1
|
Dator RP, Murray KJ, Luedtke MW, Jacobs FC, Kassie F, Nguyen HD, Villalta PW, Balbo S. Identification of Formaldehyde-Induced DNA-RNA Cross-Links in the A/J Mouse Lung Tumorigenesis Model. Chem Res Toxicol 2022; 35:2025-2036. [PMID: 36356054 PMCID: PMC10336729 DOI: 10.1021/acs.chemrestox.2c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco products, and exposure to it is likely one of the factors contributing to the development of lung cancer in cigarette smokers. To exert its carcinogenic effects, NNK must be metabolically activated into highly reactive species generating a wide spectrum of DNA damage. We have identified a new class of DNA adducts, DNA-RNA cross-links found for the first time in NNK-treated mice lung DNA using our improved high-resolution accurate mass segmented full scan data-dependent neutral loss MS3 screening strategy. The levels of these DNA-RNA cross-links were found to be significantly higher in NNK-treated mice compared to the corresponding controls, which is consistent with higher levels of formaldehyde due to NNK metabolism as compared to endogenous levels. We hypothesize that this DNA-RNA cross-linking occurs through reaction with NNK-generated formaldehyde and speculate that this phenomenon has broad implications for NNK-induced carcinogenesis. The structures of these cross-links were characterized using high-resolution LC-MS2 and LC-MS3 accurate mass spectral analysis and comparison to a newly synthesized standard. Taken together, our data demonstrate a previously unknown link between DNA-RNA cross-link adducts and NNK and provide a unique opportunity to further investigate how these novel NNK-derived DNA-RNA cross-links contribute to carcinogenesis in the future.
Collapse
Affiliation(s)
- Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Kevin J. Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN 55108
| | | | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Pharmacology, College of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
3
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Guo J, Koopmeiners JS, Walmsley SJ, Villalta PW, Yao L, Murugan P, Tejpaul R, Weight CJ, Turesky RJ. The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers. Chem Res Toxicol 2022; 35:703-730. [PMID: 35446561 PMCID: PMC9148444 DOI: 10.1021/acs.chemrestox.2c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher J Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | |
Collapse
|
5
|
Tuesuwan B, Vongsutilers V. Nitrosamine Contamination in Pharmaceuticals: Threat, Impact, and Control. J Pharm Sci 2021; 110:3118-3128. [PMID: 33989680 DOI: 10.1016/j.xphs.2021.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Nitrosamine-contaminated medicinal products have raised safety concerns towards the use of various drugs, not only valsartan and all tetrazole-containing angiotensin II receptor blockers, but also ranitidine, metformin, and other medicines, many of which have been recalled and prone to shortage. At any stages, from drug substance synthesis throughout each product's lifetime, these impurities may evolve if an amine reacts with a nitrosating agent coexisting under appropriate conditions. Consequently, drug regulatory authorities worldwide have established stringent guidelines on nitrosamine contamination for all drug products in the market. This review encompasses various critical elements contributing to successful control measures against current and upcoming nitrosamine issues, ranging from accumulated knowledge of their toxicity concerns and potential root causes, precise risk evaluation, as well as suitable analytical techniques with sufficient sensitivity for impurity determination. With all these tools equipped, the impact of nitrosamine contamination in pharmaceuticals should be mitigated. An evaluation aid to tackle challenges in risk identification, as well as suitable industry-friendly analytical techniques to determine nitrosamines and other mutagenic impurities, are among unmet needs that will significantly simplify the risk assessment process.
Collapse
Affiliation(s)
- Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Rd., Bangkok 10330, Thailand
| | - Vorasit Vongsutilers
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Rd., Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Peterson LA, Oram MK, Flavin M, Seabloom D, Smith WE, O’Sullivan MG, Vevang KR, Upadhyaya P, Stornetta A, Floeder AC, Ho YY, Zhang L, Hecht SS, Balbo S, Wiedmann TS. Coexposure to Inhaled Aldehydes or Carbon Dioxide Enhances the Carcinogenic Properties of the Tobacco-Specific Nitrosamine 4-Methylnitrosamino-1-(3-pyridyl)-1-butanone in the A/J Mouse Lung. Chem Res Toxicol 2021; 34:723-732. [PMID: 33629582 PMCID: PMC10901071 DOI: 10.1021/acs.chemrestox.0c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 μmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.
Collapse
Affiliation(s)
- Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Marissa K. Oram
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Monica Flavin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donna Seabloom
- AeroCore Testing Service, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C. Floeder
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Yen-Yi Ho
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
8
|
Guo J, Chen H, Upadhyaya P, Zhao Y, Turesky RJ, Hecht SS. Mass Spectrometric Quantitation of Apurinic/Apyrimidinic Sites in Tissue DNA of Rats Exposed to Tobacco-Specific Nitrosamines and in Lung and Leukocyte DNA of Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2475-2486. [PMID: 32833447 PMCID: PMC7574376 DOI: 10.1021/acs.chemrestox.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) results in formation of reactive electrophiles that modify DNA to produce a variety of products including methyl, 4-(3-pyridyl)-4-oxobutyl (POB)-, and 4-(3-pyridyl)-4-hydroxybutyl adducts. Among these are adducts such as 7-POB-deoxyguanosine (N7POBdG) which can lead to apurinic/apyrimidinic (AP) sites by facile hydrolysis of the base-deoxyribonucleoside bond. In this study, we used a recently developed highly sensitive mass spectrometric method to quantitate AP sites by derivatization with O-(pyridin-3-yl-methyl)hydroxylamine (PMOA) (detection limit, 2 AP sites per 108 nucleotides). AP sites were quantified in DNA isolated from tissues of rats treated with NNN and NNK and from human lung tissue and leukocytes of cigarette smokers and nonsmokers. Rats treated with 5 or 21 mg/kg bw NNK for 4 days by s.c. injection had 2-6 and 2-17 times more AP sites than controls in liver and lung DNA (p < 0.05). Increases in AP sites were also found in liver DNA of rats exposed for 10 and 30 weeks (p < 0.05) but not for 50 and 70 weeks to 5 ppm of NNK in their drinking water. Levels of N7POBG were significantly correlated with AP sites in rats treated with NNK. In rats treated with 14 ppm (S)-NNN in their drinking water for 10 weeks, increased AP site formation compared to controls was observed in oral and nasal respiratory mucosa DNA (p < 0.05). No significant increase in AP sites was found in human lung and leukocyte DNA of cigarette smokers compared to nonsmokers, although AP sites in leukocyte DNA were significantly correlated with urinary levels of the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). This is the first study to use mass spectrometry based methods to examine AP site formation by carcinogenic tobacco-specific nitrosamines in laboratory animals and to evaluate AP sites in DNA of smokers and nonsmokers.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haoqing Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. ACS Infect Dis 2020; 6:1976-1997. [PMID: 32485104 PMCID: PMC7354218 DOI: 10.1021/acsinfecdis.0c00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tilimycin is an enterotoxin produced by the opportunistic pathogen Klebsiella oxytoca that causes antibiotic-associated hemorrhagic colitis (AAHC). This pyrrolobenzodiazepine (PBD) natural product is synthesized by a bimodular nonribosomal peptide synthetase (NRPS) pathway composed of three proteins: NpsA, ThdA, and NpsB. We describe the functional and structural characterization of the fully reconstituted NRPS system and report the steady-state kinetic analysis of all natural substrates and cofactors as well as the structural characterization of both NpsA and ThdA. The mechanism of action of tilimycin was confirmed using DNA adductomics techniques through the detection of putative N-2 guanine alkylation after tilimycin exposure to eukaryotic cells, providing the first structural characterization of a PBD-DNA adduct formed in cells. Finally, we report the rational design of small-molecule inhibitors that block tilimycin biosynthesis in whole cell K. oxytoca (IC50 = 29 ± 4 μM) through the inhibition of NpsA (KD = 29 ± 4 nM).
Collapse
Affiliation(s)
- Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dale F. Kreitler
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric Drake
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Peter W. Villalta
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
11
|
Wilson KA, Garden JL, Wetmore NT, Felske LR, Wetmore SD. DFT and MD Studies of Formaldehyde-Derived DNA Adducts: Molecular-Level Insights into the Differential Mispairing Potentials of the Adenine, Cytosine, and Guanine Lesions. J Phys Chem A 2019; 123:6229-6240. [PMID: 31241337 DOI: 10.1021/acs.jpca.9b03899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Josh L. Garden
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Natasha T. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Lindey R. Felske
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
12
|
Peterson LA. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK. Chem Res Toxicol 2017; 30:420-433. [PMID: 28092943 PMCID: PMC5473167 DOI: 10.1021/acs.chemrestox.6b00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Penning TM. Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chem Res Toxicol 2017; 30:162-176. [PMID: 27806574 PMCID: PMC5241174 DOI: 10.1021/acs.chemrestox.6b00319] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that convert aldehydes and ketones to primary and secondary alcohols for subsequent conjugation reactions and can be referred to as "phase 1" enzymes. Among all the human genes regulated by the Keap1/Nrf2 pathway, they are consistently the most overexpressed in response to Nrf2 activators. Although these enzymes play clear cytoprotective roles and deal effectively with carbonyl stress, their upregulation by the Keap1/Nrf2 pathway also has a potential dark-side, which can lead to chemotherapeutic drug resistance and the metabolic activation of lung carcinogens (e.g., polycyclic aromatic hydrocarbons). They also play determinant roles in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone metabolism to R- and S-4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol. The overexpression of AKR genes as components of the "smoking gene" battery raises the issue as to whether this is part of a smoking stress response or acquired susceptibility to lung cancer. Human AKR genes also regulate retinoid, prostaglandin, and steroid hormone metabolism and can regulate the local concentrations of ligands available for nuclear receptors (NRs). The prospect exists that signaling through the Keap1/Nrf2 system can also effect NR signaling, but this has remained largely unexplored. We present the case that chemoprevention through the Keap1/Nrf2 system may be context dependent and that the Nrf2 "dose-response curve" for electrophilic and redox balance may not be monotonic.
Collapse
Affiliation(s)
- Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Gavina JMA, Yao C, Feng YL. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants. Talanta 2014; 130:475-94. [PMID: 25159438 DOI: 10.1016/j.talanta.2014.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 02/08/2023]
Abstract
DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jennilee M A Gavina
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
15
|
Peterson LA, Urban AM, Vu CC, Cummings ME, Brown LC, Warmka JK, Li L, Wattenberg EV, Patel Y, Stram DO, Pegg AE. Role of aldehydes in the toxic and mutagenic effects of nitrosamines. Chem Res Toxicol 2013; 26:1464-73. [PMID: 24066836 DOI: 10.1021/tx400196j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khariwala SS, Hatsukami D, Hecht SS. Tobacco carcinogen metabolites and DNA adducts as biomarkers in head and neck cancer: potential screening tools and prognostic indicators. Head Neck 2012; 34:441-7. [PMID: 21618325 PMCID: PMC5536330 DOI: 10.1002/hed.21705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2010] [Indexed: 01/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of many cancers that are strongly associated with tobacco use. Whereas HNSCC is often seen in tobacco users, many tobacco users do not develop carcinoma; and the differences between smokers with and without HNSCC are poorly studied to date. Some smokers may be inherently more susceptible to developing carcinoma due to patterns of tobacco use, innate metabolism of carcinogens, or altered excretion. Identifying those smokers at greatest risk for HNSCC would have great benefit through targeted smoking cessation efforts and enhanced surveillance. One approach to better understand the extent of exposure to, and metabolism of, tobacco carcinogens is through the use of tobacco-specific metabolites. Tobacco-specific metabolites can identify patterns of dose, exposure, and metabolism, and perhaps ultimately characterize the important differences between smokers who develop HNSCC and smokers who do not.
Collapse
Affiliation(s)
- Samir S Khariwala
- Department of Otolaryngology, MMC 396, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
17
|
Lu K, Craft S, Nakamura J, Moeller BC, Swenberg JA. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine. Chem Res Toxicol 2012; 25:664-75. [PMID: 22148432 DOI: 10.1021/tx200426b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential cocarcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N(2)-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N(2)-dG and N(6)-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
18
|
Jasti VP, Spratt TE, Basu AK. Tobacco-specific nitrosamine-derived O2-alkylthymidines are potent mutagenic lesions in SOS-induced Escherichia coli. Chem Res Toxicol 2011; 24:1833-5. [PMID: 22029400 PMCID: PMC3221470 DOI: 10.1021/tx200435d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Indexed: 12/02/2022]
Abstract
To investigate the biological effects of the O(2)-alkylthymidines induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), we have replicated a plasmid containing O(2)-methylthymidine (O(2)-Me-dT) or O(2)-[4-(3-pyridyl-4-oxobut-1-yl]thymidine (O(2)-POB-dT) in Escherichia coli with specific DNA polymerase knockouts. High genotoxicity of the adducts was manifested in the low yield of transformants from the constructs, which was 2-5% in most strains but increased 2-4-fold with SOS. In the SOS-induced wild type E. coli, O(2)-Me-dT and O(2)-POB-dT induced 21% and 56% mutations, respectively. For O(2)-POB-dT, the major type of mutation was T → G followed by T → A, whereas for O(2)-Me-dT, T → G and T → A occurred in equal frequency. For both lesions, T → C also was detected in low frequency. The T → G mutation was reduced in strains with deficiency in any of the three SOS polymerases. By contrast, T → A was abolished in the pol V(-) strain, while its frequency in other strains remained unaltered. This suggests that pol V was responsible for the T → A mutations. The potent mutagenicity of these lesions may be related to NNK mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Vijay P. Jasti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Hecht SS, Upadhyaya P, Wang M. Evolution of research on the DNA adduct chemistry of N-nitrosopyrrolidine and related aldehydes. Chem Res Toxicol 2011; 24:781-90. [PMID: 21480629 PMCID: PMC3118975 DOI: 10.1021/tx200064a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This perspective reviews our work on the identification of DNA adducts of N-nitrosopyrrolidine and some related aldehydes. The research began as a focused project to investigate mechanisms of cyclic nitrosamine carcinogenesis but expanded into other areas, as aldehyde metabolites of NPYR were shown to have their own diverse DNA adduct chemistry. A total of 69 structurally distinct DNA adducts were identified, and some of these, found in human tissues, have provided intriguing leads for investigating carcinogenesis mechanisms in humans due to exposure to both endogenous and exogenous agents.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.
| | | | | |
Collapse
|
20
|
Kozekov ID, Turesky RJ, Alas GR, Harris CM, Harris TM, Rizzo CJ. Formation of deoxyguanosine cross-links from calf thymus DNA treated with acrolein and 4-hydroxy-2-nonenal. Chem Res Toxicol 2010; 23:1701-13. [PMID: 20964440 DOI: 10.1021/tx100179g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acrolein (AC) and 4-hydroxy-2-nonenal (HNE) are endogenous bis-electrophiles that arise from the oxidation of polyunsaturated fatty acids. AC is also found in high concentrations in cigarette smoke and automobile exhaust. These reactive α,β-unsaturated aldehyde (enal) covalently modify nucleic acids, to form exocyclic adducts, where the three-carbon hydroxypropano unit bridges the N1 and N(2) positions of deoxyguanosine (dG). The bifunctional nature of these enals allows them to undergo reaction with a second nucleophilic group and form DNA cross-links. These cross-linked enal adducts are likely to contribute to the genotoxic effects of both AC and HNE. We have developed a sensitive mass spectrometric method to detect cross-linked adducts of these enals in calf thymus DNA (CT DNA) treated with AC or HNE. The AC and HNE cross-linked adducts were measured by the stable isotope dilution method, employing a linear quadrupole ion trap mass spectrometer and consecutive reaction monitoring at the MS(3) or MS(4) scan stage. The lower limit of quantification of the cross-linked adducts is ∼1 adduct per 10(8) DNA bases, when 50 μg of DNA is assayed. The cross-linked adducts occur at levels that are ∼1-2% of the levels of the monomeric 1,N(2)-dG adducts in CT DNA treated with either enal.
Collapse
Affiliation(s)
- Ivan D Kozekov
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, USA
| | | | | | | | | | | |
Collapse
|
21
|
Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids 2010; 2010. [PMID: 20871819 PMCID: PMC2943119 DOI: 10.4061/2010/284935] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/08/2010] [Indexed: 12/24/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N′-nitrosonornicotine (NNN) are tobacco-specific nitrosamines present in tobacco products and smoke. Both compounds are carcinogenic in laboratory animals, generating tumors at sites comparable to those observed in smokers. These Group 1 human carcinogens are metabolized to reactive intermediates that alkylate DNA. This paper focuses on the DNA pyridyloxobutylation pathway which is common to both compounds. This DNA route generates 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxythymidine, and O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine as well as unstable adducts which dealkylate to release 4-hydroxy-1-{3-pyridyl)-1-butanone or depyriminidate/depurinate to generate abasic sites. There are multiple repair pathways responsible for protecting against the genotoxic effects of these adducts, including adduct reversal as well as base and nucleotide excision repair pathways. Data indicate that several DNA adducts contribute to the overall mutagenic properties of pyridyloxobutylating agents. Which adducts contribute to the carcinogenic properties of this pathway are likely to depend on the biochemistry of the target tissue.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Zhang L, Freeman LEB, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR. Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:181-91. [PMID: 19790261 PMCID: PMC2839060 DOI: 10.1002/em.20534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging due to inconsistencies in human and animal studies and the lack of a known mechanism for leukemia induction. Here, we provide a summary of the symposium at the Environmental Mutagen Society Meeting in 2008, which focused on the epidemiology of formaldehyde and leukemia, potential mechanisms, and implication for risk assessment, with emphasis on future directions in multidisciplinary formaldehyde research. Updated results of two of the three largest industrial cohort studies of formaldehyde-exposed workers have shown positive associations with leukemia, particularly myeloid leukemia, and a recent meta-analysis of studies to date supports this association. Recent mechanistic studies have shown the formation of formaldehyde-induced DNA adducts and characterized the essential DNA repair pathways that mitigate formaldehyde toxicity. The implications of the updated findings for the design of future studies to more effectively assess the risk of leukemia arising from formaldehyde exposure were discussed and specific recommendations were made. A toxicogenomic approach in experimental models and human exposure studies, together with the measurement of biomarkers of internal exposure, such as formaldehyde-DNA and protein adducts, should prove fruitful. It was recognized that increased communication among scientists who perform epidemiology, toxicology, biology, and risk assessment could enhance the design of future studies, which could ultimately reduce uncertainty in the risk assessment of formaldehyde and leukemia.
Collapse
Affiliation(s)
- Luoping Zhang
- School of Public Health, University of California, Berkeley, California 94720-7356, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lu K, Collins LB, Ru H, Bermudez E, Swenberg JA. Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia. Toxicol Sci 2010; 116:441-51. [PMID: 20176625 DOI: 10.1093/toxsci/kfq061] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhaled formaldehyde is classified as a known human and animal carcinogen, causing nasopharyngeal cancer. Additionally, limited epidemiological evidence for leukemia in humans is available; however, this is inconsistent across studies. Both genotoxicity and cytotoxicity are key events in formaldehyde nasal carcinogenicity in rats, but mechanistic data for leukemia are not well established. Formation of DNA adducts is a key event in initiating carcinogenesis. Formaldehyde can induce DNA monoadducts, DNA-DNA cross-links, and DNA protein cross-links. In this study, highly sensitive liquid chromatography-tandem mass spectrometry-selected reaction monitoringmethods were developed and [(13)CD(2)]-formaldehyde exposures utilized, allowing differentiation of DNA adducts and DNA-DNA cross-links originating from endogenous and inhalation-derived formaldehyde exposure. The results show that exogenous formaldehyde induced N(2)-hydroxymethyl-dG monoadducts and dG-dG cross-links in DNA from rat respiratory nasal mucosa but did not form [(13)CD(2)]-adducts in sites remote to the portal of entry, even when five times more DNA was analyzed. Furthermore, no N(6)-HO(13)CD(2)-dA adducts were detected in nasal DNA. In contrast, high amounts of endogenous formaldehyde dG and dA monoadducts were present in all tissues examined. The number of exogenous N(2)-HO(13)CD(2)-dG in 1- and 5-day nasal DNA samples from rats exposed to 10-ppm [(13)CD(2)]-formaldehyde was 1.28 +/- 0.49 and 2.43 +/- 0.78 adducts/10(7) dG, respectively, while 2.63 +/- 0.73 and 2.84 +/- 1.13 N(2)-HOCH(2)-dG adducts/10(7) dG and 3.95 +/- 0.26 and 3.61 +/- 0.95 N(6)-HOCH(2)-dA endogenous adducts/10(7) dA were present. This study provides strong evidence supporting a genotoxic and cytotoxic mode of action for the carcinogenesis of inhaled formaldehyde in respiratory nasal epithelium but does not support the biological plausibility that inhaled formaldehyde also causes leukemia.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
24
|
Wang M, Cheng G, Balbo S, Carmella SG, Villalta PW, Hecht SS. Clear differences in levels of a formaldehyde-DNA adduct in leukocytes of smokers and nonsmokers. Cancer Res 2009; 69:7170-4. [PMID: 19738046 DOI: 10.1158/0008-5472.can-09-1571] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formaldehyde is considered carcinogenic to humans by the IARC, but there are no previous reports of formaldehyde-DNA adducts in humans. In this study, we used liquid chromatography-electrospray ionization-tandem mass spectrometry to quantify the formaldehyde-DNA adduct N(6)-hydroxymethyldeoxyadenosine (N(6)-HOMe-dAdo) in leukocyte DNA samples from 32 smokers of >or=10 cigarettes per day and 30 nonsmokers. Clear peaks coeluting with the internal standard in two different systems were seen in samples from smokers but rarely in nonsmokers. N(6)-HOMe-dAdo was detected in 29 of 32 smoker samples (mean +/- SD, 179 +/- 205 fmol/micromol dAdo). In contrast, it was detected in only 7 of 30 nonsmoker samples (15.5 +/- 33.8 fmol/micromol dAdo; P < 0.001). The results of this study show remarkable differences between smokers and nonsmokers in levels of a leukocyte formaldehyde-DNA adduct, suggesting a potentially important and previously unrecognized role for formaldehyde as a cause of cancer induced by cigarette smoking.
Collapse
Affiliation(s)
- Mingyao Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol 2009; 5:400-2. [PMID: 19430486 DOI: 10.1038/nchembio.172] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/03/2009] [Indexed: 12/31/2022]
Abstract
Targeted methylation of cytosine residues by S-adenosylmethionine-dependent DNA methyltransferases modulates gene expression in vertebrates. Here we show that cytosine-5-methyltransferases catalyze reversible covalent addition of exogenous aliphatic aldehydes to their target residues in DNA, thus yielding corresponding 5-hydroxyalkylcytosines. Such atypical enzymatic reactions with non-cofactor-like substrates open new ways for sequence-specific derivatization of DNA and demonstrate enzymatic exchange of 5-hydroxymethyl groups on cytosine in support of an oxidative mechanism of DNA demethylation.
Collapse
|
26
|
Richter E, Engl J, Friesenegger S, Tricker AR. Biotransformation of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Lung Tissue from Mouse, Rat, Hamster, and Man. Chem Res Toxicol 2009; 22:1008-17. [DOI: 10.1021/tx800461d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elmar Richter
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Johannes Engl
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Susanne Friesenegger
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Anthony R. Tricker
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
27
|
Lü CL, Liu YD, Zhong RG. Theoretical investigation of mono- and bi-function alkylating agents transformed from nitrosodimethylamine derivatives. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Upadhyaya P, Hecht SS. Identification of adducts formed in the reactions of 5'-acetoxy-N'-nitrosonornicotine with deoxyadenosine, thymidine, and DNA. Chem Res Toxicol 2008; 21:2164-71. [PMID: 18821782 PMCID: PMC2646895 DOI: 10.1021/tx8002559] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N'-Nitrosonornicotine (NNN) is the most prevalent of the carcinogenic tobacco-specific nitrosamines found in all tobacco products. Previous studies have demonstrated that cytochrome P450-mediated 5'-hydroxylation of NNN is a major metabolic pathway leading to mutagenic products, but to date, DNA adducts formed by this pathway have been only partially characterized, and there have been no studies reported on adducts formed with bases other than dGuo. Because adducts with dAdo and dThd have been identified in the DNA of the livers of rats treated with the structurally related carcinogen N-nitrosopyrrolidine, we investigated dAdo and dThd adduct formation from 5'-acetoxyNNN (3), a stable precursor to 5'-hydroxyNNN (2). Reaction of 3 with dAdo gave diastereomeric products, which were identified by their spectral properties and LC-ESI-MS/MS-SRM analysis as N(6)-[5-(3-pyridyl)tetrahydrofuran-2-yl]dAdo (9). This adduct was further characterized by NaBH(3)CN reduction to N(6)-[4-hydroxy-4-(3-pyridyl)but-1-yl]dAdo (17). A second dAdo adduct was identified, after NaBH(3)CN treatment, as 6-[2-(3-pyridyl)pyrrolidin-1-yl]purine-2'-deoxyriboside (18). Reaction of 3 with dThd, followed by NaBH(3)CN reduction, gave O(2)-[4-(3-pyridyl)-4-hydroxybut-1-yl]thymidine (11). Adducts 9, 11, 17, and 18 were all identified by LC-ESI-MS/MS-SRM comparison to synthetic standards. The reaction of 3 with calf thymus DNA was then investigated. The DNA was enzymatically hydrolyzed to deoxyribonucleosides, and the resulting mixture was treated with NaBH(3)CN and analyzed by LC-ESI-MS/MS-SRM. Adducts 11, 17, and 18, as well as the previously identified dGuo adducts, were identified. The results of this study provide a more comprehensive picture of DNA adduct formation by the quantitatively important 5'-hydroxylation pathway of NNN and will facilitate investigation of the presence of these adducts in laboratory animals treated with NNN or in people who use tobacco products.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455
| |
Collapse
|
29
|
Zimmermann J, Hajibabaei M, Blackburn DC, Hanken J, Cantin E, Posfai J, Evans TC. DNA damage in preserved specimens and tissue samples: a molecular assessment. Front Zool 2008; 5:18. [PMID: 18947416 PMCID: PMC2579423 DOI: 10.1186/1742-9994-5-18] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 10/23/2008] [Indexed: 11/10/2022] Open
Abstract
The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.
Collapse
|
30
|
Upadhyaya P, Kalscheuer S, Hochalter JB, Villalta PW, Hecht SS. Quantitation of pyridylhydroxybutyl-DNA adducts in liver and lung of F-344 rats treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2008; 21:1468-76. [PMID: 18570389 PMCID: PMC2575026 DOI: 10.1021/tx8001109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in rats and is believed to be one cause of lung cancer in smokers. NNK is metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a strong lung carcinogen in rats and has a chiral center at its 1-carbon. Previous studies have demonstrated that cytochrome P450-catalyzed alpha-hydroxylation of NNK in the lung leading to the formation of methyl and pyridyloxobutyl (POB)-DNA adducts is critical for its carcinogenicity. alpha-Hydroxylation of NNAL would similarly produce pyridylhydroxybutyl (PHB)-DNA adducts, but these have not been previously investigated in vivo. POB- and PHB-DNA adduct levels can indicate the amounts of pyridyloxobutylating and pyridylhydroxybutylating agents present in tissues of NNK- or NNAL-treated rats at any given point. Therefore, in this study, we developed a sensitive and quantitative liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring method to determine levels of the PHB-DNA adducts O(6)-[4-(3-pyridyl)-4-hydroxybut-1-yl]-2'-deoxyguanosine (O(6)-PHB-dGuo, 10b), O(2)-[4-(3-pyridyl)-4-hydroxybut-1-yl]thymidine (O(2)-PHB-dThd, 11b), and 7-[4-(3-pyridyl)-4-hydroxybut-1-yl]-2'-deoxyguanosine (7-PHB-dGuo, 12b), the latter as the corresponding base 7-[4-(3-pyridyl)-4-hydroxybut-1-yl]-Gua (7-PHB-Gua, 14b) in DNA isolated from liver and lung of rats treated with 10 ppm NNK, (S)-NNAL, or (R)-NNAL in the drinking water for 20 weeks and sacrificed at 1, 2, 5, 10, 16, and 20 weeks. PHB-DNA adduct levels were higher in lung than in liver at each time point, consistent with previous studies of POB-DNA adducts in rats treated with NNK and NNAL in the drinking water. The results showed that NNK and (S)-NNAL behaved in a similar fashion, while (R)-NNAL was strikingly different. In the rats treated with NNK or (S)-NNAL, levels of each adduct at each time point were remarkably similar in lung, and levels of O(2)-PHB-dThd were generally greater than 7-PHB-Gua > O(6)-PHB-dGuo. The highest PHB-DNA adduct levels were found in lung and liver of rats treated with (R)-NNAL, suggesting that there are cytochrome P450s that efficiently catalyze the alpha-methyl hydroxylation of this compound. The results of this study provide further support for our hypothesis that (S)-NNAL is rapidly formed from NNK, sequestered at an unknown site in the lung, and then released and reoxidized to NNK with consequent DNA adduct formation resulting in lung carcinogenicity.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
31
|
Cheng G, Wang M, Upadhyaya P, Villalta PW, Hecht SS. Formation of Formaldehyde Adducts in the Reactions of DNA and Deoxyribonucleosides with α-Acetates of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N-Nitrosodimethylamine (NDMA). Chem Res Toxicol 2008; 21:746-51. [DOI: 10.1021/tx7003823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang Cheng
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455
| | - Mingyao Wang
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455
| | - Pramod Upadhyaya
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455
| | - Peter W. Villalta
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455
| | - Stephen S. Hecht
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455
| |
Collapse
|