female Rats. Brain Sci 2022; 12:brainsci12080972. [PMID: 35892413 PMCID: PMC9331770 DOI: 10.3390/brainsci12080972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Humans and rodents have sexually dimorphic immune responses, which could influence the brain’s response to a systemic inflammatory insult. Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood–brain barrier (BBB) dysfunction under inflammatory conditions. Therefore, we examined whether inflammatory response to LPS and the associated BBB disruption differed in male and female adult rats. Rats were treated with saline or two injections of 1 mg/kg LPS and studied 24 h after the second LPS injection. Plasma isolated from trunk blood and brain tissue homogenates of the prefrontal cortex (PFC), dorsal striatum (DS), hippocampus, and cerebellum were analyzed for cytokines and chemokines using a 9-plex panel from Meso Scale Discovery. BBB disruption was analyzed with tight junction proteins claudin-5 and VE-cadherin via Western blotting and VEGF by ELISA. This allowed us to compare sex differences in the levels of individual cytokines as well as associations among cytokines and expression of tight junction proteins between the plasma and specific brain regions. Higher levels of interferon-γ, interleukin-10 (IL-10), IL-13, IL-4, CXCL-1, and VEGF in the plasma were revealed compared to the brain homogenates, and higher levels of TNFα, IL-1β, IL-6, and IL-5 in the PFC were seen compared with plasma and other brain regions in males. Females showed higher levels of plasma CXCL1 and VEGF compared to males, and males showed higher levels of PFC TNFα, IL-6, IL-4, and VEGF compared to females. LPS induced significant increases in plasma cytokines and VEGF in both sexes. LPS did not significantly alter cytokines in brain tissue homogenates, however, it increased chemokines in the PFC, DS, and hippocampus. In the PFC, LPS produced BBB disruption, which is evident as reduced expression of claudin-5 in males and reduced expression of VE-cadherin in both sexes. Taken together, our results reveal significant sex differences in pro-inflammatory cytokine and chemokine levels in plasma and brain that were associated with BBB disruption after LPS, and validate the use of multiplex assay for plasma and brain tissue samples.
Collapse
|
42
|
Hawley LE, Prochaska F, Stringer M, Goodlett CR, Roper RJ. Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes. Pharmacol Biochem Behav 2022; 217:173404. [DOI: 10.1016/j.pbb.2022.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
43
|
Pham TD, Elengickal AJ, Verlander JW, Al-Qusairi L, Chen C, Abood DC, King SA, Loffing J, Welling PA, Wall SM. Pendrin-null mice develop severe hypokalemia following dietary Na + and K + restriction: role of ENaC. Am J Physiol Renal Physiol 2022; 322:F486-F497. [PMID: 35224991 PMCID: PMC8977139 DOI: 10.1152/ajprenal.00378.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an intercalated cell Cl-/[Formula: see text] exchanger thought to participate in K+-sparing NaCl absorption. However, its role in K+ homeostasis has not been clearly defined. We hypothesized that pendrin-null mice will develop hypokalemia with dietary K+ restriction. We further hypothesized that pendrin knockout (KO) mice mitigate urinary K+ loss by downregulating the epithelial Na+ channel (ENaC). Thus, we examined the role of ENaC in Na+ and K+ balance in pendrin KO and wild-type mice following dietary K+ restriction. To do so, we examined the relationship between Na+ and K+ balance and ENaC subunit abundance in K+-restricted pendrin-null and wild-type mice that were NaCl restricted or replete. Following a NaCl-replete, K+-restricted diet, K+ balance and serum K+ were similar in both groups. However, following a Na+, K+, and Cl--deficient diet, pendrin KO mice developed hypokalemia from increased K+ excretion. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. However, reducing ENaC activity also reduced blood pressure and increased apparent intravascular volume contraction, since KO mice had lower serum Na+, higher blood urea nitrogen and hemoglobin, greater weight loss, greater metabolic alkalosis, and greater NaCl excretion. We conclude that dietary Na+ and K+ restriction induces hypokalemia in pendrin KO mice. Pendrin-null mice limit renal K+ loss by downregulating ENaC. However, this ENaC downregulation occurs at the expense of intravascular volume.NEW & NOTEWORTHY Pendrin is an apical Cl-/[Formula: see text] exchanger that provides renal K+-sparing NaCl absorption. The pendrin-null kidney has an inability to fully conserve K+ and limits renal K+ loss by downregulating the epithelial Na+ channel (ENaC). However, with Na+ restriction, the need to reduce ENaC for K+ balance conflicts with the need to stimulate ENaC for intravascular volume. Therefore, NaCl restriction stimulates ENaC less in pendrin-null mice than in wild-type mice, which mitigates their kaliuresis and hypokalemia but exacerbates volume contraction.
Collapse
Affiliation(s)
- Truyen D Pham
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony J Elengickal
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Lama Al-Qusairi
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Delaney C Abood
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Spencer A King
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes Loffing
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan M Wall
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
44
|
Plucińska K, Mody N, Dekeryte R, Shearer K, Mcilroy GD, Delibegovic M, Platt B. High-fat diet exacerbates cognitive and metabolic abnormalities in neuronal BACE1 knock-in mice - partial prevention by Fenretinide. Nutr Neurosci 2022; 25:719-736. [PMID: 32862802 DOI: 10.1080/1028415x.2020.1806190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: The β-site APP-cleaving enzyme 1 (BACE1) is a rate-limiting step in β-amyloid (Aβ) production in Alzheimer's disease (AD) brains, but recent evidence suggests that BACE1 is also involved in metabolic regulation. Here, we aimed to assess the effects of highfat diet (HFD) on metabolic and cognitive phenotypes in the diabetic BACE1 knock-in mice (PLB4) and WT controls; we additionally examined whether these phenotypes can be normalized with a synthetic retinoid (Fenretinide, Fen) targeting weight loss.Methods: Five-month old male WT and PLB4 mice were fed either (1) control chow diet, (2) 45%-saturated fat diet (HFD), (3) HFD with 0.04% Fen (HFD + Fen) or (4) control chow diet with 0.04% Fen (Fen) for 10 weeks. We assessed basic metabolic parameters, circadian rhythmicity, spatial habituation (Phenotyper) and working memory (Y-maze). Hypothalami, forebrain and liver tissues were assessed using Western blots, qPCR and ELISAs.Results: HFD feeding drastically worsened metabolism and induced early mortality (-40%) in otherwise viable PLB4 mice. This was ameliorated by Fen, despite no effects on glucose intolerance. In HFD-fed WT mice, Fen reduced weight gain, glucose intolerance and hepatic steatosis. The physiological changes induced in WT and PLB4 mice by HFD (+/-Fen) were accompanied by enhanced cerebral astrogliosis, elevated PTP1B, phopsho-eIF2α and altered hypothalamic transcription of Bace1, Pomc and Mc4r. Behaviourally, HFD feeding exacerbated spatial memory deficits in PLB4 mice, which was prevented by Fen and linked with increased full-length APP, normalized brain Aβ*56 oligomerization and astrogliosis.Conclusions: HFD induces early mortality and worsened cognition in the Alzheimer's-like BACE1 mice- partial prevention was achieved with Fenretinide, without improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Kaja Plucińska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Integrative Physiology and Environmental Influences, University of Copenhagen, Copenhagen, Denmark
| | - Nimesh Mody
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruta Dekeryte
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Kirsty Shearer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
45
|
Zhang Y, Dho SE, Othman K, Simpson CD, Lapierre J, Bondoc A, McGlade CJ. Numb exon 9 inclusion regulates Integrinβ5 surface expression and promotes breast cancer metastasis. Oncogene 2022; 41:2079-2094. [PMID: 35181737 DOI: 10.1038/s41388-022-02225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGβ5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGβ5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.
Collapse
Affiliation(s)
- Yangjing Zhang
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Kamal Othman
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Craig D Simpson
- SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jessica Lapierre
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew Bondoc
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
46
|
Schmidt S, Holzer M, Arendt T, Sonntag M, Morawski M. Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model. Biomolecules 2022; 12:biom12040505. [PMID: 35454094 PMCID: PMC9027016 DOI: 10.3390/biom12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.
Collapse
|
47
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
48
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Raun SH, Knudsen JR, Han X, Jensen TE, Sylow L. Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type-specific manner. FASEB J 2022; 36:e22211. [PMID: 35195922 DOI: 10.1096/fj.202101759r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation are not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3 H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389, and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent on muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, the skeletal muscle could be a target for managing metabolic dysfunction in cancer.
Collapse
Affiliation(s)
- Steffen H Raun
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Roland Knudsen
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Xiuqing Han
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Habli Z, Kobeissy F, Khraiche ML. Advances in point-of-care platforms for traumatic brain injury: recent developments in diagnostics. Rev Neurosci 2022; 33:327-345. [PMID: 35170265 DOI: 10.1515/revneuro-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity, affecting 2 million people annually in the US alone, with direct and indirect costs of $76.3 billion per year. TBI is a progressive disease with no FDA-approved drug for treating patients. Early, accurate and rapid diagnosis can have significant implications for successful triaging and intervention. Unfortunately, current clinical tests for TBI rely on CT scans and MRIs, both of which are expensive, time-consuming, and not accessible to everyone. Recent evidence of biofluid-based biomarkers being released right after a TBI incident has ignited interest in developing point-of-care (POC) platforms for early and on-site TBI diagnosis. These efforts face many challenges to accurate, sensitive, and specific diagnosis and monitoring of TBI. This review includes a deep dive into the latest advances in chemical, mechanical, electrical, and optical sensing systems that hold promise for TBI-POC diagnostic testing platforms. It also focuses on the performance of these proposed biosensors compared to biofluid-based orthodox diagnostic techniques in terms of sensitivity, specificity, and limits of detection. Finally, it examines commercialized TBI-POCs present in the market, the challenges associated with them, and the future directions and prospects of these technologies and the field.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Massoud L Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|