1
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Li W, Abdul Y, Ward R, Ergul A. Endothelin and diabetic complications: a brain-centric view. Physiol Res 2018; 67:S83-S94. [PMID: 29947530 DOI: 10.33549/physiolres.933833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The global epidemic of diabetes is of significant concern. Diabetes associated vascular disease signifies the principal cause of morbidity and mortality in diabetic patients. It is also the most rapidly increasing risk factor for cognitive impairment, a silent disease that causes loss of creativity, productivity, and quality of life. Small vessel disease in the cerebral vasculature plays a major role in the pathogenesis of cognitive impairment in diabetes. Endothelin system, including endothelin-1 (ET-1) and the receptors (ET(A) and ET(B)), is a likely candidate that may be involved in many aspects of the diabetes cerebrovascular disease. In this review, we took a brain-centric approach and discussed the role of the ET system in cerebrovascular and cognitive dysfunction in diabetes.
Collapse
Affiliation(s)
- W Li
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA, Department of Physiology, Augusta University, Augusta, Georgia, USA.
| | | | | | | |
Collapse
|
3
|
Ding P, Ren D, He S, He M, Zhang G, Chen Y, Sang H, Peng Z, Yan W. Sirt1 mediates improvement in cognitive defects induced by focal cerebral ischemia following hyperbaric oxygen preconditioning in rats. Physiol Res 2017; 66:1029-1039. [PMID: 28937253 DOI: 10.33549/physiolres.933544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen preconditioning (HBO-PC) has been proposed as a safe and practical approach for neuroprotection in ischemic stroke. However, it is not known whether HPO-PC can improve cognitive deficits induced by cerebral ischemia, and the mechanistic basis for any beneficial effects remains unclear. We addressed this in the present study using rats subjected to middle cerebral artery occlusion (MCAO) as an ischemic stroke model following HBO-PC. Cognitive function and expression of phosphorylated neurofilament heavy polypeptide (pNF-H) and doublecortin (DCX) in the hippocampus were evaluated 14 days after reperfusion and after short interfering RNA-mediated knockdown of sirtuin1 (Sirt1). HBO-PC increased pNF-H and DCX expression and mitigated cognitive deficits in MCAO rats. However, these effects were abolished by Sirt1 knockdown. Our results suggest that HBO-PC can protect the brain from injury caused by ischemia-reperfusion and that Sirt1 is a potential molecular target for therapeutic approaches designed to minimize cognitive deficits caused by cerebral ischemia.
Collapse
Affiliation(s)
- P Ding
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China, Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China. pengzhengwu1446@ 163.com and
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spray S, Johansson SE, Radziwon-Balicka A, Haanes KA, Warfvinge K, Povlsen GK, Kelly PAT, Edvinsson L. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat - new insights into the development of delayed cerebral hypoperfusion. Acta Physiol (Oxf) 2017; 220:417-431. [PMID: 27864916 DOI: 10.1111/apha.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/11/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
AIM Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. METHODS Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. RESULTS We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. CONCLUSION Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature.
Collapse
Affiliation(s)
- S. Spray
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - S. E. Johansson
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - A. Radziwon-Balicka
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - K. A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - K. Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University Hospital; Lund Sweden
| | - G. K. Povlsen
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - P. A. T. Kelly
- Centre for Cognitive and Neural System; University of Edinburgh; Edinburgh UK
| | - L. Edvinsson
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University Hospital; Lund Sweden
| |
Collapse
|
5
|
Kumar H, Ropper AE, Lee SH, Han I. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Mol Neurobiol 2016; 54:3578-3590. [PMID: 27194298 DOI: 10.1007/s12035-016-9910-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Abstract
The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Alexander E Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
6
|
Chen D, Lee J, Gu X, Wei L, Yu SP. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice. ASN Neuro 2015; 7:7/5/1759091415605114. [PMID: 26391329 PMCID: PMC4580122 DOI: 10.1177/1759091415605114] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2'-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13.
Collapse
Affiliation(s)
- Dongdong Chen
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Jinhwan Lee
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Xiaohuan Gu
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Ling Wei
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| |
Collapse
|
7
|
Yang LC, Guo H, Zhou H, Suo DQ, Li WJ, Zhou Y, Zhao Y, Yang WS, Jin X. Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia. Biochem Pharmacol 2015; 94:270-81. [PMID: 25748831 DOI: 10.1016/j.bcp.2015.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
Oleoylethanolamide (OEA) has been shown to have neuroprotective effects after acute cerebral ischemic injury. The aim of this study was to investigate the effects of chronic OEA treatment on ischemia-induced spatial cognitive impairments, electrophysiology behavior and hippocampal neurogenesis. Daily treatments of 30 mg/kg OEA significantly ameliorated spatial cognitive deficits and attenuated the inhibition of long-term potentiation (LTP) in the middle cerebral artery occlusion (MCAO) rat model. Moreover, OEA administration improved cognitive function in a manner associated with enhanced neurogenesis in the hippocampus. Further study demonstrated that treatment with OEA markedly increased the expressions of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptors α (PPARα). Our data suggest that chronic OEA treatment can exert functional recovery of cognitive impairments and neuroprotective effects against cerebral ischemic insult in rats via triggering of neurogenesis in the hippocampus, which supports the therapeutic use of OEA for cerebral ischemia.
Collapse
Affiliation(s)
- Li-Chao Yang
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Han Guo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Hao Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Da-Qin Suo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Wen-Jun Li
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Yu Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Yun Zhao
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Wu-Shuang Yang
- Department of Neurosurgery, Xiamen Traditional Chinese Medicine Hospital, Xiamen 361005, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China.
| |
Collapse
|
8
|
Ambrosini S, Sarchielli E, Comeglio P, Porfirio B, Gallina P, Morelli A, Vannelli GB. Fibroblast growth factor and endothelin-1 receptors mediate the response of human striatal precursor cells to hypoxia. Neuroscience 2015; 289:123-33. [PMID: 25595970 DOI: 10.1016/j.neuroscience.2014.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/20/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
Fetal striatal transplantation has emerged as a new therapeutic strategy in Huntington's disease (HD). Hypoxia is one of the microenvironmental stress conditions to which fetal tissue is exposed as soon as it is isolated and transplanted into the diseased host brain. Mechanisms that support neuroblast survival and replenishment of damaged cells within the HD brain in the hypoxic condition have yet to be fully elucidated. This study is aimed at investigating the molecular pathways associated with the hypoxic condition in human fetal striatal neuroblasts (human striatal precursor (HSP) cells), using the hypoxia-mimetic agent cobalt chloride (CoCl2). We analyzed the effect of CoCl2 on HSP cell proliferation and on the expression of hypoxia-related proteins, such as hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Moreover, we evaluated fibroblast growth factor 2 (FGF2; 50ng/ml) and endothelin-1 (ET-1; 100nM) proliferative/survival effects in HSP cells in normoxic and hypoxic conditions. Dose-response experiments using increasing concentrations of CoCl2 (50-750μM) showed that the HSP cell growth was unaffected after 24h, while it increased at 48h, with the maximal effect observed at 400μM. In contrast, cell survival was impaired at 72h. Hypoxic conditions determined HIF-1α protein accumulation and increased gene and protein expression of VEGF, while FGF2 and ET-1 significantly stimulated HSP cell proliferation both in normoxic and hypoxic conditions, thus counteracting the apoptotic CoCl2 effect at 72h. The incubation with selective receptor (FGFR1, endothelin receptor A (ETA) and endothelin receptor B (ETB)) inhibitors abolished the FGF2 and ET-1 neuroprotective effect. In particular, ET-1 stimulated HSP cell survival through ETA in normoxic conditions and through ETB during hypoxia. Accordingly, ETA expression was down-regulated, while ETB expression was up-regulated by CoCl2 treatment. Overall, our results support the idea that HSP cells possess the machinery for their adaptation to hypoxic conditions and that neurotrophic factors, such as FGF2 and ET-1, may sustain neurogenesis and long-term survival through complex receptor-mediated mechanisms.
Collapse
Affiliation(s)
- S Ambrosini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - P Comeglio
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50139 Florence, Italy
| | - B Porfirio
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50139 Florence, Italy
| | - P Gallina
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - A Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
9
|
Valle-Casuso JC, González-Sánchez A, Medina JM, Tabernero A. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 2012; 7:e32448. [PMID: 22384254 PMCID: PMC3285680 DOI: 10.1371/journal.pone.0032448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
10
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamagata K. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Neurochem Int 2011; 60:91-8. [PMID: 22100568 DOI: 10.1016/j.neuint.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension, and more than 95% of them die of cerebral stroke. We showed the vulnerability of neuronal cells of SHRSP/Izm rats. Furthermore, we analyzed the characteristics of SHRSP/Izm astrocytes during a stroke. It is known that the proliferating ability of SHRSP/Izm astrocytes is significantly enhanced compared with those in the normotensive Wistar Kyoto rats (WKY/Izm) strain. Conversely, the ability of SHRSP/Izm astrocytes to form tight junctions (TJ) was attenuated compared with astrocytes from WKY/Izm rats. During the stress of hypoxia and reoxygenation (H/R), lactate production, an energy source for neuronal cells, decreased in SHRSP/Izm astrocytes in comparison with the WKY/Izm strain. Moreover, during H/R, SHRSP/Izm astrocytes decreased their production of glial cell line-derived neurotrophic factor (GDNF) in comparison with WKY/Izm astrocytes. Furthermore, SHRSP/Izm rats decreased production of l-serine, compared with WKY/Izm rats following nitric oxide (NO) stimulation. Additionally, in H/R, astrocytes of SHRSP/Izm rats expressed adhesion molecules such as VCAM-1 at higher levels. It is possible that all of these differences between SHRSP/Izm and WKY/Izm astrocytes are not associated with the neurological disorders in SHRSP/Izm. However, attenuated production of lactate and reduced GDNF production in astrocytes may reduce required energy levels and weaken the nutritional status of SHRSP/Ism neuronal cells. We suggest that the attenuation of astrocytes' functions accelerates neuronal cell death during stroke, and may contribute to the development of strokes in SHRSP/Izm. In this review, we summarize the altered properties of SHRSP/Izm astrocytes during a stroke.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan.
| |
Collapse
|
12
|
Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE. Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res 2010; 1373:48-54. [PMID: 21145312 DOI: 10.1016/j.brainres.2010.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 01/06/2023]
Abstract
Microglia are the resident macrophages of CNS and play a crucial role in maintaining homeostasis against various neuronal injuries. However, excessive activation of microglia may destroy healthy neurons as well as damaged neurons. We investigated neuroprotective effects of amgatine on hypoxic microglia using in vitro and in vivo models for transient hypoxia. For in vitro study, BV2 immortalized murine microglia were incubated with or without 100 μM of agmatine in a closed anaerobic chamber for 2h. After recovery in normoxic condition for 20 h, cell viability and the amount of nitrite generation were determined. For in vivo study, 100mg/kg of agmatine or equivalent volume of saline was intraperitoneally administered, and the left middle cerebral artery of adult male Sprague-Dawley rats was occluded for 90 min. After 24h from occlusion, the cortex and striatum of the forebrains was evaluated to check the immunoreactivity with a microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), and inducible nitric oxide synthase (iNOS). Results showed that agmatine attenuated hypoxia-induced cytotoxicity and nitrite production by BV2 microglia. Agmatine also decreased the activities of microglia and NOS induced by transient middle cerebral artery occlusion. Finally, our findings reveal that agmatine may reduce microglial damages caused by transient hypoxia and suggest that agmatine may lead to a novel therapeutic strategy for hypoxic neuronal injuries.
Collapse
Affiliation(s)
- Soo Kyung Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS. HIV-1 gp120-induced neuroinflammation: Relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol 2010; 221:231-45. [DOI: 10.1016/j.expneurol.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/17/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022]
|
14
|
Liu T, Long L, Tang T, Xia Q, Liu J, He G, Qiao X. Expression and localization of endothelin-1 and its receptors in the spiral ganglion neurons of mouse. Cell Mol Neurobiol 2009; 29:739-45. [PMID: 19370413 DOI: 10.1007/s10571-009-9399-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a peptide with various biological functions, such as vasoconstriction and cell proliferation. ET-1 was reported to be widely distributed throughout the animal body, including nervous system. The expression and localization of ET-1 and its receptors [endothelin type-A receptor (ETAR) and endothelin type-B receptor (ETBR)] in the spiral ganglion neurons have not been reported before. In this study, their presence in the mouse spiral ganglion neurons was detected at mRNA and protein levels by reverse transcription-polymerase chain reaction (RT-PCR) technique and immunohistochemistry, respectively. RT-PCR analysis indicated that ET-1, ETAR, and ETBR genes were expressed in the mouse spiral ganglion tissues. Immunohistochemical experiments demonstrated that ET-1 and ETAR were predominantly immunoreactive in the cytoplasm, while ETBR was mainly immunostained in the nucleus of the neuron bodies. The present results suggest that ET-1 may play physiological roles in the spiral ganglion cells via ETAR and ETBR.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otorhinolaryngology, West China Hospital of Sichuan University, No. 37 Guo-Xue-Xiang, 610041, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Q, Chen C, Lü J, Xie M, Pan D, Luo X, Yu Z, Dong Q, Wang W. Cell cycle inhibition attenuates microglial proliferation and production of IL-1β, MIP-1α, and NO after focal cerebral ischemia in the rat. Glia 2009; 57:908-20. [DOI: 10.1002/glia.20816] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Herrero-González S, Valle-Casuso JC, Sánchez-Alvarez R, Giaume C, Medina JM, Tabernero A. Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 2009; 57:222-33. [PMID: 18756537 DOI: 10.1002/glia.20748] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In previous studies, we showed that endothelin-1 increased astrocyte proliferation and glucose uptake. These effects were similar to those observed with other gap junction inhibitors, such as carbenoxolone (CBX). Because 24-h treatment with endothelin-1 or CBX downregulates the expression of connexin43, the main protein forming astrocytic gap junctions, which can also be involved in proliferation, in this study, we addressed the possible role of connexin43 in the effects of endothelin-1. To do so, connexin43 was silenced in astrocytes by siRNA. The knock down of connexin43 increased the rate of glucose uptake, characterized by the upregulation of GLUT-1 and type I hexokinase. Neither endothelin-1 nor CBX were able to further increase the rate of glucose uptake in connexin43-silenced astrocytes. In agreement, no effects of endothelin-1 and CBX on GLUT-1 and type I hexokinase were observed in connexin-43 silenced astrocytes or in astrocytes from connexin43 knock-out (KO) mice. Our previous studies suggested a close relationship between glucose uptake and astrocyte proliferation. Consistent with this, connexin43-silenced astrocytes exhibited an increase in Ki-67, a marker of proliferation. The effects of ET-1 on retinoblastoma phosphorylation on Ser780 and on the upregulation of cyclins D1 and D3 were affected by the levels of connexin43. In conclusion, our results indicate that connexin43 participates in the effects of endothelin-1 on glucose uptake and proliferation in astrocytes. Interestingly, although the rate of growth in connexin43 KO astrocytes has been reported to be reduced, we observed that an acute reduction in connexin43 by siRNA increased proliferation and glucose uptake.
Collapse
|
17
|
|
18
|
Wang HK, Park UJ, Kim SY, Lee JH, Kim SU, Gwag BJ, Lee YB. Free radical production in CA1 neurons induces MIP-1alpha expression, microglia recruitment, and delayed neuronal death after transient forebrain ischemia. J Neurosci 2008; 28:1721-7. [PMID: 18272692 PMCID: PMC6671544 DOI: 10.1523/jneurosci.4973-07.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/21/2022] Open
Abstract
Several studies report microglial accumulation and activation in the CA1 area in response to transient forebrain ischemia (TFI). Here we examine the possibility that free radicals and chemokines mediate the transient activation of microglia. Free radicals are produced primarily in CA1 pyramidal neurons within 2 h of TFI. Administration of trolox, a vitamin E analog, led to the inhibition of free radical production and recruitment of microglia in the CA1 area. In addition, intrahippocampal injection of Fe2+ triggered free radical production in CA1 neurons, followed by the recruitment and activation of microglial cells into this area. TFI-induced expression of macrophage inflammatory protein-1alpha (MIP-1alpha) was increased in CA1 neurons before microglial recruitment, and blocked by trolox. Moreover, the MIP-1alpha level was upregulated in cultured hippocampal neurons exposed to Fe2+, suggesting an essential role of free radicals in TFI-induced expression of MIP-1alpha. Intracerebroventricular injection of vMIP-2 (viral macrophage inflammatory protein-2), a broad-spectrum peptide antagonist of chemokine receptors, attenuated microglial recruitment and delayed CA1 neuronal degeneration after TFI. Our data suggest that free radicals produced in CA1 neurons contribute to the recruitment and activation of microglia and neurodegeneration through MIP-1alpha expression.
Collapse
Affiliation(s)
- Hyo Kyun Wang
- Neuroscience Graduate Program
- Brain Disease Research Center
| | - Ui Jin Park
- Neuroscience Graduate Program
- Brain Disease Research Center
- Division of Cell Transformation and Restoration, and
| | - Soo Yoon Kim
- Neuroscience Graduate Program
- Brain Disease Research Center
| | - Jin Hwan Lee
- Neuroscience Graduate Program
- Brain Disease Research Center
- Division of Cell Transformation and Restoration, and
| | - Seung U. Kim
- Neuroscience Graduate Program
- Brain Disease Research Center
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Byoung Joo Gwag
- Neuroscience Graduate Program
- Brain Disease Research Center
- Division of Cell Transformation and Restoration, and
- Department of Pharmacology, Ajou University School of Medicine, Suwon 443-721, Korea, and
| | - Yong Beom Lee
- Neuroscience Graduate Program
- Brain Disease Research Center
- Division of Cell Transformation and Restoration, and
| |
Collapse
|
19
|
Sakurai-Yamashita Y, Kinugawa H, Niwa M. Neuroprotective effect of pentosan polysulphate on ischemia-related neuronal death of the hippocampus. Neurosci Lett 2006; 409:30-4. [PMID: 17011126 DOI: 10.1016/j.neulet.2006.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/04/2006] [Accepted: 09/06/2006] [Indexed: 11/24/2022]
Abstract
Pentosan polysulphate (PPS) negatively charged sulphated glycosaminoglycan was studied in ischemia-related hippocampal neuronal death and compared with a low molecular weight of heparin, named dalteparin in rats. Transient global ischemia was produced by four vessel-occlusion, the occlusion of the bilateral common carotid arteries following the electrocautherization of the vertebral arteries. 3mg/kg of PPS or 300IU/kg of dalteparin was administered i.v. immediately after 7min-occlusion/reperfusion. Seven days after the operation, the animals were perfused with 4% paraformaldehyde, and paraffinized coronal brain sections measuring 6microm in thickness were stained with hematoxylin and eosin. Neuronal damage was then estimated as a ratio of the number of degenerated neurons to that of both the surviving and degenerated neurons in three distinct area of the CA1 subfield. The ratio of neuronal death increased with the length of the occlusion-time, at 5, 7 and 10min. Both PPS and dalteparin significantly inhibited the neuronal damage induced by 7min-occlusion. These results demonstrated that both PPS and dalteparin could thus protect brain neurons against ischemia/reperfusion-induced damage thus suggesting that they may be potentially useful therapeutic agents for acute ischemic stroke.
Collapse
Affiliation(s)
- Yasuko Sakurai-Yamashita
- Department of Pharmacology 1, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | |
Collapse
|
20
|
Sakurai-Yamashita Y, Shigematsu K, Yamashita K, Niwa M. Expression of MCP-1 in the hippocampus of SHRSP with ischemia-related delayed neuronal death. Cell Mol Neurobiol 2006; 26:823-31. [PMID: 16758320 DOI: 10.1007/s10571-006-9077-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 04/21/2006] [Indexed: 11/28/2022]
Abstract
1. The expression of monocyte chemoattractant protein-1 (MCP-1) was examined in stroke-prone spontaneously hypertensive rats with transient global ischemia in order to study the involvement of the infiltration of blood monocytes in the mechanism of ischemia-related neuronal death. 2. The brains of the animals with occlusion of the bilateral carotid arteries for 10 min were removed at 8 h, 1, 2, 4 and 7 days after reperfusion. Frozen sections were used for in situ hybridization and tissue specimens from the hippocampus and the cerebral cortex were used to measure the concentration of MCP-1 by ELISA. 3. No MCP-1 mRNA was detected in the hippocampus of the sham group animals. One day after ischemia-reperfusion, MCP-1 mRNA was clearly expressed in the CA4 subfield and the molecular layer of the dentate gyrus, while it was slightly expressed in the lacnosum moleculare of the CA1 subfield. A dramatic expression was demonstrated in the entire CA1 subfield at 2 days after the operation. Most of the cells expressing MCP-1 were astrocytes. At 4 and 7 days after reperfusion, no MCP-1 mRNA was detected in the hippocampus. The concentration of MCP-1 protein dramatically increased in the hippocampus at 2 days after reperfusion. 4. Taken together with the findings of our previous study showing an increased permeability of the blood-brain barrier in the hippocampus from 12 h after ischemia-reperfusion, the astrocytes expressing MCP-1 might therefore induce the migration of monocytes into the brain parenchyma. As a result, such astrocytes expressing MCP-1 may therefore be related to the pathological events of delayed neuronal death in the pyramidal neurons.
Collapse
Affiliation(s)
- Yasuko Sakurai-Yamashita
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan.
| | | | | | | |
Collapse
|
21
|
Blomstrand F, Giaume C. Kinetics of endothelin-induced inhibition and glucose permeability of astrocyte gap junctions. J Neurosci Res 2006; 83:996-1003. [PMID: 16609958 DOI: 10.1002/jnr.20801] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gap junctions contribute to important functions of communicating glial cells in brain physiology and pathology. Endothelins (ETs), a vasoactive family of peptides present in the brain, have been described as potent inhibitors of astrocyte gap junctional communication. Through dye-coupling studies we demonstrate here that this inhibition occurs rapidly and then successively reverses and returns to control levels after 90 min of continuous ET1 or ET3 exposure. In addition, long-term exposure of cells to ET3, which acts mainly on ETB receptors, also desensitized the acute action of ET1, which was previously shown to act through either ETA or ETB receptor sites, or both. The gap junction blocker carbenoxolone did not show any time-dependent desensitization and was fully effective also in cultures treated with ETs for prolonged times. The ETs inhibitory effects were partially prevented when blocking pertussis toxin-sensitive G-proteins, chelating intracellular Ca2+, or omitting extracellular Ca2+. We further show that ETs modulate gap junction-mediated transfer of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-Y1)amino]-2-deoxyglucose (2-NBDG), a fluorescent glucose molecule, indicating a role of astrocyte gap junction coupling in metabolic trafficking and suggesting the importance of these peptides in the control of intercellular diffusion of energetic compounds. These findings might have particular relevance in early tissue reactions after various cerebral injuries, which commonly involve increased cerebral ET levels.
Collapse
Affiliation(s)
- F Blomstrand
- Neuropharmacologie, INSERM U587, Collège de France, Paris, France.
| | | |
Collapse
|
22
|
Blomstrand F, Venance L, Sirén AL, Ezan P, Hanse E, Glowinski J, Ehrenreich H, Giaume C. Endothelins regulate astrocyte gap junctions in rat hippocampal slices. Eur J Neurosci 2004; 19:1005-15. [PMID: 15009148 DOI: 10.1111/j.0953-816x.2004.03197.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gap junctional communication (GJC) is a typical feature of astrocytes proposed to contribute to the role played by these glial cells in brain physiology and pathology. In acutely isolated hippocampal slices from rat (P11-P19), intercellular diffusion of biocytin through gap junction channels was shown to occur between hundreds of cells immuno-positive for astrocytic markers studied in the CA1/CA2 region. Single-cell RT-PCR demonstrated astrocytic mRNA expression of several connexin (Cx) subtypes, the molecular constituent of gap junction channels, whereas immunoblotting confirmed that Cx43 and Cx30 are the main gap junction proteins in hippocampal astrocytes. In the brain, astrocytes represent a major target for endothelins (Ets), a vasoactive family of peptides. Our results demonstrate that Ets decrease the expression of phosphorylated Cx43 forms and are potent inhibitors of GJC. The Et-induced effects were investigated using specific Et receptor agonists and antagonists, including Bosentan (Tracleer trade mark ), an EtA/B receptor antagonist, and using hippocampal slices and cultures from EtB-receptor-deficient rats. Interestingly, the pharmacological profile of Ets effects did not follow the classical profile established in cardiovascular systems. The present study therefore identifies Ets as potent endogenous inhibitory regulators of astrocyte networks. As such, the action of these peptides on astrocyte GJC might be involved in the contribution of astrocytes to neuroprotective processes and have a therapeutic potential in neuropathological situations.
Collapse
Affiliation(s)
- F Blomstrand
- Neuropharmacologie, INSERM U114, Collège de France, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Oderfeld-Nowak B, Orzyłowska-Sliwińska O, Sołtys Z, Zaremba M, Januszewski S, Janeczko K, Mossakowski M. Concomitant up-regulation of astroglial high and low affinity nerve growth factor receptors in the CA1 hippocampal area following global transient cerebral ischemia in rat. Neuroscience 2003; 120:31-40. [PMID: 12849738 DOI: 10.1016/s0306-4522(03)00289-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have examined the effect of global transient cerebral ischemia, evoked in rat by 10 min of cardiac arrest, upon the changes in the cellular expression of two nerve growth factor (NGF) receptors (TrkA and p75) in the hippocampus. We have used immunocytochemical procedures, including a quantitative analysis of staining, along with some quantitative morphological analyses. We have found, under ischemic conditions, a decrease of TrkA immunoreactivity in degenerating CA1 pyramidal neurons and in neuropil. On the other hand, a strong, ischemia-induced up-regulation of TrkA and p75 immunoreactivity was observed in the majority of reactive astroglia population in the adjacent CA1 hippocampal region. The colocalization of the two receptors in the same reactive astroglial cells was evidenced by double immunostaining and further supported by quantitative morphological analysis of TrkA and p75 immunoreactive glial cells. Our data implicate the involvement of NGF receptors in the postischemic regulation of astrocytic function; however, the lack of NGF receptor expression on some astrocytes suggests heterogeneity of astroglia population. Our results also indicate that the lack of neuroprotective action of astroglial NGF induced in the ischemic hippocampus [J Neurosci Res 41 (1995) 684; Acta Neurobiol Exp 57 (1997) 31; Neuroscience 91 (1999) 1027] is not caused by a paucity of NGF receptors but may rather be due to the counteraction of some proinflammatory substances, released simultaneously by glia cells. On the other hand, the up-regulated astroglial TrkA receptor may be an important target for exogenous NGF, which, as previously described [J Neurosci 11 (1991) 2914; Neurosci Lett 141 (1992) 161], exerts a neuroprotective effect in ischemia.
Collapse
Affiliation(s)
- B Oderfeld-Nowak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02093 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:87-113. [PMID: 12575818 DOI: 10.1007/978-1-4615-0123-7_3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lesions in the nervous system induce rapid activation of glial cells and under certain conditions additional recruitment of granulocytes, T-cells and monocytes/macrophages from the blood stream triggered by upregulation of cell adhesion molecules, chemokines and cytokines. Hematogenous cell infiltration is not restricted to infectious or autoimmune disorders of the nervous system, but also occurs in response to cerebral ischemia and traumatic lesions. Neuroinflammation can cause neuronal damage, but also confers neuroprotection. Granulocytes occlude vessels during reperfusion after transient focal ischemia, while the functional role of T-cells and macrophages in stroke development awaits further clarification. After focal cerebral ischemia neurotoxic mediators released by microglia such as the inducible nitric oxide synthase (leading to NO synthesis) and the cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are upregulated prior to cellular inflammation in the evolving lesion and functionally contribute to secondary infarct growth as revealed by numerous pharmacological experiments and by use of transgenic animals. On the other hand, cytokine induction remote from ischemic lesions involves NMDA-mediated signalling pathways and confers neuroprotection. After nerve injury T cells can rescue CNS neurons. In the peripheral nervous system neuroinflammation is a prerequisite for successful regeneration that is impeded in the CNS. In conclusion, there is increasing evidence that neuroinflammation represents a double edged sword. The opposing neurotoxic and neuroprotective properties of neuroinflammation during CNS injury provide arich and currently unexplored set of research problems.
Collapse
Affiliation(s)
- Guido Stoll
- Department of Neurology, Heinrich-Heine-Universität, Noorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
25
|
Sakurai-Yamashita Y, Yamashita K, Niwa M, Taniyama K. Involvement of 5-hydroxytryptamine4 receptor in the exacerbation of neuronal loss by psychological stress in the hippocampus of SHRSP with a transient ischemia. Brain Res 2003; 973:92-8. [PMID: 12729957 DOI: 10.1016/s0006-8993(03)02559-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A transient forebrain ischemia produced a delayed neuronal death of the hippocampus pyramidal cells in stroke-prone spontaneously hypertensive rats (SHRSP). Long term exposure of rats to stress has been reported to induce deleterious effects on the brain including morphological neuronal degeneration in the hippocampus. The present study was designed to examine the effects of psychological and physical stress on the ischemia-related neuronal death and the effects of 5-hydroxytryptamine(4) (5-HT(4)) receptor antagonist. SHRSP were exposed to the psychological or physical stress for 60 min in the communication box once or repeatedly for 3 days and occluded. SB204070, a 5-HT(4) receptor antagonist was injected before the occlusion. Seven days after the occlusion, the number of the neurons damaged morphologically was examined. A transient bilateral carotid occlusion produced a neuronal death of the CA1 subfield of the hippocampus in a time-dependent manner between 3 and 10 min. A 4 min occlusion induced very little morphological damage and a 5 min one produced a significant neuronal death. Exposure of rats to the psychological stress during 60 min for 3 days before the ischemic insults damaged the pyramidal cells by 4 min ischemia much more than without stress. Physical stress daily for 3 times also increased the damaged neurons. Pretreatment of SB204070 0.1 mg/kg after the stress exposure for 3 days significantly decreased the neuronal damage exacerbated by the stress exposure; however, it did not alter the damage induced by 4 or 10 min occlusion without stress. These results suggest that the repeated exposure of animals to the stress dramatically exacerbates the neuronal death by a transient ischemia and the 5-HT(4) receptor may be involved in the stress-induced exacerbating mechanism of the neuronal damage.
Collapse
Affiliation(s)
- Yasuko Sakurai-Yamashita
- Department of Pharmacology 1, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
| | | | | | | |
Collapse
|
26
|
Peters CM, Rogers SD, Pomonis JD, Egnaczyk GF, Keyser CP, Schmidt JA, Ghilardi JR, Maggio JE, Mantyh PW, Egnazyck GF. Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury-induced ischemia and gliosis. Exp Neurol 2003; 180:1-13. [PMID: 12668144 DOI: 10.1016/s0014-4886(02)00023-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelins (ETs) are a family of peptides that exert their biological effects via two distinct receptors, the endothelin A receptor (ET(A)R) and the endothelin B receptor (ET(B)R). To more clearly define the potential actions of ETs following spinal cord injury, we used immunohistochemistry and confocal microscopy to examine the protein expression of ET(A)R and ET(B)R in the normal and injured rat spinal cord. In the normal spinal cord, ET(A)R immunoreactivity (IR) is expressed by vascular smooth muscle cells and a subpopulation of primary afferent nerve fibers. ET(B)R-IR is expressed primarily by radial glia, a small population of gray and white matter astrocytes, ependymal cells, vascular endothelial cells, and to a lesser extent in smooth muscle cells. Fourteen days following compression injury to the spinal cord, there was a significant upregulation in both the immunoexpression and number of astrocytes expressing the ET(B)R in both gray and white matter and a near disappearance of ET(B)R-IR in ependymal cells and ET(A)R-IR in primary afferent fibers. Conversely, the vascular expression of ET(A)R and ET(B)R did not appear to change. As spinal cord injury has been shown to induce an immediate increase in plasma ET levels and a sustained increase in tissue ET levels, ETs would be expected to induce an initial marked vasoconstriction via activation of vascular ET(A)R/ET(B)R and then days later a glial hypertrophy via activation of the ET(B)R expressed by astrocytes. Strategies aimed at blocking vascular ET(A)R/ET(B)R and astrocyte ET(B)Rs following spinal cord injury may reduce the resulting ischemia and astrogliosis and in doing so increase neuronal survival, regeneration, and function.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gliosis/etiology
- Gliosis/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neuroglia/metabolism
- Neuroglia/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/biosynthesis
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Spinal Cord Ischemia/etiology
- Spinal Cord Ischemia/pathology
Collapse
Affiliation(s)
- Christopher M Peters
- Department of Preventive Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR, Mantyh PW. Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 2003; 41:180-90. [PMID: 12509808 DOI: 10.1002/glia.10173] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of mammalian central nervous system (CNS) neurons to survive and/or regenerate following injury is influenced by surrounding glial cells. To identify the factors that control glial cell function following CNS injury, we have focused on the endothelin B receptor (ET(B)R), which we show is expressed by the majority of astrocytes that are immunoreactive for glial acid fibrillary protein (GFAP) in both the normal and crushed rabbit optic nerve. Optic nerve crush induces a marked increase in ET(B)R and GFAP immunoreactivity (IR) without inducing a significant increase in the number of GFAP-IR astrocytes, suggesting that the crush-induced astrogliosis is due primarily to astrocyte hypertrophy. To define the role that endothelins play in driving this astrogliosis, artificial cerebrospinal fluid (CSF), ET-1 (an ET(A)R and ET(B)R agonist), or Bosentan (a mixed ET(A)R and ET(B)R antagonist) were infused via osmotic minipumps into noninjured and crushed optic nerves for 14 days. Infusion of ET-1 induced a hypertrophy of ET(B)R/GFAP-IR astrocytes in the normal optic nerve, with no additional hypertrophy in the crushed nerve, whereas infusion of Bosentan induced a significant decrease in the hypertrophy of ET(B)R/GFAP-IR astrocytes in the crushed but not in the normal optic nerve. These data suggest that pharmacological blockade of astrocyte ET(B)R receptors following CNS injury modulates glial scar formation and may provide a more permissive substrate for neuronal survival and regeneration.
Collapse
Affiliation(s)
- Scott D Rogers
- Molecular Neurobiology Laboratory, Veterans Affairs Medical Center, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
28
|
Vela JM, Yáñez A, González B, Castellano B. Time course of proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. J Neurotrauma 2002; 19:1503-20. [PMID: 12490014 DOI: 10.1089/089771502320914723] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ablation of the hindlimb area of the sensorimotor cortex produces degeneration in the cortex (invasive traumatic injury) and leads to retrograde and/or anterograde degeneration in the thalamus (non-invasive injury, distal reaction). This provides an useful model to study the proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. Changes in the morphology, distribution and numbers of microglia in the affected cortex and thalamus were analyzed at various time points (12 h to 30 days) after injury. In parallel, proliferation was determined by immunocytochemistry for the proliferating cell nuclear antigen and cell death by the TUNEL method. Proliferation was an early event in the microglia/macrophage response (from 12 h in the cortex and from 2 days post-lesion in the thalamus) and persisted up to 30 days. The different microglia/macrophage phenotypes proliferated in a specific temporospatial pattern. In the lesioned cortex, early activation and proliferation of intrinsic microglia was accompanied, from the second post-lesion day, by monocyte entrance and proliferation of monocyte-derived cells. In contrast, accumulation of cells in the thalamus resulted from proliferation of intrinsic microglia, without apparent/significant monocytic recruitment. During the subsequent microglia/macrophages removal the majority of the cells in the cortex transformed into ameboid cells devoid of cell processes that progressively accumulated as fully-developed macrophages tissue within the lesion (3-14 days) ultimately migrating out to the meningeal connective tissue (14-30 days). Only some process-bearing cells, remaining in the cortical tissue bordering the lesion, underwent degeneration by 14-21 days post-lesion. In contrast, in the distal affected thalamic nuclei, microglial cell death occurred by 14-30 days post-lesion. Altogether, this study shows that both the origin and fate of microglia/macrophages depend on the nature of the lesion.
Collapse
Affiliation(s)
- José Miguel Vela
- Department of Cell Biology, Physiology and Immunology, Unit of Histology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
29
|
Abrahám CS, Harada N, Deli MA, Niwa M. Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke-prone spontaneously hypertensive rats. Cell Mol Neurobiol 2002; 22:455-62. [PMID: 12507394 DOI: 10.1023/a:1021067822435] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The aim of the present study was to reveal the effect of transient forebrain ischemia on the regional and temporal changes in the permeability of the blood-brain barrier (BBB) permeability for sodium fluorescein (MW: 376 Da) and Evan's blue-labeled albumin (MW: 67 kDa) in stroke-prone spontaneously hypertensive rats (SHRSP). 2. BBB permeability was significantly higher in the brain regions of 16-week-old control SHRSP than those in age-matched normotensive Wistar-Kyoto rats. 3. Transient forebrain ischemia evoked by 10-min bilateral carotid occlusion increased the permeability of the BBB for albumin, but not for sodium fluorescein, after 6 and 24 h of reperfusion in brain regions of SHRSP. 4. Extravasation of serum macromolecules may contribute to neuronal loss and development of hypertensive encephalopathy in SHRSP.
Collapse
Affiliation(s)
- Csongor S Abrahám
- Department of Pharmacology 1, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
30
|
Tsang MC, Lo AC, Cheung PT, Chung SS, Chung SK. Perinatal hypoxia-/ischemia-induced endothelin-1 mRNA in astrocyte-like and endothelial cells. Neuroreport 2001; 12:2265-70. [PMID: 11447347 DOI: 10.1097/00001756-200107200-00044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Under pathological conditions in the adult CNS, such as ischemia, subarachnoid hemorrhage and Alzheimer's disease, endothelin (ET)-1- and -3-like immunoreactivities are elevated in astrocytes of the injured adult brain. However, it is not clear whether this is due to increased synthesis or increased binding of ET-1. Further, it is not known whether ET-1 expression is altered in the perinatal brain after cerebral hypoxia/ischemia (H/I). Here, we determined the sites of ET-1 expression in perinatal mouse brain after H/I injury by in situ hybridization using a probe specific for the ET-1 gene. Astrocyte-like cells, which do not normally express ET-1 mRNA, showed high levels of ET-1 mRNA expression. Endothelial cells of the capillaries and small vessels also showed an increased level of ET-1 mRNA. Our data suggest that ET-1 mRNA levels in the astrocyte-like cells and vascular endothelial cells are dynamically regulated by ischemia and may participate in perinatal ischemia-related neural damage.
Collapse
Affiliation(s)
- M C Tsang
- Institute of Molecular Biology, University of Hong Kong, 8/F, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | | | | | | | | |
Collapse
|