1
|
Common metabolic features of hypertension and type 2 diabetes. Hypertens Res 2023; 46:1227-1233. [PMID: 36869145 DOI: 10.1038/s41440-023-01233-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Hypertension and type 2 diabetes frequently coexist, suggesting that the two diseases have common pathophysiological bases. This review describes the pathophysiological mechanisms of how type 2 diabetes is frequently associated with hypertension. Multiple common factors mediate between both diseases. Factors that induce both type 2 diabetes and hypertension include obesity-induced hyperinsulinemia, activation of the sympathetic nervous system, chronic inflammation, and changes in adipokines. Vascular complications resulting from type 2 diabetes and hypertension include endothelial dysfunction, vasodilation/constriction dysfunction of peripheral vessels and increased peripheral vascular resistance, arteriosclerosis, and chronic kidney disease. While many of these vascular complications are caused by hypertension, they also exacerbate the pathology of hypertension. In addition, insulin resistance in the vasculature blunts insulin-induced vasodilation and blood flow to skeletal muscle, which contributes to impaired glucose uptake to skeletal muscle and glucose intolerance. In obese and insulin-resistant patients, increase in the circulating fluid volume forms the major pathophysiology of elevated blood pressure. On the other hand, in non-obese and/or insulin-deficient patients, especially those in the middle- or later stages of diabetes, peripheral vascular resistance is the major pathophysiology of hypertension. The relationship between various factors involved in the pathogenesis of type 2 diabetes and hypertension. It should be noted that all the factors shown in the figure are not necessarily present simultaneously in every patient.
Collapse
|
2
|
Wall BT, Machin D, Dunlop MV, Stephens FB. Caffeine ingestion stimulates plasma carnitine clearance in humans. Physiol Rep 2023; 11:e15615. [PMID: 36806708 PMCID: PMC9938004 DOI: 10.14814/phy2.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Increasing skeletal muscle carnitine content can manipulate fuel metabolism and improve exercise performance. Intravenous insulin infusion during hypercarnitinemia increases plasma carnitine clearance and Na+ -dependent muscle carnitine accretion, likely via stimulating Na+ /K+ ATPase pump activity. We hypothesized that the ingestion of high-dose caffeine, also known to stimulate Na+ /K+ ATPase activity, would stimulate plasma carnitine clearance during hypercarnitinemia in humans. In a randomized placebo-controlled study, six healthy young adults (aged 24 ± 5 years, height 175 ± 8 cm, and weight 70 ± 13 kg) underwent three 5-h laboratory visits involving the primed continuous intravenous infusion of l-carnitine (CARN and CARN + CAFF) or saline (CAFF) in parallel with ingestion of caffeine (CARN + CAFF and CAFF) or placebo (CARN) at 0, 2, 3, and 4 h. Regular blood samples were collected to determine concentrations of blood Na+ and K+ , and plasma carnitine and caffeine, concentrations. Caffeine ingestion (i.e., CAFF and CARN + CAFF conditions) and l-carnitine infusion (i.e., CARN and CARN + CAFF) elevated steady-state plasma caffeine (to ~7 μg·mL-1 ) and carnitine (to ~400 μmol·L-1 ) concentrations, respectively, throughout the 5 h infusions. Plasma carnitine concentration was ~15% lower in CARN + CAFF compared with CARN during the final 90 min of the infusion (at 210 min, 356 ± 96 vs. 412 ± 94 μmol·L-1 ; p = 0.0080: at 240 min, 350 ± 91 vs. 406 ± 102 μmol·L-1 ; p = 0.0079: and at 300 min, 357 ± 91 vs. 413 ± 110 μmol·L-1 ; p = 0.0073, respectively). Blood Na+ concentrations were greater in CAFF and CARN + CAFF compared with CARN. Ingestion of high-dose caffeine stimulates plasma carnitine clearance during hypercarnitinemia, likely via increased Na+ /K+ ATPase activity. Carnitine co-ingestion with caffeine may represent a novel muscle carnitine loading strategy in humans, and therefore manipulate skeletal muscle fuel metabolism and improve exercise performance.
Collapse
Affiliation(s)
- Benjamin T. Wall
- Department of Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - David Machin
- Department of Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Mandy V. Dunlop
- Department of Public Health and Sport SciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
3
|
Kumar N, Thorat ST, Gite A, Patole PB. Selenium nanoparticles and omega-3 fatty acid enhanced thermal tolerance in fish against arsenic and high temperature. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109447. [PMID: 36030006 DOI: 10.1016/j.cbpc.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
The aquatic ecosystem is prone to global climate change and pollution affecting aquatic animals, including fish. In light of the above, we experimented with delineate the role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with selenium nanoparticles (Se-NPs) to enhance the thermal tolerance in Pangasianodon hypophthalmus reared under control or concurrent exposure to high temperature and arsenic (As + T) for 112 days. Se-NPs were synthesized using the green approach. Four experimental diets viz. EPA + DHA at 0.2, 0.4 and 0.6 % along with Se-NPs at 0.2 mg kg-1 diet were formulated and prepared. End of the experiment (112 days), the thermal tolerance viz. CTmin (critical thermal minima) CTmax (critical thermal maxima), LTmin (lethal thermal minima) and LTmax (lethal thermal maxima) were determined. Supplementation of EPA + DHA along with Se-NPs noticeably improved the thermal tolerance of the fish reared under stress (As + T) and control condition. Superoxide dismutase, glutathione-s-transferase, catalase, glutathione peroxides and LPO were enhanced by As + T, whereas EPA + DHA at 0.4 % and Se-NPs reduced the oxidative stress. Further, acetylcholine esterase was inhibited by arsenic alone and concurrent with temperature but dietary supplementation significantly enhanced the brain AChE activity. Exposure to arsenic and concurrent with a temperature significantly reduced the ATPase. Whereas supplementation of EPA + DHA at 0.4 % and Se-NPs enhanced the ATPase in liver and gill tissues. Arsenic bioaccumulation was also reduced with EPA + DHA at 0.4 % and Se-NPs. The present investigation concluded that EPA + DHA at 0.4 % and Se-NPs at 0.2 mg kg-1 diet protects the P. hypophthalmus against arsenic pollution and thermal stress.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| |
Collapse
|
4
|
Alkahtani R. Molecular mechanisms underlying some major common risk factors of stroke. Heliyon 2022; 8:e10218. [PMID: 36060992 PMCID: PMC9433609 DOI: 10.1016/j.heliyon.2022.e10218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic and hemorrhagic strokes are the most common known cerebrovascular disease which can be induced by modifiable and non-modifiable risk factors. Age and race are the most common non-modifiable risk factors of stroke. However, hypertension, diabetes, obesity, dyslipidemia, physical inactivity, and cardiovascular disorders are major modifiable risk factors. Understanding the molecular mechanism mediating each of these risk factors is expected to contribute significantly to reducing the risk of stroke, preventing neural damage, enhancing rehabilitation, and designing suitable treatments. Abnormalities in the structure of the blood-brain barrier and blood vessels, thrombosis, vasoconstriction, atherosclerosis, reduced cerebral blood flow, neural oxidative stress, inflammation, and apoptosis, impaired synaptic transmission, excitotoxicity, altered expression/activities of many channels and signaling proteins are the most knows mechanisms responsible for stroke induction. However, the molecular role of risk factors in each of these mechanisms is not well understood and requires a lot of search and reading. This review was designed to provide the reader with a single source of information that discusses the current update of the prevalence, pathophysiology, and all possible molecular mechanisms underlying some major risk factors of stroke namely, hypertension, diabetes mellitus, dyslipidemia, and lipid fraction, and physical inactivity. This provides a full resource for understanding the molecular effect of each of these risk factors in stroke.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz, University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Santos L, Gonçalves LS, Bagheri-Hanei S, Möller GB, Sale C, James RM, Artioli GG. Insulin stimulates β-alanine uptake in skeletal muscle cells in vitro. Amino Acids 2021; 53:1763-1766. [PMID: 34676442 PMCID: PMC8592947 DOI: 10.1007/s00726-021-03090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/07/2021] [Indexed: 10/26/2022]
Abstract
We evaluated whether insulin could stimulate β-alanine uptake by skeletal muscle cells in vitro. Mouse myoblasts (C2C12) (n = 3 wells per condition) were cultured with β-alanine (350 or 700 µmol·L-1), with insulin (100 µU·mL-1) either added to the media or not. Insulin stimulated the β-alanine uptake at the lower (350 µmol·L-1) but not higher (700 µmol·L-1) β-alanine concentration in culture medium, indicating that transporter saturation might blunt the stimulatory effects of insulin.
Collapse
Affiliation(s)
- Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - L S Gonçalves
- Applied Physiology and Nutrition Research GroupRheumatology DivisionFaculdade de Medicina FMUSPEscola de Educação Física E Esporte, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shirin Bagheri-Hanei
- College of Engineering and Physical Science, Aston University, Birmingham, B4 7ET, UK
| | - Gabriella Berwig Möller
- Applied Physiology and Nutrition Research GroupRheumatology DivisionFaculdade de Medicina FMUSPEscola de Educação Física E Esporte, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Ruth M James
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Guilherme Giannini Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK.
| |
Collapse
|
6
|
Visscher PM, Yengo L, Cox NJ, Wray NR. Discovery and implications of polygenicity of common diseases. Science 2021; 373:1468-1473. [PMID: 34554790 PMCID: PMC9945947 DOI: 10.1126/science.abi8206] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The sequencing of the human genome has allowed the study of the genetic architecture of common diseases: the number of genomic variants that contribute to risk of disease and their joint frequency and effect size distribution. Common diseases are polygenic, with many loci contributing to phenotype, and the cumulative burden of risk alleles determines individual risk in conjunction with environmental factors. Most risk loci occur in noncoding regions of the genome regulating cell- and context-specific gene expression. Although the effect sizes of most risk alleles are small, their cumulative effects in individuals, quantified as a polygenic (risk) score, can identify people at increased risk of disease, thereby facilitating prevention or early intervention.
Collapse
Affiliation(s)
- Peter M. Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author.
| | - Loic Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nancy J. Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia,Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Some Kinetic Features of Na,K-ATPase and Sensitivity to Noradrenaline. Cell Biochem Biophys 2021; 80:23-29. [PMID: 34436718 DOI: 10.1007/s12013-021-01032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
A comparative kinetic analysis of albino rat brain synaptic and kidney plasma membrane fraction Na,K-ATPase was performed to comprehend the different levels of sensitivity of these fractions to the neurotransmitter noradrenaline. Noradrenaline (NA) inhibits the rat brain synaptic membrane Na,K-ATPase, changes the stoichiometry of Na+ and K+ and shifts the enzyme system from an MgATP to an Mg2+ dependent cycle. While the kidney plasma membrane fraction Na,K-ATPase is not sensitive to noradrenaline. To investigate the mechanism underlying this difference, we studied enzyme velocity dependence on the concentration of Mg2+. The 1/V = f(Mg2+) function has shown different kinetic features for the synaptic and kidney plasma membrane Na,K-ATPase. With the addition of ethylene glycol tetraacetic acid (EGTA) to the reaction medium the geometric form of 1/V = f(Mg2+) function is affected differently. We thereafter measured the essential activator number for Na+ and K+ with, in excess Mg2+. The results of these experiments reveal that, contrary to the synaptic membrane Na,K-ATPase, the kidney plasma membrane fraction Na,K-ATPase does not possess an Mg2+ dependent cycle and noradrenaline exhibits different modulatory effects on the enzyme system.
Collapse
|
8
|
Baasch-Skytte T, Gunnarsson TP, Fiorenza M, Bangsbo J. Skeletal muscle proteins important for work capacity are altered with type 2 diabetes - Effect of 10-20-30 training. Physiol Rep 2021; 9:e14681. [PMID: 33426802 PMCID: PMC7797308 DOI: 10.14814/phy2.14681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
The study examined whether men with type 2 diabetes exhibit lower expression of muscle proteins important for exercise capacity, and whether exercise training promotes adaptations in these proteins. In a cross-sectional and longitudinal study, conducted at the University of Copenhagen. Twelve men with type 2 diabetes (T2D) were compared to eleven nondiabetes counterparts (ND) matched for age and body composition (body fat percentage). T2D underwent 10 weeks of high-intensity interval exercise training (10-20-30 training). T2D had lower expression of SOD1 (-62%; p < 0.001) and ETC complex V (-34%; p = 0.003), along with higher expression of ETC complex IV (+66%; p = 0.007), MFN2 (+62%; p = 0.001), and DRP1 (+30%; p = 0.028) compared to ND. T2D had higher (p < 0.001) expression of Na+ /K+ α1 (+98%), α2 (+114%), and NHE1 (+144%) than ND. In T2D, training increased exercise capacity (+9%; p < 0.001) as well as expression of SOD2 (+44%; p = 0.029), ETC complex II (+25%; p = 0.035), III (+52%; p = 0.041), IV (+23%; p = 0.005), and V (+21%; p = 0.035), CS activity (+32%; p = 0.006) as well as Na+ /K+ α1 (+24%; p = 0.034), Kir6.2 (+36%; p = 0.029), and MCT1 (+20%; p = 0.007). Men with type 2 diabetes exhibited altered expression of a multitude of skeletal muscle proteins important for exercise capacity. Ten weeks of 10-20-30 training upregulated expression of muscle proteins regulating antioxidant defense, mitochondrial function, and ion handling while enhancing exercise capacity in men with type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Baasch-Skytte
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P Gunnarsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Fiorenza
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Sawalha N, Geddie H. Insulin Edema Associated With Newly Diagnosed Type 1 Diabetes and High Glycated Hemoglobin: A Case and Review of the Pediatric Literature. Can J Diabetes 2020; 45:571-574. [PMID: 33549500 DOI: 10.1016/j.jcjd.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023]
Abstract
Insulin edema is a rare and poorly understood complication of insulin therapy. It has been associated with the initiation of insulin in patients with newly diagnosed diabetes or the intensification of insulin therapy in those with poor glycemic control. This condition is rarely reported in pediatric patients. We describe a case of insulin edema in a 14-year-old boy with potential risk factors of highly elevated glycated hemoglobin at diagnosis and history of unilateral renal atrophy. We also present a discussion of the pathophysiology of this condition and a review of the pediatric literature.
Collapse
Affiliation(s)
- Noor Sawalha
- Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Hannah Geddie
- Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Apical periodontitis induces changes on oxidative stress parameters and increases Na +/K +-ATPase activity in adult rats. Arch Oral Biol 2020; 118:104849. [PMID: 32847752 DOI: 10.1016/j.archoralbio.2020.104849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Endodontic infection can cause systemic alterations. The involvement of oxidative stress (OS) and transmembrane enzymes compose the pathogenesis of various systemic diseases. However, the relation among apical periodontitis (AP), OS parameters, and Na+/K+-ATPase (NKA) pump was not reported in the literature. This study evaluated the AP influence on OS parameters and NKA activity in adult rats. METHODS Adult male Wistar rats (sixteen weeks old) were randomly assigned to two experimental groups: control (CT group; n = 8) and AP (AP group; n = 9), which was induced in the first right mandibular molar tooth. After 21 days of AP induction, mandibles were dissected for radiographic analysis. In addition, the heart, liver, pancreas, and kidney were collected for analysis of endogenous OS parameters and NKA activity. Data were analyzed by Student's T-test. Values of p < 0.05 were considered statistically significant. RESULTS AP presence increased reactive species (RS) generation only in the heart, while the other analyzed organs did not have this parameter modified. Heart and pancreas had a decreased endogenous antioxidant system (catalase activity and vitamin C levels), liver and kidney had an increased one. AP increased NKA activity in the heart, liver, and pancreas, but not in the kidney. CONCLUSION The modulation of both endogenous antioxidant defense system and NKA activity in vital organs suggested that alterations in the antioxidant status and cellular electrochemical gradient may be involved in the AP pathophysiology.
Collapse
|
11
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
12
|
Gonçalves LDS, Kratz C, Santos L, Carvalho VH, Sales LP, Nemezio K, Longobardi I, Riani LA, Lima MMDO, Saito T, Fernandes AL, Rodrigues J, James RM, Sale C, Gualano B, Geloneze B, de Medeiros MHG, Artioli GG. Insulin does not stimulate β-alanine transport into human skeletal muscle. Am J Physiol Cell Physiol 2020; 318:C777-C786. [DOI: 10.1152/ajpcell.00550.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test whether high circulating insulin concentrations influence the transport of β-alanine into skeletal muscle at either saturating or subsaturating β-alanine concentrations, we conducted two experiments whereby β-alanine and insulin concentrations were controlled. In experiment 1, 12 men received supraphysiological amounts of β-alanine intravenously (0.11 g·kg−1·min−1for 150 min), with or without insulin infusion. β-Alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples were taken throughout the infusion protocol for plasma insulin and β-alanine analyses. β-Alanine content in 24-h urine was assessed. In experiment 2, six men ingested typical doses of β-alanine (10 mg/kg) before insulin infusion or no infusion. β-Alanine was assessed in muscle before and 120 min following ingestion. In experiment 1, no differences between conditions were shown for plasma β-alanine, muscle β-alanine, muscle carnosine and urinary β-alanine concentrations (all P > 0.05). In experiment 2, no differences between conditions were shown for plasma β-alanine or muscle β-alanine concentrations (all P > 0.05). Hyperinsulinemia did not increase β-alanine uptake by skeletal muscle cells, neither when substrate concentrations exceed the Vmaxof β-alanine transporter TauT nor when it was below saturation. These results suggest that increasing insulin concentration is not necessary to maximize β-alanine transport into muscle following β-alanine intake.
Collapse
Affiliation(s)
- Lívia de Souza Gonçalves
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Kratz
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | | | - Lucas Peixoto Sales
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Kleiner Nemezio
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Augusto Riani
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Miranda de Oliveira Lima
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro Departamento de Cirurgia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Tiemi Saito
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alan Lins Fernandes
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Joice Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ruth Margaret James
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro Departamento de Cirurgia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | | | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
14
|
Govindasamy C, Aloud A, Veeramani C, Alsaif M, Al-Numair K. Galangin ameliorates changes of membrane–bound enzymes in rats with streptozotocin–induced hyperglycemia. Asian Pac J Trop Biomed 2019. [DOI: 10.4103/2221-1691.261764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Pacheco SM, Soares MSP, Gutierres JM, Gerzson MFB, Carvalho FB, Azambuja JH, Schetinger MRC, Stefanello FM, Spanevello RM. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer's type. J Nutr Biochem 2018; 56:193-204. [DOI: 10.1016/j.jnutbio.2018.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
|
16
|
Hypertension with diabetes mellitus: physiology and pathology. Hypertens Res 2018; 41:389-393. [PMID: 29556093 DOI: 10.1038/s41440-018-0034-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/18/2023]
Abstract
Elevated blood pressure is closely related to increased circulatory fluid volume and peripheral vascular resistance. Patients with diabetes mellitus experience increased peripheral artery resistance caused by vascular remodeling and increased body fluid volume associated with insulin resistance-induced hyperinsulinemia and hyperglycemia. Both of these mechanisms elevate systemic blood pressure. Thus, fully understanding the pathophysiology of hypertension in diabetes mellitus requires knowing the natural history of type 2 diabetes. Patients exhibit hyperinsulinemia with insulin resistance due to impaired glucose tolerance and early-stage diabetes. Hypertension occurs because of increased body fluid volume. After reaching mid-stage diabetes the vascular remodeling has progressed and peripheral vascular resistance also contributes to hypertension. Moreover, vascular remodeling strongly influences diabetic complications. Specifically, afferent arteriolar remodeling during diabetic nephropathy leads to increased glomerular pressure. Thus, treatment with a renin-angiotensin system inhibitor that promotes renal damage regression is critical to lowering the systemic blood pressure and dilating efferent arterioles to reduce glomerular pressure.
Collapse
|
17
|
Gould HJ, Norleans J, Ward TD, Reid C, Paul D. Selective lysis of breast carcinomas by simultaneous stimulation of sodium channels and blockade of sodium pumps. Oncotarget 2018; 9:15606-15615. [PMID: 29643996 PMCID: PMC5884651 DOI: 10.18632/oncotarget.24581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/21/2018] [Indexed: 01/23/2023] Open
Abstract
Sodium influx through voltage-gated sodium channels (VGSCs) coupled with balanced removal of sodium ions via Na+, K+-ATPase is a major determinant of cellular homeostasis and intracellular ionic concentration. Interestingly, many metastatic carcinomas express high levels of these channels. We hypothesized that if excess VGSCs are activated and Na+, K+-ATPase is simultaneously blocked, the intracellular Na+ concentration should increase, resulting in water movement into the cell, causing swelling and lytic cell death. MDA-MB-231 breast cancer cells over-express VGSCs by 7-fold. To test our hypothesis, we treated these cells in vitro with the Na+, K+-ATPase blocker, ouabain, and then stimulated with a sublethal electric current. For in vivo histologic and survival studies, MDA-MB-231 xenografts were established in Nu/J mice. Mice injected with saline or ouabain were electrically stimulated with trains of 10 msec 10V DC pulses. Within seconds to minutes, the cells swelled and lysed. MCF-10a cells, which express normal VGSCs levels, were unaffected by this treatment. Cells from the weakly-malignant cell line, MCF-7, which express 3-fold greater VGSCs than MCF-10a cells, displayed an intermediate time-to-lysis. The rate of lysis correlated directly with the degree of sodium channel expression and malignancy. We also demonstrated efficacy in cell lines from prostate, colon and lung carcinomas. Treated MDA-MB-231 xenografts showed 60-80% cell death. In survival studies, TOL-treated mice showed significantly slower tumor growth vs. controls. These results are evidence that this "targeted osmotic lysis" represents a novel method for selectively killing cancer cells and warrants further investigation as a potential treatment for advanced and end-stage breast cancer.
Collapse
Affiliation(s)
- Harry J Gould
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Center of Excellence for Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jack Norleans
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - T David Ward
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Chasiti Reid
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Dennis Paul
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Center of Excellence for Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
18
|
Blaustein MP. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na + pump endocrine system. Am J Physiol Cell Physiol 2017; 314:C3-C26. [PMID: 28971835 DOI: 10.1152/ajpcell.00196.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na+ pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na+ pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na+ pumps and salt reabsorption. The hormone also inhibits arterial Na+ pumps, elevates myocyte Na+ and promotes Na/Ca exchanger-mediated Ca2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na+ pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na+ pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na+ pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Departments of Physiology and Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
19
|
Bundalo M, Romic S, Tepavcevic S, Stojiljkovic M, Stankovic A, Zivkovic M, Koricanac G. Fructose-rich diet and insulin action in female rat heart: Estradiol friend or foe? Eur J Pharmacol 2017; 811:141-147. [PMID: 28601616 DOI: 10.1016/j.ejphar.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol. Published results of our and other research groups indicate mostly detrimental effects of fructose-rich diet on cardiac insulin signaling molecules, glucose and fatty acid metabolism, nitric oxide production and ion transport, as well as renin-angiotensin system and inflammation. Some of these processes are involved in cardiac insulin signal transmission, others are regulated by insulin or have an influence on insulin action. Administration of estradiol to ovariectomized female rats, exposed to increased intake of fructose, was mostly beneficial to the heart, but sometimes it was ineffective or even detrimental, depending on the particular processes. We believe that these data, carefully translated to human population, could be useful for clinicians dealing with postmenopausal women susceptible to metabolic diseases and hormone replacement therapy.
Collapse
Affiliation(s)
- Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
20
|
Chaudhary S, Semwal A, Kumar H, Verma HC, Kumar A. In-vivo study for anti-hyperglycemic potential of aqueous extract of Basil seeds (Ocimum basilicum Linn) and its influence on biochemical parameters, serum electrolytes and haematological indices. Biomed Pharmacother 2016; 84:2008-2013. [DOI: 10.1016/j.biopha.2016.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022] Open
|
21
|
Shahidullah M, Mandal A, Delamere NA. Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,K-ATPase in Nonpigmented Ciliary Epithelium. J Cell Physiol 2016; 232:1489-1500. [PMID: 27748508 DOI: 10.1002/jcp.25654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/14/2016] [Indexed: 11/05/2022]
Abstract
Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489-1500, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - Amritlal Mandal
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - Nicholas A Delamere
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
22
|
Banday AA. Chronic insulin treatment phosphorylates the renal Na-K-ATPase α1-subunit at serine 16/23 and reduces its activity involving PI3-kinase-dependent PKC activation. Am J Physiol Renal Physiol 2016; 311:F958-F966. [PMID: 27605582 DOI: 10.1152/ajprenal.00355.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
The regulation of Na-K-ATPase in various tissues is under the control of a number of hormones and peptides that exert both short- and long-term control over its activity. The present study was performed to investigate the effect of chronic insulin treatment on Na-K-ATPase in renal proximal tubular cells. Incubation of opossum kidney (OK) cells, transfected with the rat Na-K-ATPase α1-subunit, with 1 nmol/l insulin for 48 h decreased Na-K-ATPase activity. Insulin decreased α1-protein content and increased α1-serine phosphorylation and α1-adaptor protein 2 (AP2) interaction. Removal of the 26 NH2-terminal (-NT) amino acid from the α1-subunit containing serine/threonine sites abolished the insulin-mediated serine phosphorylation and inhibition of Na-K-ATPase. Substitution of serine 16 and 23 with alanine showed a comparable effect on -NT. Insulin increased the activity of protein kinase C (PKC), which was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. Both PI3K and PKC inhibitors abolished the insulin-mediated inhibition of Na-K-ATPase. Insulin increased the expression of PKC-β1, -δ, -ξ, and-λ; however, only PKC-ξ/λ-specific inhibitors blocked insulin-induced phosphorylation and inhibition of Na-K-ATPase. Our data demonstrate that insulin activates the atypical PKC isoforms-ξ/λ via the PI3K pathway. PKC-ξ/λ-induced phosphorylation of the α1-subunit at serine 16 and 23 leads to AP2 recruitment, degradation, and a decrease in Na-K-ATPase activity.
Collapse
|
23
|
Hong F, Wu N, Zhao X, Tian Y, Zhou Y, Chen T, Zhai Y, Ji L. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. J Biomed Mater Res A 2016; 104:2917-2927. [DOI: 10.1002/jbm.a.35831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Xiangyu Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yusheng Tian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Ting Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yanyu Zhai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Li Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| |
Collapse
|
24
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Abstract
Over the past decades, hypomagnesemia (serum Mg(2+) <0.7 mmol/L) has been strongly associated with type 2 diabetes mellitus (T2DM). Patients with hypomagnesemia show a more rapid disease progression and have an increased risk for diabetes complications. Clinical studies demonstrate that T2DM patients with hypomagnesemia have reduced pancreatic β-cell activity and are more insulin resistant. Moreover, dietary Mg(2+) supplementation for patients with T2DM improves glucose metabolism and insulin sensitivity. Intracellular Mg(2+) regulates glucokinase, KATP channels, and L-type Ca(2+) channels in pancreatic β-cells, preceding insulin secretion. Moreover, insulin receptor autophosphorylation is dependent on intracellular Mg(2+) concentrations, making Mg(2+) a direct factor in the development of insulin resistance. Conversely, insulin is an important regulator of Mg(2+) homeostasis. In the kidney, insulin activates the renal Mg(2+) channel transient receptor potential melastatin type 6 that determines the final urinary Mg(2+) excretion. Consequently, patients with T2DM and hypomagnesemia enter a vicious circle in which hypomagnesemia causes insulin resistance and insulin resistance reduces serum Mg(2+) concentrations. This Perspective provides a systematic overview of the molecular mechanisms underlying the effects of Mg(2+) on insulin secretion and insulin signaling. In addition to providing a review of current knowledge, we provide novel directions for future research and identify previously neglected contributors to hypomagnesemia in T2DM.
Collapse
Affiliation(s)
- Lisanne M M Gommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|
26
|
|
27
|
Pothuraju R, Sharma RK, Onteru SK, Singh S, Hussain SA. Hypoglycemic and Hypolipidemic Effects ofAloe veraExtract Preparations: A Review. Phytother Res 2015; 30:200-7. [DOI: 10.1002/ptr.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Shaik Abdul Hussain
- Dairy Technology Division; National Dairy Research Institute; Karnal 132001 Haryana India
| |
Collapse
|
28
|
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3:66. [PMID: 26579519 PMCID: PMC4620432 DOI: 10.3389/fcell.2015.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.
Collapse
Affiliation(s)
- Zhiqin Li
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|
29
|
Maeng J, Kim M, Lee H, Lee K. Insulin induces phosphorylation of serine residues of translationally controlled tumor protein in 293T cells. Int J Mol Sci 2015; 16:7565-76. [PMID: 25854427 PMCID: PMC4425034 DOI: 10.3390/ijms16047565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/22/2015] [Accepted: 03/17/2015] [Indexed: 02/03/2023] Open
Abstract
Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP) inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser) residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP) was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | - Miyoung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
30
|
Alves DS, Thulin G, Loffing J, Kashgarian M, Caplan MJ. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia. J Am Soc Nephrol 2015; 26:2765-76. [PMID: 25788531 DOI: 10.1681/asn.2013101040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells.
Collapse
Affiliation(s)
| | - Gunilla Thulin
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | - Michael Kashgarian
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
31
|
Morgen K, Frölich L. The metabolism hypothesis of Alzheimer’s disease: from the concept of central insulin resistance and associated consequences to insulin therapy. J Neural Transm (Vienna) 2015; 122:499-504. [DOI: 10.1007/s00702-015-1377-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
|
32
|
Up-regulation of Rhoa/Rho kinase pathway by translationally controlled tumor protein in vascular smooth muscle cells. Int J Mol Sci 2014; 15:10365-76. [PMID: 24918292 PMCID: PMC4100156 DOI: 10.3390/ijms150610365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a repressor for Na,K-ATPase has been implicated in the development of systemic hypertension, as proved by TCTP-over-expressing transgenic (TCTP-TG) mice. Aorta of TCTP-TG exhibited hypercontractile response compared to that of non-transgenic mice (NTG) suggesting dys-regulation of signaling pathways involved in the vascular contractility by TCTP. Because dys-regulation of RhoA/Rho kinase pathway is implicated in increased vascular contractility, we examined whether TCTP induces alterations in RhoA pathway in vascular smooth muscle cells (VSMCs). We found that TCTP over-expression by adenovirus infection up-regulated RhoA pathway including the expression of RhoA, and its downstream signalings, phosphorylation of myosin phosphatase target protein (MYPT-1), and myosin light chain (MLC). Conversely, lentiviral silencing of TCTP reduced the RhoA expression and Rho kinase signalings. Using immunohistochemical and Western blotting studies on aortas from TCTP-TG confirmed the elevated expression of RhoA and increase in p-MLC (phosphorylated MLC). In contrast, down-regulation of RhoA and p-MLC were found in aortas from heterozygous mice with deleted allele of TCTP (TCTP+/−). We conclude that up-regulation of TCTP induces RhoA-mediated pathway, and that TCTP-induced RhoA plays a role in the regulation in vasculature. Modulation of TCTP may offer a therapeutic target for hypertension and in vascular contractility dysfunction.
Collapse
|
33
|
Fontes MT, Silva TLBT, Mota MM, Barreto AS, Rossoni LV, Santos MRV. Resistance exercise acutely enhances mesenteric artery insulin-induced relaxation in healthy rats. Life Sci 2013; 94:24-9. [PMID: 24316143 DOI: 10.1016/j.lfs.2013.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022]
Abstract
AIMS We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.
Collapse
Affiliation(s)
- M T Fontes
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - T L B T Silva
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - M M Mota
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - A S Barreto
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - L V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 05508-900, São Paulo, SP, Brazil
| | - M R V Santos
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
34
|
Feng L, Peng Y, Wu P, Hu K, Jiang WD, Liu Y, Jiang J, Li SH, Zhou XQ. Threonine affects intestinal function, protein synthesis and gene expression of TOR in Jian carp (Cyprinus carpio var. Jian). PLoS One 2013; 8:e69974. [PMID: 23922879 PMCID: PMC3724917 DOI: 10.1371/journal.pone.0069974] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/14/2013] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the effects of threonine (Thr) on the digestive and absorptive ability, proliferation and differentiation of enterocytes, and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian). First, seven isonitrogenous diets containing graded levels of Thr (7.4-25.2 g/kg diet) were fed to the fishes for 60 days. Second, enterocyte proliferation and differentiation were assayed by culturing enterocytes with graded levels of Thr (0-275 mg/l) in vitro. Finally, enterocytes were cultured with 0 and 205 mg/l Thr to determine protein synthesis. The percent weight gain (PWG), specific growth rate, feed intake, feed efficiency, protein retention value, activities of trypsin, lipase and amylase, weights and protein contents of hepatopancreas and intestine, folds heights, activities of alkaline phosphatase (AKP), γ- glutamyl transpeptidase and Na(+)/K(+)-ATPase in all intestinal segments, glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) activities in hepatopancreas, and 4E-BP2 gene expression in muscle, hepatopancreas and intestinal segments were significantly enhanced by Thr (p<0.05). However, the plasma ammonia concentration and TOR gene expression decreased (p<0.05). In vitro, Thr supplement significantly increased cell numbers, protein content, the activities of GOT, GPT, AKP and Na(+)/K(+)-ATPase, and protein synthesis rate of enterocytes, and decreased LDH activity and ammonia content in cell medium (p<0.05). In conclusion, Thr improved growth, digestive and absorptive capacity, enterocyte proliferation and differentiation, and protein synthesis and regulated TOR and 4E-BP2 gene expression in juvenile Jian carp. The dietary Thr requirement of juvenile Jian carp was 16.25 g/kg diet (51.3 g/kg protein) based on quadratic regression analysis of PWG.
Collapse
Affiliation(s)
- Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shu-Hong Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
35
|
Aquilani R, Scocchi M, Boschi F, Viglio S, Iadarola P, Pastoris O, Verri M. Effect of calorie-protein supplementation on the cognitive recovery of patients with subacute stroke. Nutr Neurosci 2013; 11:235-40. [DOI: 10.1179/147683008x301586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
França JL, Pinto MR, Lucena MN, Garçon DP, Valenti WC, McNamara JC, Leone FA. Subcellular Localization and Kinetic Characterization of a Gill (Na+, K+)-ATPase from the Giant Freshwater Prawn Macrobrachium rosenbergii. J Membr Biol 2013; 246:529-43. [DOI: 10.1007/s00232-013-9565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
37
|
Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC, Leone FA. Synergistic stimulation by potassium and ammonium of K(+)-phosphatase activity in gill microsomes from the crab Callinectes ornatus acclimated to low salinity: novel property of a primordial pump. Arch Biochem Biophys 2012; 530:55-63. [PMID: 23262318 DOI: 10.1016/j.abb.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 11/16/2022]
Abstract
We provide an extensive characterization of the modulation by p-nitrophenylphosphate, Mg²⁺, Na⁺, K(+), Rb⁺, NH(4)(+) and pH of gill microsomal K⁺-phosphatase activity in the posterior gills of Callinectes ornatus acclimated to low salinity (21‰). The synergistic stimulation by K⁺ and NH(4)(+) of the K⁺-phosphatase activity is a novel finding, and may constitute a species-specific feature of K(+)/NH(4)(+) interplay that regulates crustacean gill (Na⁺, K⁺)-ATPase activity. p-Nitrophenylphosphate was hydrolyzed at a maximum rate (V) of 69.2 ± 2.8nmolPimin⁻¹mg⁻¹ with K(0.5)=2.3 ± 0.1mmolL(-1), obeying cooperative kinetics (n(H)=1.7). Stimulation by Mg²⁺ (V=70.1 ± 3.0nmolPimin⁻¹mg⁻¹, K(0.5)=0.88 ± 0.04mmolL⁻¹), K⁺ (V=69.6 ± 2.7nmolPimin⁻¹mg⁻¹, K(0.5)=1.60 ± 0.07mmolL⁻¹) and NH(4)(+) (V=90.8 ± 4.0nmolPimin⁻¹mg⁻¹, K(0.5)=9.2 ± 0.3mmol L⁻¹) all displayed site-site interaction kinetics. In the presence of NH(4)(+), enzyme affinity for K⁺ unexpectedly increased by 7-fold, while affinity for NH(4)(+) was 28-fold greater in the presence than absence of K⁺. Ouabain partially inhibited K⁺-phosphatase activity (K(I)=320 ± 14.0μmolL⁻¹), more effectively when NH(4)(+) was present (K(I)=240 ± 12.0μmolL⁻¹). We propose a model for the synergistic stimulation by K⁺ and NH(4)(+) of the K⁺-phosphatase activity of the (Na⁺, K⁺)-ATPase from C. ornatus posterior gill tissue.
Collapse
Affiliation(s)
- Daniela P Garçon
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na,K-ATPase activity by mammalian FXYD2 peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2588-97. [DOI: 10.1016/j.bbamem.2012.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/20/2023]
|
39
|
Oubaassine R, Weckering M, Kessler L, Breidert M, Roegel J, Eftekhari P. Insulin interacts directly with Na+/K+ATPase and protects from digoxin toxicity. Toxicology 2012; 299:1-9. [DOI: 10.1016/j.tox.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 01/09/2023]
|
40
|
Zhang Y, Yan X, Liu W, Li C. Cyclic stretch stimulates recruitment of active Na⁺/K⁺-ATPase subunits to the plasma membrane of skeletal muscle cells. Mol Cell Biochem 2012; 366:299-308. [PMID: 22527935 DOI: 10.1007/s11010-012-1308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Cyclic stretch increases Na(+)/K(+)-ATPase activity and abundance in several tissues, including skeletal muscle cells. The present study was undertaken to investigate whether Na(+)/K(+)-ATPase undergoes acute changes in its catalytic activity in response to cyclic stretch. Na(+)/K(+)-ATPase activity increased after continuously stretched for 6 h, and reached the maximum at 24 h. The inhibition of gene transcription (actinomycin D) had no effect on stretch-induced Na(+)/K(+)-ATPase activity. Cyclic stretch also increases the plasma membrane content of α(1)- and α(2)-subunit of Na(+)/K(+)-ATPase. Brefeldin A could completely abolished the stretch-induced recruitment of α-subunits to the plasma membrane and Na(+)/K(+)-ATPase activity. In conclusion, cyclic stretch directly stimulates Na(+)/K(+)-ATPase activity in skeletal muscle cells through post-transcriptional activation, likely by increasing translocation of Na(+)/K(+)-ATPase molecules to plasma membrane.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Periodontics, College of Stomatology, School of Medicine, Wu Han University, 237 Luoyu Road, Wuhan 430079, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Lucena MN, Garçon DP, Mantelatto FL, Pinto MR, McNamara JC, Leone FA. Hemolymph ion regulation and kinetic characteristics of the gill (Na+, K+)-ATPase in the hermit crab Clibanarius vittatus (Decapoda, Anomura) acclimated to high salinity. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:380-91. [DOI: 10.1016/j.cbpb.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/05/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
42
|
Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 2011; 16:73-80. [DOI: 10.1007/s10157-011-0488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/08/2010] [Indexed: 01/24/2023]
|
43
|
Eneling K, Chen J, Welch LC, Takemori H, Sznajder JI, Bertorello AM. Salt-inducible kinase 1 is present in lung alveolar epithelial cells and regulates active sodium transport. Biochem Biophys Res Commun 2011; 409:28-33. [PMID: 21549091 DOI: 10.1016/j.bbrc.2011.04.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na(+), K(+)-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to β-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na(+), K(+)-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na(+), K(+)-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na(+), K(+)-ATPase activity and the incorporation of Na(+), K(+)-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.
Collapse
Affiliation(s)
- Kristina Eneling
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, CMM, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Koricanac G, Tepavcevic S, Zakula Z, Milosavljevic T, Stojiljkovic M, Isenovic ER. Interference between insulin and estradiol signaling pathways in the regulation of cardiac eNOS and Na+/K+-ATPase. Eur J Pharmacol 2011; 655:23-30. [DOI: 10.1016/j.ejphar.2011.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 12/10/2010] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
|
45
|
Casey GP, Paul D, Gould HJ. Insulin Is Essential for the Recovery from Allodynia Induced by Complete Freund's Adjuvant. PAIN MEDICINE 2010; 11:1401-10. [DOI: 10.1111/j.1526-4637.2010.00936.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Time-dependent increases in ouabain-sensitive Na+, K+-ATPase activity in aortas from diabetic rats: The role of prostanoids and protein kinase C. Life Sci 2010; 87:302-8. [DOI: 10.1016/j.lfs.2010.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022]
|
47
|
Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, Hühmer AF, Biringer RG. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache 2010; 50:459-78. [PMID: 19845787 PMCID: PMC8020446 DOI: 10.1111/j.1526-4610.2009.01551.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.
Collapse
Affiliation(s)
- Michael G Harrington
- Huntington Medical Research Institutes - Molecular Neurology, Pasadena, CA 91101, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol A Mol Integr Physiol 2009; 154:44-55. [DOI: 10.1016/j.cbpa.2009.04.624] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
|
49
|
Masui DC, Mantelatto FL, McNamara JC, Furriel RP, Leone FA. Na+, K+-ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: Novel perspectives on ammonia excretion. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:141-8. [DOI: 10.1016/j.cbpa.2009.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
|
50
|
Isojärvi H, Kallio M, Korpelainen R, Kaikkonen K, Jämsä T, Keinänen-Kiukaanniemi S. High insulin levels are positively associated with peripheral nervous system function. Acta Neurol Scand 2009; 119:107-12. [PMID: 18638043 DOI: 10.1111/j.1600-0404.2008.01073.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to analyze peripheral nervous system (PNS) function in overweight and obese individuals. MATERIALS AND METHODS Forty-four adult non-diabetic overweight individuals were recruited. Peroneal motor nerve conduction and radial, sural, and medial plantar sensory nerve conduction were studied. Insulin and glucose levels were determined twice (over a 2- to 3-year period) with an oral glucose tolerance test (OGTT). Multiple stepwise linear regression models adjusted for age, height, weight, and skin temperature were used to analyze the data. RESULTS Analysis revealed that baseline insulin levels measured 120 min after an OGTT explained 18% of the variation in peroneal F-wave minimum latency, 8% of peroneal F-wave maximum latency variation, 15% of sural sensory latency variation, 13% of sural sensory nerve conduction velocity (NCV) variation, and 10% of the variation in medial plantar sensory NCV. DISCUSSION AND CONCLUSION Our study shows that serum insulin levels measured 120 min after an OGGT are positively associated with PNS function. High insulin levels without notably high glucose levels appear to be beneficial for the function of the PNS.
Collapse
Affiliation(s)
- H Isojärvi
- Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|