1
|
Sánchez AG, Ibargoyen MN, Mastrogiovanni M, Radi R, Keszenman DJ, Peluffo RD. Fast and biphasic 8-nitroguanine production from guanine and peroxynitrite. Free Radic Biol Med 2022; 193:474-484. [PMID: 36332879 DOI: 10.1016/j.freeradbiomed.2022.10.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Guanine (Gua), among purines, is a preferred oxidation/nitration target because of its low one-electron redox potential. The reactive oxygen/nitrogen species peroxynitrite (ONOO-), produced in vivo by the reaction between nitric oxide (•NO) and superoxide radical (O2•‒), is responsible for several oxidative modifications in biomolecules, including nitration, nitrosation, oxidation, and peroxidation. In particular, the nitration of Gua, although detected, as well as its reaction kinetics have been seldom investigated. Thus, we studied the concentration- and temperature-dependent formation of 8-nitroguanine (8-NitroGua) in phosphate buffer (pH 7.40) using stopped-flow spectrophotometry. Traces showed a biexponential behavior, with best-fit rate constants: kfast = 4.4 s-1 and kslow = 0.41 s-1 (30 °C, 400 μM both Gua and ONOO-). kfast increased linearly with the concentration of both reactants whereas kslow was concentration-independent. Linear regression analysis of kfast as a function of Gua and ONOO- concentration yielded values of 2.5-6.3 × 103 M-1s-1 and 1.5-3.5 s-1 for the second-order (slope) and first-order (ordinate) rate constants, respectively (30 °C). Since ONOO- is a short-lived species, its decay kinetics was also taken into account for this analysis. The 8-NitroGua product was stable for at least 4 h, so no spontaneous denitration was observed. Stopped-flow assays using antioxidants and free-radical scavengers suggested a mixed direct/indirect reaction mechanism for 8-NitroGua formation. Gua nitration by ONOO- was also observed in the presence of physiologically relevant CO2 concentrations. The reaction product identity, its yield (∼4.2%, with 400 μM ONOO- and 200 μM Gua), and the reaction mechanism were unequivocally determined by HPLC-MS/MS experiments. In conclusion, 8-NitroGua production at physiologic pH reached significant levels in a few hundred milliseconds, suggesting that the process might be kinetically relevant in vivo and can likely cause permanent nitrative damage to DNA bases.
Collapse
Affiliation(s)
- Ana G Sánchez
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay
| | - M Natalia Ibargoyen
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay
| | - Deborah J Keszenman
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay
| | - R Daniel Peluffo
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
2
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
3
|
Pezzotti G, Asai T, Adachi T, Ohgitani E, Yamamoto T, Kanamura N, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ, Makimura K, Mazda O, Nishimura I. Antifungal activity of polymethyl methacrylate/Si 3N 4 composites against Candida albicans. Acta Biomater 2021; 126:259-276. [PMID: 33727194 DOI: 10.1016/j.actbio.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.
Collapse
|
4
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
5
|
Elshikh MS, Al-Hemaid FMA, Chen TW, Chinnapaiyan S, Ajmal Ali M, Chen SM. Sonochemical synthesis of graphitic carbon nitrides-wrapped bimetal oxide nanoparticles hybrid materials and their electrocatalytic activity for xanthine electro-oxidation. ULTRASONICS SONOCHEMISTRY 2020; 64:105006. [PMID: 32146332 DOI: 10.1016/j.ultsonch.2020.105006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 05/27/2023]
Abstract
A novel network-like magnetic nanoparticle was fabricated on a graphitic carbon nitride through a facile sonochemical route at frequency 20 kHz and power 70 W. To enhance the electrocatalytic activity of the modified materials, the graphitic carbon nitrides (g-C3N4) was prepared from melamine. Monitoring of xanthine concentration level in biological fluids is more important for clinical diagnosis and medical applications. As modified CuFe2O4/g-C3N4 nanocomposite exhibits better electrochemical activity towards the oxidation of xanthine with higher anodic current compared to other modified and unmodified electrode for the detection of xanthine with larger linear range (0.03-695 µM) and lower limit of detection (13.2 nM). To compare with these methods, the electrochemical techniques may be an alternative high sensitive method due to their simplicity and rapid detection time. In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| |
Collapse
|
6
|
Akazaki S, Aoki R, Sato K. Direct detection of diclofenac radical produced by ultraviolet irradiation using electron spin resonance method. J Clin Biochem Nutr 2020; 66:193-197. [PMID: 32523245 DOI: 10.3164/jcbn.19-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022] Open
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug, is commonly used as an antipyretic analgesic owing to its strong anti-inflammatory action in clinical treatment. However, diclofenac can cause injury, with gastrointestinal mucosal lesions and skin photosensitivity as the main side effects. In general, photosensitive drugs contain photosensitive chemical sites, and form free radicals under ultraviolet irradiation, leading to phototoxic reactions. Therefore, this study focuses on free radical production in photosensitive reactions of diclofenac. The free radical production mechanism of diclofenac under ultraviolet irradiation, which might result in photo-toxicity, was clarified using a direct electron spin resonance method. When diclofenac was irradiated with ultraviolet light (254 nm), diclofenac radicals were generated depending on the ultraviolet irradiation time and stably present for 30 min at room temperature. Diclofenac radicals were produced by the ultraviolet irradiation system depending on the dose of diclofenac until 2 mM. Therefore, diclofenac radicals might directly or indirectly react with various biomolecules to cause phototoxicity, other side effects, and new diclofenac pharmacology owing to its stability of diclofenac radicals.
Collapse
Affiliation(s)
- Satomi Akazaki
- Department of Clinical Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka City, Miyazaki 882-8508, Japan
| | - Ryohei Aoki
- Department of Clinical Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka City, Miyazaki 882-8508, Japan
| | - Keizo Sato
- Department of Clinical Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka City, Miyazaki 882-8508, Japan
| |
Collapse
|
7
|
Petřivalský M, Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:598. [PMID: 32508862 PMCID: PMC7248558 DOI: 10.3389/fpls.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.
Collapse
|
8
|
Chmielowska-Bąk J, Arasimowicz-Jelonek M, Deckert J. In search of the mRNA modification landscape in plants. BMC PLANT BIOLOGY 2019; 19:421. [PMID: 31610789 PMCID: PMC6791028 DOI: 10.1186/s12870-019-2033-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/12/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Precise regulation of gene expression is indispensable for the proper functioning of organisms in both optimal and challenging conditions. The most commonly known regulative mechanisms include the modulation of transcription, translation and adjustment of the transcript, and protein half-life. New players have recently emerged in the arena of gene expression regulators - chemical modifications of mRNAs. MAIN TEXT The latest studies show that modified ribonucleotides affect transcript splicing, localization, secondary structures, interaction with other molecules and translation efficiency. Thus far, attention has been focused mostly on the most widespread mRNA modification - adenosine methylation at the N6 position (m6A). However, initial reports on the formation and possible functions of other modified ribonucleotides, such as cytosine methylated at the 5' position (m5C), 8-hydroxyguanosine (8-OHG) and 8-nitroguanosine (8-NO2G), have started to appear in the literature. Additionally, some reports indicate that pseudouridine (Ψ) is present in mRNAs and might perform important regulatory functions in eukaryotic cells. The present review summarizes current knowledge regarding the above-mentioned modified ribonucleotides (m6A, m5C, 8-OHG, 8-NO2G) in transcripts across various plant species, including Arabidopsis, rice, sunflower, wheat, soybean and potato. CONCLUSIONS Chemical modifications of ribonucleotides affect mRNA stability and translation efficiency. They thus constitute a newly discovered layer of gene expression regulation and have a profound effect on the development and functioning of various organisms, including plants.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
9
|
Tiwari MK, Mishra PC. Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones. J Mol Model 2018; 24:287. [DOI: 10.1007/s00894-018-3805-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022]
|
10
|
Bhattacharjee K, Shukla PK. Does 8-Nitroguanine Form 8-Oxoguanine? An Insight from Its Reaction with •OH Radical. J Phys Chem B 2018; 122:1852-1861. [PMID: 29360382 DOI: 10.1021/acs.jpcb.7b12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
8-Nitroguanine (8-nitroG) formed due to nitration of guanine base of DNA plays an important role in mutagenesis and carcinogenesis. In the present contribution, state-of-the-art quantum chemical calculations using M06-2X density functional and domain-based local pair natural orbital-coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)) methods have been carried out to investigate the mechanism of reaction of •OH radical with 8-nitroG leading to the formation of 8-oxoguanine (8-oxoG) (one of the most mutagenic and carcinogenic derivatives of guanine) in gas phase and aqueous media. Calculations of barrier energies and rate constants involved in the addition reactions of •OH radical at different sites of 8-nitroguanine show that C8 and C2 sites are the most and least reactive sites, respectively. Relative stability and Boltzmann populations of adducts show that the adduct formed at the C8 site occurs predominantly in equilibrium. Our calculations reveal that 8-nitroG is very reactive toward •OH radical and is converted readily into 8-oxoG when attacked by •OH radicals, in agreement with available experimental observations.
Collapse
Affiliation(s)
| | - P K Shukla
- Department of Physics, Assam University , Silchar 788011, India
| |
Collapse
|
11
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:672. [PMID: 29896206 PMCID: PMC5987678 DOI: 10.3389/fpls.2018.00672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 05/05/2023]
Abstract
Peroxynitrite (ONOO-) exhibits a well-documented nitration activity in relation to proteins and lipids; however, the interaction of ONOO- with nucleic acids remains unknown in plants. The study uncovers RNA and mRNA nitration as an integral event in plant metabolism intensified during immune response. Using potato-avr/vr Phytophthora infestans systems and immunoassays we documented that potato immunity is accompanied by two waves of boosted ONOO- formation affecting guanine nucleotides embedded in RNA/mRNA and protein tyrosine residues. The early ONOO- generation was orchestrated with an elevated level of protein nitration and a huge accumulation of 8-nitroguanine (8-NO2-G) in RNA and mRNA pools confirmed as a biomarker of nucleic acid nitration. Importantly, potato cells lacking ONOO- due to scavenger treatment and attacked by the avr pathogen exhibited a low level of 8-NO2-G in the mRNA pool correlated with reduced symptoms of programmed cell death (PCD). The second burst of ONOO- coincided both with an enhanced level of tyrosine-nitrated proteins identified as subtilisine-like proteases and diminished protease activity in cells surrounding the PCD zone. Nitration of both RNA/mRNA and proteins via NO/ONOO- may constitute a new metabolic switch in redox regulation of PCD, potentially limiting its range in potato immunity to avr P. infestans.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Magdalena Arasimowicz-Jelonek, ;
| |
Collapse
|
13
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. Int J Mol Sci 2017; 18:E1808. [PMID: 28825631 PMCID: PMC5578195 DOI: 10.3390/ijms18081808] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammation can be induced by chronic infection, inflammatory diseases and physicochemical factors. Chronic inflammation is estimated to contribute to approximately 25% of human cancers. Under inflammatory conditions, inflammatory and epithelial cells release reactive oxygen (ROS) and nitrogen species (RNS), which are capable of causing DNA damage, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-nitroguanine. We reported that 8-nitroguanine was clearly formed at the sites of cancer induced by infectious agents including Helicobacter pylori, inflammatory diseases including Barrett's esophagus, and physicochemical factors including asbestos. DNA damage can lead to mutations and genomic instability if not properly repaired. Moreover, DNA damage response can also induce high mobility group box 1-generating inflammatory microenvironment, which is characterized by hypoxia. Hypoxia induces hypoxia-inducible factor and inducible nitric oxide synthase (iNOS), which increases the levels of intracellular RNS and ROS, resulting DNA damage in progression with poor prognosis. Furthermore, tumor-producing inflammation can induce nuclear factor-κB, resulting in iNOS-dependent DNA damage. Therefore, crosstalk between DNA damage and inflammation may play important roles in cancer development. A proposed mechanism for the crosstalk may explain why aspirin decreases the long-term risk of cancer mortality.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan.
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan.
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan.
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
14
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Oikawa S, Murata M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ 2017; 38:26. [PMID: 28050219 PMCID: PMC5203929 DOI: 10.1186/s41021-016-0055-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including bacterium Helicobacter pylori (H. pylori), viruses [hepatitis B virus (HBV), hepatitis C virus (HCV), human papillomavirus (HPV) and Epstein-Barr virus (EBV)] and parasites [Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)]. H. pylori, HBV/HCV, HPV, EBV, SH and OV are important risk factors for gastric cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, bladder cancer, and cholangiocarcinoma, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues, and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that nitrative and oxidative DNA damage in stem cells may play a key role in infection-related carcinogenesis via chronic inflammation.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Ning Ma
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| |
Collapse
|
15
|
Hu CW, Chang YJ, Hsu YW, Chen JL, Wang TS, Chao MR. Comprehensive analysis of the formation and stability of peroxynitrite-derived 8-nitroguanine by LC-MS/MS: Strategy for the quantitative analysis of cellular 8-nitroguanine. Free Radic Biol Med 2016; 101:348-355. [PMID: 27989752 DOI: 10.1016/j.freeradbiomed.2016.10.505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a major oxidizing and nitrating biological agent formed at sites of inflammation. Peroxynitrite can cause DNA damage and is thought to contribute to inflammation-related carcinogenesis. This study describes a sensitive and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the direct determination of peroxynitrite-derived 8-nitroguanine (8-nitroGua) in DNA hydrolysates. This method exhibited a sensitive detection limit of 3 fmol and inter- and intraday imprecision of <10% and was applied to systemically examine the formation and stability of peroxynitrite-derived 8-nitroGua in different DNA substrates under various conditions. The 8-nitroGua formation was maximal at pH 8. The formation rate of 8-nitroGua in different DNA substrates decreased in the order of monodeoxynucleoside>single-stranded DNA>double-stranded DNA. A stability test revealed that the half-life for the depurination of 8-nitroGua from DNA was short and affected by both the temperature and DNA structure. When present in monodeoxynucleoside, the half-life of 8-nitroGua was estimated to be ~6min at 25°C and 2.3h at ~0°C. In single-stranded DNA, the half-life varied from 1.6h at 37°C to 533h at -20°C, whereas the half-life increased from 2.4h at 37°C to 1115h at -20°C in double-stranded DNA. We demonstrated that the measurement of 8-nitroGua in isolated DNA is not practicable because 8-nitroGua is unstable and lost during DNA extraction from cell. Therefore, we suggest that directly detecting cellular 8-nitroGua following nuclear membrane lysis is an alternative measure of the nitrative damage of nucleic acids, accounting for both DNA and RNA lesions within cells.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Wen Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Optometry, Da-Yeh University, Changhua 515, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
16
|
KOTANI A, KOTANI T, KOJIMA S, HAKAMATA H, KUSU F. Determination of Aristolochic Acids I and II in Herbal Medicines by High-performance Liquid Chromatography with Electrochemical Detection. ELECTROCHEMISTRY 2014. [DOI: 10.5796/electrochemistry.82.444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, Kawanishi S. DNA damage in inflammation-related carcinogenesis and cancer stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:387014. [PMID: 24382987 PMCID: PMC3870134 DOI: 10.1155/2013/387014] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including parasites (Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)), viruses (hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV)), and bacterium Helicobacter pylori (HP). SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Olfat Hammam
- Departments of Pathology and Urology, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
18
|
Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals. J Mol Model 2013; 19:5445-56. [DOI: 10.1007/s00894-013-2023-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/25/2013] [Indexed: 02/08/2023]
|
19
|
Saito Y, Ito C, Fujii S, Sawa T, Akaike T, Arimoto H. Fluorescent Probes for Live Cell Imaging of Endogenous Guanine Nitration. Chembiochem 2013; 14:1068-71. [DOI: 10.1002/cbic.201300129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 11/10/2022]
|
20
|
Formation of 8-S-L-cysteinylguanosine from 8-bromoguanosine and cysteine. Bioorg Med Chem Lett 2013; 23:3864-7. [PMID: 23714713 DOI: 10.1016/j.bmcl.2013.04.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 11/21/2022]
Abstract
When 8-bromoguanosine was incubated with cysteine at pH 7.4 and 37 °C, a previously unidentified product was formed as a major product in addition to guanosine. The product was identified as a cysteine substitution derivative of guanosine at the 8 position, 8-S-L-cysteinylguanosine. The reaction was accelerated under mildly basic conditions. The cysteine adduct of guanosine was fairly stable and decomposed with a half-life of 193 h at pH 7.4 and 37 °C. Similar results were observed for incubation of 8-bromo-2'-deoxyguanosine with cysteine. The results suggest that 8-bromoguanine in nucleosides, nucleotides, RNA, and DNA can react with thiols resulting in stable adducts.
Collapse
|
21
|
Peteu SF, Bose T, Bayachou M. Polymerized hemin as an electrocatalytic platform for peroxynitrite's oxidation and detection. Anal Chim Acta 2013; 780:81-8. [DOI: 10.1016/j.aca.2013.03.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/17/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
|
22
|
Abstract
Maintaining nitric oxide (NO) homeostasis is essential for normal plant physiological processes. However, very little is known about the mechanisms of NO modulation in plants. Here, we report a unique mechanism for the catabolism of NO based on the reaction with the plant hormone cytokinin. We screened for NO-insensitive mutants in Arabidopsis and isolated two allelic lines, cnu1-1 and 1-2 (continuous NO-unstressed 1), that were identified as the previously reported altered meristem program 1 (amp1) and as having elevated levels of cytokinins. A double mutant of cnu1-2 and nitric oxide overexpression 1 (nox1) reduced the severity of the phenotypes ascribed to excess NO levels as did treating the nox1 line with trans-zeatin, the predominant form of cytokinin in Arabidopsis. We further showed that peroxinitrite, an active NO derivative, can react with zeatin in vitro, which together with the results in vivo suggests that cytokinins suppress the action of NO most likely through direct interaction between them, leading to the reduction of endogenous NO levels. These results provide insights into NO signaling and regulation of its bioactivity in plants.
Collapse
|
23
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
24
|
Trojanowicz M. Recent developments in electrochemical flow detections—A review. Anal Chim Acta 2011; 688:8-35. [DOI: 10.1016/j.aca.2010.12.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/29/2022]
|
25
|
Reactivities of radicals of adenine and guanine towards reactive oxygen species and reactive nitrogen oxide species: OH and NO2. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.01.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Saito Y, Taguchi H, Fujii S, Sawa T, Kida E, Kabuto C, Akaike T, Arimoto H. 8-Nitroguanosines as chemical probes of the protein S-guanylation. Chem Commun (Camb) 2008:5984-6. [PMID: 19030560 DOI: 10.1039/b810771h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azido- and fluoro- derivatives of 8-nitroguanosine were developed, and will contribute to the exploration of protein S-guanylation by endogenous nitrated nucleosides.
Collapse
Affiliation(s)
- Yohei Saito
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, 981-8555, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
de la Fuente E, Villagra G, Bollo S. Electrochemical Nucleic Acid Biosensors for the Detection of Interaction Between Peroxynitrite and DNA. ELECTROANAL 2007. [DOI: 10.1002/elan.200703885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Beda NV, Nedospasov AA. NO-dependent modifications of nucleic acids. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:195-228. [PMID: 17476982 DOI: 10.1134/s106816200702001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.
Collapse
|
29
|
Jena NR, Mishra PC. Formation of 8-nitroguanine and 8-oxoguanine due to reactions of peroxynitrite with guanine. J Comput Chem 2007; 28:1321-35. [PMID: 17278116 DOI: 10.1002/jcc.20607] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactions of peroxynitrite with guanine were investigated using density functional theory (B3LYP) employing 6-31G** and AUG-cc-pVDZ basis sets. Single point energy calculations were performed at the MP2/AUG-cc-pVDZ level. Genuineness of the calculated transition states (TS) was tested by visually examining the vibrational modes corresponding to the imaginary vibrational frequencies and applying the criterion that the TS properly connected the reactant and product complexes (PC). Genuineness of all the calculated TS was further ensured by intrinsic reaction coordinate (IRC) calculations. Effects of aqueous media were investigated by solvating all the species involved in the reactions using the polarizable continuum model (PCM). The calculations reveal that the most stable nitro-product complex involving the anion of 8-nitroguanine and a water molecule i.e. 8NO(2)G(-) + H(2)O can be formed according to one reaction mechanism while there are two possible reaction mechanisms for the formation of the oxo-product complex involving 8-oxoguanine and anion of the NO(2) group i.e. 8OG + NO(2)(-). The calculated relative stabilities of the PC, barrier energies of the reactions and the corresponding enthalpy changes suggest that formation of the complex 8OG + NO(2)(-) would be somewhat preferred over that of the complex 8NO(2)G(-) + H(2)O. The possible biological implications of this result are discussed.
Collapse
Affiliation(s)
- N R Jena
- Department of Physics, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | |
Collapse
|
30
|
Peroxynitrite: In vivo and In vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and inflammatory processes. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThis review summarizes all significant data regarding peroxynitrite chemistry, the ways of its synthetic preparation as well as the degradative action of this species on biomolecules, in particular glycosaminoglycans, among which the hyaluronan degradation by peroxynitrite has recently been the subject of greater interest than ever before. The complex chemical behavior of a peroxynitrite molecule is strongly influenced by a few factors; conformational structural forms, active intermediates release, presence of CO2 and trace transition metals, different reaction conditions, as well as the rules of kinetics. Special attention was focused on monitoring of the kinetics of the degradative action of peroxynitrite in or without the presence of residual hydrogen peroxide on high-molar-mass hyaluronan.
Collapse
|
31
|
Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 2006; 8:1033-45. [PMID: 16771693 DOI: 10.1089/ars.2006.8.1033] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors review studies on 8-nitroguanine (8-NO(2)-G) formed by reactions of guanine, guanosine, and 2 - deoxyguanosine, either free or in DNA or RNAwith reactive nitrogen species (RNS) generated from peroxynitrite, the myeloperoxidase-H(2)O(2)-nitrite system, and others. Use of antibodies against 8-NO(2)-G has revealed increased formation of 8-NO(2)-G in various pathological conditions, including RNA virus-induced pneumonia in mice, intrahepatic bile ducts of hamsters infected with the liver fluke Opisthorchis viverrini, and gastric mucosa of patients with Helicobacter pylori-induced gastritis. Immunoreactivity has been found in the cytosol as well as in the nucleus of inflammatory cells and epithelial cells in inflamed tissues, but not in normal tissues. 8- NO(2)-G in DNA is potentially mutagenic, yielding G:C to T:A transversion, possibly through its rapid depurination to form an apurinic site and/or miscoding with adenine. 8-NO(2)-G in RNA may interfere with RNA functions and metabolism. Nitrated guanine nucleosides and nucleotides in the nucleotide pool may contribute to oxidative stress via production of superoxide mediated by various reductases and may disturb or modulate directly various important enzymes such as GTP-binding proteins and cGMP-dependent enzymes. Further studies are warranted to establish the roles of 8-NO(2)-G in various pathophysiological conditions and inflammation-associated cancer.
Collapse
|
32
|
Sawa T, Tatemichi M, Akaike T, Barbin A, Ohshima H. Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: association with cigarette smoking. Free Radic Biol Med 2006; 40:711-20. [PMID: 16458202 DOI: 10.1016/j.freeradbiomed.2005.09.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/30/2005] [Accepted: 09/16/2005] [Indexed: 12/12/2022]
Abstract
We have developed an analytical method to quantitate urinary 8-nitroguanine, a product of nitrative nucleic acid damage caused by reactive nitrogen species such as peroxynitrite and nitrogen dioxide. 8-Nitroguanine was purified from human urine using immunoaffinity columns with an anti-8-nitroguanine antibody, followed by quantitation by high-performance liquid chromatography-electrochemical detection. Four sequential electrodes were used to (a) oxidize interfering compounds (+250 mV), (b) reduce nitrated bases (two online electrodes at -1000 mV), and (c) quantitate reduced derivatives (+150 mV). Using this system 8-nitroxanthine can also be detected, with the detection limits being 25 and 50 fmol/injection for 8-nitroguanine and 8-nitroxanthine, respectively. The method was used to analyze both adducts in the urine of smokers (n=12) and nonsmokers (n=17). We found that smokers excrete more 8-nitroguanine [median, 6.1 fmol/mg creatinine; interquartile range (IQR), 23.8] than nonsmokers (0; IQR, 0.90) (p=0.018), and although 8-nitroxanthine was detected in human urine, its level was not related to smoking status. This is the first report to show that 8-nitroguanine is present in human urine and the methodology developed can be used to study the pathogenic roles of this adduct in the etiology of cancers associated with cigarette smoking and inflammation.
Collapse
Affiliation(s)
- Tomohiro Sawa
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
33
|
Kaiya T, Nakamura K, Tanaka M, Miyata N, Kohda K. Product Analyses of Ozone Mediated Nitration of Benzimidazole Derivatives with Nitrogen Dioxide: Formation of 1-Nitrobenzimidazoles and Conversion to Benzotriazoles. Chem Pharm Bull (Tokyo) 2004; 52:570-6. [PMID: 15133210 DOI: 10.1248/cpb.52.570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several benzimidazole derivatives having electron-withdrawing or -donating substituent(s) at the benzene moiety were used as models of the imidazole moiety of purine bases and their nitration with nitrogen dioxide and ozone (so-called Kyodai nitration) were examined. Products were extracted from the reaction mixture with AcOEt and their structures were analyzed. 1-Nitrobenzimidazole derivatives and unexpected 1-nitrobenzotriazole derivatives were identified. Although the yields of 1-nitrobenzimidazole derivatives were quite low, these were all new compounds that could be obtained only by Kyodai nitration. It was speculated that benzotriazoles were formed via 1-nitrobenzimidazoles and subsequent nitration toward benzotriazoles resulted in the formation of 1-nitrobenzotriazoles.
Collapse
Affiliation(s)
- Toyo Kaiya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
34
|
Yeh GC, Henderson JP, Byun J, André d'Avignon D, Heinecke JW. 8-Nitroxanthine, a product of myeloperoxidase, peroxynitrite, and activated human neutrophils, enhances generation of superoxide by xanthine oxidase. Arch Biochem Biophys 2003; 418:1-12. [PMID: 13679077 DOI: 10.1016/s0003-9861(03)00256-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive nitrogen and oxygen species are implicated in the damage of ischemic tissue that is reperfused. One important pathway may involve xanthine oxidase. Xanthine oxidase uses xanthine, a product of ATP degradation in ischemic tissue, to produce superoxide and hydrogen peroxide. Superoxide reacts rapidly with nitric oxide to form peroxynitrite, a powerful oxidant. Another potential source of reactive nitrogen species is the myeloperoxidase-hydrogen peroxide-nitrite system of activated phagocytes. We demonstrate that peroxynitrite and myeloperoxidase nitrate xanthine in vitro. Through 13C NMR spectroscopy, UV/visible spectroscopy, and mass spectrometry, the major product was identified as 8-nitroxanthine. Xanthine nitration by peroxynitrite was optimal at neutral pH and was markedly stimulated by physiological concentrations of bicarbonate. Xanthine nitration by myeloperoxidase required hydrogen peroxide and nitrite. However, it was independent of chloride ion and little affected by scavengers of hypochlorous acid, suggesting that the reactive agent is a nitrogen dioxide-like species. 8-Nitroxanthine was generated by a low, steady flux of peroxynitrite, and also by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human neutrophils, suggesting that the reactions may be physiologically relevant. 8-Nitroxanthine may exert biological effects because it markedly increased the production of superoxide by the xanthine oxidase-xanthine system. Our observations suggest a mechanism for the enhanced formation of superoxide in reperfused tissue, which might increase the production of peroxynitrite and 8-nitroxanthine. Generation of 8-nitroxanthine by peroxynitrite and myeloperoxidase could represent a positive feedback mechanism that enhances further the production of both reactive oxygen and nitrogen species in ischemic tissue that is reperfused.
Collapse
Affiliation(s)
- George C Yeh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Yamada M, Suzuki T, Kanaori K, Tajima K, Sakamoto S, Kodaki T, Makino K. Nitration of 2'-deoxyguanosine by a NO/O2 gas mixture: identification and characterization of N2-nitro-2'-deoxyguanosine. Org Lett 2003; 5:3173-6. [PMID: 12943380 DOI: 10.1021/ol0300468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A gas mixture of NO and O(2) was bubbled into 2'-deoxyguanosine solution at neutral pH and 37 degrees C. A novel nitrated nucleoside was generated in the reaction mixture in addition to 8-nitroguanine, 8-nitroxanthine, 2'-deoxyxanthosine, xanthine, and guanine. The novel nucleoside was identified as N(2)-nitro-2'-deoxyguanosine by spectrometric data.
Collapse
Affiliation(s)
- Masaki Yamada
- Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Akaike T, Okamoto S, Sawa T, Yoshitake J, Tamura F, Ichimori K, Miyazaki K, Sasamoto K, Maeda H. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci U S A 2003; 100:685-90. [PMID: 12522148 PMCID: PMC141057 DOI: 10.1073/pnas.0235623100] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For many diseases, mediation of pathogenesis by nitric oxide (NO) has been suggested. In this study, we explored NO-induced viral pathogenesis with a focus on nucleic acid damage as evidenced by 8-nitroguanosine formation in vivo. Wild-type mice and littermate mice deficient in inducible NO synthase (iNOS) were infected with influenza or Sendai virus. Formation of 8-nitroguanosine in virus-infected lungs was assessed immunohistochemically with an antibody specific for 8-nitroguanosine. Extensive nitration of RNA either treated with peroxynitrite or obtained from cultured RAW 264 cells expressing iNOS was readily detected by this antibody. Strong 8-nitroguanosine immunostaining was evident primarily in the cytosol of bronchial and bronchiolar epithelial cells of virus-infected wild-type mice but not iNOS-deficient mice. This staining colocalized with iNOS immunostaining in the lung. 8- Nitroguanosine staining disappeared after addition of exogenous authentic 8-nitroguanosine during the antibody reaction and after pretreatment of tissues with sodium hydrosulfite, which reduces 8-nitroguanosine to 8-aminoguanosine. NO was generated in excess in lungs of wild-type mice but was eliminated in iNOS-deficient mice after virus infection; this result also correlated well with formation of 8-nitroguanosine and 3-nitrotyrosine. One consequence of the lack of iNOS expression was marked improvement in histopathological changes in the lung and the lethality of the infection without effects on cytokine responses and viral clearance. It is intriguing that 8-nitroguanosine markedly stimulated superoxide generation from cytochrome P450 reductase and iNOS in vitro. The present data constitute a demonstration of 8-nitroguanosine formation in vivo and suggest a potential role for NO-induced nitrative stress in viral pathogenesis.
Collapse
Affiliation(s)
- Takaaki Akaike
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shafirovich V, Mock S, Kolbanovskiy A, Geacintov NE. Photochemically catalyzed generation of site-specific 8-nitroguanine adducts in DNA by the reaction of long-lived neutral guanine radicals with nitrogen dioxide. Chem Res Toxicol 2002; 15:591-7. [PMID: 11952346 DOI: 10.1021/tx015593l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel photochemical approach is described for synthesizing site-specific 8-nitro-2'-deoxyguanosine (8-nitro-dG) adducts DNA. The method is based on the bimolecular reaction of a neutral, deprotonated guanine radical [G(-H)*] in DNA and nitrogen dioxide (*NO(2)) radicals. This approach is illustrated using the single-stranded oligodeoxyribonucleotide 5'-d(CCATCGCTACC) dissolved in an aqueous solution of nitrite and bicarbonate anions at pH 7.5. The photochemical synthesis was triggered by the selective photodissociation of persulfate anions to yield SO(4)(*-) radical anions by either 308 nm XeCl excimer laser pulses or by a continuous irradiation with 290-340 nm light from a 1000 W Xe lamp. The sulfate radicals formed generate the CO(3)(*-) and *NO(2) radicals by one-electron oxidation of the bicarbonate and nitrite anions. In turn, the CO(3)(*-) radicals site-selectively generate G(-H)* radicals in DNA that combine with *NO(2) to form 8-nitro-dG lesions in the oligonucleotide. The nitrated oligonucleotides were purified by reversed-phase HPLC techniques and are stable at 4 degrees C for at least 4 days, but depurinate at ambient temperatures of 23 degrees C at pH 7 with a half-life of approximately 20 h. The nature of the reaction and decomposition products were studied by a combination of ESI and MALDI-TOF mass spectrometric techniques.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Chemistry Department and Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, New York 10003-5180, USA.
| | | | | | | |
Collapse
|
38
|
Lee JM, Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite reacts with 8-nitropurines to yield 8-oxopurines. Chem Res Toxicol 2002; 15:7-14. [PMID: 11800591 DOI: 10.1021/tx010093d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxynitrite reacts with 2'-deoxyguanosine to yield several major products, including 8-oxo-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine (8-nitroGua). While the terminal products formed during the reaction of 8-oxodG with peroxynitrite have been previously characterized, those formed from 8-nitroGua have not. To identify these products, 9-ethyl-8-nitroxanthine was used as a model for 8-nitroGua, since the former could be easily synthesized in high yield, and facilitated reversed-phase HPLC separation of the resulting products. Using this model substrate, the products formed during the peroxynitrite reaction were identified as the ethyl derivatives of oxaluric acid, 5-iminoimidazolidin-2,4-dione, III, [N-nitro-N'-[2,4-dioxo-imidazolidine-5-ylidene]-urea, V, dehydroallantoin, parabanic acid, cyanuric acid, and uric acid. Upon the basis of the previous studies with 8-oxodG, these products were recognized as those expected to arise from peroxynitrite-mediated uric acid oxidation. Furthermore, the presence of uric acid in the reaction mixture led us to propose a model in which the 8-nitropurine is first converted to the 8-oxopurine which is further oxidized by peroxynitrite to give the observed final products. We have also provided evidence suggesting that the peroxynitrite anion, acting as a nucleophile, might be responsible for the initial conversion of the 8-nitropurine to the 8-oxopurine and that a hydroxyl radical or oxidative process is less likely to explain this conversion.
Collapse
Affiliation(s)
- Joseph M Lee
- Division of Bioengineering and Environmental Health and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|