1
|
Cosio PL, Moreno-Simonet L, Porcelli A, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Cadefau JA. Assessment of inter-individual variability in hamstring muscle recovery after a sport-specific sprint training in women and men. Front Physiol 2024; 14:1331878. [PMID: 38264326 PMCID: PMC10803508 DOI: 10.3389/fphys.2023.1331878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Hamstring muscles are most affected by multiple sprint-based sports as a result of muscle strain during sprinting, leading to reduced performance and increased risk of injury. Therefore, the purpose of the study was to assess inter-individual variability in hamstrings recovery after a sport-specific repeated-sprint training (RST), through sprint-specific markers of muscle recovery and associated muscle damage biomarkers in women and men. Methods: Healthy females (n = 14) and males (n = 15) underwent 10 repeated 40-m sprints with a 3-min rest pause between each repetition. Force-generating capacity (FGC) by the 90° hip :20° knee test and range of motion Jurdan test, together with serum biomarkers [sarcomeric mitochondrial creatine kinase (sMtCK), oxidative stress, irisin] were tested at baseline and 24-, 48- and 72-h post-exercise through a repeated measures design. Participants were classified according to FGC loss into high responders (HR) and low responders (LR). Results: 21 individuals (10 females, 11 males) were classified as HR (FGC loss >20% and recovery >48 h), while 8 individuals (4 females, 4 males) were classified as LR. HR individuals showed unrecovered maximal voluntary isometric contraction (MVIC) torque until 72 h post-training (p = 0.003, np 2 = 0.170), whereas only HR males showed decreased range of motion (p = 0.026, np 2 = 0.116). HR individuals also showed increased sMtCK (p = 0.016, np 2 = 0.128), oxidative stress (p = 0.038, np 2 = 0.106) and irisin (p = 0.019, np 2 = 0.123). Conclusion: There is inter-individual variability in the muscular response to a sport-specific RST, identifiable by MVIC torque assessment. The findings support that the 90° hip :20° knee test is a powerful indirect test to screen hamstrings recovery in both women and men, in a cost-effective way. However, the Jurdan test might not be able to monitor hamstrings recovery in sportswomen after RST. Decreases in muscle capacity are linked to damage to muscle sarcolemma and mitochondria until 72 h post-exercise. Overall, 72 h will not be adequate time to restore hamstrings structure and function after a sport-specific RST in both female and male responders.
Collapse
Affiliation(s)
- Pedro L. Cosio
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Aniello Porcelli
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep M. Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan A. Cadefau
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Godwin JS, Telles GD, Vechin FC, Conceição MS, Ugrinowitsch C, Roberts MD, Libardi CA. Time Course of Proteolysis Biomarker Responses to Resistance, High-Intensity Interval, and Concurrent Exercise Bouts. J Strength Cond Res 2023; 37:2326-2332. [PMID: 37506190 DOI: 10.1519/jsc.0000000000004550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ABSTRACT Godwin, JS, Telles, GD, Vechin, FC, Conceição, MS, Ugrinowitsch, C, Roberts, MD, and Libardi, CA. Time course of proteolysis biomarker responses to resistance, high-intensity interval, and concurrent exercise bouts. J Strength Cond Res 37(12): 2326-2332, 2023-Concurrent exercise (CE) combines resistance exercise (RE) and high-intensity interval exercise (HIIE) in the same training routine, eliciting hypertrophy, strength, and cardiovascular benefits over time. Some studies suggest that CE training may hamper muscle hypertrophy and strength adaptations compared with RE training alone. However, the underlying mechanisms related to protein breakdown are not well understood. The purpose of this study was to examine how a bout of RE, HIIE, or CE affected ubiquitin-proteasome and calpain activity and the expression of a few associated genes, markers of skeletal muscle proteolysis. Nine untrained male subjects completed 1 bout of RE (4 sets of 8-12 reps), HIIE (12 × 1 minute sprints at V̇ o2 peak minimum velocity), and CE (RE followed by HIIE), in a crossover design, separated by 1-week washout periods. Muscle biopsies were obtained from the vastus lateralis before (Pre), immediately post, 4 hours (4 hours), and 8 hours (8 hours) after exercise. FBXO32 mRNA expression increased immediately after exercise (main time effect; p < 0.05), and RE and CE presented significant overall values compared with HIIE ( p < 0.05). There was a marginal time effect for calpain-2 mRNA expression ( p < 0.05), with no differences between time points ( p > 0.05). No significant changes occurred in TRIM63/MuRF-1 and FOXO3 mRNA expression, or 20S proteasome or calpain activities ( p > 0.05). In conclusion, our findings suggest that 1 bout of CE does not promote greater changes in markers of skeletal muscle proteolysis compared with 1 bout of RE or HIIE.
Collapse
Affiliation(s)
| | - Guilherme D Telles
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Felipe C Vechin
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Miguel S Conceição
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | | | - Cleiton A Libardi
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
3
|
Difranco I, Cockburn E, Dimitriou L, Paice K, Sinclair S, Faki T, Hills FA, Gondek MB, Wood A, Wilson LJ. A combination of cherry juice and cold water immersion does not enhance marathon recovery compared to either treatment in isolation: A randomized placebo-controlled trial. Front Sports Act Living 2022; 4:957950. [PMID: 36060624 PMCID: PMC9437358 DOI: 10.3389/fspor.2022.957950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Cherry juice (CJ) and cold water immersion (CWI) are both effective recovery strategies following strenuous endurance exercise. However, athletes routinely combine recovery interventions and less is known about the impact of a combined CJ and CWI protocol. Therefore, this study investigated the effects of combining CWI and CJ (a “cocktail” (CT)) on inflammation and muscle damage following a marathon. Methods A total 39 endurance trained males were randomly assigned to a placebo (PL), CWI, CJ, or CT group before completing a trail marathon run. Muscle damage (creatine kinase (CK)), muscle function (maximal voluntary isometric contraction (MVIC)), and inflammation (interleukin-6 (IL-6); C-reactive protein (CRP)) were measured at baseline, immediately after marathon (only IL-6), 24 h, and 48 h after marathon. Results There were no statistically significant differences between groups and no group × time interaction effects for any of the dependent variables. Confidence intervals (CI) illustrated that CT had unclear effects on inflammation (IL-6; CRP) and MVIC, but may have increased CK to a greater extent than PL and CJ conditions. Conclusion There is no evidence of an additive effect of CJ and CWI when the treatments are used in conjunction with each other. On the contrary, combining CJ and CWI may result in slightly increased circulating CK.
Collapse
Affiliation(s)
- Isabella Difranco
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma Cockburn
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lygeri Dimitriou
- Department of Natural Sciences, Middlesex University, London, United Kingdom
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Katherine Paice
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Scott Sinclair
- London Sports Institute, Middlesex University, London, United Kingdom
- Faculty of Dance, Trinity Laban Conservatoire of Music and Dance, London, United Kingdom
| | - Tanwir Faki
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Frank A. Hills
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Marcela B. Gondek
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Alyssa Wood
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Laura J. Wilson
- London Sports Institute, Middlesex University, London, United Kingdom
- *Correspondence: Laura J. Wilson
| |
Collapse
|
4
|
Kwon DR, Kim Y. Sternocleidomastoid size and upper trapezius muscle thickness in congenital torticollis patients: A retrospective observational study. Medicine (Baltimore) 2021; 100:e28466. [PMID: 34967390 PMCID: PMC8718228 DOI: 10.1097/md.0000000000028466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to investigate the upper trapezius muscle thickness (UTMT) in congenital muscular torticollis (CMT) patients and determine the correlation among sternocleidomastoid muscle thickness (SCMT), accessory nerve (AN) cross-sectional area (CSA), and UTMT in CMT.This retrospective study consisted of 2 participant groups: Group 1 (SCM mass CMT, n = 20) and Group 2 (Postural CMT, n = 22). For both groups, B-mode ultrasound was performed by a physiatrist to measure the SCMT and UTMT and calculate the CSA of the AN. The correlation among SCMT, CSA of the AN, and UTMT in both groups was evaluated.The between-group comparison revealed that Group 1 had significantly greater SCMT, UTMT, and CSA of the AN on the affected side than Group 2 (P < .05). The intragroup comparison between the affected and unaffected sides also revealed that, in Group 1, the SCMT, UTMT, and CSA of the AN were significantly higher on the affected side than on the unaffected side (P < .05), whereas no significant differences were observed in Group 2. In Group 1, a positive correlation (r = 0.55) was observed between the UTMT and CSA of the AN on the affected side, but not observed between the SCMT and CSA of the AN.The findings of the study indicate that sternocleidomastoid muscle size may impact the thickness of the upper trapezius muscle via the accessory nerve in patients with congenital torticollis.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu, South Korea
| | - Yoontae Kim
- Department of Physical Medicine and Rehabilitation, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Chungcheongnam-do, South Korea
| |
Collapse
|
5
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
6
|
Andrade MS, Ferrer CRL, Vancini RL, Nikolaidis PT, Knechtle B, Rosemann T, Bachi ALL, Seffrin A, de Lira CAB. The Effect of Muscle Strength on Marathon Race-Induced Muscle Soreness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111258. [PMID: 34769776 PMCID: PMC8583638 DOI: 10.3390/ijerph182111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Muscle soreness after a competition or a training session has been a concern of runners due to its harmful effect on performance. It is not known if stronger individuals present a lower level of muscle soreness after a strenuous physical effort. The aim of this study was to investigate whether the pre-race muscle strength or the V˙O2max level can predict muscle soreness 24, 48 and 72 h after a full marathon in men. METHODS Thirty-one marathon runners participated in this study (age, 40.8 ± 8.8 years old; weight, 74.3 ± 10.4 kg; height, 174.2 ± 7.6 cm; maximum oxygen uptake, V˙O2max, 57.7 ± 6.8 mL/kg/min). The isokinetic strength test for thigh muscles and the V˙O2max level was performed 15-30 days before the marathon and the participants were evaluated for the subjective feeling of soreness before, 24, 48 and 72 h after the marathon. RESULTS The participants presented more pain 24 h after the race (median = 3, IQR = 1) than before it (median = 0, IQR = 0) (p < 0.001), and the strength values for the knee extensor muscles were significantly associated with muscle soreness assessed 24 h after the race (p = 0.028), but not 48 (p = 0.990) or 72 h (p = 0.416) after the race. The V˙O2max level was not associated with the muscle pain level at any moment after the marathon. CONCLUSIONS Marathon runners who presented higher muscular strength for the knee extensor muscles presented lower muscle soreness 24 h after the race, but not after 48 h or 72 h after the race. Therefore, the muscle soreness level 3 days after a marathon race does not depend on muscle strength.
Collapse
Affiliation(s)
- Marilia Santos Andrade
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Carolina Ribeiro Lopes Ferrer
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil;
| | | | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
- Correspondence: ; Tel.: +41-(0)-71-226-93-00; Fax: +41-(0)-71-226-93-01
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
| | - André Luis Lacerda Bachi
- Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Aldo Seffrin
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Claudio Andre Barbosa de Lira
- Human and Exercise Physiology Division, Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia 74690-900, Brazil;
| |
Collapse
|
7
|
Kataoka R, Vasenina E, Hammert WB, Ibrahim AH, Dankel SJ, Buckner SL. Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise? Sports Med 2021; 52:25-36. [PMID: 34613589 DOI: 10.1007/s40279-021-01572-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 12/28/2022]
Abstract
It has been suggested that improper post-exercise recovery or improper sequence of training may result in an 'accumulation' of fatigue. Despite this suggestion, there is a lack of clarity regarding which physiological mechanisms may be proposed to contribute to fatigue accumulation. The present paper explores the time course of the changes in various fatigue-related measures in order to understand how they may accumulate or lessen over time following an exercise bout or in the context of an exercise program. Regarding peripheral fatigue, the depletion of energy substrates and accumulation of metabolic byproducts has been demonstrated to occur following an acute bout of resistance training; however, peripheral accumulation and depletion appear unlikely candidates to accumulate over time. A number of mechanisms may contribute to the development of central fatigue, postulating the need for prolonged periods of recovery; however, a time course is difficult to determine and is dependent on which measurement is examined. In addition, it has not been demonstrated that central fatigue measures accumulate over time. A potential candidate that may be interpreted as accumulated fatigue is muscle damage, which shares similar characteristics (i.e., prolonged strength loss). Due to the delayed appearance of muscle damage, it may be interpreted as accumulated fatigue. Overall, evidence for the presence of fatigue accumulation with resistance training is equivocal, making it difficult to draw the conclusion that fatigue accumulates. Considerable work remains as to whether fatigue can accumulate over time. Future studies are warranted to elucidate potential mechanisms underlying the concept of fatigue accumulation.
Collapse
Affiliation(s)
- Ryo Kataoka
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Ecaterina Vasenina
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - William B Hammert
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Adam H Ibrahim
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Scott J Dankel
- Exercise Physiology Laboratory, Department of Health and Exercise Science, Rowan University, Glassboro, NJ, USA
| | - Samuel L Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA.
| |
Collapse
|
8
|
Shan H, Gao X, Zhang M, Huang M, Fang X, Chen H, Tian B, Wang C, Zhou C, Bai J, Zhou X. Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. J Tissue Eng 2021; 12:20417314211031378. [PMID: 34345399 PMCID: PMC8283072 DOI: 10.1177/20417314211031378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscle injury is a common disease accompanied by inflammation, and its treatment still faces many challenges. The local inflammatory microenvironment can be modulated by a novel ROS-scavenging hydrogel (Gel) we constructed. And MSCs could differentiate into myoblasts and contribute to muscle tissue homeostasis and regeneration. Here, Gel loaded with mesenchymal stem cells (MSCs) (Gel@MSCs) was developed for repairing the injured skeletal muscle. Results showed that the Gel improved the survivability and enhanced the proliferation of MSCs (≈two-fold), and the Gel@MSCs inhibited the local inflammatory responses as it promoted polarization of M2 macrophages (increased from 5% to 17%), the mediator of the production of anti-inflammatory factors. Western blotting and qPCR revealed the Gel promoted the expression of proteins (≈two-fold) and genes (≈two to six-fold) related to myogenesis in MSCs. Histological assessment indicated that the Gel or MSCs promoted regeneration of skeletal muscle, and the efficacy was more significant at Gel@MSCs than MSCs alone. Finally, behavioral experiments confirmed that Gel@MSCs improved the motor function of injured mice. In short, the Gel@MSCs system we constructed presented a positive effect on reducing skeletal muscle damage and promoted skeletal muscle regeneration, which might be a novel treatment for such injuries.
Collapse
Affiliation(s)
- Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Man Huang
- Department of Oncology, Suzhou Dushuhu Public Hospital, Suzhou, Jiangsu, China
| | - Xiyao Fang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu, China
| | - Chenyu Zhou
- Faculty of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Tanabe Y, Akazawa N, Nishimaki M, Shimizu K, Fujii N, Takahashi H. Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate Ingestion on Muscle Damage after Eccentric Exercise in Healthy Males: A Pilot Placebo-Controlled Double-Blind Crossover Study. J Diet Suppl 2021; 19:656-671. [PMID: 33938371 DOI: 10.1080/19390211.2021.1912244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An animal study demonstrated that 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Japanese pungent spice wasabi, has an action of inhibiting the activation of calpain-1 (a protease). Increases in calpain activity can cause continual strength loss after eccentric exercise. It remains to be determined in humans whether 6-MSITC intake would modulate calpain and/or muscle damage responses after eccentric exercise. We performed a randomized, double-blind, crossover design study wherein eight healthy young males were randomly assigned to ingest 9 mg/day of 6-MSITC or placebo from 1 day before exercise to 4 days after exercise (30 maximal isokinetic eccentric contractions of the elbow flexors using an isokinetic dynamometer). Calpain-1 concentration, inflammatory and muscle damage markers (creatine kinase activity, urinary titin concentration, muscle strength, range of motion, muscle soreness and transverse relaxation time) were assessed. Plasma calpain-1 concentration after eccentric exercise was similar between the placebo- and 6-MSITC-treated conditions. All muscle damage and inflammatory markers were not affected by 6-MSITC relative to those in the placebo-treated condition. Our results suggest that 6-MSITC has no effect on plasma calpain-1 concentration and muscle damage and inflammatory markers measured after eccentric exercise.
Collapse
Affiliation(s)
- Yoko Tanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Nobuhiko Akazawa
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Mio Nishimaki
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan.,Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuhiro Shimizu
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
10
|
Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021; 9:biomedicines9010036. [PMID: 33466327 PMCID: PMC7824757 DOI: 10.3390/biomedicines9010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Subclinical, low-grade, inflammation is one of the main pathophysiological mechanisms underlying the majority of chronic and non-communicable diseases. Several methodological approaches have been applied for the assessment of the anti-inflammatory properties of nutrition, however, their impact in human body remains uncertain, because of the fact that the majority of the studies reporting anti-inflammatory effect of dietary patterns, have been performed under laboratory settings and/or in animal models. Thus, the extrapolation of these results to humans is risky. It is therefore obvious that the development of an inflammatory model in humans, by which we could induce inflammatory responses to humans in a regulated, specific, and non-harmful way, could greatly facilitate the estimation of the anti-inflammatory properties of diet in a more physiological way and mechanistically relevant way. We believe that exercise-induced muscle damage (EIMD) could serve as such a model, either in studies investigating the homeostatic responses of individuals under inflammatory stimuli or for the estimation of the anti-inflammatory or pro-inflammatory potential of dietary patterns, foods, supplements, nutrients, or phytochemicals. Thus, in this review we discuss the possibility of exercise-induced muscle damage being an inflammation model suitable for the assessment of the anti-inflammatory properties of diet in humans.
Collapse
|
11
|
A proposal for a new headache classification system for general practitioners. Med Hypotheses 2020; 143:110103. [PMID: 32721801 DOI: 10.1016/j.mehy.2020.110103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/20/2022]
Abstract
We proposes a new method of headache classification, which is simpler for use in general practice and is based on a pathophysiological approach, in preference to the International Classification of Headache Disorders (ICHD) broad classification for headaches. In the ICDH classification, three main categories and numerous sub-categories and divisions are available with a view to addressing the symptoms and the aetiology of headache. However, the ICDH classification system is complex, with its many subdivisions, and it is cumbersome to use. Moreover, it is likely that not all medical professionals are readily familiar with it. A new classification system that is easy to learn and clinically user-friendly is necessary for primary care physicians to diagnose and classify headaches. We believe that our study makes a significant contribution to the literature because we propose a new method of classification for headaches that is based on clinical experience and addresses the pathogenesis of headaches.
Collapse
|
12
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
13
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Abstract
Polyphenols are characterised structurally by two or more hydroxyl groups attached to one or more benzene rings, and provide the taste and colour characteristics of fruits and vegetables. They are radical scavengers and metal chelators, but due to their low concentration in biological fluids in vivo their antioxidant properties seem to be related to enhanced endogenous antioxidant capacity induced via signalling through the Nrf2 pathway. Polyphenols also seem to possess anti-inflammatory properties and have been shown to enhance vascular function via nitric oxide-mediated mechanisms. As a consequence, there is a rationale for supplementation with fruit-derived polyphenols both to enhance exercise performance, since excess reactive oxygen species generation has been implicated in fatigue development, and to enhance recovery from muscle damage induced by intensive exercise due to the involvement of inflammation and oxidative damage within muscle. Current evidence would suggest that acute supplementation with ~ 300 mg polyphenols 1–2 h prior to exercise may enhance exercise capacity and/or performance during endurance and repeated sprint exercise via antioxidant and vascular mechanisms. However, only a small number of studies have been performed to date, some with methodological limitations, and more research is needed to confirm these findings. A larger body of evidence suggests that supplementation with > 1000 mg polyphenols per day for 3 or more days prior to and following exercise will enhance recovery following muscle damage via antioxidant and anti-inflammatory mechanisms. The many remaining unanswered questions within the field of polyphenol research and exercise performance and recovery are highlighted within this review article.
Collapse
|
15
|
Dridi H, Yehya M, Barsotti R, Reiken S, Angebault C, Jung B, Jaber S, Marks AR, Lacampagne A, Matecki S. Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation. Free Radic Biol Med 2020; 146:383-391. [PMID: 31756525 DOI: 10.1016/j.freeradbiomed.2019.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE Ventilator-induced diaphragm dysfunction (VIDD) increases morbidity and mortality in critical care patients. Although VIDD has been associated with mitochondrial oxidative stress and calcium homeostasis impairment, the underling mechanisms are still unknown. We hypothesized that diaphragmatic mitochondrial oxidative stress causes remodeling of the ryanodine receptor (RyR1)/calcium release channel, contributing to sarcoplasmic reticulum (SR) Ca2+ leak, proteolysis and VIDD. METHOD In mice diaphragms mechanically ventilated for short (6 h) and long (12 h) period, we assessed mitochondrial ROS production, mitochondrial aconitase activity as a marker of mitochondrial oxidative stress, RyR1 remodeling and function, Ca2+ dependent proteolysis, TGFβ1 and STAT3 pathway, muscle fibers cross-sectional area, and diaphragm specific force production, with or without the mitochondrial targeted anti-oxidant peptide d-Arg-2', 6'-dimethyltyrosine-Lys-Phe-NH2 (SS31). MEASUREMENTS AND MAIN RESULTS 6 h of mechanical ventilation (MV) resulted in increased mitochondrial ROS production, reduction of mitochondrial aconitase activity, increased oxidation, S-nitrosylation, S-glutathionylation and Ser-2844 phosphorylation of RyR1, depletion of stabilizing subunit calstabin1 from RyR1, increased SR Ca2+ leak. Preventing mROS production by SS31 treatment does not affect the TGFβ1 and STAT3 activation, which suggests that mitochondrial oxidative stress is a downstream pathway to TGFβ1 and STAT3, early involved in VIDD. This is further supported by the fact that SS-31 rescue all the other described cellular events and diaphragm contractile dysfunction induced by MV, while SS20, an analog of SS31 lacking antioxidant properties, failed to prevent these cellular events and the contractile dysfunction. Similar results were found in ventilated for 12 h. Moreover, SS31 treatment prevented calpain1 activity and diaphragm atrophy observed after 12 h of MV. This study emphasizes that mitochondrial oxidative stress during 6 h-MV contributes to SR Ca2+ leak via RyR1 remodeling, and diaphragm weakness, while longer periods of MV (12 h) were also associated with increased Ca2+-dependent proteolysis and diaphragm atrophy.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Mohamad Yehya
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Claire Angebault
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France
| | - Boris Jung
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France
| | - Samir Jaber
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; St Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Alain Lacampagne
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France.
| | - Stephan Matecki
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; Arnaud de Villeneuve Physiological Department, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France.
| |
Collapse
|
16
|
Tabuchi A, Eshima H, Tanaka Y, Nogami S, Inoue N, Sudo M, Okada H, Poole DC, Kano Y. Regional differences in Ca 2+ entry along the proximal-middle-distal muscle axis during eccentric contractions in rat skeletal muscle. J Appl Physiol (1985) 2019; 127:828-837. [PMID: 31369334 DOI: 10.1152/japplphysiol.01005.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric (ECC) contraction-induced muscle damage is associated with calcium ion (Ca2+) influx from the extracellular milieu through stretch-activated channels. It remains unknown whether Ca2+ influx consequent to repetitive ECC contractions is nonuniform across different muscle regions. We tested the hypothesis that there are regional differences in Ca2+ entry along the proximal-middle-distal muscle axis. Tibialis anterior (TA) muscles of adult male Wistar rats were exposed by reflecting the overlying skin and fasciae and ECC contractions evoked by peroneal nerve stimulation paired with simultaneous ankle extension (50 times/set, 2 protocols: 1 set and 10 sets). During ECC in the proximal, middle, and distal TA, we determined 1) muscle fiber extension by high-speed camera (200 frames/s) and 2) Ca2+ accumulation by in vivo bioimaging (Ca2+-sensitive probe Fura-2-acetoxymethyl ester). Muscle fiber extension from resting was significantly different among regions (i.e., proximal, 4.0%: < middle, 11.2%: < distal, 17.0%; ECC phase length at 500th contraction). Intracellular Ca2+ accumulation after 1 set of ECC was higher in the distal (1.46 ± 0.04, P < 0.05) than the proximal (1.27 ± 0.04) or middle (1.26 ± 0.05) regions. However, this regional Ca2+ accumulation difference disappeared by 32.5 min after the 1 set protocol when the muscle was quiescent and by contraction set 5 for the 10-set protocol. The initial preferential ECC-induced Ca2+ accumulation observed distally was associated spatially with the greater muscle extension compared with that of the proximal and middle regions. Disappearance of the regional Ca2+ accumulation disparity in quiescent and ECC-contracting muscle might be explained, in part, by axial Ca2+ propagation and account for the uniformity of muscle damage across regions evident 3 days post-ECC.NEW & NOTEWORTHY After 1 set of 50 eccentric (ECC) contractions in the anterior tibialis muscle, intracellular Ca2+ ([Ca2+]i) accumulation evinces substantial regional heterogeneity that is spatially coherent with muscle length changes (i.e., distal [Ca2+]i > middle, proximal). However, irrespective of whether 50 or 500 ECC contractions are performed, this heterogeneity is subsequently abolished, at least in part, by axial intracellular Ca2+ propagation. This Ca2+ homogenization across regions is consistent with the absence of any interregional difference in muscle damage 3 days post-ECC.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Department of Nutrition and Integrative Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Shunsuke Nogami
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoki Inoue
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Mizuki Sudo
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Hidetaka Okada
- Department of Mechanical Engineering and Intelligent Systems, Control Systems Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE This case describes the first episode of care, using conservative treatment, massage, and frequency-specific microcurrent (FSM), for a 19-month-old boy with grade 8 left congenital muscular torticollis with fibrotic nodules. METHODS Ten weeks of physical therapy provided stretching, strengthening, massage, and parent education, adding FSM in weeks 3 to 10 for this patient. RESULTS Full passive cervical rotation and lateral flexion, 4/5 lateral cervical flexion strength, improved head tilt, and inability to palpate fibrotic nodules were achieved by week 8, with partial home program adherence. CONCLUSIONS AND RECOMMENDATIONS FOR PRACTICE Excellent outcomes were achieved with conservative care in a patient with poor prognosis and likelihood of surgical referral. Combining stretching, strengthening, massage, postural reeducation, and FSM resulted in full range and good strength in an exceptionally short time. The combination of massage and FSM, not previously reported, are tools that may be effective in congenital muscular torticollis treatment.
Collapse
|
18
|
Scicchitano BM, Sica G. The Beneficial Effects of Taurine to Counteract Sarcopenia. Curr Protein Pept Sci 2019; 19:673-680. [PMID: 27875962 PMCID: PMC6040170 DOI: 10.2174/1389203718666161122113609] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Aging is a multifactorial process characterized by several features including low-grade inflammation, increased oxidative stress and reduced regenerative capacity, which ultimately lead to alteration in morpho-functional properties of skeletal muscle, thus promoting sarcopenia. This condition is characterized by a gradual loss of muscle mass due to an unbalance between protein synthesis and degradation, finally conveying in functional decline and disability. The development of specific therapeutic approaches able to block or reverse this condition may represent an invaluable tool for the promotion of a healthy aging among elderly people. It is well established that changes in the quantity and the quality of dietary proteins, as well as the intake of specific amino acids, are able to counteract some of the physiopathological processes related to the progression of the loss of muscle mass and may have beneficial effects in improving the anabolic response of muscle in the elderly. Taurine is a non-essential amino acid expressed in high concentration in several mammalian tissues and particularly in skeletal muscle where it is involved in the modulation of intracellular calcium concentration and ion channel regulation and where it also acts as an antioxidant and anti-inflammatory factor. The aim of this review is to summarize the pleiotropic effects of taurine on specific muscle targets and to discuss its role in regulating signaling pathways involved in the maintenance of muscle homeostasis. We also highlight the potential use of taurine as a therapeutic molecule for the amelioration of skeletal muscle function and performance severely compromised during aging.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| |
Collapse
|
19
|
Wang Z, Jiang S, Cao J, Liu K, Xu S, Arfat Y, Guo Q, Chang H, Goswami N, Hinghofer‐Szalkay H, Gao Y. Novel findings on ultrastructural protection of skeletal muscle fibers during hibernation of Daurian ground squirrels: Mitochondria, nuclei, cytoskeleton, glycogen. J Cell Physiol 2019; 234:13318-13331. [DOI: 10.1002/jcp.28008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Shan‐Feng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Jin Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Kun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Shen‐Hui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Quan‐Ling Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz Graz Austria
| | - Helmut Hinghofer‐Szalkay
- Physiology Unit, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz Graz Austria
| | | |
Collapse
|
20
|
Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf 2018; 18:380-401. [PMID: 33336942 DOI: 10.1111/1541-4337.12417] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Stress inevitably occurs from the farm to abattoir in modern livestock husbandry. The effects of stress on the behavioral and physiological status and ultimate meat quality have been well documented. However, reports on the mechanism of stress effects on physiological and biochemical changes and their consequent effects on meat quality attributes have been somewhat disjointed and limited. Furthermore, the causes of variability in meat quality traits among different animal species, muscle fibers within an animal, and even positions within a piece of meat in response to stress are still not entirely clear. This review 1st summarizes the primary stress factors, including heat stress, preslaughter handling stress, oxidative stress, and other stress factors affecting animal welfare; carcass quality; and eating quality. This review further delineates potential stress-induced pathways or mediators, including AMP-activated protein kinase-mediated energy metabolism, crosstalk among calcium signaling pathways and reactive oxygen species, protein modification, apoptosis, calpain and cathepsin proteolytic systems, and heat shock proteins that exert effects that cause biochemical changes during the early postmortem period and affect the subsequent meat quality. To obtain meat of high quality, further studies are needed to unravel the intricate mechanisms involving the aforementioned signaling pathways or mediators and their crosstalk.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Ronald K Tume
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| |
Collapse
|
21
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
22
|
Klich S, Krymski I, Michalik K, Kawczyński A. Effect of short-term cold-water immersion on muscle pain sensitivity in elite track cyclists. Phys Ther Sport 2018; 32:42-47. [PMID: 29738892 DOI: 10.1016/j.ptsp.2018.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the effect of short-term cold-water immersion (CWI) on muscle pain sensitivity after maximal anaerobic power training in track cyclists. DESIGN Repeated measures. SETTING University Laboratory. PARTICIPANTS 12 elite sprint track cyclists (age 24,75 ± 4,23 years). MAIN OUTCOME MEASURES PPT measurements were made on dominant lower extremity (right) in 20 reference points, including anterior thigh muscles, posterior thigh muscles and posterior cuff muscles. PPT levels were measured: 1) before workout, 2) immediately after workout, but before CWI 3) 1 h after CWI and 4) 12 h after CWI. Mean PPT values for each muscle group per participant were calculated for further statistical analysis. RESULTS The average PPT for anterior thigh muscles decreased significantly after effort (p = 0.001) and increased significantly 1 h after CWI (p = 0.048). In posterior thigh muscles PPT decreased significantly after effort (p = 0.014) and increased significantly 1 h and 12 h after CWI (p = 0.045 and p = 0.25 respectively). However, in posterior cuff muscles PPT decreased only after effort (p = 0.001). CONCLUSIONS Short-term repeated sprint exercise appears to affect PPT in track cyclists. This study have reported that CWI in 5 °C for 5 min have had a beneficial effect in minimizing PPT 1 h post repeated maximal sprint training.
Collapse
Affiliation(s)
- Sebastian Klich
- Department of Paralympic Sport, University School of Physical Education in Wroclaw, 25a Witelona Street, 51-617 Wroclaw, Poland.
| | - Igor Krymski
- National Team Coach, Polish Cycling Federation, 1 Andrzeja Street, 05-800 Pruszków, Poland.
| | - Kamil Michalik
- Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 Paderewskiego Ave, 51-612 Wrocław, Poland.
| | - Adam Kawczyński
- Department of Paralympic Sport, University School of Physical Education in Wroclaw, 25a Witelona Street, 51-617 Wroclaw, Poland.
| |
Collapse
|
23
|
Vassilakopoulos T, Petrof BJ. A Stimulating Approach to Ventilator-induced Diaphragmatic Dysfunction. Am J Respir Crit Care Med 2017; 169:336-41. [PMID: 14739134 DOI: 10.1164/rccm.200304-489cp] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Bhattacharya D, Ydfors M, Hughes MC, Norrbom J, Perry CGR, Scimè A. Decreased transcriptional corepressor p107 is associated with exercise-induced mitochondrial biogenesis in human skeletal muscle. Physiol Rep 2017; 5:5/5/e13155. [PMID: 28270591 PMCID: PMC5350169 DOI: 10.14814/phy2.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Increased mitochondrial content is a hallmark of exercise-induced skeletal muscle remodeling. For this process, considerable evidence underscores the involvement of transcriptional coactivators in mediating mitochondrial biogenesis. However, our knowledge regarding the role of transcriptional corepressors is lacking. In this study, we assessed the association of the transcriptional corepressor Rb family proteins, Rb and p107, with endurance exercise-induced mitochondrial adaptation in human skeletal muscle. We showed that p107, but not Rb, protein levels decrease by 3 weeks of high-intensity interval training. This is associated with significant inverse association between p107 and exercise-induced improved mitochondrial oxidative phosphorylation. Indeed, p107 showed significant reciprocal correlations with the protein contents of representative markers of mitochondrial electron transport chain complexes. These findings in human skeletal muscle suggest that attenuated transcriptional repression through p107 may be a novel mechanism by which exercise stimulates mitochondrial biogenesis following exercise.
Collapse
Affiliation(s)
- Debasmita Bhattacharya
- Stem Cell Research Group, Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Mia Ydfors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meghan C Hughes
- Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher G R Perry
- Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Anthony Scimè
- Stem Cell Research Group, Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada .,Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| |
Collapse
|
25
|
Wilson LJ, Cockburn E, Paice K, Sinclair S, Faki T, Hills FA, Gondek MB, Wood A, Dimitriou L. Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. Eur J Appl Physiol 2017; 118:153-163. [PMID: 29127510 DOI: 10.1007/s00421-017-3757-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Cryotherapy is an increasingly popular recovery strategy used in an attempt to attenuate the negative impact of strenuous physical activity on subsequent exercise. Therefore, this study aimed to assess the effects of whole body cryotherapy (WBC) and cold water immersion (CWI) on markers of recovery following a marathon. METHODS Thirty-one endurance trained males completed a marathon. Participants were randomly assigned to a CWI, WBC or placebo group. Perceptions of muscle soreness, training stress and markers of muscle function were recorded before the marathon and at 24 and 48 h post exercise. Blood samples were taken at baseline, post intervention and 24 and 48 h post intervention to assess inflammation and muscle damage. RESULTS WBC had a harmful effect on muscle function compared to CWI post marathon. WBC positively influenced perceptions of training stress compared to CWI. With the exception of C-reactive protein (CRP) at 24 and 48 h, neither cryotherapy intervention positively influenced blood borne markers of inflammation or structural damage compared to placebo. CONCLUSION The findings show WBC has a negative impact on muscle function, perceptions of soreness and a number of blood parameters compared to CWI, contradicting the suggestion that WBC may be a superior recovery strategy. Further, cryotherapy is no more effective than a placebo intervention at improving functional recovery or perceptions of training stress following a marathon. These findings lend further evidence to suggest that treatment belief and the placebo effect may be largely responsible for the beneficial effects of cryotherapy on recovery following a marathon.
Collapse
Affiliation(s)
- Laura J Wilson
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK.
| | - Emma Cockburn
- School of Biomedical Science, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine Paice
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK
| | - Scott Sinclair
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK
| | - Tanwir Faki
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK
| | - Frank A Hills
- Biomarker Research Group, Department of Natural Sciences, Middlesex University, London, UK
| | - Marcela B Gondek
- Biomarker Research Group, Department of Natural Sciences, Middlesex University, London, UK
| | - Alyssa Wood
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK
| | - Lygeri Dimitriou
- London Sports Institute, Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL, UK
| |
Collapse
|
26
|
Ocobock CJ. Body fat attenuates muscle mass catabolism among physically active humans in temperate and cold high altitude environments. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.23013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
|
27
|
Bryant AE, Aldape MJ, Bayer CR, Katahira EJ, Bond L, Nicora CD, Fillmore TL, Clauss TRW, Metz TO, Webb-Robertson BJ, Stevens DL. Effects of delayed NSAID administration after experimental eccentric contraction injury - A cellular and proteomics study. PLoS One 2017; 12:e0172486. [PMID: 28245256 PMCID: PMC5330483 DOI: 10.1371/journal.pone.0172486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain that peak 1-2 days post-injury. While prophylactic use or early administration of NSAIDs has been shown to delay muscle regeneration and contribute to loss of muscle strength after healing, little is known about the effects of delayed NSAID use. Further, NSAID use following non-penetrating injury has been associated with increased risk and severity of infection, including that due to group A streptococcus, though the mechanisms remain to be elucidated. The present study investigated the effects of delayed NSAID administration on muscle repair and sought mechanisms supporting an injury/NSAID/infection axis. METHODS A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle was used to profile the cellular and molecular changes induced by ketorolac tromethamine administered 47 hr post injury. RESULTS NSAID administration inhibited several important muscle regeneration processes and down-regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed cell death. These activities were associated with increased caspase activity in injured muscles but were independent of any NSAID effect on macrophage influx or phenotype switching. CONCLUSIONS These findings provide new molecular evidence supporting the notion that NSAIDs have a direct negative influence on muscle repair after acute strain injury in mice and thus add to renewed concern about the safety and benefits of NSAIDS in both children and adults, in those with progressive loss of muscle mass such as the elderly or patients with cancer or AIDS, and those at risk of secondary infection after trauma or surgery.
Collapse
Affiliation(s)
- Amy E. Bryant
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael J. Aldape
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- Northwest Nazarene University, Nampa, ID, United States of America
| | - Clifford R. Bayer
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Eva J. Katahira
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Laura Bond
- Boise State University, Boise, ID, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Thomas L. Fillmore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Dennis L. Stevens
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
28
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016; 8:nu8080506. [PMID: 27548212 PMCID: PMC4997419 DOI: 10.3390/nu8080506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.
Collapse
|
30
|
Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V, Mrozek S, Santulli G, Umanskaya A, Petrof BJ, Jaber S, Marks AR, Lacampagne A. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A 2016; 113:9069-74. [PMID: 27457930 PMCID: PMC4987795 DOI: 10.1073/pnas.1609707113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is associated with rapid remodeling of the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR1) in the diaphragm. The RyR1 macromolecular complex was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and depleted of the stabilizing subunit calstabin1, following MV. These posttranslational modifications of RyR1 were mediated by both oxidative stress mediated by MV and stimulation of adrenergic signaling resulting from the anesthesia. We demonstrate in the murine model that such abnormal resting SR Ca(2+) leak resulted in reduced contractile function and muscle fiber atrophy for longer duration of MV. Treatment with β-adrenergic antagonists or with S107, a small molecule drug that stabilizes the RyR1-calstabin1 interaction, prevented VIDD. Diaphragmatic dysfunction is common in MV patients and is a major cause of failure to wean patients from ventilator support. This study provides the first evidence to our knowledge of RyR1 alterations as a proximal mechanism underlying VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Stefan Matecki
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France
| | - Haikel Dridi
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France
| | - Boris Jung
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France; Department of Anesthesiology and Critical Care Medicine, St. Eloi Teaching Hospital, 34295 Montpellier, France
| | - Nathalie Saint
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032; The Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Valérie Scheuermann
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France
| | - Ségolène Mrozek
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032; The Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032; The Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Basil J Petrof
- Meakins-Christie Laboratories, McGill University and McGill University Hospital Research Institute, Montreal, QC H2X 2P2, Canada
| | - Samir Jaber
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France; Department of Anesthesiology and Critical Care Medicine, St. Eloi Teaching Hospital, 34295 Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032; The Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| | - Alain Lacampagne
- Inserm U1046, CNRS UMR 91214, Université de Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, 34295 Montpellier, France;
| |
Collapse
|
31
|
Nemova NN, Lysenko LA, Kantserova NP. Degradation of skeletal muscle protein during growth and development of salmonid fish. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416040068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
33
|
Sloboda DD, Brooks SV. Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage. Physiol Rep 2016; 4:4/1/e12667. [PMID: 26733249 PMCID: PMC4760404 DOI: 10.14814/phy2.12667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
P‐ and E‐selectins are expressed on the surface of endothelial cells and may contribute to neutrophil recruitment following injurious lengthening contractions of skeletal muscle. Blunting neutrophil, but not macrophage, accumulation after lengthening contractions may provide a therapeutic benefit as neutrophils exacerbate damage to muscle fibers, while macrophages promote repair. In this study, we tested the hypothesis that P‐ and E‐selectins contribute to neutrophil, but not macrophage, accumulation in muscles after contraction‐induced injury, and that reducing neutrophil accumulation by blocking the selectins would be sufficient to reduce damage to muscle fibers. To test our hypothesis, we treated mice with antibodies to block P‐ and E‐selectin function and assessed leukocyte accumulation and damage in muscles 2 days after lengthening contractions. Treatment with P/E‐selectin blocking antibodies reduced neutrophil content by about half in muscles subjected to lengthening contractions. In spite of the reduction in neutrophil accumulation, we did not detect a decrease in damage 2 days after lengthening contractions. We conclude that P‐ and/or E‐selectin contribute to the neutrophil accumulation associated with contraction‐induced muscle damage and that only a portion of the neutrophils that typically accumulate following injurious lengthening contractions is sufficient to induce muscle fiber damage and force deficits. Thus, therapeutic interventions based on blocking the selectins or other adhesion proteins will have to reduce neutrophil numbers by more than 50% in order to provide a benefit.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
34
|
Muscle damage and repeated bout effect following blood flow restricted exercise. Eur J Appl Physiol 2015; 116:513-25. [PMID: 26645685 DOI: 10.1007/s00421-015-3304-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). METHODS Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. RESULTS The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. CONCLUSION We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
Collapse
|
35
|
Malanga GA, Yan N, Stark J. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury. Postgrad Med 2014; 127:57-65. [PMID: 25526231 DOI: 10.1080/00325481.2015.992719] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonpharmacological treatment strategies for acute musculoskeletal injury revolve around pain reduction and promotion of healing in order to facilitate a return to normal function and activity. Heat and cold therapy modalities are often used to facilitate this outcome despite prevalent confusion about which modality (heat vs cold) to use and when to use it. Most recommendations for the use of heat and cold therapy are based on empirical experience, with limited evidence to support the efficacy of specific modalities. This literature review provides information for practitioners on the use of heat and cold therapies based on the mechanisms of action, physiological effects, and the medical evidence to support their clinical use. The physiological effects of cold therapy include reductions in pain, blood flow, edema, inflammation, muscle spasm, and metabolic demand. There is limited evidence from randomized clinical trials (RCTs) supporting the use of cold therapy following acute musculoskeletal injury and delayed-onset muscle soreness (DOMS). The physiological effects of heat therapy include pain relief and increases in blood flow, metabolism, and elasticity of connective tissues. There is limited overall evidence to support the use of topical heat in general; however, RCTs have shown that heat-wrap therapy provides short-term reductions in pain and disability in patients with acute low back pain and provides significantly greater pain relief of DOMS than does cold therapy. There remains an ongoing need for more sufficiently powered high-quality RCTs on the effects of cold and heat therapy on recovery from acute musculoskeletal injury and DOMS.
Collapse
|
36
|
Hicks MR, Cao TV, Standley PR. Biomechanical strain vehicles for fibroblast-directed skeletal myoblast differentiation and myotube functionality in a novel coculture. Am J Physiol Cell Physiol 2014; 307:C671-83. [PMID: 25122874 DOI: 10.1152/ajpcell.00335.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle functionality is governed by multiple stimuli, including cytokines and biomechanical strain. Fibroblasts embedded within muscle connective tissue respond to biomechanical strain by secreting cytokines that induce myoblast differentiation and, we hypothesize, regulate myotube function. A coculture was established to allow cross talk between fibroblasts in Bioflex wells and myoblasts on nondeformable coverslips situated above Bioflex wells. Cyclic short-duration strain (CSDS) modeling repetitive stress/injury, acyclic long-duration strain (ALDS) modeling manipulative therapy, and combined strain paradigms (CSDS + ALDS) were applied to fibroblasts. Nonstrained myoblasts in uniculture and coculture served as controls. After fibroblasts had induced myoblast differentiation, myotube contraction was assessed by perfusion of ACh (10(-11)-10(-3) M). CSDS-treated fibroblasts increased myotube contractile sensitivity vs. uniculture (P < 0.05). As contraction is dependent on ACh binding, expression and clustering of nicotinic ACh receptors (nAChRs) were measured. CSDS-treated fibroblasts increased nAChR expression (P < 0.05), which correlated with myotube contraction. ALDS-treated fibroblasts did not significantly affect contraction or nAChR expression. Agrin-treated myotubes were then used to design a computer algorithm to identify α-bungarotoxin-stained nAChR clusters. ALDS-treated fibroblasts increased nAChR clustering (P < 0.05), while CSDS-treated fibroblasts disrupted cluster formation. CSDS-treated fibroblasts produced nAChRs preferentially located in nonclustered regions (P < 0.05). Strain-activated fibroblasts mediate myotube differentiation with multiple functional phenotypes. Similar to muscle injury, CSDS-treated fibroblasts disrupted nAChR clusters and hypersensitized myotube contraction, while ALDS-treated fibroblasts aggregated nAChRs in large clusters, which may have important clinical implications. Cellular strategies aimed at improving muscle functionality, such as through biomechanical strain vehicles that activate fibroblasts to stabilize postsynaptic nAChRs on nearby skeletal muscle, may serve as novel targets in neuromuscular disorders.
Collapse
Affiliation(s)
- Michael R Hicks
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thanh V Cao
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and
| | - Paul R Standley
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and
| |
Collapse
|
37
|
Lomiwes D, Hurst S, Dobbie P, Frost D, Hurst R, Young O, Farouk M. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Sci 2014; 97:548-57. [DOI: 10.1016/j.meatsci.2014.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/12/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
38
|
Kanzaki K, Kuratani M, Matsunaga S, Yanaka N, Wada M. Three calpain isoforms are autolyzed in rat fast-twitch muscle after eccentric contractions. J Muscle Res Cell Motil 2014; 35:179-89. [PMID: 24557809 DOI: 10.1007/s10974-014-9378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The present study investigated changes in autolysis of three calpain isoforms in skeletal muscles undergoing eccentric contractions (ECC), leading to prolonged force deficits. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC in situ, excised immediately after or 3 or 6 days after cessation of ECC, and used for measures of force output and for biochemical analyses. Full restoration of tetanic force in ECC-treated muscles was not attained until 6 days of recovery. Maximal calpain activity determined by a fluorogenic substrate was unaltered immediately after ECC, but increased to 313 and 450 % after 3 and 6 days, respectively. Increases in the amount of autolyzed calpain-3 were apparent immediately and developed progressively with recovery time, whereas elevations of autolyzed μ- and m-calpain occurred after 3 and 6 days, respectively. The protein content was augmented only in m-calpain. It is suggested that the three calpain isoforms may be involved in the dismantling, repair, remodeling and/or regeneration processes in ECC-treated muscles.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki-shi, Okayama, 710-0292, Japan
| | | | | | | | | |
Collapse
|
39
|
Kwon DR, Park GY. Efficacy of microcurrent therapy in infants with congenital muscular torticollis involving the entire sternocleidomastoid muscle: a randomized placebo-controlled trial. Clin Rehabil 2013; 28:983-91. [PMID: 24240061 DOI: 10.1177/0269215513511341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the effects of a combination of therapeutic exercise and ultrasound with or without additional microcurrent therapy in infants with congenital muscular torticollis involving the entire sternocleidomastoid muscle. DESIGN Prospective, randomized, placebo-controlled trial. SETTING An outpatient rehabilitation clinic in a tertiary university hospital. SUBJECTS Infants (n = 20) with congenital muscular torticollis involving the entire sternocleidomastoid muscle. INTERVENTIONS Group 1 comprised 10 infants who received therapeutic exercise with ultrasound alone and Group 2 comprised 10 infants who received the same treatment with microcurrent therapy. MAIN MEASURES Passive cervical rotational range of motion was measured at before treatment and one, two, three, and six months after initial treatment. Thickness, cross-sectional area, and red pixel intensity on colour histograms, which were all assessed before treatment and at three months after initial treatment. Additionally, the duration of treatment was measured. RESULTS The mean passive cervical rotational range of motion measured at three months posttreatment was significantly greater in Group 2 (101.1°) than that in Group 1 (86.4°), and the thickness, cross-sectional area, and red pixel intensity of the affected sternocleidomastoid muscle were all less in Group 2 (7.8 mm, 100.3 mm(2), and 126.1, respectively) than those in Group 1 (9.6 mm, 121.5 mm2, and 140.5, respectively). The mean duration of treatment was significantly shorter in Group 2 (2.6 months) than in Group 1 (6.3 months). CONCLUSIONS Microcurrent therapy may increase the efficacy of therapeutic exercise with ultrasound for the treatment of congenital muscular torticollis involving the entire sternocleidomastoid muscle.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Gi Young Park
- Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
40
|
Intramuscular responses with muscle damaging exercise and the interplay between multiple intracellular networks: A human perspective. Food Chem Toxicol 2013; 61:136-43. [DOI: 10.1016/j.fct.2013.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 11/21/2022]
|
41
|
Knoblauch M, Dagnino-Acosta A, Hamilton SL. Mice with RyR1 mutation (Y524S) undergo hypermetabolic response to simvastatin. Skelet Muscle 2013; 3:22. [PMID: 24004537 PMCID: PMC3846650 DOI: 10.1186/2044-5040-3-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Statins are widely used drugs for the treatment of hyperlipidemia. Though relatively safe, some individuals taking statins experience rhabdymyolysis, muscle pain, and cramping, a condition termed statin-induced myopathy (SIM). To determine if mutations in the skeletal muscle calcium (Ca2+) release channel, ryanodine receptor type 1 (RyR1), enhance the sensitivity to SIM we tested the effects of simvastatin, the statin that produces the highest incidence of SIM in humans, in mice with a mutation (Y524S, 'YS') in RyR1. This mutation is associated with malignant hyperthermia in humans. Exposure of mice with the YS mutation to mild elevations in environmental temperature produces a life-threatening hypermetabolic response (HMR) that is characterized by increased oxygen consumption (VO2), sustained muscle contractures, rhabdymyolysis, and elevated core body temperature. METHODS We assessed the ability of simvastatin to induce a hypermetabolic response in the YS mice using indirect calorimetry and to alter Ca2+ release via RyR1 in isolated flexor digitorum brevis (FDB) fibers from WT and YS mice using fluorescent Ca2+ indicators. We also tested the ability of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) to protect against the simvastatin effects. RESULTS An acute dose of simvastatin triggers a hypermetabolic response in YS mice. In isolated YS muscle fibers, simvastatin triggers an increase in cytosolic Ca2+ levels by increasing Ca2+ leak from the sarcoplasmic reticulum (SR). With higher simvastatin doses, a similar cytosolic Ca2+ increase occurs in wild type (WT) muscle fibers. Pre-treatment of YS and WT mice with AICAR prevents the response to simvastatin. CONCLUSIONS A mutation in RyR1 associated with malignant hyperthermia increases susceptibility to an adverse response to simvastatin due to enhanced Ca2+ release from the sarcoplasmic reticulum, suggesting that RyR1 mutations may underlie enhanced susceptibility to statin-induced myopathies. Our data suggest that AICAR may be useful for treating statin myopathies.
Collapse
Affiliation(s)
- Mark Knoblauch
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adan Dagnino-Acosta
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan L Hamilton
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
42
|
White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. EXTREME PHYSIOLOGY & MEDICINE 2013; 2:26. [PMID: 24004719 PMCID: PMC3766664 DOI: 10.1186/2046-7648-2-26] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023]
Abstract
High-intensity exercise is associated with mechanical and/or metabolic stresses that lead to reduced performance capacity of skeletal muscle, soreness and inflammation. Cold-water immersion and other forms of cryotherapy are commonly used following a high-intensity bout of exercise to speed recovery. Cryotherapy in its various forms has been used in this capacity for a number of years; however, the mechanisms underlying its recovery effects post-exercise remain elusive. The fundamental change induced by cold therapy is a reduction in tissue temperature, which subsequently exerts local effects on blood flow, cell swelling and metabolism and neural conductance velocity. Systemically, cold therapy causes core temperature reduction and cardiovascular and endocrine changes. A major hindrance to defining guidelines for best practice for the use of the various forms of cryotherapy is an incongruity between mechanistic studies investigating these physiological changes induced by cold and applied studies investigating the functional effects of cold for recovery from high-intensity exercise. When possible, studies investigating the functional recovery effects of cold therapy for recovery from exercise should concomitantly measure intramuscular temperature and relevant temperature-dependent physiological changes induced by this type of recovery strategy. This review will discuss the acute physiological changes induced by various cryotherapy modalities that may affect recovery in the hours to days (<5 days) that follow high-intensity exercise.
Collapse
Affiliation(s)
- Gillian E White
- Faculty of Kinesiology and Physical Education, The University of Toronto, Toronto, Ontario M5S 2W6, Canada.
| | | |
Collapse
|
43
|
Souza JD, Gottfried C. Muscle injury: review of experimental models. J Electromyogr Kinesiol 2013; 23:1253-60. [PMID: 24011855 DOI: 10.1016/j.jelekin.2013.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/03/2013] [Accepted: 07/15/2013] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the most abundant tissue in the human body. Its main characteristic is the capacity to regenerate after injury independent of the cause of injury through a process called inflammatory response. Mechanical injuries are the most common type of the skeletal muscle injuries and are classified into one of three areas strain, contusion, and laceration. First, this review aims to describe and compare the main experimental methods that replicate the mechanical muscle injuries. There are several ways to replicate each kind of mechanical injury; there are, however, specific characteristics that must be taken into account when choosing the most appropriate model for the experiment. Finally, this review discusses the context of mechanical injury considering types, variability of methods, and the ability to reproduce injury models.
Collapse
Affiliation(s)
- Jaqueline de Souza
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Institute of Health's Basic Science. Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Course of Physical Therapy, Federal University of Pampa, Uruguaiana, RS, Brazil.
| | | |
Collapse
|
44
|
|
45
|
Nedergaard A, Karsdal MA, Sun S, Henriksen K. Serological muscle loss biomarkers: an overview of current concepts and future possibilities. J Cachexia Sarcopenia Muscle 2013; 4:1-17. [PMID: 22996343 PMCID: PMC3581612 DOI: 10.1007/s13539-012-0086-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The skeletal muscle mass is the largest organ in the healthy body, comprising 30-40 % of the body weight of an adult man. It confers protection from trauma, locomotion, ventilation, and it represents a "sink" in glucose metabolism and a reservoir of amino acids to other tissues such as the brain and blood cells. Naturally, loss of muscle has dire consequences for health as well as functionality. Muscle loss is a natural consequence of especially aging, inactivity, and their associated metabolic dysfunction, but it is strongly accelerated in critical illness such as organ failure, sepsis, or cancer. Whether this muscle loss is considered a primary or secondary condition, it is known that muscle loss is a symptom that predicts morbidity and mortality and one that is known to impact quality of life and independence. Therefore, monitoring of muscle mass is relevant in a number of pathologies as well as in clinical trials as measures of efficacy as well as safety. METHODS AND RESULTS Existing biomarkers of muscle mass or muscle loss have shown to be either too unreliable or too impractical in relation to the perceived clinical benefit to reach regular clinical research or use. We suggest serological neoepitope biomarkers as a possible technology to address some of these problems. Blood biomarkers of this kind have previously been shown to respond with high sensitivity and shorter time to minimum significant change than available biomarkers of muscle mass. We provide brief reviews of existing muscle mass or function biomarker technologies, muscle protein biology, and existing neoepitope biomarkers and proceed to present tentative recommendations on how to select and detect neoepitope biomarkers. CONCLUSION We suggest that serological peptide biomarkers whose tissue and pathology specificity are derived from post-translational modification of proteins in tissues of interest, presenting so-called neoepitopes, represents an exciting candidate technology to fill out an empty niche in biomarker technology.
Collapse
|
46
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
47
|
Knoblauch MA, O'Connor DP, Clarke MSF. Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obesity (Silver Spring) 2013; 21:135-43. [PMID: 23505178 DOI: 10.1002/oby.20253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/31/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Obesity is associated with modified transmembrane signaling events in skeletal muscle, such as insulin signaling and glucose transport. The underlying cause of these obesity-related effects on transmembrane signaling is still unknown. In general, the function of membrane proteins responsible for transmembrane signaling is modulated by the biochemical makeup of the membrane, such as lipid composition, in which they are embedded. Any obesity-related alterations in membrane composition would also be predicted to modify membrane biomechanical properties and membrane susceptibility to mechanical load-induced damage. The primary objective of this study was to investigate whether obesity influences myofiber membrane susceptibility to mechanical damage in skeletal muscle. DESIGN AND METHODS Myofiber membrane damage was compared between 12-week-old obese, hypercholesterolemic (B6.V Lep(ob) /J) and isogenic, normocholesterolemic control (C57BL6/J) male mice following either normal cage activity or strenuous eccentric exercise (downhill running). Myofiber membrane damage was quantified in perfusion-fixed frozen sections of the gastrocnemius muscle via sarcoplasmic concentration of either albumin (cage activity experiment) or a fluorescent marker that had been injected immediately before activity (eccentric exercise experiment). RESULTS Obese mice exhibited evidence of increased myofiber membrane damage compared with lean mice after both normal cage activity and eccentric exercise indicating that myofiber membranes of obese mice are more susceptible to mechanical damage in general and that eccentric exercise exacerbates this effect. CONCLUSIONS These observations are consistent with the notion that obesity influences the biochemical and biomechanical properties of myofiber membranes.
Collapse
Affiliation(s)
- Mark A Knoblauch
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA.
| | | | | |
Collapse
|
48
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
49
|
Varshavsky A. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci 2012; 21:1634-61. [PMID: 22930402 PMCID: PMC3527701 DOI: 10.1002/pro.2148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
50
|
Kwon DR, Park GY. Diagnostic value of real-time sonoelastography in congenital muscular torticollis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:721-727. [PMID: 22535719 DOI: 10.7863/jum.2012.31.5.721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the possible use of real-time sonoelastography in infants with congenital muscular torticollis for predicting treatment outcomes. METHODS The study included 20 infants with a sternocleidomastoid muscle thickness of greater than 10 mm, a sonoelastographic score of 4, and involvement of the entire length of the muscle (group 1) and 30 infants with a sternocleidomastoid muscle thickness of less than 10 mm, a sonoelastographic score of 3, and involvement of only part of the muscle (group 2). A physiatrist performed B-mode sonography and sonoelastography together, measured the thickness of the sternocleidomastoid muscle, and calculated the cross-sectional area of the involved muscle in both groups. On color scale sonoelastography, the sonoelastographic score of the sternocleidomastoid muscle was graded from 1 (purple to green: soft) to 4 (red: stiff), and the color histogram of the muscle was subsequently analyzed. RESULTS The thickness and cross-sectional area of the sternocleidomastoid muscles in group 1 were significantly greater than those in group 2 (P = .001). On the color histograms, the median red pixel values in group 1 were significantly greater than those in group 2 (P = .001). In group 1, the mass in the affected muscle completely disappeared in 16 infants (80%), and a residual mass was detected in 4 (20%) on B-mode sonography at the final outcome. However, in group 2, the mass in the affected sternocleidomastoid muscle completely disappeared in all of the infants. CONCLUSIONS These findings suggest that real-time sonoelastography, although an ancillary technique to conventional sonography, may predict treatment outcomes of congenital muscular torticollis.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Nam-Gu, Daegu, Korea.
| | | |
Collapse
|