1
|
Cao J, Cui X, Lu H, Wang H, Ma W, Yue Z, Zhen K, Wei Q, Li H, Jiang S, Ying W. Regional and longitudinal dynamics of human milk protein components assessed by proteome analysis on a fast and robust micro-flow LC-MS/MS system. Food Chem 2025; 465:141981. [PMID: 39550967 DOI: 10.1016/j.foodchem.2024.141981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC-MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome. In total, 2796 proteins were identified. Among these proteins, CPM, ACSL1, and RPL13 changed significantly during lactation, and SCP2, GALK1 and GALE changed significantly between regions. Bioinformatics analysis revealed that human milk is altered by complex interactions between genetic and environmental factors. Our results not only reveal the regional and longitudinal patterns of change in human milk proteome but also provide theoretical basis and technical support for the production and quality control of infant formula.
Collapse
Affiliation(s)
- Junxia Cao
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, PR China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Xinling Cui
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China; Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hai Lu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhan Yue
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Kemiao Zhen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Qiaosi Wei
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing 100016, PR China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Shilong Jiang
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing 100016, PR China; C-16(th) FL,Star City, No10, Jiuxianqiao Rd, Chaoyang District, Beijing, 100016, PR China.
| | - Wantao Ying
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, PR China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China.
| |
Collapse
|
2
|
Al-Wraikat M, Abubaker MA, Liu Y, Shen XP, He Y, Li L, Liu Y. Label-free quantitative proteomic analysis of functional changes of goat milk whey proteins subject to heat treatments of ultra-high-temperature and the common low-temperature. Food Chem X 2024; 23:101691. [PMID: 39184313 PMCID: PMC11342887 DOI: 10.1016/j.fochx.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
This work investigated the functional changes in whey proteins obtained from goat milk subject to various temperature treatments. Ultra-high temperature instantaneous sterilization (UHTIS) caused less damage than the common low-temperature, whereas spray-drying treatment had the opposite effect. A total of 426 proteins were identified in UHTIS and control treatment groups, including 386 common proteins and 16 and 14 unique proteins. The UHTIS treatment upregulated 55 whey proteins while down-regulated 98. The UHTIS-treated whey proteins may upregulate three metabolic pathways but downregulate one. Overall, UHTIS only slightly impacted the composition and functions of whey proteins from goat milk compared to the common low-temperature treatments.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingli Liu
- Hospital of Shaanxi Normal University, Shaanxi Normal University, Xi'an 710119, China
| | - Xi Ping Shen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - YongFeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Bernardes-Loch RM, Ribeiro AC, Ramírez-López CJ, Loch Gomes RA, Barros E, Filomeno Fontes EA, Baracat-Pereira MC. Human milk proteins differentiate over the sex of newborns and across stages of lactation. Clin Nutr ESPEN 2024; 62:144-156. [PMID: 38901936 DOI: 10.1016/j.clnesp.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND & AIMS Human milk (HM) is a complete food that meets the nutritional and energy demands of the newborns. It contains numerous bioactive components, including functional proteins. Variations in HM energy and lipid content have already been reported related to the newborn's sex, but differences between protein profiles are still scarce. This work aimed to identify differences between HM proteins produced by mothers of female and male newborns, in the lactation stages of colostrum and mature milk, and the metabolic pathways involved. METHODS A total of 98 HM samples were collected from 39 lactating women and classified according to the newborn's sex, stages of lactation, and three mothers' age groups, and evaluated about protein concentration and one-dimensional electrophoretic profile. Next, to assess samples with the greatest differences, the HM proteins regarding the newborn's sex and the stages of lactation were compared using nano-LC-MS/MS, in 24 HM samples randomly rearranged into four groups: female and male infants, and colostrum and mature milk. Functional classification, metabolic pathways, and protein interaction networks were analyzed by Gene Ontology, KEGG, and STRING, respectively. RESULTS The soluble protein content of HM decreased throughout lactation, with differences regarding isolated factors, such as mothers' age group, child's sex and stages of lactation, and also in terms of their interactions. A total of 146 proteins were identified, 42 of which showed different abundances over the sexes of newborns and 53 between the stages of lactation. In general, proteins related to metabolic processes were up-regulated for mothers of male infants and in the mature stage of lactation, while proteins related to defense were up-regulated in mothers of female infants and in the colostrum phase. CONCLUSION This study indicated that there are differentiated and specific nutritional and defense needs of newborns, by sex and by lactation phase, which is highly relevant for a more appropriate supply of food to infants receiving HM from donor mothers.
Collapse
Affiliation(s)
| | - Alessandra Casagrande Ribeiro
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36.570-900, Brazil; Department of Food Technology, Universidade Federal de Viçosa, Viçosa, MG 36.570-900, Brazil.
| | | | - Ruither Arthur Loch Gomes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36.570-900, Brazil.
| | - Edvaldo Barros
- Nucleus for Biomolecule Analysis, Universidade Federal de Viçosa, Viçosa, MG 36.570-900, Brazil.
| | | | | |
Collapse
|
4
|
Kazimierska K, Szabłowska-Gadomska I, Rudziński S, Kośla K, Płuciennik E, Bobak Ł, Zambrowicz A, Kalinowska-Lis U. Biologically Active Sheep Colostrum for Topical Treatment and Skin Care. Int J Mol Sci 2024; 25:8091. [PMID: 39125660 PMCID: PMC11311297 DOI: 10.3390/ijms25158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.
Collapse
Affiliation(s)
- Kinga Kazimierska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Urszula Kalinowska-Lis
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
5
|
Pant A, Anjankar AP, Shende S, Dhok A, Jha RK, Manglaram AV. Early detection of breast cancer through the diagnosis of Nipple Aspirate Fluid (NAF). Clin Proteomics 2024; 21:45. [PMID: 38943056 PMCID: PMC11212179 DOI: 10.1186/s12014-024-09495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
The development of breast cancer has been mainly reported in women who have reached the post-menopausal stage; therefore, it is the primary factor responsible for death amongst postmenopausal women. However, if treated on time it has shown a survival rate of 20 years in about two-thirds of women. Cases of breast cancer have also been reported in younger women and the leading cause in them is their lifestyle pattern or they may be carriers of high penetrance mutated genes. Premenopausal women who have breast cancer have been diagnosed with aggressive build-up of tumors and are therefore at more risk of loss of life. Mammography is an effective way to test for breast cancer in women after menopause but is not so effective for premenopausal women or younger females. Imaging techniques like contrast-enhanced MRI can up to some extent indicate the presence of a tumor but it cannot adequately differentiate between benign and malignant tumors. Although the 'omics' strategies continuing for the last 20 years have been helpful at the molecular level in enabling the characteristics and proper understanding of such tumors over long-term longitudinal monitoring. Classification, diagnosis, and prediction of the outcomes have been made through tissue and serum biomarkers but these also fail to diagnose the disease at an early stage. Considerably there is no adequate detection technique present globally that can help early detection and provide adequate specificity, safety, sensitivity, and convenience for the younger and premenopausal women, thereby it becomes necessary to take early measures and build efficient tools and techniques for the same. Through biopsies of nipple aspirate fluid (NAF) biomarker profiling can be performed. It is a naturally secreted fluid from the cells of epithelium found in the breast. Nowadays, home-based liquid biopsy collection kits are also available through which a routine check on breast health can be performed with the help of NAF. Herein, we will review the biomarker screening liquid biopsy, and the new emerging technologies for the examination of cancer at an early stage, especially in premenopausal women.
Collapse
Affiliation(s)
- Abhishek Pant
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India.
| | - Ashish P Anjankar
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Sandesh Shende
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Archana Dhok
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Roshan Kumar Jha
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Anjali Vagga Manglaram
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| |
Collapse
|
6
|
Liang N, Mohamed H, Pung RF, Waite-Cusic J, Dallas DC. Optimized Ultraviolet-C Processing Inactivates Pathogenic and Spoilage-Associated Bacteria while Preserving Bioactive Proteins, Vitamins, and Lipids in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12198-12208. [PMID: 38752986 DOI: 10.1021/acs.jafc.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.
Collapse
Affiliation(s)
- Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hussein Mohamed
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rachel F Pung
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - David C Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Pittet F, Hinde K. Meager Milk: Lasting Consequences for Adult Daughters of Primiparous Mothers Among Rhesus Macaques (Macaca mulatta). Integr Comp Biol 2023; 63:569-584. [PMID: 37170073 PMCID: PMC10503474 DOI: 10.1093/icb/icad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Among mammals, primipara who initiate reproduction before full maturity can be constrained in their maternal investment, both due to fewer somatic resources and tradeoffs between their own continued development and reproductive effort. Primipara are particularly limited in their capacity to synthesize milk during lactation, the costliest aspect of reproduction for most mammals, especially primates due to long periods of postnatal development. Due to reduced milk transfer, Firstborns may be at elevated risk for long-term consequences of deficits in early life endowment from their primiparous mothers. Here we investigated mass, growth, stature, and lactation performance among N = 273 adult daughters across N = 335 reproductions, who were their own mother's Firstborn or Laterborn progeny, among rhesus macaques (Macaca mulatta) at the California National Primate Research Center. We further explored mass during infancy of the offspring of Firstborn and Laterborn mothers. Firstborns had accelerated growth during infancy, but had slowed growth during juvenility, compared to Laterborns. Although both Firstborns and Laterborns were the same age at reproductive debut, Firstborns had lower body mass, an effect that persisted throughout the reproductive career. Available milk energy, the product of milk energetic density and milk yield, was on average 16% lower for Firstborns compared to Laterborns, a difference that was only partially mediated by their lower mass. Despite differences in their mothers' energy provision through milk, the mass of infants of Firstborn and Laterborn mothers did not differ at peak lactation, suggesting that infants of Firstborns devote a higher proportion of milk energy to growth than infants of Laterborns. To date few studies have explored how early life conditions shape capacities to synthesize milk and milk composition. Our findings contribute new information among primates on how early life maternal endowments are associated with persistent effects long after the period of maternal dependence well into reproductive maturity.
Collapse
Affiliation(s)
- Florent Pittet
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Liang N, Mohamed HM, Kim BJ, Burroughs S, Lowder A, Waite-Cusic J, Dallas DC. High-Pressure Processing of Human Milk: A Balance between Microbial Inactivation and Bioactive Protein Preservation. J Nutr 2023; 153:2598-2611. [PMID: 37423385 PMCID: PMC10517232 DOI: 10.1016/j.tjnut.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.
Collapse
Affiliation(s)
- Ningjian Liang
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Hussein Mh Mohamed
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Bum Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Samantha Burroughs
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | | | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States; Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
9
|
Tomberlin JK, Miranda C, Flint C, Harris E, Wu G. Lactation in the human. Anim Front 2023; 13:64-70. [PMID: 37324212 PMCID: PMC10425138 DOI: 10.1093/af/vfad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Chelsea Miranda
- Department of Entomology, Texas A&M University, College Station, TX
| | - Casey Flint
- Department of Entomology, Texas A&M University, College Station, TX
| | - Erin Harris
- Department of Entomology, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
10
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
11
|
Levy E, Marcil V, Tagharist Ép Baumel S, Dahan N, Delvin E, Spahis S. Lactoferrin, Osteopontin and Lactoferrin–Osteopontin Complex: A Critical Look on Their Role in Perinatal Period and Cardiometabolic Disorders. Nutrients 2023; 15:nu15061394. [PMID: 36986124 PMCID: PMC10052990 DOI: 10.3390/nu15061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Milk-derived bioactive proteins have increasingly gained attention and consideration throughout the world due to their high-quality amino acids and multiple health-promoting attributes. Apparently, being at the forefront of functional foods, these bioactive proteins are also suggested as potential alternatives for the management of various complex diseases. In this review, we will focus on lactoferrin (LF) and osteopontin (OPN), two multifunctional dairy proteins, as well as to their naturally occurring bioactive LF–OPN complex. While describing their wide variety of physiological, biochemical, and nutritional functionalities, we will emphasize their specific roles in the perinatal period. Afterwards, we will evaluate their ability to control oxidative stress, inflammation, gut mucosal barrier, and intestinal microbiota in link with cardiometabolic disorders (CMD) (obesity, insulin resistance, dyslipidemia, and hypertension) and associated complications (diabetes and atherosclerosis). This review will not only attempt to highlight the mechanisms of action, but it will critically discuss the potential therapeutic applications of the underlined bioactive proteins in CMD.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Sarah Tagharist Ép Baumel
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Noam Dahan
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
- Correspondence: ; Tel.: +1-(514)-345-4832
| |
Collapse
|
12
|
Abstract
Human breast milk is the optimal nutrition for all infants and is comprised of many bioactive and immunomodulatory components. The components in human milk, such as probiotics, human milk oligosaccharides (HMOs), extracellular vesicles, peptides, immunoglobulins, growth factors, cytokines, and vitamins, play a critical role in guiding neonatal development beyond somatic growth. In this review, we will describe the bioactive factors in human milk and discuss how these factors shape neonatal immunity, the intestinal microbiome, intestinal development, and more from the inside out.
Collapse
Affiliation(s)
- Sarah F Andres
- Department of Pediatrics, Pediatric GI Division, School of Medicine, Oregon Health and Science University, Portland, OR 97229, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 101 Manning Drive, Campus Box 7596, Chapel Hill, NC 27599, United States.
| |
Collapse
|
13
|
Han B, Zhang L, Zhou P. Comparative proteomics of whey proteins: New insights into quantitative differences between bovine, goat and camel species. Int J Biol Macromol 2023; 227:10-16. [PMID: 36529209 DOI: 10.1016/j.ijbiomac.2022.12.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Whey proteins are the leading proteins class in milk and play an essential role in the immune defense of neonatal mammals. The aim of this study was to analyze whey proteins in bovine, goat and camel milk by label free proteomics techniques. Finally, 840 proteins were identified, which considerably increasing the number of whey proteins identified in these species. The results of the PCA revealed significant differences in whey proteome patterns between bovine, goat and camel milk. Proteins such as PAEP, CST3, SERPING1, CTSB and GLG1 play an important role as markers in the classification of bovine, goat and camel milk. Statistical analysis showed that the relative abundances of many whey proteins such as ALB, LALBA, LTF and LPO were significantly different among different species. GO and KEGG functional analysis have shown that while the distribution of biological functions involved in whey proteins was relatively similar across species, they differed in terms of protein quantity. These data shed light on the quantitative differences and potential physiological functions of whey proteins across species, and may point the way to the production of specific functional whey proteins.
Collapse
Affiliation(s)
- Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Ahmadzai H, Tee LBG, Crowe A. Are active efflux transporters contributing to infant drug exposure via breastmilk? A longitudinal study. Basic Clin Pharmacol Toxicol 2022; 131:487-499. [PMID: 36130042 PMCID: PMC9827846 DOI: 10.1111/bcpt.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Although most drugs are considered safe and compatible with breastfeeding, cases of toxic drug exposure have been reported. Active efflux transporters have been implicated as a mechanism in the transfer of drugs from mother to baby via breastmilk. Using breastmilk as a source of human mammary epithelial cells, this novel longitudinal study investigated the expression of four active transporters, namely, MDR1, MRP1, MRP2 and BCRP in the lactating human breast. BCRP gene was found to be strongly overexpressed with levels peaking at 5 months postpartum, potentially indicating a time where a breastfed infant may be at risk of inadvertent exposure to BCRP substrates. Serum albumin, a major component of human breastmilk was increasingly downregulated as lactation progresses. Xanthine oxidase/dehydrogenase, an enzyme in breastmilk attributed to a reduced risk of gastroenteritis caused by Escherichia coli and Salmonella enteritides, was downregulated. Lysozyme and fatty acid synthase are progressively upregulated. This study also shows that breastmilk-derived epithelial cells, when propagated in culture, exhibit characteristics significantly different to those derived directly from breastmilk. This serves to warn that in vitro studies are not a true representation of in vivo processes in the lactating breast; hence, application of in vitro data should be conducted with caution.
Collapse
Affiliation(s)
- Hilai Ahmadzai
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Pharmacy DepartmentSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Lisa B. G. Tee
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Andrew Crowe
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
15
|
German JB, Lebrilla C, Mills DA. Milk: A Scientific Model for Diet and Health Research in the 21st Century. Front Nutr 2022; 9:922907. [PMID: 35757260 PMCID: PMC9226620 DOI: 10.3389/fnut.2022.922907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
The origin of lactation and the composition, structures and functions of milk's biopolymers highlight the Darwinian pressure on lactation as a complete, nourishing and protective diet. Lactation, under the driving pressure to be a sustainable bioreactor, was under selection pressure of its biopolymers with diverse functions acting from the mammary gland through the digestive system of the infant. For example, milk is extensively glycosylated and the glycan structures and their functions are now emerging. Milk contains free oligosaccharides; complex polymers of sugars whose stereospecific linkages are not matched by glycosidic enzymes within the mammalian infant gut. These glycan polymers reach the lower intestine undigested. In this microbe-rich environment, bacteria compete to release and ferment the sugars via different hydrolytic strategies. One specific type of bacteria, Bifidobacterium longum subsp. infantis, (B. infantis) is uniquely equipped with a repertoire of genes encoding enzymes capable of taking up, hydrolyzing and metabolizing the complex glycans of human milk. This combination of a distinct food supply and unique genetic capability shapes the composition and metabolic products of the entire microbial community within the lower intestine of breast fed infants. The intestinal microbiome dominated by B. infantis, shields the infant from the growth of gram negative enteropathogens and their endotoxins as a clear health benefit. The world is facing unprecedented challenges to produce a food supply that is both nourishing, safe and sustainable. Scientists need to guide the future of agriculture and food in response to these 21st century challenges. Lactation provides an inspiring model of what that future research strategy could be.
Collapse
Affiliation(s)
- J Bruce German
- University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Davis, CA, United States.,Foods for Health Institute, Davis, CA, United States
| | - Carlito Lebrilla
- University of California, Davis, Davis, CA, United States.,Department of Chemistry, Davis, CA, United States
| | - David A Mills
- University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Davis, CA, United States.,Foods for Health Institute, Davis, CA, United States
| |
Collapse
|
16
|
Lautenbacher L, Samaras P, Muller J, Grafberger A, Shraideh M, Rank J, Fuchs ST, Schmidt TK, The M, Dallago C, Wittges H, Rost B, Krcmar H, Kuster B, Wilhelm M. ProteomicsDB: toward a FAIR open-source resource for life-science research. Nucleic Acids Res 2022; 50:D1541-D1552. [PMID: 34791421 PMCID: PMC8728203 DOI: 10.1093/nar/gkab1026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
ProteomicsDB (https://www.ProteomicsDB.org) is a multi-omics and multi-organism resource for life science research. In this update, we present our efforts to continuously develop and expand ProteomicsDB. The major focus over the last two years was improving the findability, accessibility, interoperability and reusability (FAIR) of the data as well as its implementation. For this purpose, we release a new application programming interface (API) that provides systematic access to essentially all data in ProteomicsDB. Second, we release a new open-source user interface (UI) and show the advantages the scientific community gains from such software. With the new interface, two new visualizations of protein primary, secondary and tertiary structure as well an updated spectrum viewer were added. Furthermore, we integrated ProteomicsDB with our deep-neural-network Prosit that can predict the fragmentation characteristics and retention time of peptides. The result is an automatic processing pipeline that can be used to reevaluate database search engine results stored in ProteomicsDB. In addition, we extended the data content with experiments investigating different human biology as well as a newly supported organism.
Collapse
Affiliation(s)
- Ludwig Lautenbacher
- Technical University of Munich, Computational Mass Spectrometry, 85354 Freising, Bavaria, Germany
| | - Patroklos Samaras
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Julian Muller
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Andreas Grafberger
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Marwin Shraideh
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Johannes Rank
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Simon T Fuchs
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Tobias K Schmidt
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Matthew The
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Christian Dallago
- Technical University of Munich, Department for Bioinformatics and Computational Biology, 85748 Garching, Bavaria, Germany
- Technical University of Munich, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), 85748 Garching, Bavaria, Germany
| | - Holger Wittges
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Burkhard Rost
- Technical University of Munich, Department for Bioinformatics and Computational Biology, 85748 Garching, Bavaria, Germany
- Technical University of Munich, Institute for Advanced Study (TUM-IAS), 85748 Freising, Bavaria, Germany
| | - Helmut Krcmar
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Bernhard Kuster
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
- Technical University of Munich, Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), 85354 Freising, Bavaria, Germany
| | - Mathias Wilhelm
- Technical University of Munich, Computational Mass Spectrometry, 85354 Freising, Bavaria, Germany
| |
Collapse
|
17
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
18
|
Patel V, Klootwijk E, Whiting G, Bockenhauer D, Siew K, Walsh S, Bleich M, Himmerkus N, Jaureguiberry G, Issler N, Godovac‐Zimmermann J, Kleta R, Wheeler J. Quantification of FAM20A in human milk and identification of calcium metabolism proteins. Physiol Rep 2021; 9:e15150. [PMID: 34957696 PMCID: PMC8711012 DOI: 10.14814/phy2.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues. FAM20A is a low-abundant protein that is difficult to detect in biofluids such as blood, saliva, and urine. Thus, we speculated the abundance of FAM20A to be high in human milk, since the secretory epithelium of lactating mammary tissue is involved in the secretion of highly concentrated calcium. Therefore, the primary aim of this research is to describe the processes/methodology taken to quantify FAM20A in human milk and identify other proteins involved in calcium metabolism. METHOD This study used mass spectrometry-driven quantitative proteomics: (1) to quantify FAM20A in human milk of three women and (2) to identify proteins associated with calcium regulation by bioinformatic analyses on whole and milk fat globule membrane fractions. RESULTS Shotgun MS/MS driven proteomics identified FAM20A in whole milk, and subsequent analysis using targeted proteomics also successfully quantified FAM20A in all samples. Combination of sample preparation, fractionation, and LC-MS/MS proteomics analysis generated 136 proteins previously undiscovered in human milk; 21 of these appear to be associated with calcium metabolism. CONCLUSION Using mass spectrometry-driven proteomics, we successfully quantified FAM20A from transitional to mature milk and obtained a list of proteins involved in calcium metabolism. Furthermore, we show the value of using a combination of both shotgun and targeted driven proteomics for the identification of this low abundant protein in human milk.
Collapse
Affiliation(s)
- Vaksha Patel
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Gail Whiting
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| | | | - Keith Siew
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Stephen Walsh
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Markus Bleich
- Institute of PhysiologyUniversity of KielKielGermany
| | | | | | - Naomi Issler
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Robert Kleta
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Jun Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| |
Collapse
|
19
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
20
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
21
|
Bradshaw CV, Suarez Trujillo A, Luecke SM, Logan LD, Mohallem R, Aryal UK, Stewart KR, Casey TM, Minor RC. Shotgun proteomics of homogenate milk reveals dynamic changes in protein abundances between colostrum, transitional and mature milk of swine. J Anim Sci 2021; 99:6348966. [PMID: 34383053 PMCID: PMC8477453 DOI: 10.1093/jas/skab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Milk is an easily digestible source of nutrients and bioactive factors, its composition reflects the neonate's needs, and changes from colostrum to transitional and mature milk. Our objective was to measure milk fat, lactose, total carbohydrate, and protein content in parallel with global proteome of homogenate milk samples to characterize changes across the three phases of swine lactation. Milk samples were collected from multiparous sows (n=9) on postnatal day 0 (D0; colostrum), 3 (D3; early transitional), 7 (D7; late transitional) and 14 (D14; mature). On D3, percent fat (16 ± 2.1) and lactose (3.8 ± 0.3) were higher (P<0.05) than on D0 (10 ± 3.9, and 1.5 ± 0.3; respectively). Levels of fat and lactose were not different between D3 and D14. Percent total protein decreased (P<0.05) between D0 (11 ± 2.1) and D3 (5 ± 0.7), but there was no significant change in percent protein between D3 and D14. Total carbohydrates increased (P<0.05) between D3 (944 ± 353 µg/ml) and D14 (1150 ± 462 µg/ml). Quantitative proteomic analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) of homogenate D0, D3, and D14 milk samples (n=6) identified 772 protein groups which corresponded to 501 individual protein-coding genes. A total of 207 high confidence proteins were detected in n=3 sows/day. Of the high confidence proteins, 81 proteins were common amongst all three days of lactation. Among the proteins that decreased between the days (FDR < 0.05) were multiple apolipoproteins and XDH which decreased between D0 to D3. Proteins that increased across the days (FDR < 0.05) were complement factors and14-3-3 proteins (YWHAQ, YWHAE). Our data provide a good characterization of milk proteome changes that likely reflect mammary function as well as the neonate's phase-specific developmental needs. This data may be useful in developing approaches to enhance the health and welfare of swine.
Collapse
Affiliation(s)
- Christina V Bradshaw
- Department of Animal Science, North Carolina A&T State University, Greensboro, USA
| | | | - Sarah M Luecke
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Lea D Logan
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, , USA.,Proteomics Core, Bindley Science Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, , USA.,Proteomics Core, Bindley Science Center, Purdue University, West Lafayette, USA
| | - Kara R Stewart
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Radiah C Minor
- Department of Animal Science, North Carolina A&T State University, Greensboro, USA
| |
Collapse
|
22
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Longitudinal Changes in the Concentration of Major Human Milk Proteins in the First Six Months of Lactation and Their Effects on Infant Growth. Nutrients 2021; 13:nu13051476. [PMID: 33925556 PMCID: PMC8147063 DOI: 10.3390/nu13051476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Our knowledge related to human milk proteins is still limited. The present study determined the changes in multiple human milk proteins during the first six months of lactation, investigated the influencing factors of milk proteins, and explored the impact of milk proteins on infant growth. A total of 105 lactating women and their full-term infants from China were prospectively surveyed in this research. Milk samples were collected at 1–5 days, 8–14 days, 1 month, and 6 months postpartum. Concentrations of total protein and α-lactalbumin were measured in all milk samples, and concentrations of lactoferrin, osteopontin, total casein, β-casein, αs−1 casein, and κ-casein were measured in milk from 51 individuals using ultra performance liquid chromatography coupled with mass spectrometry. The concentration of measured proteins in the milk decreased during the first six months of postpartum (p-trend < 0.001). Maternal age, mode of delivery, maternal education, and income impacted the longitudinal changes in milk proteins (p-interaction < 0.05). Concentrations of αs−1 casein in milk were inversely associated with the weight-for-age Z-scores of the infants (1 m: r −0.29, p 0.038; 6 m: r −0.33, p 0.020). In conclusion, the concentration of proteins in milk decreased over the first six months postpartum, potentially influenced by maternal demographic and delivery factors. Milk protein composition may influence infant weights.
Collapse
|
24
|
Tsutaya T, Mackie M, Sawafuji R, Miyabe-Nishiwaki T, Olsen JV, Cappellini E. Faecal proteomics as a novel method to study mammalian behaviour and physiology. Mol Ecol Resour 2021; 21:1808-1819. [PMID: 33720532 PMCID: PMC8360081 DOI: 10.1111/1755-0998.13380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Mammalian faeces can be collected noninvasively during field research and provide valuable information on the ecology and evolution of the source individuals. Undigested food remains, genome/metagenome, steroid hormones, and stable isotopes obtained from faecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian faeces have hardly been studied, which hinders the molecular investigations into the behaviour and physiology of the source individuals. Here, we apply mass spectrometry-based proteomics to faecal samples (n = 10), collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata), to describe the proteomes of the source individual, of the food it consumed, and its intestinal microbes. The results show that faecal proteomics is a useful method to: (i) investigate dietary changes along with breastfeeding and weaning, (ii) reveal the taxonomic and histological origin of the food items consumed, and (iii) estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The faecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behaviour and physiology.
Collapse
Affiliation(s)
- Takumi Tsutaya
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan.,Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Meaghan Mackie
- Evolutionary Genomics Section, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikai Sawafuji
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | | | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Evolutionary Genomics Section, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
26
|
Changes in bioactive proteins and serum proteome of human milk under different frozen storage. Food Chem 2021; 352:129436. [PMID: 33691214 DOI: 10.1016/j.foodchem.2021.129436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to investigate changes in macronutrients, total bacterial count, and serum proteome of human milk (HM) under different frozen storage (-18°C and -60°C, 60 d and 180 d) by using IBT Labeling proteomics techniques and ELISA kit. The results indicated that total protein concentrations and total aerobic bacterial counts were significantly decreased at -18°C, while no difference at -60°C. A total of 1617 proteins were identified and quantified, and 173 proteins were significantly different. The -18°C storage had much higher influence on HM serum protein profiles than that of -60°C. Increased milk fat globule membrane (MFGM) proteins at -18°C are highly related to the damage of MFGM and transfer of MFGM proteins. The reduction of bioactive proteins is probably related to the ice-induced denaturation. In conclusion, fast cooling and ultra-low constant temperature are more suitable for the cryopreservation of human milk.
Collapse
|
27
|
Ren Q, Zhou Y, Zhang W, Tian Y, Sun H, Zhao X, Xu Y, Jiang S. Longitudinal changes in the bioactive proteins in human milk of the Chinese population: A systematic review. Food Sci Nutr 2021; 9:25-35. [PMID: 33473267 PMCID: PMC7802555 DOI: 10.1002/fsn3.2061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
This systematic review aimed at investigating longitudinal changes in human milk bioactive protein concentrations in Chinese population. Both English and Chinese databases were searched. The data were pooled into six defined lactation stages. Weighted means of protein concentrations in each stage and the statistical significance of means of different lactation stages were calculated. The data of 11 bioactive proteins were retrieved. Concentrations of sIgA, IgM, and IgG decreased sharply during the first 14 days of lactation. The levels of α-lactalbumin, lactoferrin, and β-casein also decreased throughout lactation. Conversely, lysozyme levels increased over lactation. The changing patterns of the serum albumin, osteopontin, and bile salt-stimulated lipase (BSSL) were not conclusive. This study represents the most comprehensive summary of bioactive proteins in Chinese human milk. In the future, mass spectrometry-based analysis of human milk proteomics may be used to investigate the longitudinal changes of many more bioactive proteins.
Collapse
Affiliation(s)
- Qiqi Ren
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Yalin Zhou
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Department of Nutrition and Food Hygiene, School of Public HealthPeking UniversityBeijingChina
| | - Wei Zhang
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Yueyue Tian
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Han Sun
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Xuejun Zhao
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
- Present address:
Shanghai Institute for Pediatric Research, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yajun Xu
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Department of Nutrition and Food Hygiene, School of Public HealthPeking UniversityBeijingChina
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food SafetyPeking UniversityBeijingChina
| | - Shilong Jiang
- PKUHSC‐China Feihe Joint Research Institute of Nutrition and Healthy Lifespan DevelopmentBeijingChina
- Nutrition and Metabolism Research Division, Innovation CenterHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| |
Collapse
|
28
|
Metabolomic and Metataxonomic Fingerprinting of Human Milk Suggests Compositional Stability over a Natural Term of Breastfeeding to 24 Months. Nutrients 2020; 12:nu12113450. [PMID: 33187120 PMCID: PMC7697254 DOI: 10.3390/nu12113450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Sparse data exist regarding the normal range of composition of maternal milk beyond the first postnatal weeks. This single timepoint, observational study in collaboration with the ‘Parenting Science Gang’ citizen science group evaluated the metabolite and bacterial composition of human milk from 62 participants (infants aged 3–48 months), nearly 3 years longer than previous studies. We utilised rapid evaporative ionisation mass spectrometry (REIMS) for metabolic fingerprinting and 16S rRNA gene metataxonomics for microbiome composition analysis. Milk expression volumes were significantly lower beyond 24 months of lactation, but there were no corresponding changes in bacterial load, composition, or whole-scale metabolomic fingerprint. Some individual metabolite features (~14%) showed altered abundances in nursling age groups above 24 months. Neither milk expression method nor nursling sex affected metabolite and metataxonomic fingerprints. Self-reported lifestyle factors, including diet and physical traits, had minimal impact on metabolite and metataxonomic fingerprints. Our findings suggest remarkable consistency in human milk composition over natural-term lactation. The results add to previous studies suggesting that milk donation can continue up to 24 months postnatally. Future longitudinal studies will confirm the inter-individual and temporal nature of compositional variations and the use of donor milk as a personalised therapeutic.
Collapse
|
29
|
The Differential Composition of Whey Proteomes in Hu Sheep Colostrum and Milk during Different Lactation Periods. Animals (Basel) 2020; 10:ani10101784. [PMID: 33019658 PMCID: PMC7599680 DOI: 10.3390/ani10101784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Colostrum and milk proteins are essential resources for the growth and development of the newborns, while their kinds and amounts vary greatly during the lactation period. This study was conducted to better understand whey proteome and its changes at six lactation time points (0 d, 3 d, 7 d, 14 d, 28 d, and 56 d after lambing) in Hu sheep. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) technologies, a total of 52 differentially expressed protein spots (DEPS), corresponding to 25 differentially expressed proteins (DEPs), were obtained. The protein spots abundance analysis revealed that the proteins are the most abundant at 0 d after lambing. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to explore the biological functions of the DEPs. The biological process was mainly involved in localization, the single-organism process, the cellular process, and a series of immune processes. The cellular components engaged in the extracellular region were the cell, organelle, and membrane. The most prevalent molecular function was binding activity. In addition, the DEPs were involved in nine significant pathways, including the Hippo signaling pathway and Complement and coagulation cascades. These results intuitively presented the changes in Hu sheep whey proteins during a 56-d lactation period, and revealed potential biological functions of the DEPs, providing a scientific basis for early weaning.
Collapse
|
30
|
Sen P, Kan CFK, Singh AB, Rius M, Kraemer FB, Sztul E, Liu J. Identification of p115 as a novel ACSL4 interacting protein and its role in regulating ACSL4 degradation. J Proteomics 2020; 229:103926. [PMID: 32736139 DOI: 10.1016/j.jprot.2020.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Long-chain acyl-CoA synthetase 4 (ACSL4) is an ACSL family member that exhibits unique substrate preference for arachidonic acid. ACSL4 has a functional role in hepatic lipid metabolism, and is dysregulated in non-alcoholic fatty liver disease. Our previous studies demonstrated AA-induced ACSL4 degradation via the ubiquitin-proteasomal pathway (UPP). To characterize this unique mechanism, we applied proteomic approaches coupled with LC-MS/MS and identified the intracellular general vesicular trafficking protein p115 as the prominent ACSL4 interacting protein in HepG2 cells. Importantly, we found that AA greatly enhanced p115-ACSL4 association. Combined AA treatment with p115 knockdown suggested an additive role for p115 in AA-driven ACSL4 degradation. Furthermore, in vivo studies revealed a significant upregulation of p115 protein in the liver of mice fed a high fat diet that has been previously reported to induce downregulation of ACSL4 protein expression. This new finding has revealed a novel inverse correlation between ACSL4 and p115 proteins in the liver. p115 is crucial for ER-Golgi trafficking and Golgi biogenesis. Thus far, p115 has not been reported to interact with UPP proteins nor with FA metabolism enzymes. Overall, our current study provides a novel insight into the connection between ER-Golgi trafficking and UPP machinery with p115 as a critical mediator. SIGNIFICANCE: ACSL4 is uniquely regulated by its own substrate AA, and in this study, we have found that AA leads to an enhanced interaction of ACSL4 with a novel interacting partner, the intracellular vesicle trafficking protein p115. The latter is crucial for Golgi biogenesis and ER-Golgi transport and is not known to be associated with the ubiquitin-proteasome machinery or protein stability regulation until now. This study is the first report of a possible coordination of the protein secretion pathway and the UPP in regulating a key metabolic enzyme. Our study lays the foundation to this unique crosstalk between the two major cellular pathways- secretion and protein degradation and opens up a new avenue to explore this partnership in controlling hepatic lipid metabolism. Overall, the complete elucidation of the AA-mediated ACSL4 regulation will help identify key targets in participating pathways that can be further studied for the development of therapeutics against diseases such as NAFLD, NASH and hepatocarcinoma, which are associated with dysregulated ACSL4 function.
Collapse
Affiliation(s)
- Progga Sen
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Chin Fung Kelvin Kan
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Amar B Singh
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Monica Rius
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Fredric B Kraemer
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America; Stanford Diabetes Research Center, United States of America.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jingwen Liu
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America.
| |
Collapse
|
31
|
Sun Y, Wang C, Sun X, Guo M. Proteomic analysis of differentially expressed whey proteins in Guanzhong goat milk and Holstein cow milk by iTRAQ coupled with liquid chromatography-tandem mass spectrometry. J Dairy Sci 2020; 103:8732-8740. [PMID: 32713692 DOI: 10.3168/jds.2020-18564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 01/09/2023]
Abstract
Guanzhong goat and Holstein cow milk are the major milks supplied in China. Whey proteins play an important role in immune defense for newborn mammals. This study aimed to analyze the differentially expressed whey proteins of Guanzhong goat milk and Holstein cow milk by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics techniques. A total of 165 whey proteins were quantified, 114 of which differed significantly in abundance in goat and cow milks. According to the "up_keywords," in the online DAVID tool (https://david.ncifcrf.gov/home.jsp), 75% of these differentially expressed whey proteins were related to the category of "signal." Gene Ontology analyses classified these differentially expressed proteins into biological processes, cellular components, and molecular functions. The most common biological process was response to stress, the most common cellular component was related to extracellular region, and the most prevalent molecular function was binding. Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these proteins were mainly involved in the complement and coagulation cascade pathways. The results improve our understanding of the different biological properties of whey proteins in goat and cow milks.
Collapse
Affiliation(s)
- Yuxue Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Cuina Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingruo Guo
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405.
| |
Collapse
|
32
|
Sun Y, Wang C, Sun X, Guo M. Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. J Dairy Sci 2020; 103:1164-1174. [DOI: 10.3168/jds.2019-17159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
|
33
|
Impact of Donor Human Milk in the Preterm Very Low Birth Weight Gut Transcriptome Profile by Use of Exfoliated Intestinal Cells. Nutrients 2019; 11:nu11112677. [PMID: 31694290 PMCID: PMC6893464 DOI: 10.3390/nu11112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Own mother’s milk (OMM) is the optimal nutrition for preterm infants. However, pasteurized donor human milk (DHM) is a valid alternative. We explored the differences of the transcriptome in exfoliated epithelial intestinal cells (EEIC) of preterm infants receiving full feed with OMM or DHM. Methods: The prospective observational study included preterm infants ≤ 32 weeks’ gestation and/or ≤1500 g birthweight. Total RNA from EEIC were processed for genome-wide expression analysis. Results: Principal component analysis and unsupervised hierarchical clustering analysis revealed two clustered groups corresponding to the OMM and DHM groups that showed differences in the gene expression profile in 1629 transcripts. The OMM group overexpressed lactalbumin alpha gene (LALBA), Cytochrome C oxidase subunit I gene (COX1) and caseins kappa gene (CSN3), beta gene (CSN2) and alpha gene (CSN1S1) and underexpressed Neutrophil Cytosolic Factor 1 gene (NCF1) compared to the DHM group. Conclusions: The transcriptomic analysis of EEIC showed that OMM induced a differential expression of specific genes that may contribute to a more efficient response to a pro-oxidant challenge early in the postnatal period when preterm infants are at a higher risk of oxidative stress. The use of OMM should be strongly promoted in preterm infants.
Collapse
|
34
|
Rendina DN, Lubach GR, Phillips GJ, Lyte M, Coe CL. Maternal and Breast Milk Influences on the Infant Gut Microbiome, Enteric Health and Growth Outcomes of Rhesus Monkeys. J Pediatr Gastroenterol Nutr 2019; 69:363-369. [PMID: 31107796 PMCID: PMC6706299 DOI: 10.1097/mpg.0000000000002394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Gut bacteria play an essential role during infancy and are strongly influenced by the mode of birth and feeding. A primate model was used to investigate the benefits of exposure to the mother or conversely the negative impact of early nursery rearing on microbial colonization. METHOD Rectal swabs were obtained from rhesus macaques born vaginally and mother-reared (MR, N = 35) or delivered primarily via cesarean-section and human-reared (HR, N = 19). Microbiome composition was determined by rRNA gene amplicon sequencing at 2, 4, and 8 weeks of age and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs used to assess influences on functional metabolic pathways in the gut. Growth trajectories and incidence of diarrheic symptoms were evaluated. RESULTS The microbial community structure was different between MR and HR infants with respect to phylogeny and abundance at all 3 ages. When examining dominant phyla, HR infants had a higher Firmicutes-to-Bacteroidetes ratio. At the genus level, breast milk-dependent commensal taxa and adult-typical genera were more abundant in MR infants. This difference resulted in a corresponding shift in the predicted metabolic effects, specifically for microbial genes associated with metabolism and immune function. HR infants had faster growth trajectories (P < 0.001), but more diarrheic symptoms by 6 months postnatal (P = 0.008). CONCLUSIONS MR infants acquired adult-typical microbiota more quickly, and had higher levels of several beneficial commensal taxa. Cesarean-delivered and formula-fed infants had different developmental trajectories of bacterial colonization. Establishment of the gut microbiome was associated with an infant's growth trajectory, and implicated in the subsequent vulnerability to Campylobacter infections associated with diarrhea in infant monkeys.
Collapse
Affiliation(s)
| | | | | | - Mark Lyte
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | | |
Collapse
|
35
|
Picariello G, De Cicco M, Nocerino R, Paparo L, Mamone G, Addeo F, Berni Canani R. Excretion of Dietary Cow's Milk Derived Peptides Into Breast Milk. Front Nutr 2019; 6:25. [PMID: 30931311 PMCID: PMC6424006 DOI: 10.3389/fnut.2019.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Nanoflow-HPLC-tandem mass spectrometry (MS/MS) was used to analyze the peptide fraction of breast milk samples collected from a single non-atopic donor on different days (10 samples) after receiving an oral load of cow's milk (by drinking 200 mL of bovine milk). In addition, breast milk was sampled from the same lactating mother over a 6-h period at five time points after drinking cow's milk. We aimed to trace the intra-individual variability and to define a time profile of the excretion of dietary peptides into breast milk. Overall, 21 peptides exclusively originating from both bovine caseins and whey proteins with no match within the human milk proteome were identified in the breast milk samples. These peptides were missing in the breast milk obtained from the mother after a prolonged milk- and dairy-free diet (three samples). The time course of cow's milk-derived β-Lg f(125–135) and β-casein f(81–92) in breast milk was determined from the MS ion intensity of the peptide signals. No intact cow's milk gene products were detected by HPLC-MS/MS analysis and Western blotting with anti-β-Lg antibody, but dot-blot analysis confirmed the occurrence of β-Lg fragments in the enriched peptide fraction of breast milk. These data suggest shifting the analytical perspective for the detection of dietary food allergens in breast milk from intact proteins to digested peptide fragments. The possible sensitization and elicitation potential or the tolerogenic properties of such low amounts of dietary peptides for the breastfed newborns remain to be explored.
Collapse
Affiliation(s)
- Gianluca Picariello
- National Research Council (CNR), Institute of Food Sciences, Avellino, Italy
| | - Maristella De Cicco
- National Research Council (CNR), Institute of Food Sciences, Avellino, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gianfranco Mamone
- National Research Council (CNR), Institute of Food Sciences, Avellino, Italy
| | - Francesco Addeo
- Department of Agriculture, Parco Gussone, University of Naples "Federico II", Portici, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University "Federico II", Naples, Italy
| |
Collapse
|
36
|
Elwakiel M, Boeren S, Hageman JA, Szeto IM, Schols HA, Hettinga KA. Variability of Serum Proteins in Chinese and Dutch Human Milk during Lactation. Nutrients 2019; 11:E499. [PMID: 30818777 PMCID: PMC6471199 DOI: 10.3390/nu11030499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023] Open
Abstract
To better understand the variability of the type and level of serum proteins in human milk, the milk serum proteome of Chinese mothers during lactation was investigated using proteomic techniques and compared to the milk serum proteome of Dutch mothers. This showed that total milk serum protein concentrations in Chinese human milk decreased over a 20-week lactation period, although with variation between mothers in the rate of decrease. Variation was also found in the composition of serum proteins in both colostrum and mature milk, although immune-active proteins, enzymes, and transport proteins were the most abundant for all mothers. These three protein groups account for many of the 15 most abundant proteins, with these 15 proteins covering more than 95% of the total protein concentrations, in both the Chinese and Dutch milk serum proteome. The Dutch and Chinese milk serum proteome were also compared based on 166 common milk serum proteins, which showed that 22% of the 166 serum proteins differed in level. These differences were observed mainly in colostrum and concern several highly abundant proteins. This study also showed that protease inhibitors, which are highly correlated to immune-active proteins, are present in variable amounts in human milk and could be relevant during digestion.
Collapse
Affiliation(s)
- Mohèb Elwakiel
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jos A Hageman
- Biometris-Applied Statistics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Ignatius M Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Jinshan Road 8, Hohhot 010110, China.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
37
|
Sun Y, Wang C, Sun X, Guo M. Comparative Proteomics of Whey and Milk Fat Globule Membrane Proteins of Guanzhong Goat and Holstein Cow Mature Milk. J Food Sci 2019; 84:244-253. [PMID: 30620781 DOI: 10.1111/1750-3841.14428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Guanzhong goat and Holstein cow milks are the major milk supply for the Chinese dairy industry. Whey proteins and milk fat globule membrane (MFGM) proteins of both milk were characterized and compared using proteomic techniques. A total of 283, 159, 593, and 349 proteins were identified, respectively, in whey and MFGM for the two species using Liquid Chromatography combined with Tandem Mass Spectrometry (LC-MS/MS). Functional categories analyses showed that both goat and cow MFGM proteins had three most abundant proteins of phosphoproteins, membrane-related and acetylation-related proteins. Gene ontology (GO) annotation revealed that whey proteins in goat and cow milk exhibited different biological processes and molecular functions while both enriched in extracellular exosome for cellular components. Both goat and cow MFGM proteins showed main biological process of oxidation-reduction, cellular component of extracellular exosome, and molecular function of poly(A) RNA binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that large number of both goat and cow whey proteins were involved in disease, metabolism, and immune pathways with different number and types. The most general pathways for goat and cow MFGM proteins were metabolism pathways and disease pathways, respectively. The results indicated that Guanzhong goat and Holstein cow milk were different in varieties of whey proteins and MFGM proteins and their functions and pathways. PRACTICAL APPLICATION: Guanzhong goat and Holstein cow milks are the major milk sources for the Chinese consumers. However, information about proteomics of whey and MFGM proteins of Guanzhong goat and Holstein cow milk is limited. Our study characterized and compared both whey and MFGM proteins using proteomic techniques. The results provide useful information for infant formula and milk protein products in the Chinese dairy industry.
Collapse
Affiliation(s)
- Yuxue Sun
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Cuina Wang
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Xiaomeng Sun
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Mingruo Guo
- Dept. of Nutrition and Food Sciences, College of Agriculture and Life Sciences, Univ. of Vermont, Burlington, VT, 05405, USA.,College of Food Science, Northeast Agriculture Univ., Harbin, 150030, China
| |
Collapse
|
38
|
Li S, Li L, Zeng Q, Liu J, Yang Y, Ren D. Quantitative differences in whey proteins among Murrah, Nili-Ravi and Mediterranean buffaloes using a TMT proteomic approach. Food Chem 2018; 269:228-235. [DOI: 10.1016/j.foodchem.2018.06.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/18/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
|
39
|
Klein LD, Huang J, Quinn EA, Martin MA, Breakey AA, Gurven M, Kaplan H, Valeggia C, Jasienska G, Scelza B, Lebrilla CB, Hinde K. Variation among populations in the immune protein composition of mother's milk reflects subsistence pattern. Evol Med Public Health 2018; 2018:230-245. [PMID: 30430010 PMCID: PMC6222208 DOI: 10.1093/emph/eoy031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
LAY SUMMARY Adaptive immune proteins in mothers' milk are more variable than innate immune proteins across populations and subsistence strategies. These results suggest that the immune defenses in milk are shaped by a mother's environment throughout her life. BACKGROUND AND OBJECTIVES Mother's milk contains immune proteins that play critical roles in protecting the infant from infection and priming the infant's developing immune system during early life. The composition of these molecules in milk, particularly the acquired immune proteins, is thought to reflect a mother's immunological exposures throughout her life. In this study, we examine the composition of innate and acquired immune proteins in milk across seven populations with diverse disease and cultural ecologies. METHODOLOGY Milk samples (n = 164) were collected in Argentina, Bolivia, Nepal, Namibia, Philippines, Poland and the USA. Populations were classified as having one of four subsistence patterns: urban-industrialism, rural-shop, horticulturalist-forager or agro-pastoralism. Milk innate (lactalbumin, lactoferrin and lysozyme) and acquired (Secretory IgA, IgG and IgM) protein concentrations were determined using triple-quadrupole mass spectrometry. RESULTS Both innate and acquired immune protein composition in milk varied among populations, though the acquired immune protein composition of milk differed more among populations. Populations living in closer geographic proximity or having similar subsistence strategies (e.g. agro-pastoralists from Nepal and Namibia) had more similar milk immune protein compositions. Agro-pastoralists had different milk innate immune protein composition from horticulturalist-foragers and urban-industrialists. Acquired immune protein composition differed among all subsistence strategies except horticulturist-foragers and rural-shop. CONCLUSIONS AND IMPLICATIONS Our results reveal fundamental variation in milk composition that has not been previously explored in human milk research. Further study is needed to understand what specific aspects of the local environment influence milk composition and the effects this variation may have on infant health outcomes.
Collapse
Affiliation(s)
- Laura D Klein
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
- Department of Anthropology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago IL, USA
| | - Jincui Huang
- Chemistry Department, University of California Davis, 2465 Chemistry Annex, One Shields Avenue, Davis, CA, USA
| | - Elizabeth A Quinn
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, One Brookings Drive, St Louis, MO, USA
| | - Melanie A Martin
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Anthropology, University of Washington, 314 Denny Hall, Box 353100, Seattle, WA, USA
| | - Alicia A Breakey
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Hillard Kaplan
- Department of Anthropology, University of New Mexico, MSC01-1040, 1 University of New Mexico, Albuquerque, NM, USA
| | - Claudia Valeggia
- Department of Anthropology, Yale University, 10 Sachem Street, New Haven, CT, USA
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Grzegorzecka 20, Krakow, Poland
| | - Brooke Scelza
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Box 951553, Los Angeles, CA, USA
| | - Carlito B Lebrilla
- Chemistry Department, University of California Davis, 2465 Chemistry Annex, One Shields Avenue, Davis, CA, USA
| | - Katie Hinde
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
- School of Human Evolution and Social Change
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
40
|
Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem 2018; 274:766-774. [PMID: 30373006 DOI: 10.1016/j.foodchem.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/22/2022]
Abstract
Human milk is a dynamic protein-protease system that delivers bioactive peptides to infants. The pH of milk changes from the mother's mammary gland to the infant's digestive tract. Although the release of human milk peptides has been studied during in vivo or in vitro digestion, these models did not explicitly vary nor observe the effect of pH. The objective of this research was to determine the effect of pH on the proteolysis of human milk. Using high-resolution accurate-mass Orbitrap mass spectrometry, profiles of endogenous human milk peptides before and after incubation at various pH levels have been mapped. Over 5000 peptides were identified. Comparative analyses classified 74 peptides that were consistently found independent of pH alterations, and 8 peptides that were released only at pH 4 or 5 (typical infant gastric pH). Results documented that the proteolysis of milk proteins, particularly β-casein, polymeric immunoglobulin receptor, and α-lactalbumin, is pH-dependent.
Collapse
|
41
|
Lu J, Zhang S, Liu L, Pang X, Ma C, Jiang S, Lv J. Comparative proteomics analysis of human and ruminant milk serum reveals variation in protection and nutrition. Food Chem 2018; 261:274-282. [DOI: 10.1016/j.foodchem.2018.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023]
|
42
|
Garcia-Rodenas CL, De Castro CA, Jenni R, Thakkar SK, Beauport L, Tolsa JF, Fischer-Fumeaux CJ, Affolter M. Temporal changes of major protein concentrations in preterm and term human milk. A prospective cohort study. Clin Nutr 2018; 38:1844-1852. [PMID: 30093147 DOI: 10.1016/j.clnu.2018.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Proteins are major contributors to the beneficial effects of human milk (HM) on preterm infant health and development. Alpha-lactalbumin, lactoferrin, serum albumin and caseins represent approximately 85% of the total HM protein. The temporal changes of these proteins in preterm (PT) HM and its comparison with term (T) HM is poorly characterized. AIMS To quantify and compare the temporal changes of the major proteins in PT HM and T HM. METHODS HM was collected for 4 months postpartum at 12 time points for PT HM (gestational age 28 0/7-32 6/7 weeks; 280 samples) and for 2 months postpartum at 8 time points for T HM (gestational age 37 0/7-41 6/7 weeks; 220 samples). Proteins were measured with a micro-fluidic LabChip system. RESULTS Casein, alpha-lactalbumin and lactoferrin decreased with advancing stages of lactation in PT and T HM, whereas serum albumin remained stable. Only marginal differences between PT and T HM were observed for alpha-lactalbumin during postpartum weeks 3-5 and for serum albumin at the first week. However, a comparison of HM provided to preterm and term infants at the same postmenstrual ages revealed that alpha-lactalbumin contents were significantly lower in PT HM than in T HM during the 39-48 postmenstrual weeks. CONCLUSIONS This study provides comprehensive information of the longitudinal changes of major proteins in PT and T HM, and suggests limited availability of alpha-lactalbumin, a nutritionally important protein, in breastfed PT infants after reaching the term corrected age. This information may be important to optimize HM protein fortification, although its biological relevance needs to be confirmed by intervention studies. CLINICAL TRIAL REGISTRY ClinicalTrials.gov (NCT02052245), https://clinicaltrials.gov/ct2/show/NCT02052245.
Collapse
Affiliation(s)
| | | | - Rosemarie Jenni
- Nestlé Institute of Food Safety & Analytical Science, Nestlé Research, Lausanne, Switzerland
| | - Sagar K Thakkar
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lydie Beauport
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Switzerland
| | - Jean-François Tolsa
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Switzerland
| | - Céline J Fischer-Fumeaux
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Switzerland
| | - Michael Affolter
- Nestlé Institute of Food Safety & Analytical Science, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
43
|
Shaheed SU, Tait C, Kyriacou K, Linforth R, Salhab M, Sutton C. Evaluation of nipple aspirate fluid as a diagnostic tool for early detection of breast cancer. Clin Proteomics 2018; 15:3. [PMID: 29344009 PMCID: PMC5763528 DOI: 10.1186/s12014-017-9179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022] Open
Abstract
There has been tremendous progress in detection of breast cancer in postmenopausal women, resulting in two-thirds of women surviving more than 20 years after treatment. However, breast cancer remains the leading cause of cancer-related deaths in premenopausal women. Breast cancer is increasing in younger women due to changes in life-style as well as those at high risk as carriers of mutations in high-penetrance genes. Premenopausal women with breast cancer are more likely to be diagnosed with aggressive tumours and therefore have a lower survival rate. Mammography plays an important role in detecting breast cancer in postmenopausal women, but is considerably less sensitive in younger women. Imaging techniques, such as contrast-enhanced MRI improve sensitivity, but as with all imaging approaches, cannot differentiate between benign and malignant growths. Hence, current well-established detection methods are falling short of providing adequate safety, convenience, sensitivity and specificity for premenopausal women on a global level, necessitating the exploration of new methods. In order to detect and prevent the disease in high risk women as early as possible, methods that require more frequent monitoring need to be developed. The emergence of "omics" strategies over the last 20 years, enabling the characterisation and understanding of breast cancer at the molecular level, are providing the potential for long term, longitudinal monitoring of the disease. Tissue and serum biomarkers for breast cancer stratification, diagnosis and predictive outcome have emerged, but have not successfully translated into clinical screening for early detection of the disease. The use of breast-specific liquid biopsies, such as nipple aspirate fluid (NAF), a natural secretion produced by breast epithelial cells, can be collected non-invasively for biomarker profiling. As we move towards an age of active surveillance, home-based liquid biopsy collection kits are increasingly being applied and these could provide a paradigm shift where NAF biomarker profiling is used for routine breast health monitoring. The current status of established and newly emerging imaging techniques for early detection of breast cancer and the potential for alternative biomarker screening of liquid biopsies, particularly those applied to high-risk, premenopausal women, will be reviewed.
Collapse
Affiliation(s)
- Sadr-Ul Shaheed
- 1Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | | | - Kyriacos Kyriacou
- 3The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Chris Sutton
- 1Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| |
Collapse
|
44
|
Shaheed SU, Tait C, Kyriacou K, Mullarkey J, Burrill W, Patterson LH, Linforth R, Salhab M, Sutton CW. Nipple aspirate fluid-A liquid biopsy for diagnosing breast health. Proteomics Clin Appl 2017; 11. [PMID: 28488344 PMCID: PMC5638085 DOI: 10.1002/prca.201700015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022]
Abstract
Purpose Nipple secretions are protein‐rich and a potential source of breast cancer biomarkers for breast cancer screening. Previous studies of specific proteins have shown limited correlation with clinicopathological features. Our aim, in this pilot study, was to investigate the intra‐ and interpatient protein composition of nipple secretions and the implications for their use as liquid biopsies. Experimental design Matched pairs of nipple discharge/nipple aspirate fluid (NAF, n = 15) were characterized for physicochemical properties and SDS‐PAGE. Four pairs were selected for semiquantitative proteomic profiling and trypsin‐digested peptides analyzed using 2D‐LC Orbitrap Fusion MS. The resulting data were subject to bioinformatics analysis and statistical evaluation for functional significance. Results A total of 1990 unique proteins were identified many of which are established cancer‐associated markers. Matched pairs shared the greatest similarity (average Pearson correlation coefficient of 0.94), but significant variations between individuals were observed. Conclusions and clinical relevance This was the most complete proteomic study of nipple discharge/nipple aspirate fluid to date providing a valuable source for biomarker discovery. The high level of milk proteins in healthy volunteer samples compared to the cancer patients was associated with galactorrhoea. Using matched pairs increased confidence in patient‐specific protein levels but changes relating to cancer stage require investigation of a larger cohort.
Collapse
Affiliation(s)
- Sadr-Ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | | | - Kyriacos Kyriacou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Wayne Burrill
- Ethical Tissue, University of Bradford, Bradford, UK
| | | | | | | | - Chris W Sutton
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| |
Collapse
|
45
|
Ji X, Li X, Ma Y, Li D. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem 2017; 221:1822-1827. [DOI: 10.1016/j.foodchem.2016.10.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023]
|
46
|
Nissen A, Andersen PH, Bendixen E, Ingvartsen KL, Røntved CM. Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach. J Dairy Sci 2017; 100:2711-2728. [DOI: 10.3168/jds.2016-11722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
|
47
|
Zeng F, Li Z, Zhu Q, Dong R, Zhao C, Li G, Li G, Gao W, Jiang G, Zheng E, Cai G, Moisyadi S, Urschitz J, Yang H, Liu D, Wu Z. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors. Sci Rep 2017; 7:41270. [PMID: 28117418 PMCID: PMC5259756 DOI: 10.1038/srep41270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023] Open
Abstract
The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins.
Collapse
Affiliation(s)
- Fang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingchun Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Dong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcheng Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guoling Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guo Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenchao Gao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gelong Jiang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 96822, USA
- Manoa BioSciences, 1717 Mott-Smith Dr. #3213, Honolulu, 96822, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 96822, USA
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
48
|
Zhang L, van Dijk ADJ, Hettinga K. An interactomics overview of the human and bovine milk proteome over lactation. Proteome Sci 2017; 15:1. [PMID: 28149201 PMCID: PMC5267443 DOI: 10.1186/s12953-016-0110-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
Background Milk is the most important food for growth and development of the neonate, because of its nutrient composition and presence of many bioactive proteins. Differences between human and bovine milk in low abundant proteins have not been extensively studied. To better understand the differences between human and bovine milk, the qualitative and quantitative differences in the milk proteome as well as their changes over lactation were compared using both label-free and labelled proteomics techniques. These datasets were analysed and compared, to better understand the role of milk proteins in development of the newborn. Methods Human and bovine milk samples were prepared by using filter-aided sample preparation (FASP) combined with dimethyl labelling and analysed by nano LC LTQ-Orbitrap XL mass spectrometry. Results The human and bovine milk proteome show similarities with regard to the distribution over biological functions, especially the dominant presence of enzymes, transport and immune-related proteins. At a quantitative level, the human and bovine milk proteome differed not only between species but also over lactation within species. Dominant enzymes that differed between species were those assisting in nutrient digestion, with bile salt-activated lipase being abundant in human milk and pancreatic ribonuclease being abundant in bovine milk. As lactation advances, immune-related proteins decreased slower in human milk compared to bovine milk. Notwithstanding these quantitative differences, analysis of human and bovine co-expression networks and protein-protein interaction networks indicated that a subset of milk proteins displayed highly similar interactions in each of the different networks, which may be related to the general importance of milk in nutrition and healthy development of the newborn. Conclusions Our findings promote a better understanding of the differences and similarities in dynamics of human and bovine milk proteins, thereby also providing guidance for further improvement of infant formula. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Zhang
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Postbox 8129, 6700EV Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands.,Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.,Bioscience, cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Postbox 8129, 6700EV Wageningen, The Netherlands
| |
Collapse
|
49
|
Donor Human Milk Update: Evidence, Mechanisms, and Priorities for Research and Practice. J Pediatr 2017; 180:15-21. [PMID: 27773337 PMCID: PMC5183469 DOI: 10.1016/j.jpeds.2016.09.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022]
|
50
|
Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across Prenatal and Postnatal Periods. Int J Mol Sci 2016; 17:ijms17121994. [PMID: 27916805 PMCID: PMC5187794 DOI: 10.3390/ijms17121994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.
Collapse
Affiliation(s)
- Ilaria Floris
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Jamie D Kraft
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Illimar Altosaar
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|