1
|
Rajendran A, Ramlal A, Harika A, Subramaniam S, Raju D, Lal SK. Waterlogging stress mechanism and membrane transporters in soybean (Glycine max (L.) Merr.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109579. [PMID: 39893944 DOI: 10.1016/j.plaphy.2025.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
An excess of water is more harmful to plant growth, root growth and the uniformity of the plant population than a water deficit. Water is a crucial factor in the three basic stages of soybean development: germination, emergence and flowering/seed filling. Waterlogging is one of the biggest constraints to crop production and productivity in India and can occur at any stage in soybean. However, seeds and seedlings are damaged by waterlogging resulting in a significant reduction in grain yield. Seed yield and growth are significantly correlated at the seedling stage. In addition, the plant is under constant pressure due to changing environmental conditions and has difficulty withstanding these harsh, unpredictable and difficult situations. Membrane transporters are essential and play fundamental roles during waterlogging thereby facilitating cellular homeostasis and gaseous exchange, which support plant growth and development. This review highlights the genetic basis and mechanism of waterlogging tolerance in soybean and the role of climate in influencing the genetic makeup of the crop, paving the way for further development of improved soybean varieties. Simultaneously, the article highlights membrane transporters' importance in water-mediated stress in soybeans.
Collapse
Affiliation(s)
- Ambika Rajendran
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110012, India.
| | - Ayyagari Ramlal
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110012, India; School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia.
| | - Amooru Harika
- Department of Plant and Environmental Sciences, Clemson University, South Carolina, 29634, USA.
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia; Chemical Centre Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, Penang, 11900, Malaysia; Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Dhandapani Raju
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110012, India.
| | - S K Lal
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Coffman L, Mejia HD, Alicea Y, Mustafa R, Ahmad W, Crawford K, Khan AL. Microbiome structure variation and soybean's defense responses during flooding stress and elevated CO 2. FRONTIERS IN PLANT SCIENCE 2024; 14:1295674. [PMID: 38389716 PMCID: PMC10882081 DOI: 10.3389/fpls.2023.1295674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 02/24/2024]
Abstract
Introduction With current trends in global climate change, both flooding episodes and higher levels of CO2 have been key factors to impact plant growth and stress tolerance. Very little is known about how both factors can influence the microbiome diversity and function, especially in tolerant soybean cultivars. This work aims to (i) elucidate the impact of flooding stress and increased levels of CO2 on the plant defenses and (ii) understand the microbiome diversity during flooding stress and elevated CO2 (eCO2). Methods We used next-generation sequencing and bioinformatic methods to show the impact of natural flooding and eCO2 on the microbiome architecture of soybean plants' below- (soil) and above-ground organs (root and shoot). We used high throughput rhizospheric extra-cellular enzymes and molecular analysis of plant defense-related genes to understand microbial diversity in plant responses during eCO2 and flooding. Results Results revealed that bacterial and fungal diversity was substantially higher in combined flooding and eCO2 treatments than in non-flooding control. Microbial diversity was soil>root>shoot in response to flooding and eCO2. We found that sole treatment of eCO2 and flooding had significant abundances of Chitinophaga, Clostridium, and Bacillus. Whereas the combination of flooding and eCO2 conditions showed a significant abundance of Trichoderma and Gibberella. Rhizospheric extra-cellular enzyme activities were significantly higher in eCO2 than flooding or its combination with eCO2. Plant defense responses were significantly regulated by the oxidative stress enzyme activities and gene expression of Elongation factor 1 and Alcohol dehydrogenase 2 in floodings and eCO2 treatments in soybean plant root or shoot parts. Conclusion This work suggests that climatic-induced changes in eCO2 and submergence can reshape microbiome structure and host defenses, essential in plant breeding and developing stress-tolerant crops. This work can help in identifying core-microbiome species that are unique to flooding stress environments and increasing eCO2.
Collapse
Affiliation(s)
- Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Hector D Mejia
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Yelinska Alicea
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Raneem Mustafa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Kerri Crawford
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Li L, Huang G, Xiang W, Zhu H, Zhang H, Zhang J, Ding Z, Liu J, Wu D. Integrated Transcriptomic and Proteomic Analyses Uncover the Regulatory Mechanisms of Myricaria laxiflora Under Flooding Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924490. [PMID: 35755690 PMCID: PMC9226631 DOI: 10.3389/fpls.2022.924490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Flooding is one of the major environmental stresses that severely influence plant survival and development. However, the regulatory mechanisms underlying flooding stress remain largely unknown in Myricaria laxiflora, an endangered plant mainly distributed in the flood zone of the Yangtze River, China. In this work, transcriptome and proteome were performed in parallel in roots of M. laxiflora during nine time-points under the flooding and post-flooding recovery treatments. Overall, highly dynamic and stage-specific expression profiles of genes/proteins were observed during flooding and post-flooding recovery treatment. Genes related to auxin, cell wall, calcium signaling, and MAP kinase signaling were greatly down-regulated exclusively at the transcriptomic level during the early stages of flooding. Glycolysis and major CHO metabolism genes, which were regulated at the transcriptomic and/or proteomic levels with low expression correlations, mainly functioned during the late stages of flooding. Genes involved in reactive oxygen species (ROS) scavenging, mitochondrial metabolism, and development were also regulated exclusively at the transcriptomic level, but their expression levels were highly up-regulated upon post-flooding recovery. Moreover, the comprehensive expression profiles of genes/proteins related to redox, hormones, and transcriptional factors were also investigated. Finally, the regulatory networks of M. laxiflora in response to flooding and post-flooding recovery were discussed. The findings deepen our understanding of the molecular mechanisms of flooding stress and shed light on the genes and pathways for the preservation of M. laxiflora and other endangered plants in the flood zone.
Collapse
Affiliation(s)
- Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haofei Zhu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haibo Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jihong Liu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| |
Collapse
|
4
|
Wang X, Li F, Chen Z, Yang B, Komatsu S, Zhou S. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J Proteomics 2021; 232:104064. [PMID: 33276190 DOI: 10.1016/j.jprot.2020.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Flooding constrains soybean growth, while melatonin enhances the ability of plants to tolerate abiotic stresses. To interpret the melatonin-mediated flooding response in soybeans, proteomic analysis was performed in root tips. Retarded growth and severe cell death were observed in flooded soybeans, but these phenotypes were ameliorated by melatonin treatment. A total of 634, 1401, and 1205 proteins were identified under control, flood, and flood plus melatonin conditions, respectively; and these proteins were predominantly associated with metabolism of protein, RNA, and the cell wall. Among these melatonin-induced proteins, eukaryotic aspartyl protease family protein was increased after flood compared with melatonin treatment group, in accordance with its upregulated transcript levels during stress. Eukaryotic translation initiation factor 5A was decreased after flood compared with melatonin. When stress was prolonged, its transcript levels were upregulated by flood, while they were not changed by melatonin. Furthermore, 13-hydroxylupanine O-tigloyltransferase was decreased by flood compared with melatonin; however, its transcription was upregulated by melatonin. In addition, reduced lignification in root tips of flooded soybeans was restored by melatonin. These results suggest that factors related to protein degradation and functional states of RNA play critical roles in promoting the effects of melatonin on soybean plants under flooding. SIGNIFICANCE: Flooding stress threatens soybean growth, while melatonin treatment enhances plant tolerance to stress stimuli. To examine the effects of melatonin on flooded soybeans, morphological analysis was performed. Melatonin promoted soybean growth as judged from greater fresh weight of plant, longer seedling length, and less evident cell death in flooding-stressed soybeans treated with melatonin than those plants exposed to flood alone. Proteomic analysis was conducted to explore the promoting effects of melatonin on soybeans under flooding stress. As a result, metabolism of protein metabolism, RNA regulation, and cell wall was enriched by proteins identified under control, flood, and flood plus melatonin conditions. Among these melatonin-induced proteins, abundance of eukaryotic aspartyl protease family protein, eukaryotic translation initiation factor 5A, and 13-hydroxylupanine O-tigloyltransferase displayed similar change patterns between the control and melatonin compared with flood; and transcript levels of genes encoding these proteins responded to flooding stress and melatonin treatment. In addition, activated cell degradation, expanded intercellular spaces, and reduced lignification in root tips of flooded soybeans were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenyuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Hashiguchi A, Yamaguchi H, Hitachi K, Watanabe K. An Optimized Protein Extraction Method for Gel-Free Proteomic Analysis of Opuntia Ficus-Indica. PLANTS 2021; 10:plants10010115. [PMID: 33429847 PMCID: PMC7827026 DOI: 10.3390/plants10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 01/03/2023]
Abstract
Opuntia spp. is an economically important vegetable crop with high stress-tolerance and health benefits. However, proteomic analysis of the plant has been difficult due to the composition of its succulent cladodes; the abundant polysaccharides interfere with protein extraction. To facilitate proteomic analysis of this plant, we present a rapid and simple protein extraction method for Opuntia ficus-indica (L.) Miller. The optimized method produced highly reproducible protein patterns and was compatible with a gel-free quantitative workflow without the need for additional purification. We successfully analyzed the cladode mesocarp and exocarp tissues, resulting in the identification of 319 proteins. In addition, we used this method to examine the relative changes in the Opuntia proteome in response to salt stress to determine whether physiological changes could be captured. Qualified observations were obtained, revealing that salt stress increased phosphoenolpyruvate carboxylase abundance and decreased ribulose-bisphosphate carboxylase in young O. ficus-indica plants. These findings suggest that Crassulacean acid metabolism is promoted under salinity. This study highlights the efficacy of our optimized protein extraction method for elucidating the metabolic adaptations of Opuntia using gel-free proteomic analysis.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Hisateru Yamaguchi
- School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan;
| | - Kazuo Watanabe
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence: ; Tel.: +81-29-853-4663
| |
Collapse
|
6
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
7
|
Sidhu GK, Tuan PA, Renault S, Daayf F, Ayele BT. Polyamine-Mediated Transcriptional Regulation of Enzymatic Antioxidative Response to Excess Soil Moisture during Early Seedling Growth in Soybean. BIOLOGY 2020; 9:biology9080185. [PMID: 32708038 PMCID: PMC7465689 DOI: 10.3390/biology9080185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
This study examined the expression patterns of antioxidative genes and the activity of the corresponding enzymes in the excess moisture-stressed seedlings of soybean in response to seed treatment with polyamines, spermine (Spm) and spermidine (Spd). At the 4 day after planting (DAP) stage, the excess moisture impaired the embryo axis growth, and this effect is associated with the downregulation of superoxide dismutase (GmSOD1) expression and SOD activity in the cotyledon. Seed treatment with Spm reversed the effects of excess moisture on embryo axis growth partly through enhancing glutathione reductase (GR) activity, in both the cotyledon and embryo axis, although no effect on the GmGR expression level was evident. Excess moisture inhibited the shoot and root growth in 7 DAP seedlings, and this is associated with decreased activities of GR in the shoot and SOD in the root. The effect of excess moisture on shoot and root growth was reversed by seed treatment with Spd, and this was mediated by the increased activities of ascorbate peroxidase (APX), catalase (CAT) and GR in the shoot, and APX in the root, however, only GR in the shoot appears to be regulated transcriptionally. Root growth was also reversed by seed treatment with Spm with no positive effect on gene expression and enzyme activity.
Collapse
Affiliation(s)
- Gagandip K. Sidhu
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Fouad Daayf
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
- Correspondence: ; Tel.: +1-204-474-8227; Fax: +1-204-474-7528
| |
Collapse
|
8
|
Lin Y, Li W, Zhang Y, Xia C, Liu Y, Wang C, Xu R, Zhang L. Identification of Genes/Proteins Related to Submergence Tolerance by Transcriptome and Proteome Analyses in Soybean. Sci Rep 2019; 9:14688. [PMID: 31604973 PMCID: PMC6789146 DOI: 10.1038/s41598-019-50757-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Flooding can lead to yield reduction of soybean. Therefore, identification of flooding tolerance genes has great significance in production practice. In this study, Qihuang 34, a highly-resistant variety to flooding stress, was selected for submergence treatments. Transcriptome and proteome analyses were conducted, by which twenty-two up-regulated differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with five KEGG pathways were isolated. The number of the DEGs/DEPs enriched in glycolysis/gluconeogenesis was the highest. Four of these genes were confirmed by RT-qPCR, suggesting that glycolysis/gluconeogenesis may be activated to generate energy for plant survival under anaerobic conditions. Thirty-eight down-regulated DEGs/DEPs associated with six KEGG pathways were identified under submergence stress. Eight DEGs/DEPs enriched in phenylpropanoid biosynthesis were assigned to peroxidase, which catalyzes the conversion of coumaryl alcohol to hydroxy-phenyl lignin in the final step of lignin biosynthesis. Three of these genes were confirmed by RT-qPCR. The decreased expression of these genes led to the inhibition of lignin biosynthesis, which may be the cause of plant softening under submergence stress for a long period of time. This study revealed a number of up-/down-regulated pathways and the corresponding DEGs/DEPs, by which, a better understanding of the mechanisms of submergence tolerance in soybean may be achieved.
Collapse
Affiliation(s)
- Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changjian Xia
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
9
|
Song L, Valliyodan B, Prince S, Wan J, Nguyen HT. Characterization of the XTH Gene Family: New Insight to the Roles in Soybean Flooding Tolerance. Int J Mol Sci 2018; 19:E2705. [PMID: 30208612 PMCID: PMC6164600 DOI: 10.3390/ijms19092705] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Xyloglucan endotransglycosylases/hydrolases (XTHs) are a class of enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks and play an important role in regulating cell wall extensibility. However, little is known about this class of enzymes in soybean. Here, 61 soybean XTH genes (GmXTHs) were identified and classified into three subgroups through comparative phylogenetic analysis. Genome duplication greatly contributed to the expansion of GmXTH genes in soybean. A conserved amino acid motif responsible for the catalytic activity was identified in all GmXTHs. Further expression analysis revealed that most GmXTHs exhibited a distinct organ-specific expression pattern, and the expression level of many GmXTH genes was significantly associated with ethylene and flooding stress. To illustrate a possible role of XTH genes in regulating stress responses, the ArabidopsisAtXTH31 gene was overexpressed in soybean. The generated transgenic plants exhibited improved tolerance to flooding stress, with a higher germination rate and longer roots/hypocotyls during the seedling stage and vegetative growth stages. In summary, our combined bioinformatics and gene expression pattern analyses suggest that GmXTH genes play a role in regulating soybean stress responses. The enhanced soybean flooding tolerance resulting from the expression of an Arabidopsis XTH also supports the role of XTH genes in regulating plant flooding stress responses.
Collapse
Affiliation(s)
- Li Song
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Silvas Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
- Noble Research Institute, 2510 Sam noble Pkwy, Ardmore, OK 73401, USA.
| | - Jinrong Wan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
11
|
Kazemi Oskuei B, Yin X, Hashiguchi A, Bandehagh A, Komatsu S. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1167-1177. [PMID: 28666670 DOI: 10.1016/j.bbapap.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023]
Abstract
Leaf is sensitive to environmental changes and exhibits specific responses to abiotic stress. To identify the response mechanism in soybean leaf under waterlogging stress, a gel-free/label-free proteomic technique combined with polyethylene glycol fractionation was used. Attenuated photosynthesis by waterlogging stress in the leaf of soybean seedlings was indicated from proteomic results. Defensive mechanisms such as reactive oxygen species (ROS) scavenging was also recognized. Cluster analysis revealed that proteins that exhibit characteristic dynamics in response to waterlogging were mainly related to photosynthesis. Among the identified photorespiration-related proteins, the protein abundance and enzyme activity of hydroxypyruvate reductase were transiently increased in control plants, but were clearly decreased in response to waterlogging stress. These results suggest that waterlogging directly impairs photosynthesis and photorespiration. Furthermore, hydroxypyruvate reductase may be a critical enzyme controlling the rate of photorespiration.
Collapse
Affiliation(s)
- Bita Kazemi Oskuei
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 5166616471, Iran
| | - Xiaojian Yin
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Akiko Hashiguchi
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 5166616471, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
12
|
Komatsu S, Wang X, Yin X, Nanjo Y, Ohyanagi H, Sakata K. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database. J Proteomics 2017; 163:52-66. [PMID: 28499913 DOI: 10.1016/j.jprot.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. BIOLOGICAL SIGNIFICANCE The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Xin Wang
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Xiaojian Yin
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yohei Nanjo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Hajime Ohyanagi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan.
| |
Collapse
|
13
|
Mustafa G, Komatsu S. Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress. J Proteome Res 2016; 15:4464-4475. [PMID: 27780359 DOI: 10.1021/acs.jproteome.6b00572] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid developments in nanotechnology have led to the increasing use of nanoparticles (NPs) in the agricultural sector. For possible interactions between NPs and crops under flooding stress to be investigated, the molecular mechanisms in soybeans affected by exposure to various sizes of Al2O3 NPs were analyzed using a proteomic technique. In plants exposed to 30-60 nm Al2O3 NPs, the length of the root including hypocotyl was increased, and proteins related to glycolysis were suppressed. Exposure to 30-60 nm Al2O3 NPs mediated the scavenging activity of cells by regulating the ascorbate/glutathione pathway. Hierarchical clustering analysis indicated that ribosomal proteins were also increased upon exposure to flooding-stressed plants with 30-60 nm Al2O3 NPs. Mitochondrion was the target organelle of Al2O3 NPs under flooding-stress conditions. Mitochondrial proteomic analysis revealed that the abundance of voltage-dependent anion channel protein was increased upon exposure to flooding-stressed soybeans with 135 nm Al2O3 NPs, indicating the permeability of the mitochondrial membrane was increased. Furthermore, isocitrate dehydrogenase was increased upon exposure of plants to 5 nm Al2O3 NPs under flooding conditions. These results suggest that Al2O3 NPs of various sizes affect mitochondrial proteins under flooding stress by regulating membrane permeability and tricarboxylic acid cycle activity.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
14
|
Wang X, Komatsu S. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses. J Proteome Res 2016; 15:2211-27. [PMID: 27224218 DOI: 10.1021/acs.jproteome.6b00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
15
|
Yin X, Nishimura M, Hajika M, Komatsu S. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean. J Proteome Res 2016; 15:2008-25. [PMID: 27132649 DOI: 10.1021/acs.jproteome.6b00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Minoru Nishimura
- Graduate School of Life and Food Sciences, Niigata University , Niigata 950-2181, Japan
| | - Makita Hajika
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
16
|
Katam R, Sakata K, Suravajhala P, Pechan T, Kambiranda DM, Naik KS, Guo B, Basha SM. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. J Proteomics 2016; 143:209-226. [DOI: 10.1016/j.jprot.2016.05.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
|
17
|
Latef AAHA, Jan S, Abd‐Allah EF, Rashid B, John R, Ahmad P. Soybean under abiotic stress. PLANT‐ENVIRONMENT INTERACTION 2016:28-42. [DOI: 10.1002/9781119081005.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Wang X, Oh M, Sakata K, Komatsu S. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. J Proteomics 2016; 130:42-55. [PMID: 26376099 DOI: 10.1016/j.jprot.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/29/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - MyeongWon Oh
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
19
|
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 2015; 128:280-97. [PMID: 26306862 DOI: 10.1016/j.jprot.2015.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/02/2015] [Accepted: 08/15/2015] [Indexed: 12/25/2022]
Abstract
Aluminum oxide (Al2O3) nanoparticles are used in agricultural products and cause various adverse growth effects on different plant species. To study the effects of Al2O3 nanoparticles on soybean under flooding stress, a gel-free proteomic technique was used. Morphological analysis revealed that treatment with 50 ppm Al2O3 nanoparticles under flooding stress enhanced soybean growth compared to ZnO and Ag nanoparticles. A total of 172 common proteins that significantly changed in abundance among control, flooding-stressed, and flooding-stressed soybean treated with Al2O3 nanoparticles were mainly related to energy metabolism. Under Al2O3 nanoparticles the energy metabolism was decreased compared to flooding stress. Hierarchical clustering divided identified proteins into four clusters, with proteins related to glycolysis exhibiting the greatest changes in abundance. Al2O3 nanoparticle-responsive proteins were predominantly related to protein synthesis/degradation, glycolysis, and lipid metabolism. mRNA expression analysis of Al2O3 nanoparticle-responsive proteins that displayed a 5-fold change in abundance revealed that NmrA-like negative transcriptional regulator was up-regulated, and flavodoxin-like quinone reductase was down-regulated. Moreover, cell death in root including hypocotyl was less evident in flooding-stressed with Al2O3 nanoparticles compared to flooding-treated soybean. These results suggest that Al2O3 nanoparticles might promote the growth of soybean under flooding stress by regulating energy metabolism and cell death.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
20
|
Abstract
Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
21
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
22
|
Khan MN, Sakata K, Komatsu S. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. J Proteomics 2015; 121:15-27. [PMID: 25818724 DOI: 10.1016/j.jprot.2015.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. BIOLOGICAL SIGNIFICANCE This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
23
|
Biochemical and proteomic analysis of soybean sprouts at different germination temperatures. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0053-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Oh M, Komatsu S. Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 2015; 114:161-81. [PMID: 25464361 DOI: 10.1016/j.jprot.2014.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. BIOLOGICAL SIGNIFICANCE This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses.
Collapse
Affiliation(s)
- MyeongWon Oh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
25
|
Yin X, Sakata K, Komatsu S. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 2014; 13:5618-34. [PMID: 25316100 DOI: 10.1021/pr500621c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
| | | | | |
Collapse
|
26
|
Nanjo Y, Jang HY, Kim HS, Hiraga S, Woo SH, Komatsu S. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. PHYTOCHEMISTRY 2014; 106:25-36. [PMID: 25053003 DOI: 10.1016/j.phytochem.2014.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins.
Collapse
Affiliation(s)
- Yohei Nanjo
- NARO Institute of Crop Science, Tsukuba 305-8518, Japan.
| | - Hee-Young Jang
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | - Hong-Sig Kim
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | - Susumu Hiraga
- NARO Institute of Crop Science, Tsukuba 305-8518, Japan
| | - Sun-Hee Woo
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | | |
Collapse
|
27
|
Tamang BG, Magliozzi JO, Maroof MAS, Fukao T. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. PLANT, CELL & ENVIRONMENT 2014; 37:2350-65. [PMID: 24433575 DOI: 10.1111/pce.12277] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 05/24/2023]
Abstract
Complete inundation at the early seedling stage is a common environmental constraint for soybean production throughout the world. As floodwaters subside, submerged seedlings are subsequently exposed to reoxygenation stress in the natural progression of a flood event. Here, we characterized the fundamental acclimation responses to submergence and reoxygenation in soybean at the seedling establishment stage. Approximately 90% of seedlings succumbed during 3 d of inundation under constant darkness, whereas 10 d of submergence were lethal to over 90% of seedlings under 12 h light/12 h dark cycles, indicating the significance of underwater photosynthesis in seedling survival. Submergence rapidly decreased the abundance of carbohydrate reserves and ATP in aerial tissue of seedlings although chlorophyll breakdown was not observed. The carbohydrate and ATP contents were recovered upon de-submergence, but sudden exposure to oxygen also induced lipid peroxidation, confirming that reoxygenation induced oxidative stress. Whole transcriptome analysis recognized genome-scale reconfiguration of gene expression that regulates various signalling and metabolic pathways under submergence and reoxygenation. Comparative analysis of differentially regulated genes in shoots and roots of soybean and other plants defines conserved, organ-specific and species-specific adjustments which enhance adaptability to submergence and reoxygenation through different metabolic pathways.
Collapse
Affiliation(s)
- Bishal G Tamang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
28
|
Yin X, Sakata K, Nanjo Y, Komatsu S. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. J Proteomics 2014; 106:1-16. [PMID: 24732726 DOI: 10.1016/j.jprot.2014.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 01/24/2023]
Abstract
Flooding has a severe negative effect on soybean cultivation in the early stages of growth. To obtain a better understanding of the response mechanisms of soybean to flooding stress, initial changes in root tip proteins under flooding were analyzed using two proteomic techniques. Two-day-old soybeans were treated with flooding for 3, 6, 12, and 24h. The weight of soybeans increased during the first 3h of flooding, but root elongation was not observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding, and the proteins were divided into 5 clusters. Additional interaction analysis of the proteins revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated, whereas calreticulin was up-regulated in initial phase of flooding. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding. BIOLOGICAL SIGNIFICANCE Flooding has a severe negative effect on soybean cultivation, particularly in the early stages of growth. To better understand the response mechanisms of soybean to the early stages of flooding stress, two proteomic techniques were used. Two-day-old soybeans were treated without or with flooding for 3, 6, 12, and 24h. The fresh weight of soybeans increased during the first 3h of flooding stress, but the growth then slowed and no root elongation was observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding stress, and 5 protein clusters were recognized. Protein interaction analysis revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated in response to flooding stress, whereas calreticulin was up-regulated. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding.
Collapse
Affiliation(s)
- Xiaojian Yin
- University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Yohei Nanjo
- University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
29
|
Hossain Z, Komatsu S. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance. Proteomes 2014; 2:107-127. [PMID: 28250373 PMCID: PMC5302732 DOI: 10.3390/proteomes2010107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Dissecting molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. Like other legume crops, soybean, the world's most widely grown seed legume and an inexpensive source of protein and vegetable oil, is also extremely sensitive to abiotic stressors including flood and drought. Irrespective of the kind and severity of the water stress, soybean exhibits a tight control over the carbon metabolism to meet the cells required energy demand for alleviating stress effects. The present review summarizes the major proteomic findings related to changes in soybean proteomes in response to flood and drought stresses to get a clear insight into the complex mechanisms of stress tolerance. Furthermore, advantages and disadvantages of different protein extraction protocols and challenges and future prospects of soybean proteome study are discussed in detail to comprehend the underlying mechanism of water stress acclimation.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata-700126, India.
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
30
|
Abstract
Soybean, the world's most widely grown seed legume, is an important global source of vegetable oil and protein. Though, complete draft genome sequence of soybean is now available, but functional genomics studies remain in their infancy, as this agricultural legume species exhibits genetic constrains like genome duplications and self-incompatibilities. The techniques of proteomics provide much powerful tool for functional analysis of soybean. In the present review, an attempt has been made to summarize all significant contributions in the field of soybean proteomics. Special emphasis is given to subcellular proteomics in response to abiotic stresses for better understanding molecular basis of acquisition of stress tolerance mechanism. Detailed protocols of protein extraction, solubilization, fractionation of subcellular organelle, and proteins identification are explained for soybean proteomics. All this information would not only enrich us in understanding the plants response to environmental stressors but would also enable us to design genetically engineered stress tolerant soybean.
Collapse
Affiliation(s)
- Zahed Hossain
- Department of Botany, West Bengal State University, Kolkata, West Bengal, India
| | | |
Collapse
|
31
|
Mustafa G, Komatsu S. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. FRONTIERS IN PLANT SCIENCE 2014; 5:627. [PMID: 25477889 PMCID: PMC4235293 DOI: 10.3389/fpls.2014.00627] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/22/2014] [Indexed: 05/22/2023]
Abstract
Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
- *Correspondence: Setsuko Komatsu, National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan e-mail:
| |
Collapse
|
32
|
Zhang L, Li X, Zheng W, Fu Z, Li W, Ma L, Li K, Sun L, Tian J. Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement. Proteomics 2013; 13:3508-22. [PMID: 24167072 DOI: 10.1002/pmic.201300212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Abstract
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)-A or UV-B irradiation. To clarify the UV-responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI-TOF/TOF MS was employed. Seventy-five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic-related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport-related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase and 5-enol-pyruvylshikimate-phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV-responsive proteins in L. japonica.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory for Biomedical Engineering, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Komatsu S, Shirasaka N, Sakata K. 'Omics' techniques for identifying flooding-response mechanisms in soybean. J Proteomics 2013; 93:169-78. [PMID: 23313220 DOI: 10.1016/j.jprot.2012.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 02/08/2023]
Abstract
Plant growth and productivity are adversely influenced by various environmental stresses, which often lead to reduced seedling growth and decreased crop yields. Plants respond to stressful conditions through changes in 'omics' profiles, including transcriptomics, proteomics, and metabolomics. Linking plant phenotype to gene expression patterns, protein abundance, and metabolite accumulation is one of the main challenges for improving agricultural production. 'Omics' approaches may shed insight into the mechanisms that function in soybean in response to environmental stresses, particularly flooding by frequent rain, which occurs worldwide due to changes in global climate. Flooding causes significant reductions in the growth and yield of several crops, especially soybean. The application of 'omics' techniques may facilitate the development of flood-tolerant cultivars of soybean. In this review, the use of 'omics' techniques towards understanding the flooding-responsive mechanisms of soybeans is discussed, as the findings from these studies are expected to have applications in both breeding and agronomy. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | |
Collapse
|
34
|
Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 2013; 12:4769-84. [PMID: 23808807 DOI: 10.1021/pr4001898] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Nanjo Y, Nakamura T, Komatsu S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J Proteome Res 2013; 12:4785-98. [PMID: 23659366 DOI: 10.1021/pr4002349] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.
Collapse
Affiliation(s)
- Yohei Nanjo
- NARO Institute of Crop Science , Tsukuba 305-8518, Japan
| | | | | |
Collapse
|
36
|
Komatsu S, Makino T, Yasue H. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS One 2013; 8:e65301. [PMID: 23799004 PMCID: PMC3683008 DOI: 10.1371/journal.pone.0065301] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress. RESULTS Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress. CONCLUSION These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.
Collapse
|
37
|
Komatsu S, Hossain Z. Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. FRONTIERS IN PLANT SCIENCE 2013; 4:71. [PMID: 23565117 PMCID: PMC3615219 DOI: 10.3389/fpls.2013.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/14/2013] [Indexed: 05/18/2023]
Abstract
Abiotic stresses, such as flooding, drought, salinity, and high/low temperatures, are the major constraints that global crop production faces at present. Plants respond to a stress by modulating abundance of candidate proteins, either by up-regulating expression or by the synthesizing novel proteins primarily associated with plant defense system. The cellular mechanisms of stress sensing and signal transduction into cellular organelles have been reported. Nevertheless, the responses of plant cells to abiotic stresses differ in each organ. As the correlation between the expression of mRNAs and the abundance of their corresponding proteins is difficult to assess in specific organs, proteomics techniques provide one of the best options for the functional analysis of translated regions of the genome. The present review summarizes the organ-specific proteome analyses for better understanding of the response mechanisms of crops to abiotic stresses, including flooding, drought, and salinity. The differential organ-specific responses against each of these stresses are discussed in detail to provide new insights into plant stress response mechanisms at protein level.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zahed Hossain
- Department of Botany, West Bengal State UniversityKolkata, India
| |
Collapse
|
38
|
Khatoon A, Rehman S, Salavati A, Komatsu S. A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress. Amino Acids 2012; 43:2513-25. [PMID: 22692703 DOI: 10.1007/s00726-012-1333-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
A proteomics approach was used to evaluate the effects of flooding stress on early symbiotic interaction between soybean roots and soil bacteria, Bradyrhizobium japonicum. Three-day-old soybean was inoculated with B. japonicum followed by flooding. The number of root hairs in seedlings, without or with flooding stress, was increased after 3 days of inoculation. Proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. Out of 219 protein spots, 14 and 8 proteins were increased and decreased, respectively, by inoculation under flooding compared with without flooding. These proteins were compared in untreated and flooded seedlings. Increased level of 6 proteins in flooded seedlings compared with untreated seedlings was suppressed by inoculation in seedlings under flooding. They were related to disease/defense, protein synthesis, energy, and metabolism. Differential abundance of glucan endo-1,3-beta-glucosidase, phosphoglycerate kinase, and triosephosphate isomerase, based on their localization in middle and tip of root, indicated that they might be related to increase in number of root hairs. These results suggest that disease/defense, energy, and metabolism-related proteins may be particularly subjected to regulation in flooded soybean seedlings, when inoculated with B. japonicum and that this regulation may lead to increase in number of root hair during early symbiotic differentiation.
Collapse
Affiliation(s)
- Amana Khatoon
- National Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, 305-8518, Japan
| | | | | | | |
Collapse
|
39
|
Khatoon A, Rehman S, Oh MW, Woo SH, Komatsu S. Analysis of response mechanism in soybean under low oxygen and flooding stresses using gel-base proteomics technique. Mol Biol Rep 2012; 39:10581-94. [PMID: 23053957 DOI: 10.1007/s11033-012-1946-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
A proteomics approach was used to analyze the response mechanism in soybean seedlings under low oxygen and flooding stresses. Three-day-old soybean seedlings were subjected to low oxygen and flooding stresses. Growth of root was suppressed in both stresses with more extent of suppression in flooded seedlings at 3 and 6 days following the treatments. Proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. Of total 1,233 protein spots, 27 protein spots were commonly changed under low oxygen and flooding stresses; while the differential change in 4 and 18 protein spots was specific to low oxygen and flooding stresses, respectively. Proteins related to metabolism and energy were increased; while protein destination/storage related proteins were decreased commonly under low oxygen and flooding stresses. Protein specie, TCP domain class transcription factor was decreased specifically under low oxygen stress; while decrease of nine proteins related to metabolism, protein destination/storage and disease/defense was specific in flooded seedlings. The decrease in majority of the proteins related to protein destination/storage specifically in flooded seedlings implies the misfolding of proteins resulting in flooded injuries in an independent way of oxygen deprivation. These results suggest that decrease in proteins related to protein destination/storage and disease/defense causes more growth suppression in soybean seedlings under flooding stress compared to low oxygen stress.
Collapse
Affiliation(s)
- Amana Khatoon
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | | | | | | | | |
Collapse
|
40
|
Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M. Relevance of Proteomic Investigations in Plant Abiotic Stress Physiology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:621-35. [DOI: 10.1089/omi.2012.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khalid Rehman Hakeem
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Ruby Chandna
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Parvaiz Ahmad
- Department of Botany, Amar Singh College, University of Kashmir, Srinagar, India
| | - Muhammad Iqbal
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Munir Ozturk
- Department of Botany, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
41
|
Khatoon A, Rehman S, Hiraga S, Makino T, Komatsu S. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. J Proteomics 2012; 75:5706-23. [PMID: 22850269 DOI: 10.1016/j.jprot.2012.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023]
Abstract
Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress.
Collapse
Affiliation(s)
- Amana Khatoon
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | |
Collapse
|
42
|
Mohammadi PP, Moieni A, Hiraga S, Komatsu S. Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 2012; 75:1906-23. [PMID: 22245419 DOI: 10.1016/j.jprot.2011.12.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 01/06/2023]
Abstract
Changes in protein levels in drought-stressed soybean seedlings were analyzed using a proteomics approach. Three-day-old soybean seedlings were subjected to drought stress or treated with 10% polyethylene glycol (PEG) as osmotic stress. After treatment, the proteins were extracted from the leaf, hypocotyl, and root and separated using two-dimensional polyacrylamide gel electrophoresis. The root was the most drought-responsive organ, with the levels of 32, 13, and 12 proteins changing in response to drought stress, PEG treatment, and both, respectively. In the leaves of PEG-treated and drought-stressed seedlings, metabolism-related proteins increased and energy production- and protein synthesis-related proteins decreased. For 3 proteins present in all organs in drought-stressed plants, mRNA was differentially regulated: heat shock protein 70 and actin isoform B were upregulated, and methionine synthase was downregulated. mRNA expression patterns reflected those of protein levels, suggesting transcriptional regulation of these proteins. Western blot analysis confirmed the increase in ascorbate peroxidase in drought-stressed plants. The downregulation of mRNA and decreased protein levels of methionine synthase in the leaves, hypocotyl, and roots of drought-stressed plants, but not in other treatments, indicated that methionine synthase is a drought response protein. These results also suggest that the decreased methionine synthase in response to drought stress can impair the soybean seedling growth.
Collapse
|
43
|
Salavati A, Khatoon A, Nanjo Y, Komatsu S. Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding. J Proteomics 2012; 75:878-93. [PMID: 22037232 DOI: 10.1016/j.jprot.2011.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/17/2011] [Accepted: 10/03/2011] [Indexed: 01/25/2023]
Abstract
A proteomic approach was used to identify proteins involved in post-flooding recovery in soybean roots. Two-day-old soybean seedlings were flooded with water for up to 3 days. After the flooding treatment, seedlings were grown until 7 days after sowing and root proteins were then extracted and separated using two-dimensional polyacrylamide gel electrophoresis (2-DE). Comparative analysis of 2-D gels of control and 3 day flooding-experienced soybean root samples revealed 70 differentially expressed protein spots, from which 80 proteins were identified. Many of the differentially expressed proteins are involved in protein destination/storage and metabolic processes. Clustering analysis based on the expression profiles of the 70 differentially expressed protein spots revealed that 3 days of flooding causes significant changes in protein expression, even during post-flooding recovery. Three days of flooding resulted in downregulation of ion transport-related proteins and upregulation of proteins involved in cytoskeletal reorganization, cell expansion, and programmed cell death. Furthermore, 7 proteins involved in cell wall modification and S-adenosylmethionine synthesis were identified in roots from seedlings recovering from 1 day of flooding. These results suggest that alteration of cell structure through changes in cell wall metabolism and cytoskeletal organization may be involved in post-flooding recovery processes in soybean seedlings.
Collapse
Affiliation(s)
- Afshin Salavati
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | |
Collapse
|
44
|
Komatsu S, Hiraga S, Yanagawa Y. Proteomics techniques for the development of flood tolerant crops. J Proteome Res 2012; 11:68-78. [PMID: 22029422 DOI: 10.1021/pr2008863] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics is a useful analytical approach for investigating crop responses to stress. Recent remarkable advances in proteomic techniques allow for the identification of a wider range of proteins than was previously possible. The application of proteomic techniques to clarify the molecular mechanisms underlying crop responses to flooding stress may facilitate the development of flood tolerant crops. Flooding is an environmental stress found worldwide and may increase in frequency due to changes in global climate. Waterlogging resulting from flooding causes significant reductions in the growth and yield of several crops. Transient flooding displaces gases in soil pores and often causes hypoxia in plants grown on land with poor drainage. Changes in protein expression and post-translational modification of proteins occur as plants activate their defense system in response to flooding stress. In this review, we discuss the contributions that proteomic studies have made toward increasing our understanding of the well-organized cellular response to flooding in soybean and other crops. The biological relevance of the proteins identified using proteomic techniques in regard to crop stress tolerance will be discussed as well.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki, 305-8518, Japan.
| | | | | |
Collapse
|
45
|
Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S. Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 2012; 11:372-85. [PMID: 22136409 DOI: 10.1021/pr200701y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flooding injury is a major problem in soybean cultivation. A proteomics approach was used to clarify the occurrence of changes in protein expression level and phosphorylation in soybeans under flooding stress. Two-day-old seedlings were flooded for 1 day, proteins were extracted from root tips of the seedlings and digested with trypsin, and their expression levels and phosphorylation states were compared to those of untreated controls using mass spectrometry-based proteomics techniques. Phosphoproteins were enriched using a phosphoprotein purification column prior to digestion and mass spectrometry. The expression of proteins involved in energy production increased as a result of flooding, while expression of proteins involved in protein folding and cell structure maintenance decreased. Flooding induced changes of phosphorylation status of proteins involved in energy generation, protein synthesis and cell structure maintenance. The response to flooding stress may be regulated by both modulation of protein expression and phosphorylation state. Energy-demanding and production-related metabolic pathways may be particularly subject to regulation by changes in protein phosphorylation during flooding.
Collapse
Affiliation(s)
- Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Sadiq I, Fanucchi F, Paparelli E, Alpi E, Bachi A, Alpi A, Perata P. Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2234-43. [PMID: 21920630 DOI: 10.1016/j.jplph.2011.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 05/22/2023]
Abstract
Rice is the staple food for more than fifty percent of the world's population, and is therefore an important crop. However, its production is hindered by several biotic and abiotic stresses. Although rice is the only crop that can germinate even in the complete absence of oxygen (i.e. anoxia), flooding (low oxygen) is one of the major causes of reduced rice production. Rice germination under anoxia is characterized by the elongation of the coleoptile, but leaf growth is hampered. In this work, a comparative proteomic approach was used to detect and identify differentially expressed proteins in the anoxic rice coleoptile compared to the aerobic coleoptile. Thirty-one spots were successfully identified by MALDI-TOF MS analysis. The majority of the identified proteins were related to stress responses and redox metabolism. The expression levels of twenty-three proteins and their respective mRNAs were analyzed in a time course experiment.
Collapse
Affiliation(s)
- Irfan Sadiq
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Komatsu S, Deschamps T, Thibaut D, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. PLANT MOLECULAR BIOLOGY 2011; 77:309-22. [PMID: 21811849 DOI: 10.1007/s11103-011-9812-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/16/2011] [Indexed: 05/22/2023]
Abstract
Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S. Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. PLANT MOLECULAR BIOLOGY 2011; 77:129-44. [PMID: 21656040 DOI: 10.1007/s11103-011-9799-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/27/2011] [Indexed: 05/25/2023]
Abstract
To understand the transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings, genome-wide changes in gene expression were analyzed using a soybean microarray chip containing 42,034 60-mer oligonucleotide probes. More than 6,000 of flooding-responsive genes in the roots including hypocotyl of soybean seedlings were identified. The transcriptional analysis showed that genes related to photosynthesis, glycolysis, Ser-Gly-Cys group amino acid synthesis, regulation of transcription, ubiquitin-mediated protein degradation and cell death were significantly up-regulated by flooding. Meanwhile, genes related to cell wall synthesis, secondary metabolism, metabolite transport, cell organization, chromatin structure synthesis, and degradation of aspartate family amino acid were significantly down-regulated. Comparison of the responses with other plants showed that genes encoding pyrophosphate dependent phosphofructokinase were down-regulated in flooded soybean seedlings, however, those in tolerant plants were up-regulated. Additionally, genes related to RNA processing and initiation of protein synthesis were not up-regulated in soybean, however, those in tolerant plants were up-regulated. Furthermore, we found that flooding-specific up-regulation of genes encoding small proteins which might have roles in acclimation to flooding. These results suggest that functional disorder of acclimative responses to flooding through transcriptional and post-transcriptional regulations is involved in occurring flooding injury to soybean seedlings.
Collapse
Affiliation(s)
- Yohei Nanjo
- National Institute of Crop Science, Tsukuba 305-8518, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Nanjo Y, Nouri MZ, Komatsu S. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary. PHYTOCHEMISTRY 2011; 72:1263-1272. [PMID: 21084103 DOI: 10.1016/j.phytochem.2010.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 05/27/2023]
Abstract
Quantitative proteomics is one of the analytical approaches used to clarify crop responses to stress conditions. Recent remarkable advances in proteomics technologies allow for the identification of a wider range of proteins than was previously possible. Current proteomic methods fall into roughly two categories: gel-based quantification methods, including conventional two-dimensional gel electrophoresis and two-dimensional fluorescence difference gel electrophoresis, and MS-based quantification methods consists of label-based and label-free protein quantification approaches. Although MS-based quantification methods have become mainstream in recent years, gel-based quantification methods are still useful for proteomic analyses. Previous studies examining crop responses to stress conditions reveal that each method has both advantages and disadvantages in regard to protein quantification in comparative proteomic analyses. Furthermore, one proteomics approach cannot be fully substituted by another technique. In this review, we discuss and highlight the basis and applications of quantitative proteomic analysis approaches in crop seedlings in response to flooding and osmotic stress as two environmental stresses.
Collapse
Affiliation(s)
- Yohei Nanjo
- National Institute of Crop Science, Tsukuba 305-8518, Japan
| | | | | |
Collapse
|
50
|
Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF, Singh MB, Bhalla PL. Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 2011; 11:1707-19. [PMID: 21438152 DOI: 10.1002/pmic.201000619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/29/2010] [Indexed: 11/06/2022]
Abstract
The root apical meristem (RAM) is responsible for the growth of the plant root system. Because of the importance of root architecture in the performance of crop plants, we established a proteome reference map of the soybean root apex and compared this with the proteome of the differentiated root zone. The root apex samples contained the apical 1 mm of the root, comprising the RAM, quiescent center and root cap. We identified 342 protein spots from 550 excised proteins (∼62%) of root apex samples by MALDI-TOF MS/MS analysis. All these proteins were also present in the differentiated root, but differed in abundance. Functional classification showed that the most numerous protein categories represented in the root were those of stress response, glycolysis, redox homeostasis and protein processing. Using DIGE, we identified 73 differentially accumulated proteins between root apex and differentiated root. Proteins overrepresented in the root apex belonged primarily to the pathways for protein synthesis and processing, cell redox homeostasis and flavonoid biosynthesis. Proteins underrepresented in the root apex were those of glycolysis, tricarboxylic acid metabolism and stress response. Our results highlight the importance of stress and defense response, redox control and flavonoid metabolism in the root apex.
Collapse
Affiliation(s)
- Ulrike Mathesius
- ARC Centre of Excellence for Integrative Legume Research, Australia; Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | | | | | | | |
Collapse
|