1
|
Wang M, Grauzam S, Bayram MF, Dressman J, DelaCourt A, Blaschke C, Liang H, Scott D, Huffman G, Black A, Ochoa-Rios S, Lewin D, Angel PM, Drake RR, Ball L, Bethard J, Castellino S, Kono Y, Kubota N, Hoshida Y, Quirk L, Yopp A, Gopal P, Singal A, Mehta AS. Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma. COMMUNICATIONS MEDICINE 2024; 4:258. [PMID: 39627514 PMCID: PMC11614901 DOI: 10.1038/s43856-024-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Worldwide, hepatocellular carcinoma (HCC) is the second most lethal cancer, although early-stage HCC is amenable to curative treatment and can facilitate long-term survival. Early detection has proved difficult, as proteomics, transcriptomics, and genomics have been unable to discover suitable biomarkers. METHODS To find new biomarkers of HCC, we utilized a spatial omics N-glycan imaging method to identify altered glycosylation in cancer tissue (n = 53) and in paired serum of individuals with HCC (n = 23). Glycoproteomics identified the glycoproteins carrying these N-glycan structures, and we utilized an antibody array-based glycan imaging method to examine all the N-glycans associated with the identified glycoproteins. N-glycans from the examined glycoproteins were used to create machine learning algorithms, which were tested in a case-control sample set of 100 patients with cirrhosis and HCC and 101 matched patients with cirrhosis alone. RESULTS Spatial glycan imaging identifies thirteen branched, fucosylated, and high mannose glycans as altered in HCC tissue and in matched patient serum. Glycoproteomics identifies over 50 proteins containing these changes, of which sixteen glycoproteins were selected for further testing in an independent patient set. Algorithms using a combination of glycan and glycoproteins accurately differentiate early-stage and all HCC from cirrhosis with AUROC values of 0.88-0.97. CONCLUSIONS In conclusion, we present the development and application of a new biomarker platform, which can identify effective biomarkers for the early detection of HCC. This platform may also apply to other diseases, in which changes in N-linked glycosylation are known to occur.
Collapse
Affiliation(s)
- Mengjun Wang
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Stephane Grauzam
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Muhammed Furkan Bayram
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - James Dressman
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Andrew DelaCourt
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Calvin Blaschke
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Hongyan Liang
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Danielle Scott
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Gray Huffman
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Alyson Black
- HTX Technologies, LLC, Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Shaaron Ochoa-Rios
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - David Lewin
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Richard R Drake
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Lauren Ball
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Jennifer Bethard
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | | | - Yuko Kono
- University of California San Diego, Department of Medicine, Gastroenterology and Hepatology, San Diego, CA, 92103, USA
| | - Naoto Kubota
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yujin Hoshida
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa Quirk
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adam Yopp
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Purva Gopal
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amit Singal
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anand S Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Forte E, Sanders JM, Pla I, Kanchustambham VL, Hollas MAR, Huang CF, Sanchez A, Peterson KN, Melani RD, Huang A, Polineni P, Doll JM, Dietch Z, Kelleher NL, Ladner DP. Top-Down Proteomics Identifies Plasma Proteoform Signatures of Liver Cirrhosis Progression. Mol Cell Proteomics 2024; 23:100876. [PMID: 39521382 DOI: 10.1016/j.mcpro.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cirrhosis, advanced liver disease, affects 2 to 5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery top-down proteomics to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Collapse
Affiliation(s)
- Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA; Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jes M Sanders
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indira Pla
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | | | - Michael A R Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Katrina N Peterson
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Alexander Huang
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Praneet Polineni
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Julianna M Doll
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zachary Dietch
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Daniela P Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
3
|
Liu L, Hao S, Gou S, Tang X, Zhang Y, Cai D, Xiao M, Zhang X, Zhang D, Shen J, Li Y, Chen Y, Zhao Y, Deng S, Wu X, Li M, Zhang Z, Xiao Z, Du F. Potential applications of dual haptoglobin expression in the reclassification and treatment of hepatocellular carcinoma. Transl Res 2024; 272:19-40. [PMID: 38815898 DOI: 10.1016/j.trsl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene within a subgroup of HCC malignant cells. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yan Li
- Public Center of Experimental Technology, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China.
| |
Collapse
|
4
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Pradita T, Chen YJ, Su TH, Chang KH, Chen PJ, Chen YJ. Data Independent Acquisition Mass Spectrometry Enhanced Personalized Glycosylation Profiling of Haptoglobin in Hepatocellular Carcinoma. J Proteome Res 2024; 23:3571-3584. [PMID: 38994555 PMCID: PMC11301664 DOI: 10.1021/acs.jproteome.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Aberrant glycosylation has gained significant interest for biomarker discovery. However, low detectability, complex glycan structures, and heterogeneity present challenges in glycoprotein assay development. Using haptoglobin (Hp) as a model, we developed an integrated platform combining functionalized magnetic nanoparticles and zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) for highly specific glycopeptide enrichment, followed by a data-independent acquisition (DIA) strategy to establish a deep cancer-specific Hp-glycosylation profile in hepatitis B virus (HBV, n = 5) and hepatocellular carcinoma (HCC, n = 5) patients. The DIA strategy established one of the deepest Hp-glycosylation landscapes (1029 glycopeptides, 130 glycans) across serum samples, including 54 glycopeptides exclusively detected in HCC patients. Additionally, single-shot DIA searches against a DIA-based spectral library outperformed the DDA approach by 2-3-fold glycopeptide coverage across patients. Among the four N-glycan sites on Hp (N-184, N-207, N-211, N-241), the total glycan type distribution revealed significantly enhanced detection of combined fucosylated-sialylated glycans, which were the most dominant glycoforms identified in HCC patients. Quantitation analysis revealed 48 glycopeptides significantly enriched in HCC (p < 0.05), including a hybrid monosialylated triantennary glycopeptide on the N-184 site with nearly none-to-all elevation to differentiate HCC from the HBV group (HCC/HBV ratio: 2462 ± 766, p < 0.05). In summary, DIA-MS presents an unbiased and comprehensive alternative for targeted glycoproteomics to guide discovery and validation of glyco-biomarkers.
Collapse
Affiliation(s)
- Tiara Pradita
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Sustainable
Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tung-Hung Su
- Division
of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Hepatitis
Research Center, National Taiwan University
Hospital, Taipei 100, Taiwan
| | - Kun-Hao Chang
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing-Hua University, Hsinchu 300, Taiwan
| | - Pei-Jer Chen
- Division
of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Hepatitis
Research Center, National Taiwan University
Hospital, Taipei 100, Taiwan
- Graduate
Institute of Clinical Medicine, National
Taiwan University College of Medicine, Taipei 100, Taiwan
- Department
of Medical Research, National Taiwan University
Hospital, Taipei 100, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Sustainable
Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
6
|
Forte E, Sanders JM, Pla I, Kanchustambham VL, Hollas MAR, Huang CF, Sanchez A, Peterson KN, Melani RD, Huang A, Polineni P, Doll JM, Dietch Z, Kelleher NL, Ladner DP. Top-Down Proteomics Identifies Plasma Proteoform Signatures of Liver Cirrhosis Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599662. [PMID: 38948836 PMCID: PMC11212939 DOI: 10.1101/2024.06.19.599662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Collapse
Affiliation(s)
- Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jes M. Sanders
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Indira Pla
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | | | - Michael A. R. Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Katrina N. Peterson
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Rafael D. Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Alexander Huang
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Praneet Polineni
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julianna M. Doll
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary Dietch
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniela P. Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Kralova K, Vrtelka O, Fouskova M, Smirnova TA, Michalkova L, Hribek P, Urbanek P, Kuckova S, Setnicka V. Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma. Talanta 2024; 270:125527. [PMID: 38134814 DOI: 10.1016/j.talanta.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Liquid biopsy is a very topical issue in clinical diagnostics research nowadays. In this study, we explored and compared various analytical approaches to blood plasma analysis. Finally, we proposed a comprehensive procedure, which, thanks to the utilization of multiple analytical techniques, allowed the targeting of various biomolecules in blood plasma reflecting diverse biological processes underlying disease development. The potential of such an approach, combining proteomics, metabolomics, and vibrational spectroscopy along with preceding blood plasma fractionation, was demonstrated on blood plasma samples of patients suffering from hepatocellular carcinoma in cirrhotic terrain (n = 20) and control subjects with liver cirrhosis (n = 20) as well as healthy subjects (n = 20). Most of the applied methods allowed the classification of the samples with an accuracy exceeding 80.0 % and therefore have the potential to be used as a stand-alone method in clinical diagnostics. Moreover, a final panel of 48 variables obtained by a combination of the utilized analytical methods enabled the discrimination of the hepatocellular carcinoma samples from cirrhosis with 94.3 % cross-validated accuracy. Thus, this study, although limited by the cohort size, clearly demonstrated the benefit of the multimethod approach in clinical diagnosis.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Marketa Fouskova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tatiana Anatolievna Smirnova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lenka Michalkova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic; Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02, Prague 6, Czech Republic
| | - Petr Hribek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic; Department of Internal Medicine, Faculty of Military Health Sciences in Hradec Kralove, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Petr Urbanek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic
| | - Stepanka Kuckova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
9
|
Butaye E, Somers N, Grossar L, Pauwels N, Lefere S, Devisscher L, Raevens S, Geerts A, Meuris L, Callewaert N, Van Vlierberghe H, Verhelst X. Systematic review: Glycomics as diagnostic markers for hepatocellular carcinoma. Aliment Pharmacol Ther 2024; 59:23-38. [PMID: 37877758 DOI: 10.1111/apt.17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with one of the highest cancer-related mortality rates worldwide. Early diagnosis is crucial for improving the therapeutic options and reducing the disease-related mortality. AIM To investigate serum N-glycomics as diagnostic markers for HCC. METHODS We performed a comprehensive search in PubMed, EMBASE, Web of Science and Scopus through August 17, 2023. Eligible studies assessed the potential use of serum N-glycomics as diagnostic biomarkers for HCC. Study selection, data extraction and quality assessment were performed by two independent reviewers. RESULTS Of the 48 articles included, 11 evaluated the utility of N-glycomics for the diagnosis of HCC in whole serum while the remaining articles focused on specific protein glycoforms or protein levels. Of these specific proteins, haptoglobin, alpha-fetoprotein (AFP), kininogen (Kin), α-1-antitrypsin and Golgi protein 73 (GP73) were the most frequently studied. Increased levels of fucosylation and branching presented as the most prevalent post-translational modifications of glycoproteins in patients with HCC compared to controls. Notably, glycomics-based biomarkers may provide a clinical benefit for the diagnosis of early HCC, as several algorithms achieved AUCs between 0.92-0.97. However, these were based on single studies with limited sample sizes and should therefore be validated. CONCLUSIONS Alterations in serum N-glycomics, characterised by increased levels of fucosylation and branching, have potential as diagnostic biomarkers for HCC. Optimisation of study design, patient selection and analysing techniques are needed before clinical implementation will be possible.
Collapse
Affiliation(s)
- Emma Butaye
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nicky Somers
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lorenz Grossar
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nele Pauwels
- Knowledge Center for Health Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Leander Meuris
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Kohansal-Nodehi M, Swiatek-de Lange M, Kroeniger K, Rolny V, Tabarés G, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M, Köhler B, Chan HLY, Busskamp H. Discovery of a haptoglobin glycopeptides biomarker panel for early diagnosis of hepatocellular carcinoma. Front Oncol 2023; 13:1213898. [PMID: 37920152 PMCID: PMC10619681 DOI: 10.3389/fonc.2023.1213898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
Background There is a need for new serum biomarkers for early detection of hepatocellular carcinoma (HCC). Haptoglobin (Hp) N-glycosylation is altered in HCC, but the diagnostic value of site-specific Hp glycobiomarkers is rarely reported. We aimed to determine the site-specific glycosylation profile of Hp for early-stage HCC diagnosis. Method Hp glycosylation was analyzed in the plasma of patients with liver diseases (n=57; controls), early-stage HCC (n=50) and late-stage HCC (n=32). Hp phenotype was determined by immunoblotting. Hp was immunoisolated and digested into peptides. N-glycopeptides were identified and quantified using liquid chromatography-mass spectrometry. Cohort samples were compared using Wilcoxon rank-sum (Mann-Whitney U) tests. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves and area under curve (AUC). Results Significantly higher fucosylation, branching and sialylation of Hp glycans, and expression of high-mannose glycans, was observed as disease progressed from cirrhosis to early- and late-stage HCC. Several glycopeptides demonstrated high values for early diagnosis of HCC, with an AUC of 93% (n=1), >80% (n=3), >75% (n=13) and >70% (n=11), compared with alpha-fetoprotein (AFP; AUC of 79%). The diagnostic performance of the identified biomarkers was only slightly affected by Hp phenotype. Conclusion We identified a panel of Hp glycopeptides that are significantly differentially regulated in early- and late-stage HCC. Some glycobiomarkers exceeded the diagnostic value of AFP (the most commonly used biomarker for HCC diagnosis). Our findings provide evidence that glycobiomarkers can be effective in the diagnosis of early HCC - individually, as a panel of glycopeptides or combined with conventional serological biomarkers.
Collapse
Affiliation(s)
| | | | | | - Vinzent Rolny
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| | - Glòria Tabarés
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Holger Busskamp
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| |
Collapse
|
11
|
Xu Z, Zhang W, Deng C, Sun N. Zwitterionic mesoporous engineering aids peptide-dependent pattern profiling for identification of different liver diseases. Chem Commun (Camb) 2023; 59:11081-11084. [PMID: 37641812 DOI: 10.1039/d3cc03231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Liver disease remains a global health challenge, with its incidence steadily increasing worldwide. Herein, zwitterionic mesoporous engineering was developed for the identification of different liver diseases including liver cirrhosis and liver cancer. Based on this engineering, a total of 2633 m/z signals were observed to be enriched. Notably, three key peptides were identified and showed high accuracy and precision for distinguishing the healthy and disease states, propelling the field of nanomedicine toward genuine personalized medicine.
Collapse
Affiliation(s)
- Zixing Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wantong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
12
|
Ugonabo O, Udoh UAS, Rajan PK, Reeves H, Arcand C, Nakafuku Y, Joshi T, Finley R, Pierre SV, Sanabria JR. The Current Status of the Liver Liquid Biopsy in MASH Related HCC: Overview and Future Directions. Biomolecules 2023; 13:1369. [PMID: 37759769 PMCID: PMC10526956 DOI: 10.3390/biom13091369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the major risk factors for chronic liver disease and hepatocellular carcinoma (HCC). The incidence of MASH in Western countries continues to rise, driving HCC as the third cause of cancer-related death worldwide. HCC has become a major global health challenge, partly from the obesity epidemic promoting metabolic cellular disturbances but also from the paucity of biomarkers for its early detection. Over 50% of HCC cases are clinically present at a late stage, where curative measures are no longer beneficial. Currently, there is a paucity of both specific and sensitive biological markers for the early-stage detection of HCC. The search for biological markers in the diagnosis of early HCC in high-risk populations is intense. We described the potential role of surrogates for a liver biopsy in the screening and monitoring of patients at risk for nesting HCC.
Collapse
Affiliation(s)
- Onyinye Ugonabo
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Utibe-Abasi Sunday Udoh
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Heather Reeves
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Christina Arcand
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Yuto Nakafuku
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Tejas Joshi
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Rob Finley
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
| | - Juan Ramon Sanabria
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Porcino GN, Bladergroen MR, Dotz V, Nicolardi S, Memarian E, Gardinassi LG, Nery Costa CH, Pacheco de Almeida R, Ferreira de Miranda Santos IK, Wuhrer M. Total serum N-glycans mark visceral leishmaniasis in human infections with Leishmania infantum. iScience 2023; 26:107021. [PMID: 37485378 PMCID: PMC10362369 DOI: 10.1016/j.isci.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Visceral leishmaniasis (VL) is a clinical form of leishmaniasis with high mortality rates when not treated. Diagnosis suffers from invasive techniques and sub-optimal sensitivities. The current (affordable) treatment with pentavalent antimony as advised by the WHO is possibly harmful to the patient. There is need for an improved diagnosis to prevent possibly unnecessary treatment. N-glycan analysis may aid in diagnosis. We evaluated the N-glycan profiles from active VL, asymptomatic infections (ASYMP) and controls from non-endemic (NC) and endemic (EC) areas. Active VL has a distinct N-glycome profile that associates with disease severity. Our study suggests that the observed glycan signatures could be a valuable additive to diagnosis and assist in identifying possible markers of disease and understanding the pathogenesis of VL. Further studies are warranted to assess a possible future role of blood glycome analysis in active VL diagnosis and should aim at disease specificity.
Collapse
Affiliation(s)
- Gabriane Nascimento Porcino
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Marco René Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Elham Memarian
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Luiz Gustavo Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Brazil
| | | | - Roque Pacheco de Almeida
- Departamento de Medicina, Programa de Pós-Graduação em Ciências da Saúde – PPGCS, Universidade Federal de Sergipe, Aracajú 49060-100, Brazil
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
14
|
Zheng Y, Gao K, Gao Q, Zhang S. Glycoproteomic contributions to hepatocellular carcinoma research: a 2023 update. Expert Rev Proteomics 2023; 20:211-220. [PMID: 37882248 DOI: 10.1080/14789450.2023.2265064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) represents a significant burden globally, which ranks sixth among the most frequently diagnosed cancers and stands as the third leading cause of cancer-related mortality. Glycoproteomics, as an important branch of proteomics, has already made significant achievements in the field of HCC research. Aberrant protein glycosylation has shown to promote the malignant transformation of hepatocytes by modulating a wide range of tumor-promoting signaling pathways. The glycoproteome provides valuable information for understanding cancer progression, tumor immunity, and clinical outcome, which could serve as potential diagnostic, prognostic, and therapeutic tools in HCC. AREAS COVERED In this review, recent advances of glycoproteomics contribute to clinical applications (diagnosis and prognosis) and molecular mechanisms (hepatocarcinogenesis, progression, stemness and recurrence, and drug resistance) of HCC are summarized. EXPERT OPINION Glycoproteomics shows promise in HCC, enhancing early detection, risk stratification, and personalized treatments. Challenges include sample heterogeneity, diverse glycans structures, sensitivity issues, complex workflows, limited databases, and incomplete understanding of immune cell glycosylation. Addressing these limitations requires collaborative efforts, technological advancements, standardization, and validation studies. Future research should focus on targeting abnormal protein glycosylation therapeutically. Advancements in glycobiomarkers and glycosylation-targeted therapies will greatly impact HCC diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yingqi Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
15
|
Morishita K, Kondo J, Sakon D, Hayashibara A, Tamura I, Shimizu K, Takamatsu S, Murata K, Kamada Y, Miyoshi E. Prohaptoglobin is a possible prognostic biomarker for colorectal cancer. Biochem Biophys Res Commun 2023; 672:72-80. [PMID: 37343317 DOI: 10.1016/j.bbrc.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Fucosylated haptoglobin is a novel glycan biomarker for colorectal and other cancers, while the significance of its precursor, prohaptoglobin (proHp), remains to be elucidated. In this study, we investigated whether proHp can be a colorectal cancer (CRC) biomarker and the biological functions of proHp in CRC using 10-7G, a monoclonal antibody recently developed in our laboratory. MATERIALS AND METHODS Serum proHp level in 74 patients with CRC was semi-quantified by western blotting, and 5-year recurrence-free survival and overall survival were analyzed for groups stratified by proHp status (high vs. low). We also performed immunohistochemical analyses of 17 CRC tissue sections using 10-7G mAb. The biological functions of proHp were evaluated by overexpressing proHp in CRC cell lines. RESULTS Serum proHp correlated with the clinical stage and poorer prognosis of CRC. In the primary CRC sections, immune cells were stained positive for 10-7G in ∼50% of the cases. Overexpression of proHp in HCT116 human CRC cells induced epithelial-mesenchymal transition-like changes and promoted cell migration in CRC cells. CONCLUSION We provide evidence for the first time that proHp has potential as a prognostic biomarker for CRC and demonstrated specific biological activities of proHp.
Collapse
Affiliation(s)
- Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Sakon
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ayumu Hayashibara
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikumi Tamura
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Kayoko Shimizu
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohei Murata
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
16
|
Wang Y, Chen H. Protein glycosylation alterations in hepatocellular carcinoma: function and clinical implications. Oncogene 2023:10.1038/s41388-023-02702-w. [PMID: 37193819 DOI: 10.1038/s41388-023-02702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Understanding the cancer mechanisms provides novel diagnostic, prognostic, and therapeutic markers for the management of HCC disease. In addition to genomic and epigenomic regulation, post-translational modification exerts a profound influence on protein functions and plays a critical role in regulating various biological processes. Protein glycosylation is one of the most common and complex post-translational modifications of newly synthesized proteins and acts as an important regulatory mechanism that is implicated in fundamental molecular and cell biology processes. Recent studies in glycobiology suggest that aberrant protein glycosylation in hepatocytes contributes to the malignant transformation to HCC by modulating a wide range of pro-tumorigenic signaling pathways. The dysregulated protein glycosylation regulates cancer growth, metastasis, stemness, immune evasion, and therapy resistance, and is regarded as a hallmark of HCC. Changes in protein glycosylation could serve as potential diagnostic, prognostic, and therapeutic factors in HCC. In this review, we summarize the functional importance, molecular mechanism, and clinical application of protein glycosylation alterations in HCC.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Ochoa-Rios S, Blaschke CR, Wang M, Peterson KD, DelaCourt A, Grauzam SE, Lewin D, Angel P, Roberts LR, Drake R, Mehta AS. Analysis of N-linked Glycan Alterations in Tissue and Serum Reveals Promising Biomarkers for Intrahepatic Cholangiocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:383-394. [PMID: 36890858 PMCID: PMC9987250 DOI: 10.1158/2767-9764.crc-22-0422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
There is an urgent need for the identification of reliable prognostic biomarkers for patients with intrahepatic cholangiocarcinoma (iCCA) and alterations in N-glycosylation have demonstrated an immense potential to be used as diagnostic strategies for many cancers, including hepatocellular carcinoma (HCC). N-glycosylation is one of the most common post-translational modifications known to be altered based on the status of the cell. N-glycan structures on glycoproteins can be modified based on the addition or removal of specific N-glycan residues, some of which have been linked to liver diseases. However, little is known concerning the N-glycan alterations that are associated with iCCA. We characterized the N-glycan modifications quantitatively and qualitatively in three cohorts, consisting of two tissue cohorts: a discovery cohort (n = 104 cases) and a validation cohort (n = 75), and one independent serum cohort consisting of patients with iCCA, HCC, or benign chronic liver disease (n = 67). N-glycan analysis in situ was correlated to tumor regions annotated on histopathology and revealed that bisected fucosylated N-glycan structures were specific to iCCA tumor regions. These same N-glycan modifications were significantly upregulated in iCCA tissue and serum relative to HCC and bile duct disease, including primary sclerosing cholangitis (PSC) (P < 0.0001). N-glycan modifications identified in iCCA tissue and serum were used to generate an algorithm that could be used as a biomarker of iCCA. We demonstrate that this biomarker algorithm quadrupled the sensitivity (at 90% specificity) of iCCA detection as compared with carbohydrate antigen 19-9, the current "gold standard" biomarker of CCA. Significance This work elucidates the N-glycan alterations that occur directly in iCCA tissue and utilizes this information to discover serum biomarkers that can be used for the noninvasive detection of iCCA.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Calvin R.K. Blaschke
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Kendell D. Peterson
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew DelaCourt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Richard Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Lubman DM. David M. Lubman-The University of Michigan-A retrospective in research. MASS SPECTROMETRY REVIEWS 2023; 42:643-651. [PMID: 34289523 PMCID: PMC8903096 DOI: 10.1002/mas.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
|
19
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
20
|
Li S, Zhu J, Lubman DM, Zhou H, Tang H. GlycoSLASH: Concurrent Glycopeptide Identification from Multiple Related LC-MS/MS Data Sets by Using Spectral Clustering and Library Searching. J Proteome Res 2023; 22:1501-1509. [PMID: 36802412 PMCID: PMC10164058 DOI: 10.1021/acs.jproteome.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry is commonly adopted in large-scale glycoproteomic studies involving hundreds of disease and control samples. The software for glycopeptide identification in such data (e.g., the commercial software Byonic) analyzes the individual data set and does not exploit the redundant spectra of glycopeptides presented in the related data sets. Herein, we present a novel concurrent approach for glycopeptide identification in multiple related glycoproteomic data sets by using spectral clustering and spectral library searching. The evaluation on two large-scale glycoproteomic data sets showed that the concurrent approach can identify 105%-224% more spectra as glycopeptides compared to the glycopeptide identification on individual data sets using Byonic alone. The improvement of glycopeptide identification also enabled the discovery of several potential biomarkers of protein glycosylations in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Sujun Li
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang 330000, China.,Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan, Medical Center, Ann Arbor, Michigan 48109, United States
| | - He Zhou
- Shenzhen Dengding Biopharma Co. Ltd., Shenzhen 518000, China
| | - Haixu Tang
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
21
|
Visconti A, Rossi N, Deriš H, Lee KA, Hanić M, Trbojević-Akmačić I, Thomas AM, Bolte LA, Björk JR, Hooiveld-Noeken JS, Board R, Harland M, Newton-Bishop J, Harries M, Sacco JJ, Lorigan P, Shaw HM, de Vries EGE, Fehrmann RSN, Weersma RK, Spector TD, Nathan P, Hospers GAP, Sasieni P, Bataille V, Lauc G, Falchi M. Total serum N-glycans associate with response to immune checkpoint inhibition therapy and survival in patients with advanced melanoma. BMC Cancer 2023; 23:166. [PMID: 36805683 PMCID: PMC9938582 DOI: 10.1186/s12885-023-10511-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Niccolò Rossi
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Karla A Lee
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | | | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | | | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust, Chorley, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St. James', University of Leeds, Leeds, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St. James', University of Leeds, Leeds, UK
| | - Mark Harries
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph J Sacco
- Liverpool Clatterbridge Cancer Centre, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
| | - Heather M Shaw
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Paul Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Sasieni
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Veronique Bataille
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK.
- Department of Dermatology, Mount Vernon Cancer Centre, Northwood, UK.
- Department of Dermatology, West Herts NHS Trust, Herts, UK.
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mario Falchi
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK.
| |
Collapse
|
22
|
Li D, Jia S, Wang S, Hu L. Glycoproteomic Analysis of Urinary Extracellular Vesicles for Biomarkers of Hepatocellular Carcinoma. Molecules 2023; 28:molecules28031293. [PMID: 36770959 PMCID: PMC9919939 DOI: 10.3390/molecules28031293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the most common form of primary liver cancer cases and constitutes a major health problem worldwide. The diagnosis of HCC is still challenging due to the low sensitivity and specificity of the serum α-fetoprotein (AFP) diagnostic method. Extracellular vesicles (EVs) are heterogeneous populations of phospholipid bilayer-enclosed vesicles that can be found in many biological fluids, and have great potential as circulating biomarkers for biomarker discovery and disease diagnosis. Protein glycosylation plays crucial roles in many biological processes and aberrant glycosylation is a hallmark of cancer. Herein, we performed a comprehensive glycoproteomic profiling of urinary EVs at the intact N-glycopeptide level to screen potential biomarkers for the diagnosis of HCC. With the control of the spectrum-level false discovery rate ≤1%, 756 intact N-glycopeptides with 154 N-glycosites, 158 peptide backbones, and 107 N-glycoproteins were identified. Out of 756 intact N-glycopeptides, 344 differentially expressed intact N-glycopeptides (DEGPs) were identified, corresponding to 308 upregulated and 36 downregulated N-glycopeptides, respectively. Compared to normal control (NC), the glycoproteins LG3BP, PIGR and KNG1 are upregulated in HCC-derived EVs, while ASPP2 is downregulated. The findings demonstrated that specific site-specific glycoforms in these glycoproteins from urinary EVs could be potential and efficient non-invasive candidate biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Dejun Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
- Correspondence: (S.J.); (L.H.)
| | - Shuyue Wang
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: (S.J.); (L.H.)
| |
Collapse
|
23
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
24
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
25
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
26
|
Gligorijević N, Minić S, Nedić O. Structural changes of proteins in liver cirrhosis and consequential changes in their function. World J Gastroenterol 2022; 28:3780-3792. [PMID: 36157540 PMCID: PMC9367231 DOI: 10.3748/wjg.v28.i29.3780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The liver is the site of synthesis of the majority of circulating proteins. Besides initial polypeptide synthesis, sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose. Posttranslational modifications (PTMs) design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose. PTMs can change under pathological conditions, giving rise to aberrant or overmodified proteins. Undesired changes in the structure of proteins most often accompany undesired changes in their function, such as reduced activity or the appearance of new effects. Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control. Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation, nitration, glycosylation, acetylation, and ubiquitination. Some of them predominantly affect proteins that remain in liver cells, whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation. Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases, including cirrhosis. This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| | - Simeon Minić
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade 11000, Serbia
| | - Olgica Nedić
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| |
Collapse
|
27
|
Zhang J, Qin Y, Jiang Q, Li F, Jing X, Cao L, Cai S, Wu F, Li Q, Lian J, Song Y, Huang C. Glycopattern Alteration of Glycoproteins in Gastrointestinal Cancer Cell Lines and Their Cell-Derived Exosomes. J Proteome Res 2022; 21:1876-1893. [PMID: 35786973 DOI: 10.1021/acs.jproteome.2c00159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gastrointestinal (GI) cancers constitute the largest portion of all human cancers, and the most prevalent GI cancers in China are colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC). Exosomes are nanosized vesicles containing proteins, lipids, glycans, and nucleic acid, which play important roles in the tumor microenvironment and progression. Aberrant glycosylation is closely associated with GI cancers; however, little is known about the glycopattern of the exosomes from GI cancer cells. In this study, glycopatterns of HCC, CRC, and GC cell lines and their exosomes were detected using lectin microarrays. For all exosomes, (GlcNAcβ1-4)n and Galβ1-4GlcNAc (DSA) were the most abundant glycans, but αGalNAc and αGal (GSL-II and SBA) were the least. Different cancers had various characteristic glycans in either cells or exosomes. Glycans altered in cell-derived exosomes were not always consistent with the host cells in the same cancer. However, Fucα1-6GlcNAc (core fucose) and Fucα1-3(Galβ1-4)GlcNAc (AAL) were altered consistently in cells and exosomes although they were decreased in HCC and CRC but increased in GC. The study drew the full-scale glycan fingerprint of cells and exosomes related to GI cancer, which may provide useful information for finding specific biomarkers and exploring the underlying mechanism of glycosylation in exosomes.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Yannan Qin
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Qiuyu Jiang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Fang Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Xintao Jing
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Li Cao
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Shuang Cai
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Fei Wu
- Department of Oncology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yongfei Song
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo, Zhejiang 315000, China
| | - Chen Huang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| |
Collapse
|
28
|
Lin Y, Zhu J, Zhang J, Dai J, Liu S, Arroyo A, Rose M, Singal AG, Parikh ND, Lubman DM. Glycopeptides with Sialyl Lewis Antigen in Serum Haptoglobin as Candidate Biomarkers for Nonalcoholic Steatohepatitis Hepatocellular Carcinoma Using a Higher-Energy Collision-Induced Dissociation Parallel Reaction Monitoring-Mass Spectrometry Method. ACS OMEGA 2022; 7:22850-22860. [PMID: 35811936 PMCID: PMC9261276 DOI: 10.1021/acsomega.2c02600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the fastest growing cause of hepatocellular carcinoma (HCC) in the United States. Changes in N-glycosylation on specific glycosites of serum proteins have been investigated as potential markers for the early detection of NASH-related HCC. Herein, we report a glycopeptide with a Sialyl Lewis structure derived from serum haptoglobin (Hp) as a potential marker for NASH related HCCs among 95 patients with NASH, including 46 cirrhosis, 32 early-stage HCC, and 17 late-stage HCC. Hp immuno-isolated from patient serum was analyzed using LC-HCD-PRM-MS/MS followed by data analysis via Skyline software. Two glycopeptides involving site N184 and four glycopeptides involving site N241 were significantly changed in patients with HCC vs NASH cirrhosis (P < 0.05). The two-marker panel using N-glycopeptide N241_A4G4F2S4 showed the best performance for HCC detection when combined with α-fetoprotein (AFP), with an improved estimated area under the curve (AUC) = 0.898 (95% CI: 0.835, 0.951), compared to the AUC of 0.790(95% CI, 0.697 0.872) using AFP alone (P = 0.048). At 90% specificity, the combination of N241_A4G4F2S4 + AFP had an improved sensitivity of 63.3%, compared to the sensitivity of 52.3% using AFP alone. When using three markers, the panel of AFP + N241_A2G2F1S2 + N241_A4G4F2S4 yielded an estimated AUC of 0.928 (95% CI: 0.877, 0.970). Our findings indicated that N241_A4G4F2S4 may play an important role in distinguishing HCC from NASH cirrhosis.
Collapse
Affiliation(s)
- Yu Lin
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Jianhui Zhu
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Jianliang Dai
- Department
of Biostatistics, University of Texas MD
Anderson Cancer Center, Houston, Texas 77030, United States
| | - Suyu Liu
- Department
of Biostatistics, University of Texas MD
Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ana Arroyo
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Marissa Rose
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Amit G. Singal
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Neehar D. Parikh
- Division
of Gastroenterology and Hepatology, University
of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M. Lubman
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Lin Y, Zhang J, Arroyo A, Singal AG, Parikh ND, Lubman DM. A Fucosylated Glycopeptide as a Candidate Biomarker for Early Diagnosis of NASH Hepatocellular Carcinoma Using a Stepped HCD Method and PRM Evaluation. Front Oncol 2022; 12:818001. [PMID: 35372033 PMCID: PMC8970044 DOI: 10.3389/fonc.2022.818001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Aberrant specific N-glycosylation, especially the increase in fucosylation on specific peptide sites of serum proteins have been investigated as potential markers for diagnosis of nonalcoholic steatohepatitis (NASH)-related HCC. We have combined a workflow involving broad scale marker discovery in serum followed by targeted marker evaluation of these fucosylated glycopeptides. This workflow involved an LC-Stepped HCD-DDA-MS/MS method coupled with offline peptide fractionation for large-scale identification of N-glycopeptides directly from pooled serum samples (each n=10) as well as differential determination of N-glycosylation changes between disease states. We then evaluated the fucosylation level of the glycoprotein ceruloplasmin among 62 patient samples (35 cirrhosis, 27 early-stage NASH HCC) by LC-Stepped HCD-PRM-MS/MS to quantitatively analyze 18 targeted glycopeptides. Of these targets, we found the ratio of fucosylation of a tri-antennary glycopeptide from site N762, involving N762_ HexNAc(5)Hex(6)Fuc(2)NeuAc(3) (P=0.0486), increased significantly from cirrhosis to early HCC. This fucosylation ratio of a tri-antennary glycopeptide in CERU could be a potential biomarker for further validation in a larger sample set and could be a promising candidate for early detection of NASH HCC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Ana Arroyo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D. Parikh
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Chen F, Wang J, Wu Y, Gao Q, Zhang S. Potential Biomarkers for Liver Cancer Diagnosis Based on Multi-Omics Strategy. Front Oncol 2022; 12:822449. [PMID: 35186756 PMCID: PMC8851237 DOI: 10.3389/fonc.2022.822449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma (HCC) accounts for about 85%-90% of all primary liver malignancies. However, only 20-30% of HCC patients are eligible for curative therapy mainly due to the lack of early-detection strategies, highlighting the significance of reliable and accurate biomarkers. The integration of multi-omics became an important tool for biomarker screening and unique alterations in tumor-associated genes, transcripts, proteins, post-translational modifications and metabolites have been observed. We here summarized the novel biomarkers for HCC diagnosis based on multi-omics technology as well as the clinical significance of these potential biomarkers in the early detection of HCC.
Collapse
Affiliation(s)
- Fanghua Chen
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Junming Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yingcheng Wu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- *Correspondence: Shu Zhang,
| |
Collapse
|
31
|
PRM-MS Quantitative Analysis of Isomeric N-Glycopeptides Derived from Human Serum Haptoglobin of Patients with Cirrhosis and Hepatocellular Carcinoma. Metabolites 2021; 11:metabo11080563. [PMID: 34436504 PMCID: PMC8400780 DOI: 10.3390/metabo11080563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, surveillance strategies have inadequate performance for cirrhosis and early detection of hepatocellular carcinoma (HCC). The glycosylation of serum haptoglobin has shown to have significant differences between cirrhosis and HCC, thus can be used for diagnosis. We performed a comprehensive liquid chromatography—parallel reaction monitoring—mass spectrometry (LC-PRM-MS) approach, where a targeted parallel reaction monitoring (PRM) strategy was coupled to a powerful LC system, to study the site-specific isomerism of haptoglobin (Hp) extracted from cirrhosis and HCC patients. We found that our strategy was able to identify a large number of isomeric N-glycopeptides, mainly located in the Hp glycosylation site Asn207. Four N-glycopeptides were found to have significant changes in abundance between cirrhosis and HCC samples (p < 0.05). Strategic combinations of the significant N-glycopeptides, either with alpha-fetoprotein (AFP) or themselves, better estimate the areas under the curve (AUC) of their respective receiver operating characteristic (ROC) curves with respect to AFP. The combination of AFP with the isomeric sialylated fucosylated N-glycopeptides Asn207 + 5-6-1-2 and Asn207 + 5-6-1-3, resulted with an AUC value of 0.98, while the AUC value for AFP alone was 0.85. When comparing cirrhosis vs. early HCC, the isomeric N-glycopeptide Asn207 + 5-6-0-1 better estimated AUC with respect to AFP (AUCAFP = 0.81, and AUCAsn207 + 5-6-0-1 = 0.88, respectively).
Collapse
|
32
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
33
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Li D, Jiang L, Hong Y, Cai Z. Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115774. [PMID: 33143982 DOI: 10.1016/j.envpol.2020.115774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
35
|
Jansen JC, van Hoek B, Metselaar HJ, van den Berg AP, Zijlstra F, Huijben K, van Scherpenzeel M, Drenth JPH, Lefeber DJ. Screening for abnormal glycosylation in a cohort of adult liver disease patients. J Inherit Metab Dis 2020; 43:1310-1320. [PMID: 32557671 PMCID: PMC7689844 DOI: 10.1002/jimd.12273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of rare genetic defects in glycosylation. In a novel CDG subgroup of vacuolar-ATPase (V-ATPase) assembly defects, various degrees of hepatic injury have been described, including end-stage liver disease. However, the CDG diagnostic workflow can be complex as liver disease per se may be associated with abnormal glycosylation. Therefore, we collected serum samples of patients with a wide range of liver pathology to study the performance and yield of two CDG screening methods. Our aim was to identify glycosylation patterns that could help to differentiate between primary and secondary glycosylation defects in liver disease. To this end, we analyzed serum samples of 1042 adult liver disease patients. This cohort consisted of 567 liver transplant candidates and 475 chronic liver disease patients. Our workflow consisted of screening for abnormal glycosylation by transferrin isoelectric focusing (tIEF), followed by in-depth analysis of the abnormal samples with quadruple time-of-flight mass spectrometry (QTOF-MS). Screening with tIEF resulted in identification of 247 (26%) abnormal samples. QTOF-MS analysis of 110 of those did not reveal glycosylation abnormalities comparable with those seen in V-ATPase assembly factor defects. However, two patients presented with isolated sialylation deficiency. Fucosylation was significantly increased in liver transplant candidates compared to healthy controls and patients with chronic liver disease. In conclusion, a significant percentage of patients with liver disease presented with abnormal CDG screening results. However, the glycosylation pattern was not indicative for a V-ATPase assembly factor defect. Advanced glycoanalytical techniques assist in the dissection of secondary and primary glycosylation defects.
Collapse
Affiliation(s)
- Jos C. Jansen
- Department of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenNetherlands
- Department of Neurology, Translational Metabolic LaboratoryRadboud University Medical CentreNijmegenNetherlands
| | - Bart van Hoek
- Department of Gastroenterology and HepatologyLeiden University Medical CentreLeidenNetherlands
| | - Herold J. Metselaar
- Department of Gastroenterology and HepatologyErasmus Medical Centre RotterdamRotterdamNetherlands
| | - Aad P. van den Berg
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenNetherlands
| | - Fokje Zijlstra
- Department of Neurology, Translational Metabolic LaboratoryRadboud University Medical CentreNijmegenNetherlands
| | - Karin Huijben
- Department of Neurology, Translational Metabolic LaboratoryRadboud University Medical CentreNijmegenNetherlands
| | - Monique van Scherpenzeel
- Department of Neurology, Translational Metabolic LaboratoryRadboud University Medical CentreNijmegenNetherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenNetherlands
| | - Dirk J. Lefeber
- Department of Neurology, Translational Metabolic LaboratoryRadboud University Medical CentreNijmegenNetherlands
| |
Collapse
|
36
|
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence and is the third leading cause of cancer-related death worldwide. Unlike other malignancies, HCC can be diagnosed with dynamic imaging with very high accuracy, and tissue diagnosis is not needed for cancer therapy. There is a unique role of established as well as developing biomarkers in diagnosis, prognosis, and management of HCC. Sequencing HCC tumors has yielded substantial insights into HCC tumor biology and has raised the possibility of precision oncology in which therapy decisions are guided by cancer genetics. However, it is not ready for prime time yet.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 3912 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Pratima Sharma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 3912 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Valentina P, Zhu J, Lubman DM, Huguet S, Bismut FI, Bolbach G, Clodic G, Matheron L, Ngo Y, Raluca P, Housset C, Rezai K, Poynard T. Input of serum haptoglobin fucosylation profile in the diagnosis of hepatocellular carcinoma in patients with non-cirrhotic liver disease. Clin Res Hepatol Gastroenterol 2020; 44:681-691. [PMID: 31964615 PMCID: PMC7367700 DOI: 10.1016/j.clinre.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Haptoglobin bifucosylated tetra-antennary glycan have been identified in patients with early stage hepatocellular carcinoma, but its specificity according to the presence or not of cirrhosis has never been assessed. The aims of this study were to determine if haptoglobin bifucosylated tetra-antennary glycan (1) could be a marker of HCC in patients without cirrhosis; (2) could increase the performance of standard alpha-fetoprotein (AFP) or recent blood tests for HCC detection, i.e., lectin-reactive alpha-fetoprotein (AFP-L3), des-gamma-carboxy prothrombin (DCP) and Liver-Cancer-Risk-test (LCR1-test). METHODS We retrospectively selected patients, 102 with HCC (21 without cirrhosis), matched by stages with 140 controls without HCC (81 without cirrhosis). Haptoglobin fucosylation was assessed by MALDI-TOF. LCR-glycan algorithm was constructed combining components of the LCR-1 test (haptoglobin, gammaglutamyl-transpeptidase, apolipoproteinA1, alpha-2-macroglobulin) with AFP, AFP-L3, DCP and haptoglobin bifucosylated tetra-antennary glycan. RESULTS In 102 patients without cirrhosis (21 HCC and 81 controls), the intention-to-diagnose analyses showed that haptoglobin bifucosylated tetra-antennary glycan alone had a sensitivity of 71% (15/21;95%CI 50-86), significantly better (P=0.02) than standard AFP (43%;9/21;95%CI 24-63), and a specificity of 96% (78/81;95% 90-99). The sensitivity of LCR-glycan, in patients without cirrhosis, was 86% (18/21; 95%CI 63-95) significantly better (P=0.001) than standard AFP (43%; 9/21; 95%CI 24-63), with an AUROC of 0.943 (95%CI 0.806-0.98) compared to 0.811 (95%CI 0.630-0.908) for AFP (P=0.06). CONCLUSION Haptoglobin bifucosylated tetra-antennary glycan is associated with the presence of HCC in patients with chronic liver disease including those without cirrhosis. Its combination with existing HCC biomarkers could improve the performance of standard AFP for HCC detection.
Collapse
Affiliation(s)
- Peta Valentina
- BioPredictive, Paris, France,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48019, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48019, USA
| | - Samuel Huguet
- Radiopharmacology Department, Institut Curie, Saint Cloud, France
| | - Francoise Imbert Bismut
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière (GHPS), Paris, France
| | - Gérard Bolbach
- Sorbonne Université, Institut de Biologie Paris Seine, Plate-forme spectrométrie de masse et protéomique, Paris, France,Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Gilles Clodic
- Sorbonne Université, Institut de Biologie Paris Seine, Plate-forme spectrométrie de masse et protéomique, Paris, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris Seine, Plate-forme spectrométrie de masse et protéomique, Paris, France
| | - Yen Ngo
- BioPredictive, Paris, France
| | - Pais Raluca
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière (GHPS), Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Keyvan Rezai
- Radiopharmacology Department, Institut Curie, Saint Cloud, France
| | - Thierry Poynard
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière (GHPS), Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | | |
Collapse
|
38
|
West CA, Liang H, Drake RR, Mehta AS. New Enzymatic Approach to Distinguish Fucosylation Isomers of N-Linked Glycans in Tissues Using MALDI Imaging Mass Spectrometry. J Proteome Res 2020; 19:2989-2996. [PMID: 32441096 PMCID: PMC8908332 DOI: 10.1021/acs.jproteome.0c00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Specific alterations in N-linked glycans, such as core fucosylation, are associated with many cancers and other disease states. Because of the many possible anomeric linkages associated with fucosylated N-glycans, determination of specific anomeric linkages and the site of fucosylation (i.e., core vs outer arm) can be difficult to elucidate. A new MALDI mass spectrometry imaging workflow in formalin-fixed clinical tissues is described using recombinant endoglycosidase F3 (Endo F3), an enzyme with a specific preference for cleaving core-fucosylated N-glycans attached to glycoproteins. In contrast to the broader substrate enzyme peptide-N-glycosidase F (PNGaseF), Endo F3 cleaves between the two core N-acetylglucosamine residues at the protein attachment site. On tissues, this results in a mass shift of 349.137 a.m.u. for core-fucosylated N-glycans when compared to N-glycans released with standard PNGaseF. Endo F3 can be used singly and in combination with PNGaseF digestion of the same tissue sections. Initial results in liver and prostate tissues indicate core-fucosylated glycans associated to specific tissue regions while still demonstrating a diverse mix of core- and outer arm-fucosylated glycans throughout all regions of tissue. By determining these specific linkages while preserving localization, more targeted diagnostic biomarkers for disease states are possible without the need for microdissection or solubilization of the tissue.
Collapse
Affiliation(s)
- Connor A. West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
39
|
Zhu R, Huang Y, Zhao J, Zhong J, Mechref Y. Isomeric Separation of N-Glycopeptides Derived from Glycoproteins by Porous Graphitic Carbon (PGC) LC-MS/MS. Anal Chem 2020; 92:9556-9565. [PMID: 32544320 PMCID: PMC7815195 DOI: 10.1021/acs.analchem.0c00668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein glycosylation is involved in many biological processes and physiological functions. Despite the recent advances in LC-MS/MS methodologies, the profiling of site-specific glycosylation is one of the major analytical challenges of glycoprotein analysis. Herein, we report that the separation of glycopeptide isomers on porous graphitic carbon (PGC)-LC was significantly improved by elevating the separation temperature under basic mobile phases. These findings permitted the isomeric separation of glycopeptides resulting from highly specific enzymatic digestions. The selectivity for different glycan types was studied using bovine fetuin, asialofetuin, IgG, ribonuclease B, and alpha-1 acid glycoprotein (AGP) by PGC-LC-MS. Comprehensive structural isomeric separation of glycopeptides was observed by high-resolution MS and confirmed by MS/MS. The specific structures of the glycopeptide isomers were identified and confirmed through exoglycosidase digestions. Glycosylation analysis of human AGP revealed the potential use of PGC-LC-MS for extensive glycoprotein analysis for biomarker discovery. This newly developed separation technique was shown as a reproducible and useful analytical method to study site-specific isomeric glycosylation.
Collapse
Affiliation(s)
| | | | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| |
Collapse
|
40
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
41
|
Zhu J, Huang J, Zhang J, Chen Z, Lin Y, Grigorean G, Li L, Liu S, Singal AG, Parikh ND, Lubman DM. Glycopeptide Biomarkers in Serum Haptoglobin for Hepatocellular Carcinoma Detection in Patients with Nonalcoholic Steatohepatitis. J Proteome Res 2020; 19:3452-3466. [PMID: 32412768 DOI: 10.1021/acs.jproteome.0c00270] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is rising in prevalence in the United States and is a growing cause of hepatocellular carcinomas (HCCs). Site-specific glycan heterogeneity on glycoproteins has been shown as a potential diagnostic biomarker for HCC. Herein, we have performed a comprehensive screening of site-specific N-glycopeptides in serum haptoglobin (Hp), a reporter molecule for aberrant glycosylation in HCC, to characterize glycopeptide markers for NASH-related HCCs. In total, 70 NASH patients (22 early HCC, 15 advanced HCC, and 33 cirrhosis cases) were analyzed, with Hp purified from 20 μL of serum in each patient, and 140 sets of mass spectrometry (MS) data were collected using liquid chromatography coupled with electron-transfer high-energy collisional dissociation tandem MS (LC-EThcD-MS/MS) for quantitative analysis on a novel software platform, Byos. Differential quantitation analysis revealed that five N-glycopeptides at sites N184 and N241 were significantly elevated during the progression from NASH cirrhosis to HCC (p < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated that the N-glycopeptides at sites N184 and N241 bearing a monofucosylated triantennary glycan A3G3F1S3 had the best diagnostic performance in detection of early NASH HCC, area under the curve (AUC) = 0.733 and 0.775, respectively, whereas α-fetoprotein (AFP) had an AUC of 0.692. When combined with AFP, the two panels improved the sensitivity for early NASH HCC from 59% (AFP alone) to 73% while maintaining a specificity of 70%, based on the optimal cutoff. Two-dimensional (2-D) scatter plots of the AFP value and N-glycopeptides showed that these N-glycopeptide markers detected 58% of AFP-negative HCC patients as distinct from cirrhosis. These site-specific N-glycopeptides could serve as potential markers for early detection of HCC in patients with NASH-related cirrhosis.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Junfeng Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Gabriela Grigorean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Parikh ND, Mehta AS, Singal AG, Block T, Marrero JA, Lok AS. Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2020; 29:2495-2503. [PMID: 32238405 DOI: 10.1158/1055-9965.epi-20-0005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and the cancer with the fastest increase in mortality in the United States, with more than 39,000 cases and 29,000 deaths in 2018. As with many cancers, survival is significantly improved by early detection. The median survival of patients with early HCC is >60 months but <15 months when detected at an advanced stage. Surveillance of at-risk patients improves outcome, but fewer than 20% of those at risk for HCC receive surveillance, and current surveillance strategies have limited sensitivity and specificity. Ideally, blood-based biomarkers with adequate sensitivity or specificity would be available for early detection of HCC; however, the most commonly used biomarker for HCC, alpha-fetoprotein, has inadequate performance characteristics. There are several candidate serum proteomic, glycomic, and genetic markers that have gone through early stages of biomarker validation and have shown promise for the early detection of HCC, but these markers require validation in well-curated cohorts. Ongoing prospective cohort studies will permit retrospective longitudinal (phase III biomarker study) validation of biomarkers. In this review, we highlight promising candidate biomarkers and biomarker panels that have completed phase II evaluation but require further validation prior to clinical use.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan.
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas
| | - Timothy Block
- Baruch S. Blumberg Institute of The Hepatitis B Foundation, Doylestown, Pennsylvania
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
43
|
Rebello OD, Nicolardi S, Lageveen-Kammeijer GSM, Nouta J, Gardner RA, Mesker WE, Tollenaar RAEM, Spencer DIR, Wuhrer M, Falck D. A Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Assay for the Relative Quantitation of Antennary Fucosylated N-Glycans in Human Plasma. Front Chem 2020; 8:138. [PMID: 32185163 PMCID: PMC7059190 DOI: 10.3389/fchem.2020.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Changes in the abundance of antennary fucosylated glycans in human total plasma N-glycome (TPNG) have been associated with several diseases ranging from diabetes to various forms of cancer. However, it is challenging to address this important part of the human glycome. Most commonly, time-consuming chromatographic separations are performed to differentially quantify core and antenna fucosylation. Obtaining sufficient resolution for larger, more complex glycans can be challenging. We introduce a matrix-assisted laser desorption/ionization—mass spectrometry (MALDI-MS) assay for the relative quantitation of antennary fucosylation in TPNG. N-linked glycans are released from plasma by PNGase F and further treated with a core fucosidase before performing a linkage-informative sialic acid derivatization. The core fucosylated glycans are thus depleted while the remaining antennary fucosylated glycans are quantitated. Simultaneous quantitation of α2,3-linked sialic acids and antennary fucosylation allows an estimation of the sialyl-Lewis x motif. The approach is feasible using either ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry or time-of-flight mass spectrometry. The assay was used to investigate changes of antennary fucosylation as clinically relevant marker in 14 colorectal cancer patients. In accordance with a previous report, we found elevated levels of antennary fucosylation pre-surgery which decreased after tumor resection. The assay has the potential for revealing antennary fucosylation signatures in various conditions including diabetes and different types of cancer.
Collapse
Affiliation(s)
- Osmond D Rebello
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.,Ludger Ltd, Culham Science Centre, Abingdon, United Kingdom
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
44
|
Santorelli L, Capitoli G, Chinello C, Piga I, Clerici F, Denti V, Smith A, Grasso A, Raimondo F, Grasso M, Magni F. In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression. Cancers (Basel) 2020; 12:E239. [PMID: 31963743 PMCID: PMC7016614 DOI: 10.3390/cancers12010239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer.
Collapse
Affiliation(s)
- Lucia Santorelli
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Giulia Capitoli
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Francesca Clerici
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Vanna Denti
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Angelica Grasso
- Urology Service, Department of Surgery, EOC Beata Vergine Regional Hospital, 23, 6850 Mendrisio, Switzerland;
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Marco Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| |
Collapse
|
45
|
Tri-antennary tri-sialylated mono-fucosylated glycan of alpha-1 antitrypsin as a non-invasive biomarker for non-alcoholic steatohepatitis: a novel glycobiomarker for non-alcoholic steatohepatitis. Sci Rep 2020; 10:321. [PMID: 31941930 PMCID: PMC6962197 DOI: 10.1038/s41598-019-56947-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) that may lead to liver cirrhosis or hepatocellular carcinoma. Here, we examined the diagnostic utility of tri-antennary tri-sialylated mono-fucosylated glycan of alpha-1 antitrypsin (AAT-A3F), a non-invasive glycobiomarker identified in a previous study of NASH diagnosis. This study included 131 biopsy-proven Japanese patients with NAFLD. We evaluated the utility of AAT-A3F in NASH diagnosis, and conducted genetic analysis to analyse the mechanism of AAT-A3F elevation in NASH. Serum AAT-A3F concentrations were significantly higher in NASH patients than in NAFL patients, and in patients with fibrosis, lobular inflammation, and ballooning. Hepatic FUT6 gene expression was significantly higher in NASH than in NAFL. IL-6 expression levels were significantly higher in NASH than in NAFL and showed a positive correlation with FUT6 expression levels. The serum-AAT-A3F levels strongly correlated with hepatic FUT6 expression levels. AAT-A3F levels increased with fibrosis, pathological inflammation, and ballooning in patients with NAFLD and may be useful for non-invasive diagnosis of NASH from the early stages of fibrosis.
Collapse
|
46
|
The diagnostic value of serum DSA-TRF in hepatocellular carcinoma. Glycoconj J 2020; 37:231-240. [DOI: 10.1007/s10719-019-09906-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
|
47
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
48
|
Zhao X, Huang Y, Ma G, Liu Y, Guo C, He Q, Wang H, Liao J, Pan Y. Parallel On-Target Derivatization for Mass Calibration and Rapid Profiling of N-Glycans by MALDI-TOF MS. Anal Chem 2019; 92:991-998. [PMID: 31829556 DOI: 10.1021/acs.analchem.9b03932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycosylation is an important post-translational modification of proteins, and abnormal glycosylation is involved in a variety of diseases. Accurate and rapid profiling of N-glycans by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is still technically challenging and hampered mainly by mass drift of instrument, manual identification of spectrum peaks, and poor cocrystallization with traditional matrices besides low ionization efficiency of analytes. In the present study, a parallel on-target derivatization strategy (POTDS), on the basis of two rationally combined matrices, i.e., 3-hydrazinobenzoic acid plus DHB (DHB/3HBA) and quinoline-3-carbohydrazide plus DHB (DHB/Q3CH), was proposed for mass calibration and rapid detection of reducing N-glycans. Both DHB/3HBA and DHB/Q3CH show high derivatization efficiency and can improve the ionization efficiency of reducing N-glycans significantly. For mass calibration, in combination with dextrans, DHB/3HBA and DHB/Q3CH prove to be highly sensitive matrices facilitating both MS and MS2 calibration for N-glycans in dual polarities. For rapid identification, the regular mass difference observed for each N-glycan labeled with Q3CH and 3HBA respectively can eliminate the occurrence of false positives and promote automated identification of N-glycans in complex samples. For relative quantitation, the acid-base pair of DHB/Q3CH generates a concentrated cocrystallization of glycan-matrix mixtures at the edge of the droplet uniformly, exhibiting good linearity (R2 > 0.998) and accuracy (RSD ≤ 10%). Furthermore, the established POTDS was successfully utilized to assess N-glycans of serum from HCC patients, revealing potential for biomarker discovery in clinical practice.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Yu Huang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Ge Ma
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Yaqin Liu
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , China
| | - Quan He
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Huiwen Wang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Jiancong Liao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
49
|
Ács A, Turiák L, Révész Á, Vékey K, Drahos L. Identification of bifucosylated glycoforms using low-energy CID spectra. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:817-822. [PMID: 31476246 DOI: 10.1002/jms.4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We have used tandem mass spectrometry (MS/MS)-based analysis of glycopeptides in order to identify the composition and structure of rare glycoforms. The results illustrate utility of low-energy MS/MS for structure identification. We have shown the presence of bifucosylated and trifucosylated glycoforms in human α-1-acid glycoprotein (AGP), a major plasma glycoprotein. Fucosylation in the case of AGP always occurs on the antennae; core fucosylation was not observed.
Collapse
Affiliation(s)
- András Ács
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
- Károly Rácz School of PhD Studies, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
50
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|