1
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
2
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
3
|
Kuffner EK, Heard K, O'Malley GF. Analytic Reviews : Management of Acetaminophen Toxicity in the Intensive Care Unit. J Intensive Care Med 2016. [DOI: 10.1177/088506669901400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Raza H, John A. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide. PLoS One 2015; 10:e0145965. [PMID: 26714183 PMCID: PMC4694617 DOI: 10.1371/journal.pone.0145965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.
Collapse
Affiliation(s)
- Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, PO Box 17666, Al Ain, United Arab Emirates
- * E-mail:
| | - Annie John
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
El-Megharbel SM, Hamza RZ, Refat MS. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:534-544. [PMID: 24840496 DOI: 10.1016/j.saa.2014.04.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), (1)H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd(2+)+Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.
Collapse
Affiliation(s)
- Samy M El-Megharbel
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Zip Code 21974, Taif, Saudi Arabia; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reham Z Hamza
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Moamen S Refat
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Zip Code 21974, Taif, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
6
|
Environment and primary biliary cirrhosis: electrophilic drugs and the induction of AMA. J Autoimmun 2013; 41:79-86. [PMID: 23352659 DOI: 10.1016/j.jaut.2012.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Environmental stimulation is a major factor in the initiation and perpetuation of autoimmune diseases. We have addressed this issue and focused on primary biliary cirrhosis (PBC), an autoimmune disease of the liver. Immunologically, PBC is distinguished by immune mediated destruction of the intra hepatic bile ducts and the presence of high titer antimitochondrial autoantibodies (AMA) directed against a highly specific epitope within the lipoic acid binding domain of the pyruvate dehydrogenase E2 subunit (PDC-E2). We submit that the uniqueness of AMA epitope specificity and the conformational changes of the PDC-E2 lipoyl domain during physiological acyl transfer could be the lynchpin to the etiology of PBC and postulate that chemical xenobiotics modification of the lipoyl domain of PDC-E2 is sufficient to break self-tolerance, with subsequent production of AMA in patients with PBC. Indeed, using quantitative structure activity relationship (QSAR) analysis on a peptide-xenobiotic conjugate microarray platform, we have demonstrated that when the lipoyl domain of PDC-E2 was modified with specific synthetic small molecule lipoyl mimics, the ensuing structures displayed highly specific reactivity to PBC sera, at levels often higher than the native PDC-E2 molecule. Hereby, we discuss our recent QSAR analysis data on specific AMA reactivity against a focused panel of lipoic acid mimic in which the lipoyl di-sulfide bond are modified. Furthermore, data on the immunological characterization of antigen and Ig isotype specificities against one such lipoic acid mimic; 6,8-bis(acetylthio)octanoic acid (SAc), when compared with rPDC-E2, strongly support a xenobiotic etiology in PBC. This observation is of particular significance in that approximately one third of patients who have taken excessive acetaminophen (APAP) developed AMA with same specificity as patients with PBC, suggesting that the lipoic domain are a target of APAP electrophilic metabolites such as NAPQI. We submit that in genetically susceptible hosts, electrophilic modification of lipoic acid in PDC-E2 by acetaminophen or similar drugs can facilitate loss of tolerance and lead to the development of PBC.
Collapse
|
7
|
Ben-Shachar R, Chen Y, Luo S, Hartman C, Reed M, Nijhout HF. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theor Biol Med Model 2012; 9:55. [PMID: 23249634 PMCID: PMC3576299 DOI: 10.1186/1742-4682-9-55] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetaminophen (N-acetyl-para-aminophenol) is the most widely used over-the-counter or prescription painkiller in the world. Acetaminophen is metabolized in the liver where a toxic byproduct is produced that can be removed by conjugation with glutathione. Acetaminophen overdoses, either accidental or intentional, are the leading cause of acute liver failure in the United States, accounting for 56,000 emergency room visits per year. The standard treatment for overdose is N-acetyl-cysteine (NAC), which is given to stimulate the production of glutathione. METHODS We have created a mathematical model for acetaminophen transport and metabolism including the following compartments: gut, plasma, liver, tissue, urine. In the liver compartment the metabolism of acetaminophen includes sulfation, glucoronidation, conjugation with glutathione, production of the toxic metabolite, and liver damage, taking biochemical parameters from the literature whenever possible. This model is then connected to a previously constructed model of glutathione metabolism. RESULTS We show that our model accurately reproduces published clinical and experimental data on the dose-dependent time course of acetaminophen in the plasma, the accumulation of acetaminophen and its metabolites in the urine, and the depletion of glutathione caused by conjugation with the toxic product. We use the model to study the extent of liver damage caused by overdoses or by chronic use of therapeutic doses, and the effects of polymorphisms in glucoronidation enzymes. We use the model to study the depletion of glutathione and the effect of the size and timing of N-acetyl-cysteine doses given as an antidote. Our model accurately predicts patient death or recovery depending on size of APAP overdose and time of treatment. CONCLUSIONS The mathematical model provides a new tool for studying the effects of various doses of acetaminophen on the liver metabolism of acetaminophen and glutathione. It can be used to study how the metabolism of acetaminophen depends on the expression level of liver enzymes. Finally, it can be used to predict patient metabolic and physiological responses to APAP doses and different NAC dosing strategies.
Collapse
Affiliation(s)
- Rotem Ben-Shachar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Yifei Chen
- Program in Biophysics, Duke University, Durham, NC, USA
| | - Shishi Luo
- Department of Mathematics, Duke University, Durham, NC, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Leung PSC, Lam K, Kurth MJ, Coppel RL, Gershwin ME. Xenobiotics and autoimmunity: does acetaminophen cause primary biliary cirrhosis? Trends Mol Med 2012; 18:577-82. [PMID: 22920894 DOI: 10.1016/j.molmed.2012.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
The serologic hallmark of primary biliary cirrhosis (PBC) is the presence of antimitochondrial autoantibodies (AMAs) directed against the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2). The PBC-related autoepitope of PDC-E2 contains lipoic acid, and previous work has demonstrated that mimics of lipoic acid following immunization of mice lead to a PBC-like disease. Furthermore, approximately one-third of patients who have ingested excessive amounts of acetaminophen (paracetamol) develop AMA of the same specificity as patients with PBC. Quantitative structure-activity relationship (QSAR) data indicates that acetaminophen metabolites are particularly immunoreactive with AMA, and we submit that in genetically susceptible hosts, electrophilic modification of lipoic acid in PDC-E2 by acetaminophen or similar drugs can facilitate a loss of tolerance and lead to the development of PBC.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
9
|
Gutiérrez-Correa J. Trypanosoma cruzi dihydrolipoamide dehydrogenase as target of reactive metabolites generated by cytochrome c/hydrogen peroxide (or linoleic acid hydroperoxide)/phenol systems. Free Radic Res 2011; 44:1345-58. [PMID: 20815787 DOI: 10.3109/10715762.2010.507669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study determines that cytochrome c (cyt c) catalyses the oxidation of phenol compounds (Phen) in the presence of H2O2 or linoleic acid hydroperoxide (LOOH), generating Phen-derived free radicals or other reactive metabolites. These products irreversibly inactivated the dihydrolipoamide dehydrogenase from Trypanosoma cruzi (T cruzi LADH), depending on: the Phen structure, peroxide type, activated cyt c, incubation time and presence of an antioxidant. Nordihydroguaiaretic acid (NDGA) and caffeic acid (CAFF) with cyt c/H2O2 or cyt c/LOOH were the most effective inhibitors of T cruzi LADH. The comparison of inactivation values for T cruzi and mammalian heart enzymes demonstrated a greater sensitivity of T cruzi LADH to Phen. GSH, N-acetylcysteine, NAD(P)H, ascorbate and trolox, prevented T cruzi LADH inactivation by acetaminophen. The role of the Phen as potential trypanocidal systems is discussed.
Collapse
Affiliation(s)
- José Gutiérrez-Correa
- Instituto de Medicina Tropical Daniel A Carrión, Universidad Nacional Mayor de San Marcos, Lima, Perú.
| |
Collapse
|
10
|
Rosales-Hernández MC, Mendieta-Wejebe JE, Trujillo-Ferrara JG, Correa-Basurto J. Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays. Eur J Med Chem 2010; 45:4845-55. [DOI: 10.1016/j.ejmech.2010.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 01/21/2023]
|
11
|
Al-Belooshi T, John A, Tariq S, Al-Otaiba A, Raza H. Increased mitochondrial stress and modulation of mitochondrial respiratory enzyme activities in acetaminophen-induced toxicity in mouse macrophage cells. Food Chem Toxicol 2010; 48:2624-32. [PMID: 20600533 DOI: 10.1016/j.fct.2010.06.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/01/2010] [Accepted: 06/17/2010] [Indexed: 12/16/2022]
Abstract
Overdose of acetaminophen (APAP) causes tissue injury particularly in the liver. However, the precise mechanism of APAP toxicity is not clear. Glutathione (GSH) depletion and oxidative stress are believed to be the main cause of APAP toxicity. The role of macrophages in APAP-induced tissue injury is controversial. Using mouse macrophage J774.2 cells, we recently demonstrated that like in animal models, APAP reduces GSH pool and alters GSH metabolism by increasing the production of reactive oxygen species (ROS). In the present study, we show that APAP-induced cytotoxicity and apoptosis in macrophages are associated with increased mitochondrial metabolic and oxidative stress, alterations in the mitochondrial membrane potential and activities of the respiratory enzyme complexes. APAP treatment also altered ROS/NO production and inhibited the expression of COX-2 and iNOS in LPS-stimulated macrophages. Electron microscopic studies also confirmed morphological changes associated with apoptosis at the lower dose of APAP, while at the higher dose late apoptosis/necrotic changes were visible. These results suggest that mitochondrial metabolic and oxidative stress are the main causes of cytotoxicity and cell death in APAP treated macrophages. The study may have long term implications to better understand the role of macrophages in the toxicology and pharmacology of APAP.
Collapse
Affiliation(s)
- Thekra Al-Belooshi
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, PO Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|
12
|
Li X, Kamenecka TM, Cameron MD. Bioactivation of the Epidermal Growth Factor Receptor Inhibitor Gefitinib: Implications for Pulmonary and Hepatic Toxicities. Chem Res Toxicol 2009; 22:1736-42. [DOI: 10.1021/tx900256y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaohai Li
- Translational Research Institute and Department of Molecular Therapeutics, Scripps Florida, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
| | - Theodore M. Kamenecka
- Translational Research Institute and Department of Molecular Therapeutics, Scripps Florida, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
| | - Michael D. Cameron
- Translational Research Institute and Department of Molecular Therapeutics, Scripps Florida, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
| |
Collapse
|
13
|
Doi K, Ishida K. Diabetes and hypertriglyceridemia modify the mode of acetaminophen-induced hepatotoxicity and nephrotoxicity in rats and mice. J Toxicol Sci 2009; 34:1-11. [PMID: 19182431 DOI: 10.2131/jts.34.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Certain disease conditions can modify drug-induced toxicities, which, in turn, may cause a medication-related health crisis. Therefore, preclinical investigations into the alterations in drug-induced toxicities using appropriate disease animal models are very important. This paper reviews the reported data related to the effects of diabetes and hypertriglyceridemia, common lifestyle-related diseases in a modern society, on acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity in rats and mice. It has generally been reported that diabetes protects rats and mice from APAP-induced hepatotoxicity and there are several reports that help to speculate on the effects of diabetes on APAP-induced nephrotoxicity. In fructose-induced hypertriglyceridemic rats, hepatotoxicity of APAP becomes apparently less severe, whereas nephrotoxicity of APAP becomes significantly more severe. The mechanisms of alteration of APAP-induced hepatorenal toxicity under diabetic and hypertriglyceridemic conditions are also discussed in this paper.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Shin-Machi, Ome, Tokyo 198-0024, Japan.
| | | |
Collapse
|
14
|
Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 2009; 39:11-21. [PMID: 19219744 DOI: 10.1080/00498250802512830] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetaminophen is a widely used analgesic antipyretic agent. When used at low doses, it is a safe drug, but at higher doses it can cause acute hepatic necrosis in humans and experimental animals. The key mechanism in the hepatotoxicity is cytochrome P450 (CYP)-catalysed formation of the reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI) that is capable of binding to cellular macromolecules and in that way an LC/MS liquid chromatography/mass spectrometry (LC/MS) method was developed to measure NAPQI formation by trapping it to reduced glutathione. This method was used to determine the bioactivation of acetaminophen at two concentrations: 50 microM therapeutic and 1 mM toxic by using nine human recombinant CYP enzymes: CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4; and with different microsomes from experimental animals. At the toxic concentration the formation of NAPQI-glutathione was highest with CYP3A4 followed by CYP2E1, CYP1A2, and CYP2D6. At the therapeutic concentration, CYP3A4 had also the highest bioactivation capacity. In a comparison of the enzyme kinetics, CYP3A4 was the most efficient CYP with the lowest K(m) value 130 microM (95% confidence interval = 63-210 microM). Dexamethasone-induced rat liver microsomes had the most effective bioactivation capacity at therapeutic and toxic acetaminophen concentrations. This study suggests that CYP3A4 is the major CYP enzyme form catalysing acetaminophen oxidation to NAPQI in human liver.
Collapse
Affiliation(s)
- J E Laine
- Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
15
|
Chen C, Krausz KW, Idle JR, Gonzalez FJ. Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 2007; 283:4543-59. [PMID: 18093979 DOI: 10.1074/jbc.m706299200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3'-biacetaminophen (VIII, an APAP dimer), and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem mass spectrometry fragmentation, in vitro reactions, and chemical treatments. Dose-, time-, and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically modified animal models, mass isotopomer analysis, and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unraveling novel mechanisms.
Collapse
Affiliation(s)
- Chi Chen
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Rajaraman G, Chen J, Chang TKH. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 2006; 217:225-33. [PMID: 17045319 DOI: 10.1016/j.taap.2006.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022]
Abstract
The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations > or =75 mug/ml and > or =750 mug/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 mug/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [(14)C]-leucine incorporation. At the level present in a modulating concentration (50 mug/ml) of the extract, ginkgolide A (0.55 mug/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A.
Collapse
Affiliation(s)
- Ganesh Rajaraman
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
17
|
BOINDOGURONG J, HIGAKI T, EGASHIRA Y, SANADA H. Protective Effect of Butylated Hydroxyanisole and Butylated Hydroxytoluene against Acetaminophen-Induced Hepatotoxicity in Rats. J Oleo Sci 2005. [DOI: 10.5650/jos.54.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Gonzalez RJ, Tarloff JB. Expression and activities of several drug-metabolizing enzymes in LLC-PK1 cells. Toxicol In Vitro 2004; 18:887-94. [PMID: 15465656 DOI: 10.1016/j.tiv.2004.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
LLC-PK1 cells are frequently used in toxicology research, but little information is available concerning the capacity of these cells to metabolize xenobiotics. We examined the expression and activities of cytochromes P450 (P450) 1A1/1A2 (CYP 1A1/1A2), 2E1 (CYP 2E1), flavin monooxygenase (FMO), 5-lipoxygenase (5-LO) and prostaglandin H synthase (PHS)-associated cyclooxygenase-1 (COX-1). We prepared S9 fractions from LLC-PK1 cells, rat liver, and rat kidney, and measured enzyme activities using ethoxyresorufin O-deethylation (EROD) for CYP 1A1/1A2 and ethoxycoumarin O-deethylation (ECOD) for CYP 2E1, benzydamine N-oxidation (BNO) for FMO, leukotriene B(4) (LTB(4)) formation for 5-LO, and thromboxane B(2) (TXB(2)) formation for COX-1 activities. To assure that product formation was due to enzymatic activity, we used the following inhibitors: 1-aminobenzotriazole (ABT) for P450, methimazole for FMO, caffeic acid for 5-LO and acetylsalicylic acid (ASA) for COX-1. We also performed Western blot analysis to confirm our observations. All five enzyme activities were demonstrable in rat liver at much greater levels than in rat kidney S9 fractions. Activities in LLC-PK1 cells were significantly lower than activities in rat liver S9 fraction and generally less than activities in rat kidney S9 fraction. Enzyme inhibitors decreased product formation in all three tissues and Western blot analysis supported our observations of low enzyme activity in LLC-PK1 cells. These results indicate that LLC-PK1 cells have very low content of relevant drug-metabolizing enzyme activities.
Collapse
Affiliation(s)
- Raymond J Gonzalez
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
19
|
Zhang QX, Melnikov Z, Feierman DE. Characterization of the Acetaminophen-Induced Degradation of Cytochrome P450-3A4 and the Proteolytic Pathway. ACTA ACUST UNITED AC 2004; 94:191-200. [PMID: 15078344 DOI: 10.1111/j.1742-7843.2004.pto940406.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that large doses of acetaminophen can result in increased degradation of the hepatic cytochrome P450 (CYP) enzymes in vivo; however, the proteolytic pathways have not been identified. We found that incubating transfected HepG2 cells that express CYP3A4 or a reconstituted microsomal model containing human liver microsomes and cytosol, high concentrations of acetaminophen could induce a dose- and time-dependent degradation of CYP3A4. In the microsomal model the degradation could be blocked and augmented by the presence of catalase and superoxide dismutase, respectively. Tocopherol could also protect against the acetaminophen-induced degradation. However, lipid peroxidation assays showed no significant increases in lipid peroxidation products nor was there any protection by propyl gallate. Protease and proteasome inhibitors showed that the proteolytic process was mainly (85%) mediated by the lysosomal pathway, whereas a minor portion (15%) of the degradation was mediated by the proteasomal pathway. Both pepstatin A and anti-cathepsin D neutralizing antibody decreased acetaminophen-induced degradation of CYP3A4 in microsomal model systems. Pepstatin A also blocked the acetaminophen-induced degradation of the CYP3A4 in a transfected HepG2 cell line. Incubating the 3A4 cells in the presence of acetaminophen also increased cathepsin D content and activity. The lysosomal pathway, mainly mediated by cathepsin D, appears to be the major proteolytic pathway involved in the degradation of the P450 enzymes induced by toxic doses of acetaminophen.
Collapse
Affiliation(s)
- Qing-Xue Zhang
- Department og Anaesthesia, Mount Sinai School of Medicine, New York, NY, U.S.A
| | | | | |
Collapse
|
20
|
Valero E, Varón R, García-Carmona F. Catalytic oxidation of acetaminophen by tyrosinase in the presence of L-proline: a kinetic study. Arch Biochem Biophys 2003; 416:218-26. [PMID: 12893300 DOI: 10.1016/s0003-9861(03)00288-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A kinetic study of acetaminophen oxidation by tyrosinase in the presence of a physiological nucleophilic agent such as the amino acid L-proline is performed in the present paper. The o-quinone product of the catalytic activity, 4-acetamido-o-benzoquinone, becomes unstable through the chemical addition of L-proline, in competition with the nucleophilic addition of hydroxide ion from water. In both cases, the catechol intermediate, 3(')-hydroxyacetaminophen, is generated, as can be demonstrated by liquid chromatography. When the effect of the presence of the nucleophilic agent on the time course of the enzymatic reaction was kinetically analyzed, it was seen to decrease the duration of the lag period and increase the steady-state rate. Rate constants for the reaction of 4-acetamido-o-benzoquinone with water and L-proline were also determined. The results obtained in this paper open a new possibility to acetaminophen toxicity, that has been attributed hitherto to its corresponding p-quinone, N-acetyl-p-benzoquinone imine.
Collapse
Affiliation(s)
- Edelmira Valero
- GMB: Grupo de Modelización en Bioquímica, Departamento de Química-Física, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, Campus Universitario, Albacete E-02071, Spain.
| | | | | |
Collapse
|
21
|
Seo KW, Park M, Song YJ, Kim SJ, Yoon KR. The protective effects of Propolis on hepatic injury and its mechanism. Phytother Res 2003; 17:250-3. [PMID: 12672155 DOI: 10.1002/ptr.1120] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractPropolis (PP) is a sticky substance that is collected from plants by honeybees. The purpose of this study was to investigate the protective effects of PP on hepatotoxicity induced by acetaminophen (AA, paracetamol) and the mechanism of its hepatoprotective effect. In rat hepatocyte culture, pretreatment with PP (1, 10, 100, 200 and 400 microg/mL, 24 h) significantly decreased the cytotoxicity of AA (0.5 mm) in a dose-dependent manner. In mice, pretreatment with PP (10 and 25 mg/kg, p.o., 7 days) also decreased the mortality and the incidence and severity of hepatic necrosis induced by AA (400 mg/kg, i.p.). After treatment with PP for 7 days, the hepatic enzyme activities of cytochrome P450 monooxygenases (P450s), UDP-glucuronyltransferase, phenolsulphotransferase (PST), glutathione S-transferase (GST) were measured in both rats and mice. In rats, PP (50 and 100 mg/kg, p.o.) decreased the activity of P4502E1, but significantly increased the activities of GST and PST. On the other hand, in mice treated with PP (10 and 25 mg/kg, p.o.), the activities of P4501A2, 2B1, 3A4 and 2E1 were dramatically inhibited, and the activity of PST was significantly enhanced. These results suggest that PP has a protective effect on hepatic injury, and that its effect may be explained by inhibition of phase I enzymes and induction of phase II enzymes.
Collapse
Affiliation(s)
- Kyung Won Seo
- Toxicology Department, National Institute of Toxicological Research, Korea Food and Drug Administration, 5 Nokbundong, Eunpyunggu, Seoul 122-020, Korea.
| | | | | | | | | |
Collapse
|
22
|
Valero E, Varón R, García-Carmona F. Tyrosinase-mediated oxidation of acetaminophen to 4-acetamido-o-benzoquinone. Biol Chem 2002; 383:1931-9. [PMID: 12553730 DOI: 10.1515/bc.2002.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on its monophenolic structure and given its pharmacological and toxicological importance, the ability of tyrosinase to oxidize acetaminophen was studied for the first time. Progress curves showed a transient phase characteristic of the monophenolase activity of tyrosinase prior to attaining the steady-state. The duration of this transient phase strongly increased with the drug concentration, which would partly explain why paracetamol oxidation by tyrosinase has not been studied hitherto. The pathway is enhanced by the presence of minute amounts of L-dopa, which shortens the length of the lag period. Acetaminophen oxidation was inhibited by tropolone, a selective inhibitor of tyrosinase. The presence of the corresponding o-diphenol as intermediate was demonstrated with ascorbic acid by chemical oxidation using NaIO4 and by HPLC analysis, indicating that acetaminophen is oxidized by the monophenolase activity of tyrosinase to its corresponding o-quinone. These results contribute to our knowledge of the oxidation mechanisms of acetaminophen.
Collapse
Affiliation(s)
- Edelmira Valero
- Departamento de Química-Fisica, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, Campus Universitario, E-02071 Albacete, Spain
| | | | | |
Collapse
|
23
|
Qiu Y, Benet LZ, Burlingame AL. Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3'-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:663-73. [PMID: 11765013 DOI: 10.1007/978-1-4615-0667-6_99] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Y Qiu
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
24
|
Sumioka I, Matsura T, Yamada K. Therapeutic effect of S-allylmercaptocysteine on acetaminophen-induced liver injury in mice. Eur J Pharmacol 2001; 433:177-85. [PMID: 11755151 DOI: 10.1016/s0014-2999(01)01503-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
S-allylmercaptocysteine is one of the water-soluble organosulfur compounds in ethanol extracts of garlic (Allium sativum L.). We had demonstrated earlier that treatment with S-allylmercaptocysteine before acetaminophen administration protects mice against acetaminophen-induced hepatotoxicity. In this study, we examined the therapeutic effect of S-allylmercaptocysteine treatment after acetaminophen administration. A single dose of S-allylmercaptocysteine (200 mg/kg, p.o.) to mice 0.5 h after acetaminophen administration (500 mg/kg, p.o.) significantly suppressed both the increase in plasma alanine aminotransferase activity and the hepatic necrosis, and also reduced acetaminophen-induced mortality from 43% to 0%. These data indicate that S-allylmercaptocysteine is useful as an antidote for acetaminophen overdose. S-allylmercaptocysteine significantly suppressed hepatic cytochrome P450 2E1 (CYP2E1) activity and induction of inducible 70-kDa heat shock protein, a marker of acetaminophen arylation of protein. These results suggest that S-allylmercaptocysteine exerts its protective effect by inhibition of CYP2E1 activity, which leads to the suppression of acetaminophen arylation of hepatic protein.
Collapse
Affiliation(s)
- I Sumioka
- Healthcare Research Institute, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-cho, Takata-gun, Hiroshima 739-1195, Japan
| | | | | |
Collapse
|
25
|
Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31:55-138. [PMID: 11215692 DOI: 10.1080/20014091111677] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An overview is presented on the molecular aspects of toxicity due to paracetamol (acetaminophen) and structural analogues. The emphasis is on four main topics, that is, bioactivation, detoxication, chemoprevention, and chemoprotection. In addition, some pharmacological and clinical aspects are discussed briefly. A general introduction is presented on the biokinetics, biotransformation, and structural modification of paracetamol. Phase II biotransformation in relation to marked species differences and interorgan transport of metabolites are described in detail, as are bioactivation by cytochrome P450 and peroxidases, two important phase I enzyme families. Hepatotoxicity is described in depth, as it is the most frequent clinical observation after paracetamol-intoxication. In this context, covalent protein binding and oxidative stress are two important initial (Stage I) events highlighted. In addition, the more recently reported nuclear effects are discussed as well as secondary events (Stage II) that spread over the whole liver and may be relevant targets for clinical treatment. The second most frequent clinical observation, renal toxicity, is described with respect to the involvement of prostaglandin synthase, N-deacetylase, cytochrome P450 and glutathione S-transferase. Lastly, mechanism-based developments of chemoprotective agents and progress in the development of structural analogues with an improved therapeutic index are outlined.
Collapse
Affiliation(s)
- J G Bessems
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Smith C, Stamm SC, Riggs JE, Stauber W, Harsh V, Gannett PM, Hobbs G, Miller MR. Ethanol-mediated CYP1A1/2 induction in rat skeletal muscle tissue. Exp Mol Pathol 2000; 69:223-32. [PMID: 11115363 DOI: 10.1006/exmp.2000.2328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The causes of non-trauma-mediated rhabdomyolysis are not well understood. It has been speculated that ethanol-associated rhabdomyolysis may be attributed to ethanol induction of skeletal muscle cytochrome P450(s), causing drugs such as acetaminophen or cocaine to be metabolized to myotoxic compounds. To examine this possibility, the hypothesis that feeding ethanol induces cytochrome P450 in skeletal muscle was tested. To this end, rats were fed an ethanol-containing diet and skeletal muscle tissue was assessed for induction of CYP2E1 and CYP1A1/2 by immunohistochemical procedures; liver was examined as a positive control tissue. Enzymatic assays and Western blot analyses were also performed on these tissues. In one feeding system, ethanol-containing diets induced CYP1A1/2 in soleus, plantaris, and diaphragm muscles, with immunohistochemical staining predominantly localized to capillaries surrounding myofibers. Antibodies to CYP2E1 did not react with skeletal muscle tissue from animals receiving a control or ethanol-containing diet. However, neither skeletal muscle CYP1A1/2 nor CYP2E1 was induced when ethanol diets were administered by a different feeding system. Ethanol consumption can induce some cytochrome P450 isoforms in skeletal muscle tissue; however, the mechanism of CYP induction is apparently complex and appears to involve factors in addition to ethanol, per se.
Collapse
Affiliation(s)
- C Smith
- Department of Anatomy, West Virginia University Health Sciences Center, Morgantown 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang R, Okuno H, Takasu M, Takeda S, Kano H, Shiozaki Y, Inoue K. Effects of rifampin on the glutathione depletion and cytochrome c reduction by acetaminophen reactive metabolites in an in vitro P450 enzyme system. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 83:182-90. [PMID: 10952066 DOI: 10.1254/jjp.83.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study examined whether rifampin attenuated glutathione (GSH) depletion by acetaminophen reactive metabolites generated in the in vitro P450 enzyme system prepared from mouse liver and the possible mechanism involved in this effect. The results showed that GSH concentration was decreased concentration-dependently by acetaminophen in the in vitro P450 enzyme system. Rifampin significantly attenuated acetaminophen-mediated GSH depletion in a concentration-dependent manner. The concentration-response curve for GSH depletion of acetaminophen was shifted to the right in a parallel fashion in the presence of rifampin at the concentration of 3.2 x 10(-5) M, which appeared to result from the competitive binding of rifampin to acetaminophen metabolites. Cytochrome c was markedly reduced by acetaminophen metabolites in this enzyme system, and GSH concentration-dependently increased the cytochrome c reduction by acetaminophen metabolites. These findings suggested that cytochrome c was reduced by the GSH conjugate of acetaminophen metabolites rather than by acetaminophen-derived superoxide anion (O2*-) and other unbound free radicals. Rifampin was shown to possess an effect similar to that of GSH. It is concluded that the decrease in GSH depletion by rifampin is most likely attributable to the binding of rifampin to the acetaminophen toxic species, and the increase in cytochrome c reduction by rifampin is attributable to the conjugate formed between rifampin and acetaminophen metabolites.
Collapse
Affiliation(s)
- R Huang
- Third Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Dimova S, Hoet PH, Nemery B. Paracetamol (acetaminophen) cytotoxicity in rat type II pneumocytes and alveolar macrophages in vitro. Biochem Pharmacol 2000; 59:1467-75. [PMID: 10751557 DOI: 10.1016/s0006-2952(00)00257-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Paracetamol (acetaminophen, APAP) liver and kidney cytotoxicity is associated with bioactivation by P450 and/or prostaglandin H synthetase (PGHS) to a reactive metabolite, which depletes GSH, covalently binds to proteins, and leads to oxidative stress. Although APAP may also damage the lung, little is known about the mechanism by which this occurs. We studied the in vitro 24-hr-old type II pneumocytes. A time- and concentration-dependent decrease in intracellular GSH occurred in freshly isolated type II pneumocytes and alveolar macrophages exposed to subtoxic (</= 1 mM) APAP concentrations. In 24-hr-old type II pneumocytes, there were no changes in intracellular GSH concentration after APAP exposure. Potassium ethyl xanthate (a P450 inhibitor) and indomethacin (a PGHS inhibitor) significantly decreased APAP-induced GSH depletion in freshly isolated type II pneumocytes and alveolar macrophages, suggesting that P450 and/or PGHS are involved in APAP bioactivation in these cells.
Collapse
Affiliation(s)
- S Dimova
- Laboratory of Pneumology, Unit of Toxicology, K.U.Leuven, B-3000, Leuven, Belgium
| | | | | |
Collapse
|
29
|
Seo KW, Kim JG, Park M, Kim TW, Kim HJ. Effects of phenethylisothiocyanate on the expression of glutathione S-transferases and hepatotoxicity induced by acetaminophen. Xenobiotica 2000; 30:535-45. [PMID: 10875686 DOI: 10.1080/004982500237532] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. The effect of PEITC on the expression of hepatic glutathione S-transferases (GST) and the glutathione (GSH) conjugation has been investigated in the Sprague-Dawley rat, and it has been determined whether hepatotoxicity of acetaminophen (AA) could be inhibited through the induction of GST expression in mouse. 2. The hepatic GST activity and protein levels of alpha class (Ya, Yc) and mu class (Yb1, Yb2) of GST were elevated in a dose-dependent manner after treatment with PEITC (0, 3.16, 10, 31.6, 100 and 200 mg/kg, p.o., 3 days). The mRNA levels of GST Ya and GST Yb1 were also markedly increased 1 day after treatment with PEITC at dosages ranging from 31.6 to 200 mg/kg. The hepatic GSH content was significantly increased to 200% of control at dose of 200 mg/kg PEITC. 3. Pretreatment with 100 mg/kg PEITC significantly enhanced the biliary excretion of glutathione conjugate of AA 2-fold, whereas treatment with 200 mg/kg did not affect it. 4. In mouse, PEITC (100 and 200 mg/kg, 3 days) decreased the lethality and hepatotoxicity caused by AA. 5. These results indicate that (1) the induction of GST by PEITC is presumably under transcriptional regulation, and (2) PEITC may have a protective function against AA-induced hepatotoxicity by induction effect on GST, in combination of enhancement of hepatic GSH.
Collapse
Affiliation(s)
- K W Seo
- Department of Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul.
| | | | | | | | | |
Collapse
|
30
|
Abstract
It is claimed that chronic alcoholics are at increased risk of paracetamol (acetaminophen) hepatotoxicity not only following overdosage but also with its therapeutic use. Increased susceptibility is supposed to be due to induction of liver microsomal enzymes by ethanol with increased formation of the toxic metabolite of paracetamol. However, the clinical evidence in support of these claims is anecdotal and the same liver damage after overdosage occurs in patients who are not chronic alcoholics. Many alcoholic patients reported to have liver damage after taking paracetamol with 'therapeutic intent' had clearly taken substantial overdoses. No proper clinical studies have been carried out to investigate the alleged paracetamol-alcohol interaction and acute liver damage has never been produced by therapeutic doses of paracetamol given as a challenge to a chronic alcoholic. The paracetamol-alcohol interaction is complex; acute and chronic ethanol have opposite effects. In animals, chronic ethanol causes induction of hepatic microsomal enzymes and increases paracetamol hepatotoxicity as expected (ethanol primarily induces CYP2E1 and this isoform is important in the oxidative metabolism of paracetamol). However, in man, chronic alcohol ingestion causes only modest (about twofold) and short-lived induction of CYP2E1, and there is no corresponding increase (as claimed) in the toxic metabolic activation of paracetamol. The paracetamol-ethanol interaction is not specific for any one isoform of cytochrome P450, and it seems that isoenzymes other than CYP2E1 are primarily responsible for the oxidative metabolism of paracetamol in man. Acute ethanol inhibits the microsomal oxidation of paracetamol both in animals and man. This protects against liver damage in animals and there is evidence that it also does so in man. The protective effect disappears when ethanol is eliminated and the relative timing of ethanol and paracetamol intake is critical. In many of the reports where it is alleged that paracetamol hepatotoxicity was enhanced in chronic alcoholics, the reverse should have been the case because alcohol was actually taken at the same time as the paracetamol. Chronic alcoholics are likely to be most vulnerable to the toxic effects of paracetamol during the first few days of withdrawal but maximum therapeutic doses given at this time have no adverse effect on liver function tests. Although the possibility remains that chronic consumption of alcohol does increase the risk of paracetamol hepatotoxicity in man (perhaps by impairing glutathione synthesis), there is insufficient evidence to support the alleged major toxic interaction. It is astonishing that clinicians and others have unquestion-ingly accepted this supposed interaction in man for so long with such scant regard for scientific objectivity.
Collapse
Affiliation(s)
- L F Prescott
- Clinical Pharmacology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Shayiq RM, Roberts DW, Rothstein K, Snawder JE, Benson W, Ma X, Black M. Repeat exposure to incremental doses of acetaminophen provides protection against acetaminophen-induced lethality in mice: an explanation for high acetaminophen dosage in humans without hepatic injury. Hepatology 1999; 29:451-63. [PMID: 9918922 DOI: 10.1002/hep.510290241] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In studies designed to simulate a clinical observation in which an individual became tolerant to normally lethal doses of acetaminophen (APAP), mice were pretreated with increasing doses of APAP for 8 days and challenged on day 9 with normally supralethal doses of APAP. These animals developed minimal hepatotoxicity after a challenge dose with a fourfold increase in LD50 to 1,350 mg/kg. The pretreatment regimen resulted in hepatic changes including: centrilobular localization of 3-(cysteine-S-yl)APAP protein adducts, selective down-regulation of cytochrome P4502E1 (CYP2E1) and CYP1A2 that produced the toxic metabolite, N-acetyl-p-benzoquinone imine, higher levels of reduced glutathione (GSH), centrilobular inflammation, and a fourfold increase in hepatocellular proliferation. The protection against the lethal APAP doses afforded by pretreatment is secondary to these changes and to the associated regional shift in the bioactivation of the APAP challenge dose from centrilobular to periportal regions where CYP2E1 is not found, protective GSH is more abundant, and where cell-proliferative responses are better able to sustain repair. This shift in APAP bioactivation results in less-intense covalent binding that is more diffuse and spread uniformly throughout the hepatic lobe, most likely contributing to protection by delaying the early onset of liver injury that has been generally associated with centrilobular localization of the adducts. Intervention of APAP pretreatment-induced cell division in mice with colchicine left them resistant to a 500-mg/kg (normally lethal) dose of APAP, but unable to survive a 1,000-mg/kg APAP challenge dose. The data demonstrate multiple mechanistic components to the protection afforded by APAP pretreatment. Whereas metabolic and physiological changes not dependent on cell proliferation are adequate to protect against 500 mg/kg APAP, these changes plus a potentiated cell-proliferative response are necessary for protection against the supralethal 1,000-mg/kg APAP dose. Furthermore, the data document an uncoupling of the traditional association between covalent binding and toxicity, and suggest that the assessment of toxicity following repeated or chronic APAP exposure must consider altered drug interactions and parameters besides those historically used to assess acute APAP overdose.
Collapse
Affiliation(s)
- R M Shayiq
- Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang PY, Kaneko T, Wang Y, Sato A. Acarbose alone or in combination with ethanol potentiates the hepatotoxicity of carbon tetrachloride and acetaminophen in rats. Hepatology 1999; 29:161-5. [PMID: 9862862 DOI: 10.1002/hep.510290109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acarbose reduces the absorption of monosaccharides derived from dietary carbohydrates, which play an important role in the metabolism and toxicity of some chemical compounds. We studied the effects of acarbose on the hepatotoxicity of carbon tetrachloride (CCl4) and acetaminophen (AP) in rats, both of which exert their toxic effects through bioactivation associated with cytochrome P450 2E1 (CYP2E1). Male Sprague-Dawley rats were kept on a daily ration (20 g) of powdered chow diet containing 0, 20, 40, or 80 mg/100 g of acarbose, with drinking water containing 0% or 10% of ethanol (vol/vol). Three weeks later, the rats were either killed for an in vitro metabolism study or challenged with 0.50 g/kg CCl4 orally or 0. 75 g/kg AP intraperitoneally. The ethanol increased the hepatic microsomal CYP2E1 level and the rate of dimethylnitrosamine (DMN) demethylation. The 40- or 80-mg/100 g acarbose diet, which alone increased the CYP2E1 level and the rate of DMN demethylation, augmented the enzyme induction by ethanol. The 40- or 80-mg/100 g acarbose diet alone potentiated CCl4 and AP hepatotoxicity, as evidenced by significantly increased levels of both alanine transaminase (ALT) and aspartate transaminase (AST) in the plasma of rats pretreated with acarbose. Ethanol alone also potentiated the toxicity of both chemicals. When the 40- or 80-mg/100 g acarbose diet was combined with ethanol, the ethanol-induced potentiation of CCl4 and AP hepatotoxicity was augmented. Our study demonstrated that high doses of acarbose, alone or in combination with ethanol, can potentiate CCl4 and AP hepatotoxicity in rats by inducing hepatic CYP2E1.
Collapse
Affiliation(s)
- P Y Wang
- Department of Environmental Health, Medical University of Yamanashi, Tamaho, Yamanashi, Japan
| | | | | | | |
Collapse
|
33
|
Sumioka I, Matsura T, Kasuga S, Itakura Y, Yamada K. Mechanisms of protection by S-allylmercaptocysteine against acetaminophen-induced liver injury in mice. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:199-207. [PMID: 9829623 DOI: 10.1254/jjp.78.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
S-Allylmercaptocysteine (SAMC), one of the water-soluble organosulfur compounds in ethanol extracts of garlic (Allium sativum L.), has been shown to protect mice against acetaminophen (APAP)-induced liver injury. In this study, we examined the mechanisms underlying this hepatoprotection. SAMC (100 mg/kg, p.o.) given 2 and 24 hr before APAP administration (500 mg/kg, p.o.) suppressed the plasma alanine aminotransferase activity increases 3 to 12 hr after APAP administration significantly. The hepatic reduced glutathione levels of vehicle-pretreated mice decreased 1 to 6 hr after APAP administration, but SAMC pretreatment suppressed the reductions 1 to 6 hr after APAP administration significantly. These inhibitory effects of SAMC were dose-dependent (50-200 mg/kg) 6 hr after APAP administration. As SAMC pretreatment (50-200 mg/kg) suppressed hepatic cytochrome P450 2E1-dependent N-nitrosodimethylamine demethylase activity significantly in a dose-dependent manner, we suggest that one of its protective mechanisms is inhibition of cytochrome P450 2E1 activity. SAMC pretreatment also suppressed the increase in hepatic lipid peroxidation and the decrease in hepatic reduced coenzyme Q9 (CoQ9H2) levels 6 hr after APAP administration. The hepatic CoQ9H2 content of the SAMC pretreatment group was maintained at the normal level. Therefore, we suggest that another hepatoprotective mechanism of SAMC may be attributable to its antioxidant activity.
Collapse
Affiliation(s)
- I Sumioka
- Institute for OTC Research, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | | | | | | | | |
Collapse
|
34
|
Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 1998; 273:17940-53. [PMID: 9651401 DOI: 10.1074/jbc.273.28.17940] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Liver toxicity following an overdose of acetaminophen is frequently considered a model for drug-induced hepatotoxicity. Extensive studies over many years have established that such toxicity is well correlated with liver protein arylation by acetaminophen metabolites. Identification of protein targets for covalent modifications is a challenging but necessary step in understanding how covalent binding could lead to liver toxicity. Previous approaches suffered from technical limitations, and thus over the last 10 years heroic efforts were required to determine the identity of only a few target proteins. We present a new mass spectrometry-based strategy for identification of all target proteins that now provides a comprehensive survey of the suite of liver proteins modified. After administration of radiolabeled acetaminophen to mice, the proteins in the liver tissue lysate were separated by two-dimensional polyacrylamide gel electrophoresis. In-gel digestion of the radiolabeled gel spots gave a set of tryptic peptides, which were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Interrogation of data bases based on experimentally determined molecular weights of peptides and product ion tags from postsource decay mass spectra was employed for the determination of the identities of modified liver proteins. Using this method, more than 20 new drug-labeled proteins have been identified.
Collapse
Affiliation(s)
- Y Qiu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
35
|
Genter MB, Liang HC, Gu J, Ding X, Negishi M, McKinnon RA, Nebert DW. Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of the Cyp1a2(-/-) mouse. Biochem Pharmacol 1998; 55:1819-26. [PMID: 9714300 DOI: 10.1016/s0006-2952(98)00004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetaminophen (AP) is a widely-used analgesic agent that has been linked to human liver and kidney disease with prolonged or high-dose usage. In rodents, the target organs that are affected include liver, kidney, and the olfactory mucosa. AP toxicity requires cytochrome P450(CYP)-mediated metabolic activation, and the isozymes CYP1A2, 2E1, and 3A are known to activate AP in the human. In the present study, we determined that olfactory mucosal toxicity of AP was not different between the Cyp1a2(+/+) wild-type and the Cyp1a2(-/-) knockout mouse, whereas the hepatic toxicity of AP was significantly diminished in Cyp1a2(-/-) mice. Western blots of olfactory mucosa revealed that CYP2E1 and CYP3A levels are similar between untreated Cyp1a2(+/+) and Cyp1a2(-/-) mice. Diallyl sulfide (DAS), a known inhibitor of CYP2E1 and of CYP2A10/2A11 (the rabbit orthologue of mouse CYP2A5), completely eliminated olfactory toxicity of AP in both the Cyp1a2(-/-) and wild-type mouse olfactory mucosa. We found that heterologously expressed mouse CYP2A5 and CYP2G1 enzymes (known to be present in olfactory mucosa) form 3-hydroxyacetaminophen (3-OH-AP) and 3-(glutathion-S-yl)acetaminophen (GS-AP); CYP2A5 is considerably more active than 2G1. Addition of GSH caused increases in GS-AP proportional to decreases in 3-OH-AP, suggesting that these two metabolites arise from a common precursor or are formed by way of competing pathways. We also found that both CYP2A5 and CYP2G1 are inhibitable by DAS in vitro. These studies provide strong evidence that, in addition to CYP2E1, CYP2A5 and 2G1 are important in AP bioactivation in the mouse olfactory mucosa and that CYP1A2 appears to be of minor importance for AP olfactory toxicity.
Collapse
Affiliation(s)
- M B Genter
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267-0576, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhao C, Sheryl D, Zhou YX. Effects of combined use of diallyl disulfide and Nacetyl-cysteine on acetaminophen hepatotoxicity in beta-naphthoflavone pretreated mice. World J Gastroenterol 1998; 4:112-116. [PMID: 11819251 PMCID: PMC4688629 DOI: 10.3748/wjg.v4.i2.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Revised: 02/20/1998] [Accepted: 03/20/1998] [Indexed: 02/06/2023] Open
Abstract
AIM:To assess the protective effect of diallyl disulfide (DADS) and its combined use with N-acetyl-cysteine (NAC) on acetaminophen (APAP) hepatotoxicity in C57BL/6N (B6) mice pretreated with beta-naphthoflavone (BNF).METHODS:B6 mice were divided into six groups and all compounds used were injected intraperitoneally. Except for control and APAP group (receiving APAP only), the other groups received an injection of APAP (350mg/kg) 48 hours after BNF (200mg/kg) and either of DADS (200mg/kg), or NAC (500mg/kg) or both DADS and NAC.DADS was given 2 hours before APAP and NAC was injected with APAP.The mean survival time was recorded and livers were examined histologically.Hepatic glutathione (GSH) levels and plasma ALT were also determined at different time points.To evaluate the effect of DADS or NAC on hepatic P450 induction by BNF,liver microsomes were prepared and 7-ethoxyresorufin O-dealkylase (ERD) activity was determined using spectrofluorometrical methods. In vitro effect of DADS or NAC on ERD activity was assayed by directly incubating microsomal suspension with DADS or NAC of different concentrations.RESULTS:APAP was not toxic to mice without BNF pretreatment, but caused severe liver necrosis and death of all BNF-treated mice in 4 hours. A sharp depletion of GSH (approximately 62% of its initial content at 2 hours and 67% at 4 hours) and a linear elevation of ALT levels (536.8 plus minus 29.5 Sigma units at 2 hours and 1302.5 plus minus74.9 at 4 hours) were observed.DADS and NAC given individually produced mild protection,resulting in prolonged survival,a slower decline of GSH level and a less steeper elevation of ALT level.All mice died eventually. Co-administration of DADS and NAC completely protected mice.GSH level in this group lowered by about 35% and 30% at 2 and 4 hours, and ALT was 126 plus minus 18 and 157.5 plus minus 36.6 Sigma units at 2 and 4 hours. ERD activity in BNF-treated mice was about 5 times that of the constitutive level determined in normal mice. Neither DADS nor NAC inhibited P450 1A1/1A2 induction as determined by their effect on the induction of ERD activity.In vitro assay indicates that DADS,but not NAC,was a potent inhibitor of ERD activity(IC(50) = 4.6&mgr;m).CONCLUSION:A combined use of both DADS and NAC produced full protection in BNF treated mice against APAP hepatotoxicity.The mechanism is that DADS inhibits P450 1A1/1A2 activity, but not induction, which substantially reduces production of NAPQI, while NAC enhances liver detoxifying capability via serving as a precursor of GSH and stimulating GSH synthesis.
Collapse
|
37
|
Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, Nelson SD. Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol 1998; 11:295-301. [PMID: 9548799 DOI: 10.1021/tx9701687] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP), a widely used analgesic and antipyretic agent, is bioactivated by cytochromes P450 to cause severe hepatotoxicity. APAP is oxidized by two pathways to form a toxic intermediate, N-acetyl-p-benzoquinone imine (NAPQI), and a nontoxic catechol metabolite, 3-hydroxy-APAP (3-OH-APAP). We investigated the role of P450 2E1 and 2A6 in APAP oxidation by using baculovirus-expressed and highly purified forms of human P450 2E1 and 2A6. An electrochemical HPLC assay was developed to quantify both oxidative metabolites simultaneously. For the first time, it was demonstrated that human P450 2E1 selectively oxidized APAP to NAPQI (assayed as its glutathione conjugate, GS-APAP), whereas human P450 2A6 selectively oxidized APAP to 3-OH-APAP. At 1 mM APAP, the relative ratio for the formation of GS-APAP vs 3-OH-APAP with human P450 2E1 was approximately 6:1, whereas the ratio with human P450 2A6 was 1:3. Apparent Km and Vmax values for the formation of GS-APAP by human P450 2E1 were 1.3 mM and 6.9 nmol/min/nmol of P450, respectively, whereas they were 4.6 mM and 7.9 nmol/min/nmol of P450 for P450 2A6. Apparent Km and Vmax values for the formation of 3-OH-APAP by human P450 2E1 were 4.0 mM and 2.5 nmol/min/nmol of P450, respectively, whereas they were 2.2 mM and 14.2 nmol/min/nmol of P450, respectively, for P450 2A6. Thus, although at toxic doses of APAP P450 2E1 is the more efficient catalyst for the formation of the toxic metabolite NAPQI, P450 2A6 also can contribute significantly to NAPQI production.
Collapse
Affiliation(s)
- W Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tygstrup N, Jensen SA, Krog B, Dalhoff K. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat. J Hepatol 1997; 27:156-62. [PMID: 9252090 DOI: 10.1016/s0168-8278(97)80296-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tube, doses producing no and about 30% mortality, respectively, within 2 days. In the morning 2, 6, 12, 24, and 36 h after intoxication, RNA was extracted from liver tissue. By slot blot hybridization mRNA levels were determined for acute phase proteins, enzymes involved in ammonia elimination and urea synthesis, and for proteins related to liver regeneration. RESULTS After allyl alcohol, mRNA of "positive" acute phase proteins was higher than after acetaminophen and increased with the dose, whereas after acetaminophen it decreased with the dose. The mRNA of the urea cycle enzymes and glutamine synthetase was uniformly reduced by allyl alcohol, whereas that of most urea cycle enzymes was above the controls after the non-lethal, but not after the sub-lethal, dose of acetaminophen. The mRNA of glutamine synthetase was significantly more reduced by acetaminophen than by allyl alcohol. The mRNA of cell-cycle dependent proteins was greatly reduced after both toxins, more after the higher dose. CONCLUSIONS The study shows that acetaminophen intoxication inhibits or fails to induce the expression of acute phase proteins in contrast to allyl alcohol intoxication. Allyl alcohol suppressed the expression of urea cycle enzymes, whereas that of the rate limiting enzymes carbamoylphosphate synthase and argininosuccinate synthetase was increased by the non-lethal but not by the sub-lethal dose of acetaminophen. The expression of the cell-cycle dependent proteins was more suppressed after the sub-lethal than after the non-lethal dose of both toxins. The data support the view that a fatal outcome of the intoxications depends more on the ability to regenerate than on the maintenance of liver-specific functions.
Collapse
Affiliation(s)
- N Tygstrup
- Department of Medicine A, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
39
|
Kostrubsky VE, Szakacs JG, Jeffery EH, Wood SG, Bement WJ, Wrighton SA, Sinclair PR, Sinclair JF. Role of CYP3A in ethanol-mediated increases in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 1997; 143:315-23. [PMID: 9144448 DOI: 10.1006/taap.1996.8081] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CYP2E is considered the only form of cytochrome P450 responsible for ethanol-mediated increases in acetaminophen hepatotoxicity. However, in experimental systems used for investigating ethanol-mediated increases in acetaminophen hepatotoxicity, animals are withdrawn from ethanol for 16 to 24 hr before the administration of acetaminophen to ensure the clearance of ethanol from the circulation. In rats, CYP2E has been shown to decrease to control levels after this time period of withdrawal from ethanol. We have previously shown in cultured human and rat hepatocytes, and in intact rats, that ethanol induces CYP3A in addition to CYP2E. To determine if there might be a role for CYP3A in ethanol-mediated APAP hepatotoxicity in addition to the recognized role for CYP2E, we investigated the effect of triacetyloleandomycin (TAO) on acetaminophen hepatotoxicity in ethanol-pretreated rats, as well as the effect of 11 hr withdrawal from ethanol on hepatic levels of CYP3A and CYP2E. TAO was dissolved in saline instead of dimethylsulfoxide, the solvent most usually employed, since dimethylsulfoxide inhibits CYP2E. Rats were administered 6.3% ethanol as part of the Lieber-DeCarli diet for 7 days, followed by replacement of the liquid diet with water for 11 hr. This 11-hr withdrawal from ethanol resulted in a decrease in hepatic levels of ethanol-induced CYP2E; however, considerable induction was still evident. There was no significant decrease in CYP3A. TAO completely prevented the histologically observed liver damage from acetaminophen in ethanol-pretreated rats, but did not prevent the increase in serum levels of AST. In ethanol-pretreated rats, exposure to APAP in the absence of TAO was associated with a 75% decrease in CYP3A, compared to animals exposed to APAP in the presence of TAO. These results suggest that CYP3A may have been suicidally inactivated by acetaminophen in the absence of TAO. Our findings suggest that CYP3A has a major role in ethanol-mediated increases in acetaminophen hepatotoxicity.
Collapse
Affiliation(s)
- V E Kostrubsky
- Department of Pharmacology/Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03756, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bessems J, Van Stee L, Commandeur J, Groot E, Vermeulen N. Cytotoxicity of paracetamol and 3,5-dihalogenated analogues: Role of cytochrome P-450 and formation of GSH conjugates and protein adducts. Toxicol In Vitro 1997; 11:9-19. [DOI: 10.1016/s0887-2333(96)00066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/1996] [Indexed: 10/16/2022]
|
41
|
Abstract
More than 20 years have passed since the early reports of acute hepatotoxicity with APAP overdose. During that period investigative research to discover the "mechanism" underlying the toxicity has been conducted in many species and strains of intact animals as well as in a variety of in vitro and culture systems. Such work has clarified the primary role of biotransformation and the protective role of GSH. Understanding the former provides explanations for the toxic interactions which may occur with alcohol or other xenobiotics, while understanding of the latter led to the development of antidotes for the treatment of acute poisoning. Acetaminophen (APAP)-induced hepatotoxicity: roles for protein arylation. Initiating events in toxicity require biotransformation of APAP to NAPQI followed by arylation of several important proteins with subsequent alteration of protein structure and function. The immediate consequence of the alterations is detectable in several organelles and these may represent multiple initiating events which are depicted as acting in concert to cause cell injury (large arrowheads). Arylation of cytosolic 58-ABP with subsequent translocation to the nucleus is depicted as a possible signaling mechanism for determining outcome at the cell or organ level (within dotted boundary). For simplicity NAPQI's potentials for oxidizing protein sulfhydryls and direct binding to DNA have been omitted. Significant light has also been shed on the biochemical and cellular events which accompany APAP-induced hepatotoxicity. However, such studies have not identified a unique mechanism of toxicity that is universally accepted. The recent identification of several protein targets which become arylated during toxicity--along with the findings that arylation of some of those target proteins results in loss of protein function--demonstrates that covalent binding does, indeed, have biological consequences and is not merely an indicator of the fleeting presence of reactive electrophiles. These observations further suggest that multiple independent insults to the cell may be involved in toxicity. it is now apparent that the concept of a multistage process that involves both initiation and progression events is appropriate for APAP toxicity, and it is unlikely that a unique initiating event will ever be identified. In light of recent findings it is more likely that a number of such cellular events occur very early after toxic overdosage, and that they collectively set in motion and perpetuate the biochemical, cellular, and molecular processes which will determine outcome. The importance of 58-ABP arylation with early, apparently selective, translocation to the nucleus remains to be elucidated. To date there is nothing to suggest that this represents an initiating event in toxicity. rather it is plausible that the translocation may play a role in signaling electrophile presence and in calling for cellular defense against electrophile insult. This is reflected in the hypothetical model presented in Fig. 3. Critical experimental testing of this model will advance our understanding of the cellular and molecular responses to toxic electrophile insult.
Collapse
Affiliation(s)
- S D Cohen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
42
|
Tygstrup N, Jensen SA, Krog B, Dalhoff K. Expression of liver-specific functions in rat hepatocytes following sublethal and lethal acetaminophen poisoning. J Hepatol 1996; 25:183-90. [PMID: 8878780 DOI: 10.1016/s0168-8278(96)80072-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM In order to study the short-term effect of moderate and severe reduction of liver function by acetaminophen poisoning of different severity on gene expression for liver-specific functions, rats were given 3.75 and 7.5 g per kg body weight acetaminophen intragastrically. The lower dose is associated with low mortality; after the higher dose, most rats die at between 12 and 24 h. METHODS In the morning, 1 1/2, 3, 6, 9, and 12 h after the injection, the rats were killed and RNA was extracted from liver tissue. By slot-blot hybridization mRNA steady-state levels were determined for enzymes involved in metabolic liver functions, i.e. ureagenesis, gluconeogenesis, and drug metabolism, for acute phase proteins, "house-keeping" proteins, and for proteins related to liver regeneration. Results were expressed as per cent of the level in similarly fasted, untreated rats of the same stock RESULTS After the smaller dose of acetaminophen, most of the examined mRNA levels were increasing during the experimental period, being two- to four-fold elevated in relation to control after 6 to 12 h. Rats receiving the lethal dose either showed no or a later and smaller increase, and in several cases a fall towards the end of the experiment. The greatest differences were seen for mRNA of arginase, beta-fibrinogen, alpha 1-acid glycoprotein, alpha-tubulin, histone 3, TGF beta, and cyclin d, i.e. proteins associated with acute phase response and liver cell replication and maintenance. CONCLUSIONS It is concluded that reversible intoxication with acetaminophen induces an adaptive modulation of mRNA expression of liver functions and regeneration which is lacking after severe intoxication. This adaptation, with emphasis on acute phase response and regeneration, may be crucial for recovery after acetaminophen intoxication. If this also applies to the intoxication in man, estimates of the corresponding variables may be clues to the prognosis of acetaminophen-induced fulminant hepatic failure.
Collapse
Affiliation(s)
- N Tygstrup
- Department of Medicine A, Rigshospitalet, Copenhagen, Denmark,
| | | | | | | |
Collapse
|
43
|
Bessems JG, Te Koppele JM, Van Dijk PA, Van Stee LL, Commandeur JN, Vermeulen NP. Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol. Xenobiotica 1996; 26:647-66. [PMID: 8810035 DOI: 10.3109/00498259609046740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. The cytochrome P450-dependent binding of paracetamol and a series of 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -CH3, -C2H5, -iC3H7) have been determined with beta-naphthoflavone (beta NF)-induced rat liver microsomes and produced reverse type I spectral changes. Ks,app varied from 0.14 mM for 3,5-diiC3H7-paracetamol to 2.8 mM for paracetamol. 2. All seven analogues underwent rat liver microsomal cytochrome P450-dependent oxidation, as reflected by the formation of GSSG in the presence of GSH. The GSSG-formation was increased in all cases upon pretreatment of rats by beta-naphthoflavone (beta NF) and was generally decreased upon pretreatment by phenobarbital (PB). 3. Rat liver microsomal cytochrome P450 as well as horseradish peroxidase catalysed the formation of 3,5-disubstituted NAPQI analogues from the corresponding parent compounds, as identified by UV-spectrophotometry of the NAPQI analogues and by GC/MS detection of the following GSH-conjugates: 2-glutathione-S-yl-3,5-dimethyl-1,4-dihydroxybenzene, 2-glutathione-S-yl-3,5-dichloro-paracetamol, and 2-glutathione-S-yl-3,5-dibromo-paracetamol. 4. In liver microsomal (beta NF-induced) incubations, apparent K(m) values, as determined for the cytochrome P450 catalysis-dependent oxidation of GSH, for seven 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -CH3, -C2H5, iC3H7) varied from 0.07 to 0.64 mM. Paracetamol exhibited an apparent K(m) of 0.73 mM. Apparent Vmax values for the cytochrome P450 catalysis dependent oxidation of GSH varied from 0.66 nmol min-1 mg-1 protein for paracetamol to 3.0 nmol min-1 mg-1 protein for 3,5-dimethyl-paracetamol.
Collapse
Affiliation(s)
- J G Bessems
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Dalhoff K. Regulation of sulphation and glutathion conjugation of acetaminophen in isolated rat hepatocytes. PHARMACOLOGY & TOXICOLOGY 1996; 78 Suppl 1:1-24. [PMID: 8821391 DOI: 10.1111/j.1600-0773.1996.tb01941.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K Dalhoff
- Hepatological Laboratory, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
45
|
Hinson JA, Roberts DW, Halmes NC, Gibson JD, Pumford NR. Immunochemical detection of drug-protein adducts in acetaminophen hepatotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 387:47-55. [PMID: 8794193 DOI: 10.1007/978-1-4757-9480-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J A Hinson
- Division of Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | |
Collapse
|
46
|
Bessems JG, Gaisser HD, Te Koppele JM, Van Bennekom WP, Commandeur JN, Vermeulen NP. 3,5-Disubstituted analogues of paracetamol. Synthesis, analgesic activity and cytotoxicity. Chem Biol Interact 1995; 98:237-50. [PMID: 8548862 DOI: 10.1016/0009-2797(95)03649-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Seven 3,5-disubstituted analogues of paracetamol were synthesised in order to compare their physicochemical, pharmacological and toxicological properties with those of paracetamol (4'-hydroxyacetanilide, acetaminophen). Oxidation of the phenolic structure is likely involved in the analgesic action of paracetamol as well as in its toxification by cytochrome P450. The effect of disubstitution adjacent to the phenolic hydroxyl group was studied in order to establish possible structure-activity relationships. 3,5-Substituents with electron-donating capacities (R = -CH3, -OCH3, -SCH3) decreased the half-wave oxidation potential substantially by 0.07 V to 0.16 V, whereas electron-withdrawing substituents (R = -F, -Cl, -Br, or -I) increased the oxidation potential by 0.04 V to 0.06 V when compared to paracetamol. Electron-donating substituents (R = -CH3, -OCH3, -SCH3) increased the mouse brain cyclooxygenase inhibiting capacity of paracetamol. Electron-withdrawing halogen substituents (R = -F, -Cl, -Br or -I) decreased this inhibiting capacity. In agreement with this, the in vivo analgesic activity of the 3,5-dihalogenated analogues was lower when compared to paracetamol. Electron-donating substituents (R = -CH3, -OCH3, -SCH3) decreased the cytotoxicity of paracetamol, when measured as leakage of lactate dehydrogenase from freshly isolated rat hepatocytes, almost completely. Most 3,5-dihalogen substituents (R = -F, -Cl or -Br) diminished it slightly. The fourth electron-withdrawing substituent (R = -I) strongly lowered the cytotoxicity of paracetamol in this test system. In conclusion, a higher cycylooxygenase inhibitory potency of 3,5-disubstituted analogues of paracetamol seemed to correlate with a lower cytotoxicity. 3,5-Disubstituted analogues with electron-donating substituents might therefore be safer analgesics than paracetamol itself. The opposite probably applies to analogues of paracetamol with electron-withdrawing substituents at the 3- and 5- positions of the aromatic nucleus.
Collapse
Affiliation(s)
- J G Bessems
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Remirez D, Commandeur JN, Groot E, Vermeulen NP. Mechanism of protection of lobenzarit against paracetamol-induced toxicity in rat hepatocytes. Eur J Pharmacol 1995; 293:301-8. [PMID: 8748682 DOI: 10.1016/0926-6917(95)90049-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The protective effects of lobenzarit, an antioxidative agent and antirheumatic drug, on the cytotoxicity of paracetamol in rat hepatocytes were studied, as well as the inhibitory effects of lobenzarit on cytochrome P-450s and glutathione S-transferases (GSTs) in rat liver. Paracetamol was selected as a model toxin, since it is known to be bioactivated by specific cytochrome P-450s presumably to N-acetyl-p-benzoquinoneimine, a reactive metabolite which upon overdosage of paracetamol causes protein and non-protein thiol depletion, lipid peroxidation and cytotoxicity measurable as LDH leakage. At concentrations of lobenzarit of 0.2 and 0.3 mM, added 30 min before paracetamol, the drug prevented paracetamol-induced leakage of lactate dehydrogenase (LDH) almost completely and lipid peroxidation (LPO) and depletion of glutathione (GSH) substantially and also the formation of the 3-glutathionyl conjugate of paracetamol. However, at a concentration of 0.05 mM Lobenzarit did not protect anymore against the paracetamol toxicity, When added to the hepatocytes 1 h and 2 h before paracetamol, 0.05 and 0.2 and 0.3 mM concentrations of lobenzarit did not protect against the cytotoxicity induced by paracetamol either. Lobenzarit did not inhibit cytochromes P-450 1A1/1A2, 2B1/2B2 and 2E1 which were measured as ethoxyresorufin O-deethylation (EROD) activity in beta-naphthoflavone-induced rat liver microsomes, as pentoxyresorufin de-pentylation (PROD) activity in phenobarbital-induced microsomes and as p-nitrophenol hydroxylation (PNPH) activity in pyrazol-induced microsomes. Lobenzarit did not show inhibition of glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene (CDNB) in cytosol from liver of rats treated with phenobarbital, pyrazol and beta-naphthoflavone either. It is concluded that the cytoprotective effect of lobenzarit is most likely due to its antioxidant effects and/or to its ability to stimulate GSH reductase.
Collapse
Affiliation(s)
- D Remirez
- Leiden, Amsterdam Center for Drug Research (LACDR), Department of Pharmacochemistry, Vriji Universiteit, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
48
|
Ishida K, Hanada T, Sakai T, Doi K. Effects of fructose-induced hypertriglyceridemia on hepatorenal toxicity of acetaminophen in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1995; 47:509-16. [PMID: 8871091 DOI: 10.1016/s0940-2993(11)80338-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mode of hepatorenal toxicity of acetaminophen (AAP) was compared between fructose-induced hyper-triglyceridemic and normal rats. The hypertriglyceridemic and normal rats received a single dose of AAP (0, 750 and 900 mg/kg ip) at week 5 of fructose-treatment. At 24 hrs after AAP-dosing, they were sacrificed and examined blood biochemically and histopathologically. Hepatotoxicity as indicated by an increase in plasma ALT and AST activities and centrilobular necrosis of hepatocytes was more severe in the normal rats than in the hypertriglyceridemic ones. In contrast, nephrotoxicity as indicated by an increase in plasma urea nitrogen content and necrosis of epithelial cells in the proximal straight tubules was more severe in the hypertriglyceridemic rats than in normal ones. Thus, in the fructose-induced hypertriglyceridemic rats, as compared with normal ones, hepatotoxicity of AAP became apparently less severe, whereas nephrotoxicity of AAP became significantly more severe.
Collapse
Affiliation(s)
- K Ishida
- Safety Research Laboratories, Yamanouchi Pharmaceutical CO., LTD., Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Rankin GO, Beers KW, Nicoll DW, Anestis DK, Ball JG, Valentovic MA, Brown PI. Effect of dimethyl sulfoxide on N-(3,5-dichlorophenyl)succinimide (NDPS) and NDPS metabolite nephrotoxicity. Toxicology 1995; 100:79-88. [PMID: 7624885 DOI: 10.1016/0300-483x(95)93709-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dimethyl sulfoxide (DMSO) is frequently used as a solvent to assist in dissolving compounds which are not readily soluble in other injection vehicles. The purpose of this study was to determine the suitability of DMSO as a vehicle for administering the nephrotoxicant, N-(3,5-dichlorophenyl)succinimide, (NDPS) and two nephrotoxicant NDPS metabolites, N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS) and N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (NDHSA). Male Fischer 344 rats (4/group) were administered a single intraperitoneal injection of NDPS (0.4 or 0.8 mmol/kg), NDHS (0.1 or 0.2 mmol/kg), or NDHSA (0.1 or 0.2 mmol/kg) dissolved in 25% DMSO in sesame oil or 100% sesame oil (2.5 ml/kg), while control rats received vehicle only. Renal function was then monitored at 24 and 48 h. Including DMSO in the vehicle markedly attenuated NDPS 0.4 mmol/kg-induced nephrotoxicity and reduced NDPS 0.8 mmol/kg-induced renal effects. Thus, the magnitude of the attenuating effect of DMSO depended in part on the nephrotoxicant dose of NDPS. In addition, NDHS nephrotoxicity was not altered by DMSO and only slight effects on NDHSA nephrotoxicity were observed. These results suggest that DMSO is capable of attenuating NDPS nephrotoxicity, and that the primary mechanism of this interaction might be due to an inhibition of the biotransformation of NDPS to NDHS.
Collapse
Affiliation(s)
- G O Rankin
- Department of Pharmacology, Marshall University School of Medicine, Huntington, WV 25704-9388, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Nelson SD. Mechanisms of the formation and disposition of reactive metabolites that can cause acute liver injury. Drug Metab Rev 1995; 27:147-77. [PMID: 7641574 DOI: 10.3109/03602539509029821] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acetaminophen and pulegone are just two examples for many agents that can form reactive metabolites that can cause acute liver injury. Two other classic organic compounds that have been extensively studied are carbon tetrachloride (for a recent review see Ref. 159, and for other discussions see Refs. 8 and 9) and bromobenzene (for review see Ref. 160). Different kinds of protein adducts of reactive metabolites of bromobenzene have been partially characterized [161], and specific antibodies to these adducts are now being used to isolate and identify the proteins that are modified (162). In contrast, carbon tetrachloride and other agents, such as the herbicide diquat, may form radicals that bind to and/or oxidize lipids and proteins in causing liver injury (163, 164). Therefore, the recent development [165] of antibodies to detect oxidative damage to proteins will be important in the identification and characterization of macromolecules that do not form adducts with reactive metabolites but are damaged oxidatively. Thus, some major challenges in the coming years are to identify hepatocellular macromolecules that are modified by reactive metabolites, and then approach the more difficult task of integrating this information into a time course and sequence of events leading to lethal hepatocellular injury.
Collapse
Affiliation(s)
- S D Nelson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle 98195, USA
| |
Collapse
|