1
|
Guilloton C, Le Foll F, Ben Cheikh Y. Haemocyte motility: A marker of inflammation in Mytilus sp. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110268. [PMID: 40064210 DOI: 10.1016/j.fsi.2025.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Bivalve immunity relies exclusively on innate cellular and humoral mechanisms, during which cells named haemocytes maraud across tissues to survey the organism and cope with invaders through migration towards infected site. Immune response is therefore governed by haemocyte motility. This review focuses on the different types of haemocyte movement in Mytilus sp. To address their role in immunity, from random patrolling of organs to directed pathogen elimination. By forming cell clusters or aggregates of different sizes, haemocyte displacements define inflammation per se in mussels. Although described for many years, motility can now be quantified by advanced microscopy techniques that give access to cell velocity values, allowing us to quantify inflammation. As various biotic and abiotic factors have been found to modulate haemocyte velocity, this parameter can be considered a marker to assess the inflammation level, paving the way for future developments in determining the immune status of mussels.
Collapse
Affiliation(s)
- Corentine Guilloton
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| | - Frank Le Foll
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| | - Yosra Ben Cheikh
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| |
Collapse
|
2
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
3
|
Asnicar D, Fabrello J, Ciscato M, Masiero L, Marin MG, Corami F, Milan M, Bernardini I, Patarnello T, Cecchetto M, Giubilato E, Bettiol C, Semenzin E, Matozzo V. A multibiomarker approach in clams (Ruditapes philippinarum) for a toxicological evaluation of dredged sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123095. [PMID: 38070644 DOI: 10.1016/j.envpol.2023.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The Lagoon of Venice is often dredged for channel maintenance. To avoid harmful consequences to the ecosystem, a proper disposal of bottom sediments requires a preliminary evaluation of its potential toxicity before excavation. Here we evaluated the effects of polluted sediments on clams (Ruditapes philippinarum) using a multibiomarker approach. Bivalves were exposed for 3 and 14 days to five sediment samples collected along a navigation canal between Venice historical centre and the industrial area of Porto Marghera. Immunological, antioxidant, detoxification, and neurotoxicity biomarkers were analysed in haemolymph, gill, and digestive gland. As a control, sediment collected far from pollution sources was used. Two experiments were performed to assess potential seasonal/gametogenic influence in clam sensitivity. A different response of clam biomarkers was observed during the two experiments and among sampling sites. Clams' digestive gland resulted to be the most sensitive tissue analysed showing significant differences among sites in all biomarkers analysed. Greater differences were present due to seasonality rather than exposure. The concentrations of metals and organic pollutants increased from the city centre to the industrial area, highlighting the influence that industrial activities had on the lagoon ecosystem. However, bioaccumulation in clams did not follow the same clear pattern, suggesting low bioavailability of compounds due to relatively high organic matter content. Biomarkers modulation was mainly driven by metals, both present in sediments and bioaccumulated. In comparison, effects of organic pollutants on the biomarkers tested were negligible. Other sources of contamination not investigated (e.g. pesticides) were suggested by neurotoxicity biomarkers alteration.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy; Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St Andrews, New Brunswick, Canada
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Martina Cecchetto
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
4
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
5
|
Cima F, Varello R. Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Front Physiol 2023; 14:1230943. [PMID: 37654677 PMCID: PMC10466049 DOI: 10.3389/fphys.2023.1230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Edible bivalves constitute an important bioresource from an economic point of view, and studies on their immune responses to environmental pollutants are crucial for both the preservation of biodiversity and economic reasons. The worldwide diffusion of copper(I)-based antifouling paints has increased copper leaching into coastal environments and its potential impact on both target and nontarget organisms. In this study, immunotoxicity assays were carried out with short-term (60 min) cultures of hemocytes from the bivalves Mytilus galloprovincialis-a mussel dominant in the macrofouling community-and Ruditapes philippinarum-a clam dominant in the soft-sediment community-exposed to CuCl to compare the toxic effects on their immune responses. The LC50 values were similar, 40 μM (3.94 mg L-1) for the mussel and 44 μM (4.33 mg L-1) for the clam. In both species, apoptosis occurred after exposure to 1 µM (98.9 μg L-1) CuCl, the concentration able to significantly increase the intracellular Ca2+ content. Biomarkers of cell morphology and motility revealed microfilament disruption, a significant decrease in yeast phagocytosis and lysosome hydrolase (β-glucuronidase) inhibition beginning from 0.5 µM (49.5 μg L-1) CuCl in both the mussel and clam. The same concentration of CuCl affected biomarkers of oxidative stress, as a significant decrease in reduced glutathione content in the cytoplasm and inhibition of mitochondrial cytochrome-c oxidase (COX) were detected in both species. Comparison of the biomarkers showed that clam is more sensitive than the mussel regarding alterations to the lysosomal membrane and reactive oxygen species (ROS) production, which supports the potential harmful effects of antifouling biocides on the survival of nontarget pivotal species in the coastal community.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Biology of Ascidians, Department of Biology (DiBio), University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
Chamani M, Naseri B, Rafiee-Dastjerdi H, Emaratpardaz J, Ebadollahi A, Palla F. Some Physiological Effects of Nanofertilizers on Wheat-Aphid Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2602. [PMID: 37514217 PMCID: PMC10385016 DOI: 10.3390/plants12142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
The increasing use of nanofertilizers in modern agriculture and their impact on crop yield and pest management require further research. In this study, the effects of nano-Fe, -Zn, and -Cu (which are synthesized based on nanochelating technology), and urea (N) fertilizers on the antioxidant activities of wheat plants (cv. Chamran), and the wheat green aphid Schizaphis graminum (Rondani) are investigated. The authors observed the highest levels of phenolics in non-infested nano-Zn-treated plants (26% higher compared with control). The highest H2O2 levels are in the infested and non-infested nano-Zn-treated and infested nano-Fe-treated plants (in infested nano-Zn and nano-Fe treated plants, 18% and non-infested nano-Zn-treated plants, 28% higher compared with control). The highest peroxidase (POX) activity is observed in the infested and non-infested N-treated and non-infested water-treated plants (almost 14%, 37%, and 46% higher than control, respectively). The lowest activity is in the infested plants' nano-Zn and -Fe treatments (almost 7 and 5 folds lower compared to the control, respectively). The highest and lowest catalase (CAT) activity are in the infested N-treated plants (almost 42% higher than control) and water-treated plants, respectively. The infested nano-Zn, -Fe, -Cu and Hoagland-treated plants showed the highest superoxide dismutase (SOD) activity. Regarding the antioxidant enzyme activities of S. graminum, the highest POX activity is in the nano-Cu treatment (more than two folds higher compared with control); the highest CAT and SOD activities are in the nano-Cu and -Zn treatments. It can be concluded that the application of nanofertilizers caused increasing effects on the wheat plant's antioxidant system and its resistance to S. graminum.
Collapse
Affiliation(s)
- Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Hooshang Rafiee-Dastjerdi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Javid Emaratpardaz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tabriz, Tabriz 5137779619, Iran
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
| | - Franco Palla
- Department of Biological, Chemical and Pharmacological Sciences and Technology-Botany Section, The University of Palermo, 38-90123 Palermo, Italy
| |
Collapse
|
7
|
Hallmann A, Leszczyńska D, Czumaj A, Świeżak J, Caban M, Michnowska A, Smolarz K. Oxytetracycline-induced inflammatory process without oxidative stress in blue mussels Mytilus trossulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80462-80477. [PMID: 37301807 PMCID: PMC10345040 DOI: 10.1007/s11356-023-28057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Potentially harmful compounds including pharmaceuticals are commonly found in marine waters and sediments. Amongst those, antibiotics and their metabolites are detected worldwide in various abiotic (at concentrations as high as µg/L) and biotic matrices at ng/gram of tissue, posing a risk to non-target species exposed to them such as blue mussels. Amongst those, oxytetracycline (OTC) belongs to the most detected antibiotics in the marine environment. In this work, we concentrated on studying the potential induction of oxidative stress, activation of cellular detoxification processes (including Phase I and Phase II xenobiotic biotransformation enzymes) and multixenobiotic resistance pumps (Phase III) as well as changes in the aromatisation efficiency in Mytilus trossulus exposed to 100 μg/L OTC. Our results show that 100 µg/L OTC concentration did not provoke cellular oxidative stress and did not affect the expression of genes involved in detoxification processes in our model. Moreover, no effect of OTC on aromatisation efficiency was found. Instead, phenoloxidase activity measured in haemolymph was significantly higher in OTC exposed mussels than in those from the control (30.95 ± 3.33 U/L and 17.95 ± 2.75 U/L, respectively). OTC exposed mussels were also characterised by a tissue-dependant activation of major vault protein (MVP) gene expression (1.5 times higher in gills and 2.4 times higher in the digestive system) and a decreased expression of the nuclear factor kappa B-a (NF-κB) gene (3.4 times lower in the digestive system) when compared to those from the control. Additionally, an elevated number of regressive changes and inflammatory responses in tissues such as gills, digestive system and mantle (gonads) was observed underlining the worsening of bivalves' general health. Therefore, instead of a free-radical effect of OTC, we for the first time describe the occurrence of typical changes resulting from antibiotic therapy in non-target organisms like M. trossulus exposed to antibiotics such as OTC.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
8
|
Abdel-Azeem HH, Osman GY, Mohamed AH. Potential toxic effects of titanium oxide (TiO 2) nanoparticles on the biological, biochemical, and histological aspects of the land snail Helix aspersa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27666-y. [PMID: 37266786 DOI: 10.1007/s11356-023-27666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Nanotechnology has come a long way in our lives. However, it maintains some negative effects on the environment. This study aims to use the land snail Helix aspersa as a bioindicator. Titanium dioxide nanoparticles (TiO2NPs) had been used at 70 and 140 µg/L for two weeks by the spraying method. The oxidative biomarkers, condition index (CI), DNA damage, hemocyte count, and phagocytic activity were estimated. The toxicity of TiO2NPs was determined (LC50 = 544 µg/L). The exposure to TiO2NPs caused a significant reduction of the activities of superoxide dismutase (SOD) and catalase (CAT) in the digestive gland of Helix aspersa (the activity of CAT was 3.4 ± 0.1 (P = 0.001), SOD was 11 ± 1 (P = 0.0002) at concentration 140 µg/L after two weeks). The activity of glutathione peroxidase (GPX) was (1.13 ± 0.01 µ/mg protein at 140 µg/L compared with controls (5.47 ± 0.01 µ/mg protein). The treatment caused DNA damage in the hemocytes (tail DNA % = 8.66 ± 0.02 and tail moment = 52.99 ± 0 at140 µg/L (P = 0.002)). In the digestive gland, both tail DNA % and tail moment increased (tail moment = 78.38 ± 0.08 compared with control = 2.29 ± 0.09 (P = 0.0001)). The total count of hemocytes significantly decreased after two weeks (the average number was 71 ± 1.5 compared with controls 79 ± 1.1 at 140 µg/L). Furthermore, TiO2NPs caused histological alterations in the digestive gland of Helix aspersa. It can be concluded that the Helix aspersa can be used as environmental pollution bioindicator. A comprehensive evaluation of toxic effects induced by TiO2NPs in vivo assays must be investigated.
Collapse
Affiliation(s)
- Hoda H Abdel-Azeem
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Gamalat Y Osman
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Azza H Mohamed
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
9
|
Liu Y, Guo J, Liu W, Yang F, Deng Y, Meng Y, Cheng B, Fu J, Zhang J, Liao X, Wei L, Lu H. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108466. [PMID: 36462742 DOI: 10.1016/j.fsi.2022.108466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pesticides are extensively used in agricultural production, and their residues in soil, water, and agricultural products have become a threat to aquatic ecosystem. In this study, the toxicity of haloxyfop-p-methyl, an aryloxyphenoxypropionate herbicide was studied using the model animal zebrafish. The development of zebrafish larvae was affected by haloxyfop-p-methyl including spinal deformities, decreased body length, slow heart rate, and large yolk sac area. Behavior analysis revealed that behavior activity of larvae was weakened significantly including shortened displacement distance, reduced swimming speed, increased angular speed winding degrees, in accordance with higher AChE activity. Besides, exposure to haloxyfop-p-methyl could induce oxidative stress companied by the increased intents of ROS, MDA and increased activities of CAT and SOD. In immunotoxicity, haloxyfop-p-methyl not only reduced the innate immune cells such as neutrophils and macrophages, but also affected T cells mature in thymus. Furthermore, haloxyfop-p-methyl could induce neutrophils apoptosis, accompanied with the upregulation of the expression of proapoptotic protein such as Bax and P53 and the downregulation of the expression of antiapoptotic protein Bcl-2. In addition, haloxyfop-p-methyl could induce the expression of Jak, STAT and proinflammatory cytokine genes (IFN-γ, TNF-α, and IL-8). These results indicate that haloxyfop-p-methyl induces developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish, providing a perspective on the toxicological mechanism of haloxyfop-p-methyl in teleosts.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Wenjin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Fengjie Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
10
|
França WWM, da Silva AM, Diniz EGM, Silva HAMF, Pereira DR, De Melo AMMA, Coelho LCBB, de Azevedo Albuquerque MCP, de Araújo HDA, de Lima Aires A. Toxic, cytotoxic and genotoxic effect of plumbagin in the developmental stages of Biomphalaria glabrata (Say, 1818-intermediate host) and cercaricidal activity against the infectious agent of schistosomiasis mansoni. PEST MANAGEMENT SCIENCE 2022; 78:5172-5183. [PMID: 36053991 DOI: 10.1002/ps.7136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Snails of the genus Biomphalaria are intermediate hosts of Schistosoma mansoni, the main etiological agent of schistosomiasis mansoni, which affects about 236.6 million people in tropical and subtropical regions of the world. The World Health Organization recommends the population control of vector snails as one of the strategies to reduce the prevalence and incidence of schistosomiasis. In this study, molluscicidal and antiparasitic activities of plumbagin, a naturally sourced naphthoquinone with a range of biological effects, were evaluated against B. glabrata and cercariae of S. mansoni. RESULTS After 24 h of exposure, plumbagin demonstrated molluscicidal activity at low concentrations against embryos (LC50 of 0.56, 0.93, 0.68, 0.51 and 0.74 μg mL-1 for the blastula, gastrula, trochophore, veliger and hippo stage, respectively) and adult snails (LC50 of 3.56 μg mL-1 ). There were no changes in exposed snails' fecundity or fertility; however, plumbagin was able to increase the frequency of DNA damage and the number of hemocytes, with apoptosis and binucleation being the main hemocyte alterations. In addition, plumbagin showed death of S. mansoni cercariae in the concentration of 1.5 μg mL-1 in 60 min, while showing moderate toxicity to Artemia salina. CONCLUSION Plumbagin proved to be a promising substance for the control of B. glabrata population, intermediate host of S. mansoni, as well as the cercariae, infective stage for humans (definitive host), while being moderately toxic to A. salina, a crustacean widely used in ecotoxicity tests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wilza Wanessa Melo França
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Maria da Silva
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Garabaghi FH, Benzer R, Benzer S, Günal Ç. Effect of polynomial, radial basis, and Pearson VII function kernels in support vector machine algorithm for classification of crayfish. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Lynch AE, Noble LR, Jones CS, Routledge EJ. Common aquatic pollutants modify hemocyte immune responses in Biomphalaria glabrata. Front Immunol 2022; 13:839746. [PMID: 36159819 PMCID: PMC9493456 DOI: 10.3389/fimmu.2022.839746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Disruptions to reproductive health in wildlife species inhabiting polluted environments is often found to occur alongside compromised immunity. However, research on impacts of aquatic pollution on freshwater mollusc immune responses is limited despite their importance as vectors of disease (Schistosomiasis) in humans, cattle and wild mammals. We developed an in vitro 'tool-kit' of well-characterized quantitative immune tests using Biomphalaria glabrata hemocytes. We exposed hemocytes to environmentally-relevant concentrations of common aquatic pollutants (17β-estradiol, Bisphenol-A and p,p'-DDE) and measured key innate immune responses including motility, phagocytosis and encapsulation. Additionally, we tested an extract of a typical domestic tertiary treated effluent as representative of a 'real-world' mixture of chemicals. Encapsulation responses were stimulated by p,p'-DDE at low doses but were suppressed at higher doses. Concentrations of BPA (above 200 ng/L) and p,p'-DDE (above 500 ng/L) significantly inhibited phagocytosis compared to controls, whilst hemocyte motility was reduced by all test chemicals and the effluent extract in a dose-dependent manner. All responses occurred at chemical concentrations considered to be below the cytotoxic thresholds of hemocytes. This is the first time a suite of in vitro tests has been developed specifically in B. glabrata with the purpose of investigating the impacts of chemical pollutants and an effluent extract on immunity. Our findings indicate that common aquatic pollutants alter innate immune responses in B. glabrata, suggesting that pollutants may be a critical, yet overlooked, factor impacting disease by modulating the dynamics of parasite transmission between molluscs and humans.
Collapse
Affiliation(s)
- Adam E. Lynch
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Leslie R. Noble
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
13
|
Pagano M, Savoca S, Impellitteri F, Albano M, Capillo G, Faggio C. Toxicological Evaluation of Acetylsalicylic Acid in Non-Target Organisms: Chronic Exposure on Mytilus galloprovincialis (Lamarck, 1819). Front Physiol 2022; 13:920952. [PMID: 35899021 PMCID: PMC9309544 DOI: 10.3389/fphys.2022.920952] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmaceuticals are now considered to be established contaminants, and their presence in water poses a real risk not only to the marine ecosystem, as they may adversely affect non-target organisms that are exposed to them, but also indirectly to humans. This is particularly true for the model organism considered in this work, Mytilus galloprovincialis (Lamarck, 1819), a suspensivore and bioaccumulating organism that enters the human food chain. Among the most commonly used over-the-counter medicines, anti-inflammatory drugs certainly feature prominently, with acetylsalicylic acid (ASA) at the top. In this work, M. galloprovincialis specimens were exposed to two concentrations of ASA (10 and 100 μg/L) for 10 and 20 days to evaluate possible alterations in the decrease in regulatory volume (RVD) in digestive gland cells and cell viability of both these cells and hemocytes. In addition, the histopathological condition index of the gills and digestive gland was evaluated. The data obtained showed that chronic exposure to ASA did not alter the cell viability of hemocytes and digestive gland cells but alters the physiological mechanisms of volume regulation in the digestive gland and, in addition, a time-dose reaction to ASA in the gills and digestive gland showing numerous alterations such as lipofuscin deposits and hemocyte infiltration was found. These results confirm the potential toxicity to the marine biota, highlighting the necessity to deepen the knowledge regarding the link between over-the-counter pharmaceuticals and non-target organisms.
Collapse
Affiliation(s)
- M. Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - S. Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Messina, Italy
| | - F. Impellitteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - M. Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - G. Capillo
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Messina, Italy
- Department of Veterinary Sciences, Polo Universitario Dell’Annunziata, University of Messina, Messina, Italy
| | - C. Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- *Correspondence: C. Faggio,
| |
Collapse
|
14
|
Qi P, Wu Y, Gu Z, Li H, Li J, Guo B, Liao Z, Yan X. A novel molluscan TLR molecule engaged in inflammatory response through MyD88 adapter recruitment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104373. [PMID: 35181373 DOI: 10.1016/j.dci.2022.104373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs) mediated signaling plays a vital role in activating innate and adaptive immunity. Although TLR mediated signaling has been comprehensively investigated in mammalian species, the mechanisms underlying TLR signaling in molluscs remain obscure. In the present study, a novel TLR isoform namely McTLR-like1 was identified in the thick shell mussel Mytilus coruscus. McTLR-like1 was highly expressed in molluscan immune-related tissues, and its transcriptional levels in hemocytes were significantly increased when challenged by V. alginolyticus. McTLR-like1 activated nuclear factor κB (NF-κB) and strengthened the transcription and phosphorylation of NF-κB subunit P65 in mammalian cells. Upon the silencing of McTLR-like1, the mRNA expression levels of pro-inflammatory cytokines were down-regulated, and the animals exhibited higher levels of resistance when challenged with V. alginolyticus. McMyD88a mRNA expression was also downregulated alongside McTLR-like1. Furthermore, GST-pull down assays revealed a visible affinity between McTLR-like1 and McMyD88a. Collectively, these results demonstrated that the newly identified gene affiliated to the molluscan TLR family and plays a role in the TLR-mediated activation of inflammatory response via its affinity with MyD88. The present study enhances our knowledge of TLR signaling mechanisms in molluscs and provides new insights into the evolution of TLRs.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yashu Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhongqi Gu
- Shengsi Institute of Marine Science and Technology in Zhejiang Province, Zhoushan, 202450, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
15
|
Dolar A, Jemec Kokalj A, Drobne D. Time-Course of the Innate Immune Response of the Terrestrial Crustacean Porcellio scaber After Injection of a Single Dose of Lipopolysaccharide. Front Immunol 2022; 13:867077. [PMID: 35592321 PMCID: PMC9110979 DOI: 10.3389/fimmu.2022.867077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Invertebrates, including crustaceans, rely on cellular and humoral immune responses to protect against extrinsic and intrinsic factors that threaten their integrity. Recently, different immune parameters have been increasingly used as biomarkers of effects of pollutants and environmental change. Here, we describe the dynamics of the innate immune response of the terrestrial crustacean Porcellio scaber to injection of a single dose of lipopolysaccharide (LPS), an important molecular surface component of the outer membrane of Gram-negative bacteria. The aim was to provide a basis for interpretation of change in immune parameters as a result of different challenges, including microplastics and nanoplastics exposure. Changes in total and differential numbers of hemocytes, hemocyte viability, and humoral immune parameters (i.e., phenoloxidase-like activity, nitric oxide levels) were assessed at different times (3, 6, 12, 24, 48 h). An injection of 0.5 μg/μL LPS into the body of P. scaber resulted in a rapid decrease (3 h after LPS injection) in the total number of hemocytes and reduced viability of the hemocytes. This was accompanied by changed proportions of the different hemocyte types, as a decrease in the numbers of semigranulocytes and granulocytes, and a marked increase in the numbers of hyalinocytes. In addition, phenoloxidase-like activity and nitric oxide levels in the hemolymph were increased at 3 h and 6 h, respectively, after the LPS challenge. Forty-eight hours after LPS injection, the immune parameters in the hemolymph of P. scaber had returned to those before the LPS challenge. This suggests that the innate immune system successfully protected P. scaber from the deleterious effects of the LPS challenge. These data indicate the need to consider the dynamics of innate immune responses of P. scaber when effects of infections, pollutants, or environmental changes are studied. We also propose an approach to test the immunocompetence of organisms after different challenges in ecotoxicity studies, based on the dynamics of their immune responses.
Collapse
Affiliation(s)
- Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
16
|
Afsa S, De Marco G, Giannetto A, Parrino V, Cappello T, Ben Mansour H, Maisano M. Histological endpoints and oxidative stress transcriptional responses in the Mediterranean mussel Mytilus galloprovincialis exposed to realistic doses of salicylic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103855. [PMID: 35342010 DOI: 10.1016/j.etap.2022.103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
17
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
19
|
Joshy A, Sharma SRK, Mini KG, Gangadharan S, Pranav P. Histopathological evaluation of bivalves from the southwest coast of India as an indicator of environmental quality. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106076. [PMID: 35032911 DOI: 10.1016/j.aquatox.2022.106076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Bivalve molluscs have been regarded as excellent bioindicators of environmental pollution as they persistently accumulate toxic contaminants present in their ecosystem. Histological alterations in the digestive gland and gills of three bivalve sp., Viz. edible oyster (Magallana bilineata), green mussel (Perna viridis) and black clam (Villorita cyprinoides) from ecologically sensitive regions of international significance on the southwest coast of India were evaluated using a semi-quantitative histopathological index to assess the environmental quality. The prominent tissue alterations included tubular vacuolation, haemocytic infiltration, parasitosis, lamellar disorganization, and the presence of prokaryotic inclusions. The presence of ten trace metals was also evaluated in the digestive gland of bivalves. The histopathological indices were evaluated season-wise and region-wise. Seasonal variation in all the reaction patterns was observed in the digestive gland across sampling zones, with the highest indices observed during post-monsoon. The indices for all the reaction patterns in the digestive gland were significantly higher in bivalves from Vembanad Lake (Z4), followed by Periyar River (Z5). The indices for cellular changes and parasitosis in gills were the highest in the Ashtamudi estuary (Z1) and Z5, respectively. The global histopathological indices of the digestive gland and gills were also the highest in Z4, followed by Z5. Principal component analysis revealed that Z4 was distinct with the highest metal pollution index. A positive relation was observed with heavy metals, digestive gland histological alterations, and season and region of sampling.
Collapse
Affiliation(s)
- Aswathy Joshy
- Fish Health Section, Marine Biotechnology Division, Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, India
| | - S R Krupesha Sharma
- Fish Health Section, Marine Biotechnology Division, Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, India.
| | - K G Mini
- Fish Health Section, Marine Biotechnology Division, Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, India
| | - Suja Gangadharan
- Fish Health Section, Marine Biotechnology Division, Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, India
| | - P Pranav
- Fish Health Section, Marine Biotechnology Division, Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, India
| |
Collapse
|
20
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
21
|
Stara A, Pagano M, Albano M, Savoca S, Di Bella G, Albergamo A, Koutkova Z, Sandova M, Velisek J, Fabrello J, Matozzo V, Faggio C. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117892. [PMID: 34385134 DOI: 10.1016/j.envpol.2021.117892] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 05/24/2023]
Abstract
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L-1) and 100 times higher than environmental (450 μg L-1) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L-1). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g-1 in the soft tissues of sentinels exposed for 20 days to 450 μg L-1 thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Serena Savoca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Zuzana Koutkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
22
|
Dragičević P, Grbin D, Maguire I, Blažević SA, Abramović L, Tarandek A, Hudina S. Immune Response in Crayfish Is Species-Specific and Exhibits Changes along Invasion Range of a Successful Invader. BIOLOGY 2021; 10:1102. [PMID: 34827095 PMCID: PMC8615248 DOI: 10.3390/biology10111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/21/2022]
Abstract
Immunity is an important component of invasion success since it enables invaders' adaptation to conditions of the novel environment as they expand their range. Immune response of invaders may vary along the invasion range due to encountered parasites/microbial communities, conditions of the local environment, and ecological processes that arise during the range expansion. Here, we analyzed changes in the immune response along the invasion range of one of the most successful aquatic invaders, the signal crayfish, in the recently invaded Korana River, Croatia. We used several standard immune parameters (encapsulation response, hemocyte count, phenoloxidaze activity, and total prophenoloxidaze) to: i) compare immune response of the signal crayfish along its invasion range, and between species (comparison with co-occurring native narrow-clawed crayfish), and ii) analyze effects of specific predictors (water temperature, crayfish abundance, and body condition) on crayfish immune response changes. Immune response displayed species-specificity, differed significantly along the signal crayfish invasion range, and was mostly affected by water temperature and population abundance. Specific immune parameters showed density-dependent variation corresponding to increased investment in them during range expansion. Obtained results offer baseline insights for elucidating the role of immunocompetence in the invasion success of an invertebrate freshwater invader.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva Ulica 6, 10000 Zagreb, Croatia;
| | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sofia Ana Blažević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Lucija Abramović
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Anita Tarandek
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| |
Collapse
|
23
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
24
|
Tunçsoy B, Sugeçti S, Büyükgüzel E, Özalp P, Büyükgüzel K. Effects of Copper Oxide Nanoparticles on Immune and Metabolic Parameters of Galleria mellonella L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:412-420. [PMID: 34002248 DOI: 10.1007/s00128-021-03261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of dietary CuO nanoparticles (NPs) on metabolic enzyme activity, biochemical parameters, and total (THC) and differential hemocyte counts (DHC) were determined in Galleria mellonella larvae. Using concentrations of 10, 100, 1000 mg/L and the LC10 and LC30 levels of CuO NPs, we determined that the NPs negatively impacted metabolic enzyme activity and biochemical parameters in larval hemolymph. Compared with the control, the greatest increase in THC was observed in larvae fed on diets with 100 mg L-1 of CuO NPs. Plasmatocytes and granulocytes were among the most numerous hemocytes in all treatments. These results suggest that dietary CuO NPs effects the metabolic metabolism and immune system of G. mellonella and provide indirect information regarding the toxic effects of CuO NPs in mammalian immune system given similarities between mammalian blood cells and insect hemocytes.
Collapse
Affiliation(s)
- Benay Tunçsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Özalp
- Department of Biology, Faculty of Science and Art, Çukurova University, Adana, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
25
|
Goodman RM, Carter ED, Miller DL. Influence of Herbicide Exposure and Ranavirus Infection on Growth and Survival of Juvenile Red-Eared Slider Turtles ( Trachemys scripta elegans). Viruses 2021; 13:1440. [PMID: 34452306 PMCID: PMC8402795 DOI: 10.3390/v13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Ranaviruses are an important wildlife pathogen of fish, amphibians, and reptiles. Previous studies have shown that susceptibility and severity of infection can vary with age, host species, virus strain, temperature, population density, and presence of environmental stressors. Experiments are limited with respect to interactions between this pathogen and environmental stressors in reptiles. In this study, we exposed hatchling red-eared slider turtles (Trachemys scripta elegans) to herbicide and ranavirus treatments to examine direct effects and interactions on growth, morbidity, and mortality. Turtles were assigned to one of three herbicide treatments or a control group. Turtles were exposed to atrazine, Roundup ProMax®, or Rodeo® via water bath during the first 3 weeks of the experiment. After 1 week, turtles were exposed to either a control (cell culture medium) or ranavirus-infected cell lysate via injection into the pectoral muscles. Necropsies were performed upon death or upon euthanasia after 5 weeks. Tissues were collected for histopathology and detection of ranavirus DNA via quantitative PCR. Only 57.5% of turtles exposed to ranavirus tested positive for ranaviral DNA at the time of death. Turtles exposed to ranavirus died sooner and lost more mass and carapace length, but not plastron length, than did controls. Exposure to environmentally relevant concentrations of herbicides did not impact infection rate, morbidity, or mortality of hatchling turtles due to ranavirus exposure. We also found no direct effects of herbicide or interactions with ranavirus exposure on growth or survival time. Results of this study should be interpreted in the context of the modest ranavirus infection rate achieved, the general lack of growth, and the unplanned presence of an additional pathogen in our study.
Collapse
Affiliation(s)
- Rachel M. Goodman
- Biology Department, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - Edward Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (E.D.C.); (D.L.M.)
| | - Debra L. Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (E.D.C.); (D.L.M.)
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Parisi MG, Giacoletti A, Mandaglio C, Cammarata M, Sarà G. The entangled multi-level responses of Mytilus galloprovincialis (Lamarck, 1819) to environmental stressors as detected by an integrated approach. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105292. [PMID: 33756251 DOI: 10.1016/j.marenvres.2021.105292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic pressure adds up and interacts with the effects of climate change with a varying magnitude and potential changes depend on species' Life History (LH) traits, local environmental conditions and co-occurrence of several stressors. Stressors exert negative effects on marine biota when acting as a single factor, but the effects may be amplified when more than one stressor work in combination, producing interacting effects on biodiversity and ecosystem functioning. The impairment of individual functional traits (FT) leads to strong rebounds on LH traits and this may have ecological consequences. No studies actually relate FT and antioxidant enzymes to multiple environmental stressors. In this paper we investigate the effects of food concentration, temperature and hypoxia on metabolic traits as expressed by a proxy such as respiration rate and feeding behaviour and on antioxidant enzymes (Catalase, Superoxide dismutase, Glutathione S-Transferase, Glutathione peroxidase) for the bivalve Mytilus galloprovincialis. Mussels were exposed to three temperatures (12, 20 and 28 °C) under normoxic (8 mg O2 l-1) and hypoxic (~2 mg O2 l-1) conditions, with varying food concentrations ranging from 0.9 to 3.5 μg of chlorophyll l-1. The results show that FTs and antioxidant enzymes were affected by temperature, hypoxia and food availability, and outcome allowed us to emphasise that a multi-scalar integrated approach is suitable to detect and monitor effects of anthropogenic disturbance on ecosystem functioning.
Collapse
Affiliation(s)
- M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - A Giacoletti
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - C Mandaglio
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - G Sarà
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
27
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
28
|
Effects of the Fragrance Galaxolide on the Biomarker Responses of the Clam Ruditapes philippinarum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9050509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The musk fragrance Galaxolide® (HHCB) is widely used in personal care and household products. Its large use leads to a continuous release of the compound into aquatic environments. Although some studies on the presence of HHCB in ecosystems and biota have been conducted, limited data about its effects on organism biomarkers are available. This study aimed at investigating both cellular and biochemical effects of HHCB in the clam Ruditapes philippinarum. Mussels were exposed for 7, 14 and 21 days to 100 ng/L and 500 ng/L of HHCB in seawater, and the effects on haemocyte parameters and antioxidant enzyme activities in the gills and digestive gland were evaluated. In addition, the neurotoxic potential of HHCB and its capacity to cause oxidative damage to proteins were assessed. Overall, our results demonstrated that exposure to HHCB was able to induce changes in biomarker responses of mussels, mainly at the cellular level.
Collapse
|
29
|
Establishment of primary cell culture of Ruditapes decussatus haemocytes for metal toxicity assessment. In Vitro Cell Dev Biol Anim 2021; 57:477-484. [PMID: 33876341 DOI: 10.1007/s11626-021-00561-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
In ecotoxicology, in vitro testing on cell cultures represents an ideal alternative to in vivo strategies for emerging contaminants. These tests have limited use particularly with marine invertebrates like the clams Ruditapes decussatus. In the present study, a primary culture of R. decussatus haemocytes was realized for the first time in order to determine the effect of metals (copper, zinc, and cobalt) on haemocyte parameters like viability and phagocytosis. Results showed that (i) among the studied medium, the modified Leibovitz (L-15) is the best for R. decussatus haemocytes primary culture. (ii) The primary culture system used here represents a suitable in vitro model for assessing cytotoxic responses, (iii) a decrease of cell viability and phagocytosis after 24 h exposure to 100 μg mL-1 CoSO4 and an increase of phagocytosis after 24 h exposure to 50 μg mL-1CuSO4.
Collapse
|
30
|
Immunomodulatory and Antiviral Effects of Macroalgae Sulphated Polysaccharides: Case Studies Extend Knowledge on Their Importance in Enhancing Shellfish Health, and the Control of a Global Viral Pathogen Ostreid Herpesvirus-1 microVar. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroalgae are the primary source of non-animal sulphated polysaccharides (SPs) in the marine environment with fucoidans derived from brown algae (Phaeophyta) and carrageenans from red algae (Rhodophyta). Much research has been carried out on SP effects on Asian shrimp species (genera Penaeus and Metapenaeus) but their effect on commercially important bivalve mollusc species is limited and in Pacific oyster Crassostrea gigas is unknown. Knowledge of their impact on bivalve pathogens and Palaemon shrimp is unknown. The objectives of this study were to assess the effects of Fucus vesiculosus (Phaeophyta), Mastocarpus stellatus (Rhodophyta) and algal derivatives (fucoidan and κ-carrageenan) on C. gigas performance, and on ostreid herpesvirus-1 microvar (OsHV-1 μVar) and bacteria Vibrio spp. development. Both pathogens have been associated with significant oyster mortalities and economic losses globally. The effects of sulphated galactan from Gracilaria fisheri (Rhodophyta) on European common prawn Palaemon serratus, an important fishery species, was also assessed. Findings indicate a rapid and prolonged increase in total blood cell count, lysozyme (enzyme that destroys pathogens), and a difference in the ratio of blood cell types in treated individuals compared to their control counterparts. A significantly lower OsHV-1 μVar prevalence was observed in treated oysters and κ-carrageenan was found to suppress viral replication (loads), while OsHV-1 μVar was not detected in the fucoidan treated oysters from Day 8 of the 26-day trial. No antibacterial effect was observed however, the oysters did not succumb to vibriosis. These findings contribute further knowledge to macroalgae sulphated polysaccharide biotherapeutic properties, their twofold effect on animal health and viral suppression.
Collapse
|
31
|
Stara A, Pagano M, Capillo G, Fabrello J, Sandova M, Albano M, Zuskova E, Velisek J, Matozzo V, Faggio C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110980. [PMID: 32888623 DOI: 10.1016/j.ecoenv.2020.110980] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- University of Messina, Department of Veterinary Sciences, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Jacopo Fabrello
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Marco Albano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Valerio Matozzo
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
32
|
Coates CJ, Söderhäll K. The stress–immunity axis in shellfish. J Invertebr Pathol 2020; 186:107492. [DOI: 10.1016/j.jip.2020.107492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
|
33
|
Radwan MA, El-Gendy KS, Gad AF. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. CHEMOSPHERE 2020; 257:127218. [PMID: 32497833 DOI: 10.1016/j.chemosphere.2020.127218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The chemical contamination of terrestrial ecosystems is a great concern as these ecosystems are the target of most of the pollutants derived from anthropogenic activities such as pesticides, heavy metals, nanoparticles, and others. Terrestrial gastropods are considered to be excellent sentinel organisms for biological monitoring of environmental pollution, as they have the ability to accumulate chemicals in their tissues and exhibit a great potential to evaluate the ecological effects of pollutants in terrestrial ecosystems. The use of biomarkers as sensitive parameters to estimate the exposure or resulting effects of chemicals have received considerable attention. The successful biomarker must be applicable in the laboratory and field conditions. Many biomarkers have been examined to understand the adverse effects of pollutants. In this review, we shed light on different types of biomarkers, such as oxidative stress, genotoxicity and immunotoxicity as diagnostic tools for monitoring the impacts of pollution. These biomarkers can provide information about early detection and quantification of these impacts during their initial manifestations and can facilitate the implementation of a rapid preventive and/or restorative responses in the affected ecosystems, as well as single or multiple biomarkers can be integrated into routine monitoring programs.
Collapse
Affiliation(s)
- M A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt.
| | - K S El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt
| | - A F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
34
|
Garate OF, Gazzaniga S, Cochón AC. A comparative study of enzymatic and immunological parameters in Planorbarius corneus and Biomphalaria glabrata exposed to the organophosphate chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105544. [PMID: 32569998 DOI: 10.1016/j.aquatox.2020.105544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the acute effects of chlorpyrifos on biomarkers related to neurotoxicity and immunotoxicity in two allopatric freshwater gastropod species belonging to the family Planorbidae. For this purpose, Planorbarius corneus and Biomphalaria glabrata were exposed to chlorpyrifos (active ingredient or commercial formulation) for 48 h at environmentally realistic concentrations (1 and 7.5 μg L-1). Basal acetylcholinesterase activity in soft tissues and hemolymph was almost one order of magnitude higher in P. corneus than in B. glabrata. However, upon chlorpyrifos exposure, statistically significant inhibition of enzymatic activity was registered in both species. Acetylcholinesterase was more sensitive to inhibition in soft tissues than in hemolymph. The highest inhibition was observed in the B. glabrata soft tissues exposed to the commercial formulation (88 % at 1 μg L-1 and 93 % at 7.5 μg L-1). Hemocyte number and lysosomal membrane stability did not show significant changes with respect to controls in any of the exposed groups. Superoxide anion generation was diminished (21-46 %) in P. corneus hemocytes exposed to the active ingredient and in B. glabrata hemocytes exposed to the active ingredient or the formulation. In contrast, hemocyte phagocytic activity increased in all exposed groups. Phagocytosis was most stimulated (89 %) in hemocytes sampled from B. glabrata treated with 7.5 μg L-1 chlorpyrifos. Altogether the results suggest that the freshwater gastropods P. corneus and B. glabrata are suitable model animals for environmental monitoring studies in the Northern Hemisphere and Latin America, respectively. Furthermore, these results add information on the relevance of testing pesticide formulations and on the usefulness of acetylcholinesterase inhibition and immunological parameters as biomarkers of the acute effects of chlorpyrifos in these species.
Collapse
Affiliation(s)
- Octavio F Garate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Gazzaniga
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana C Cochón
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
35
|
Liang W, Wu R, Yang T, Shen H, Hu Z. Effect of pathogenic bacteria on a novel C-type lectin, hemocyte and superoxide dismutase/ alkaline phosphatase activity in Onchidium reevesii. FISH & SHELLFISH IMMUNOLOGY 2020; 102:185-194. [PMID: 32289514 DOI: 10.1016/j.fsi.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Bacterial infection in the marine environment is a serious problem to maintain the stability of marine ecosystems. Nevertheless, there is little report so far for the biological effects of pathogenic bacteria in coastal ecosystems. Hence, we investigated the responses of shell-less Onchidium reevesii to resist against pathogenic bacterial infection. Analysis of data here could be used as fundamental information for assessment of innate immune response of O. reevesii. The full-length OrCTL cDNA was cloned and consists of 1849 base pair (bp) encoding protein of 192 amino acids. Constructing multiple alignments suggested that OrCTL has conserved carbohydrate recognition domain (CRD) of CTLs, containing an EPS (Glu-Pro-Ser) motif that may imply the function of recognition of carbohydrates like others invertebrate. OrCTL mRNAs were mainly detected in ganglion and hepatopancreas, and expression was highly up-regulated from 2 h after Vibrio harveyi challenge, rapidly decreased at 4 h, and significantly increased at 12 h. In addition, after challenge with Vibrio parahaemolytics, OrCTL gene expression was slightly up-regulated from 2 h, peaked at 12 h. Enzyme activity (in the hepatopancreas) and cell immune (in the hemolymph) were investigated along with Superoxide dismutase (SOD) activity, alkaline phosphatase (ALP) activity and cell cycle. SOD activities were significantly higher after V. harveyi and V. parahaemolytics challenge than that in the control group, respectively. By contrast, ALP activities were significantly inhibited after challenged with bacteria than that in the control group, respectively. Enzyme activities in the hepatopancreas obviously fluctuated, and ALP activity was more sensitive to bacteria. Cell responses illustrated that there were a significant higher percentage of cells in the S and G2/M phase in hemolymph after challenged with bacteria. Our results suggested that the immune response of O. reevesii could be activated by pathogenic bacteria, and the data will provide referent for the disease prevention of systematic investigation in aquatic animal.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Rongyu Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Tiezhu Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Heding Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhongjun Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
36
|
Insights on the Larvicidal Mechanism of Action of Fractions and Compounds from Aerial Parts of Helicteres velutina K. Schum against Aedes aegypti L. Molecules 2020; 25:molecules25133015. [PMID: 32630318 PMCID: PMC7412497 DOI: 10.3390/molecules25133015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Viral diseases transmitted by the female Aedes aegypti L. are considered a major public health problem. The aerial parts of Helicteres velutina K. Schum (Sterculiaceae) have demonstrated potential insecticidal and larvicidal activity against this vector. The objective of this research was to investigate the mechanisms of action involved in the larvicidal activity of this species. The cytotoxicity activity of H. velutina fractions and compounds of crude ethanolic extract of the aerial parts of this species was assessed by using fluorescence microscopy and propidium iodide staining. In addition, the production of nitric oxide (NO) and hemocyte recruitment were checked after different periods of exposure. The fluorescence microscopy revealed an increasing in larvae cell necrosis for the dichloromethane fraction, 7,4′-di-O-methyl-8-O-sulphate flavone and hexane fraction (15.4, 11.0, and 7.0%, respectively). The tiliroside did not show necrotic cells, which showed the same result as that seen in the negative control. The NO concentration in hemolymph after 24 h exposure was significantly greater for the dichloromethane fraction and the 7,4′-di-O-methyl-8-O-sulphate flavone (123.8 and 56.2 µM, respectively) when compared to the hexane fraction and tiliroside (10.8 and 8.3 µM, respectively). The presence of plasmocytes only in the dichloromethane fraction and 7,4′-di-O-methyl-8-O-sulphate flavone treatments suggest that these would be the hemocytes responsible for the highest NO production, acting as a defense agent. Our results showed that the larvicidal activity developed by H. velutina compounds is related to its hemocyte necrotizing activity and alteration in NO production.
Collapse
|
37
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
38
|
Vázquez N, Frizzera A, Cremonte F. Diseases and parasites of wild and cultivated mussels along the Patagonian coast of Argentina, southwest Atlantic Ocean. DISEASES OF AQUATIC ORGANISMS 2020; 139:139-152. [PMID: 32406869 DOI: 10.3354/dao03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A histological survey of the commercially edible mussels Mytilus platensis and M. chilensis from wild and cultivated populations along the coast of Patagonia, Argentina (42°00' to 54°47'S), was carried out to determine their health status. Diagnostic results included 3 types of inflammatory responses (infiltrative, nodular, and encapsulation), disseminated neoplasia disease, 2 abnormal reproductive conditions (gonadal atresia and intersex), prokaryotic inclusions, protozoans, and metazoans. Pathogen prevalence and infection intensity among mussels of different sampling sites and between those of wild and cultivated populations were compared. Inflammatory responses were recorded in all mussels from all sites, while disseminated neoplasia only occurred in the most southern cultivated M. chilensis. Intracellular prokaryotic inclusions were broadly distributed in the mussels from both northern and southern Patagonian coasts. Ciliates showed the highest prevalence among wild mussels from the colder waters of Bahía Brown. Turbellaria were recorded at higher prevalence in cultured mussels (41.7%), and trematode metacercariae occurred exclusively in intertidal wild mussels. None of the parasites found appears to be a problem to the fishery or farming, although disseminated neoplasia should be monitored. In addition, we found that mytilid species coexisting with M. platensis (Aulacomya atra and Perumytilus purpuratus) at one location shared the same pathological conditions and parasites, which differed from those of M. platensis at a distant locality. These results suggest that pathological conditions and parasites were influenced more by ecological habitat factors than by the species of mussels present, based on similar parasite assemblages found among closely related mytilid hosts in the same geographical area.
Collapse
Affiliation(s)
- N Vázquez
- Laboratorio de Parasitología (LAPA), Instituto de Biología de Organismos Marinos (IBIOMAR) (CCT CONICET - CENPAT), U9120ACF Puerto Madryn, Argentina
| | | | | |
Collapse
|
39
|
Mottier A, Serpentini A, Dallas L, James A, Lebel JM, Costil K. In vitro effects of glyphosate-based herbicides and related adjuvants on primary culture of hemocytes from Haliotis tuberculata. FISH & SHELLFISH IMMUNOLOGY 2020; 100:1-8. [PMID: 32119910 DOI: 10.1016/j.fsi.2020.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 05/24/2023]
Abstract
Glyphosate-based herbicides are among the most produced and widely-used herbicides. Studies have shown that commercial formulations and adjuvants may be more toxic to non-target organisms than the active ingredients alone, but the mechanisms of action of these chemicals remain unclear. The aim of this study was to investigate the in vitro effects of glyphosate, a commercial formulation and adjuvant alone using primary culture of hemocytes from the European abalone Haliotis tuberculata, a commonly farmed shellfish. Glyphosate was found to have negligible effects on viability, phagocytic activities and lysosome stability even with very high doses (i.e. 100 mg L-1). By contrast, greater effects on viability were observed for the commercial formulation and adjuvant alone, with EC50 values of 41.42 mg L-1 and 1.85 mg L-1, respectively. These results demonstrate that the toxic sublethal effects (i.e. phagocytic activity and destabilization of lysosomal membranes) of formulated glyphosate came from adjuvants and suggest they may be related to cell and organelle membrane destabilization.
Collapse
Affiliation(s)
- Antoine Mottier
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; BOREA (Biologie des Organismes et des Ecosystèmes Aquatiques), UCN, MNHN, UPMC, CNRS-7208, IRD-207, IBFA, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen, Cedex 5, France
| | - Antoine Serpentini
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; BOREA (Biologie des Organismes et des Ecosystèmes Aquatiques), UCN, MNHN, UPMC, CNRS-7208, IRD-207, IBFA, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen, Cedex 5, France
| | - Lorna Dallas
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Adèle James
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; BOREA (Biologie des Organismes et des Ecosystèmes Aquatiques), UCN, MNHN, UPMC, CNRS-7208, IRD-207, IBFA, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen, Cedex 5, France
| | - Jean-Marc Lebel
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; BOREA (Biologie des Organismes et des Ecosystèmes Aquatiques), UCN, MNHN, UPMC, CNRS-7208, IRD-207, IBFA, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen, Cedex 5, France
| | - Katherine Costil
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; BOREA (Biologie des Organismes et des Ecosystèmes Aquatiques), UCN, MNHN, UPMC, CNRS-7208, IRD-207, IBFA, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen, Cedex 5, France.
| |
Collapse
|
40
|
Bowen L, Counihan KL, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Monitoring nearshore ecosystem health using Pacific razor clams (Siliqua patula) as an indicator species. PeerJ 2020; 8:e8761. [PMID: 32185117 PMCID: PMC7060925 DOI: 10.7717/peerj.8761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 12/05/2022] Open
Abstract
An emerging approach to ecosystem monitoring involves the use of physiological biomarker analyses in combination with gene transcription assays. For the first time, we employed these tools to evaluate the Pacific razor clam (Siliqua patula), which is important both economically and ecologically, as a bioindicator species in the northeast Pacific. Our objectives were to (1) develop biomarker and gene transcription assays with which to monitor the health of the Pacific razor clam, (2) acquire baseline biomarker and gene transcription reference ranges for razor clams, (3) assess the relationship between physiological and gene transcription assays and (4) determine if site-level differences were present. Pacific razor clams were collected in July 2015 and 2016 at three sites within each of two national parks in southcentral Alaska. In addition to determining reference ranges, we found differences in biomarker assay and gene transcription results between parks and sites which indicate variation in both large-scale and local environmental conditions. Our intent is to employ these methods to evaluate Pacific razor clams as a bioindicator of nearshore ecosystem health. Links between the results of the biomarker and gene transcription assays were observed that support the applicability of both assays in ecosystem monitoring. However, we recognize the need for controlled studies to examine the range of responses in physiology and gene transcripts to different stressors.
Collapse
Affiliation(s)
- Lizabeth Bowen
- Western Ecological Research Center, U.S. Geological Survey, Davis, CA, USA
| | | | - Brenda Ballachey
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK, USA
| | - Heather Coletti
- Inventory & Monitoring Program, Southwest Alaska Network, National Park Service, Fairbanks, AK, USA
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, Alaska SeaLife Center and University of Alaska Fairbanks, Seward, AK, USA
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Seward, AK, USA
| | - Tammy L Wilson
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
41
|
Yu M, Zheng L, Wang X, Wu M, Qi M, Fu W, Zhang Y. Comparative transcriptomic analysis of surf clams (Paphia undulate) infected with two strains of Vibrio spp. reveals the identity of key immune genes involved in host defense. BMC Genomics 2019; 20:988. [PMID: 31847806 PMCID: PMC6915886 DOI: 10.1186/s12864-019-6351-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vibrio spp. is the major infection-producing marine bacteria in commercially important bivalve Paphia undulata. The host resistance is the major determining factor for the development of pathogenesis. To explore defense mechanisms, researchers have focused primarily on the study of differential expression of individual or specific groups of host immune genes during pathogen-challenge. RESULTS We compared the expression profile in the surf clams infected with avirulent V. alginolyticus and virulent V. parahaemolyticus to mark the possible molecular mechanisms of pathogenesis. Comparison of the differentially expressed genes between the two groups of Vibrio-infected clams revealed that the number of down-regulate genes in V. parahaemolyticus injected clams (1433) were significantly higher than the other group (169). Based on Gene Ontology classification, a large proportion of these down-regulate genes were found to be associated with cellular and molecular mechanisms for pathogen recognition, and immunity development thereby explaining the low survival rate for the V. parahaemolyticus-treated clams and suggesting a higher virulence of this bacterium towards the surf clams. Quantitative real-time PCR of 24 candidate genes related to immunity involving the JAK-STAT signaling pathway, complementary cascade, cytokine signaling pathway, oxidative stress, phagocytosis and apoptosis down regulated under V. parahaemolyticus infection, indicating compromised host defense. Furthermore, we could demonstrate a central role of JAK-STAT pathway in bacterial clearance. dsRNA mediated depletion of a clam STAT homolog gene results in dramatic increase in the infection by V. alginolyticus, a mildly pathogenic strain under control conditions. CONCLUSIONS The difference in gene expression profiles in surf clams treated with two Vibrio species with a differential pathogenicity to P. undulate and downstream molecular analysis could enlighten on the probable molecular mechanisms of the Vibrio pathogenesis and the virulence of V. parahaemolyticus in surf clams, which also benefits to develop new strategies for disease control in surf calm aquaculture.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Lin Zheng
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Minfu Wu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Ming Qi
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan, 316100, People's Republic of China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
42
|
Counihan KL, Bowen L, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Physiological and gene transcription assays to assess responses of mussels to environmental changes. PeerJ 2019; 7:e7800. [PMID: 31592166 PMCID: PMC6779115 DOI: 10.7717/peerj.7800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
Collapse
Affiliation(s)
| | - Lizabeth Bowen
- US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America
| | - Brenda Ballachey
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America
| | - Heather Coletti
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America
| | - Tammy L Wilson
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America.,Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
43
|
Gu B, Liang W, Yang T, Hu Z, Shen H. Metallothionein, hemocyte status and superoxide dismutase/aspartate aminotransferase activity are sensitive biomarkers of cadmium stress in Onchidium reevesii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105284. [PMID: 31479758 DOI: 10.1016/j.aquatox.2019.105284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Metal pollution in the environment is a serious threat to the biological sustainability of coastal ecosystems. However, our current understanding of the biological effects of metals in these ecosystems is limited. Herein, we investigated the responses of the sea slug Onchidium reevesii to persistent sublethal Cd environmental stress. Dynamic expression was analyzed using various biomarkers. The full-length cDNA of O. reevesii metallothionein (MT) was cloned and consists of 1639 nucleotides encoding a 65 amino acid polypeptide. Phylogenetic analysis showed that Or-MT has conserved Cys residues typical of MTs, including a typical Cys-X-Cys motif, implying that it can function the same as the MT of other shellfish. Expression of Or-MT in response to Cd varied in different tissues, and was highest in gastropod tissues. Thus, regiotemporal expression of MT may be useful for assessing pollution in coastal areas. Cellular immunity (in the hemolymph) and enzyme activity (in the hepatopancreas) were investigated along with hemocyte viability, hemocyte phagocytosis, and superoxide dismutase (SOD) and aspartate aminotransferase (AST) activities. Hemocyte viability was elevated under continuous Cd exposure but hemocyte phagocytosis was decreased. SOD and AST activities in the hepatopancreas fluctuated considerably, and SOD activity was more sensitive. SOD activity was lowest at 4 h and highest at 12 h, while AST activity peaked at 2 h and was lowest at 48 h. Thus, changes in enzyme activity may reveal adaptation to stress. Furthermore, the response patterns of certain enzymes, cellular immunity, and MT expression in O. reevesii could serve as biomarkers of Cd pollution in aquatic environments.
Collapse
Affiliation(s)
- Bingning Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Wei Liang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Tiezhu Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Zhongjun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| | - Heding Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| |
Collapse
|
44
|
Milan M, Smits M, Dalla Rovere G, Iori S, Zampieri A, Carraro L, Martino C, Papetti C, Ianni A, Ferri N, Iannaccone M, Patarnello T, Brunetta R, Ciofi C, Grotta L, Arcangeli G, Bargelloni L, Cardazzo B, Martino G. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol Ecol 2019; 28:4486-4499. [PMID: 31482594 DOI: 10.1111/mec.15227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA-sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over-expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down-regulation of several genes involved in immune and stress response, and the over-representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy.,Marine Environmental Science Laboratory (LEMAR), IUEM Technopole Brest-Iroise, Université de Bretagne Occidentale -Rue Dumont d'Urville, Plouzané, France
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Angela Zampieri
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Papetti
- Department of Biology, University of Padova, Padua, Italy
| | - Andrea Ianni
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Marco Iannaccone
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Romina Brunetta
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Grotta
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Giuseppe Martino
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| |
Collapse
|
45
|
Shi W, Han Y, Guan X, Rong J, Su W, Zha S, Tang Y, Du X, Liu G. Fluoxetine suppresses the immune responses of blood clams by reducing haemocyte viability, disturbing signal transduction and imposing physiological stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:681-689. [PMID: 31150888 DOI: 10.1016/j.scitotenv.2019.05.308] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, is widely prescribed for the treatment of depression and anxiety disorders. Nowadays, measurable quantities of FLX have been frequently detected in the aquatic ecosystems worldwide, which may pose a potential threat to aquatic organisms. Although the impacts of FLX exposure on immune responses are increasingly well documented in mammals, they remain poorly understood in aquatic invertebrates. Therefore, to gain a better understanding of the ecotoxicological effects of FLX, the impacts of waterborne FLX exposure on the immune responses of blood clam, Tegillarca granosa, were investigated in this study. Results obtained showed that both cellular and humoural immune responses in T. granosa were suppressed by exposure to waterborne FLX, as indicated by total counts of haemocytes (THC), phagocytic rate, and activities of superoxide dismutases (SOD) and catalase (CAT), suggesting that waterborne FLX renders blood clams more vulnerable to pathogen challenges. To ascertain the mechanisms explaining how waterborne FLX affects immune responses, haemocyte viabilities, intracellular Ca2+ levels, in vivo concentrations of neurotransmitters, physiological stress conditions (as indicated by in vivo concentrations of cortisol), and expressions of key regulatory genes from Ca2+ and neurotransmitter signal transduction, as well as immune-related signalling pathways, were examined after 10 days of FLX exposure by blood clams via 1, 10 and 100 μg/L waterborne FLX. The results obtained indicated that immune response suppression caused by waterborne FLX could be due to (i) inhibited haemocyte viabilities, which subsequently reduce the THC; (ii) altered intracellular Ca2+ and neurotransmitter concentrations, which lead to constrained phagocytosis; and (iii) aggravated physiological stress, which thereafter hampers immune-related NFκB signalling pathways.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jiahuan Rong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
46
|
Munari M, Matozzo V, Chemello G, Riedl V, Pastore P, Badocco D, Marin MG. Seawater acidification and emerging contaminants: A dangerous marriage for haemocytes of marine bivalves. ENVIRONMENTAL RESEARCH 2019; 175:11-21. [PMID: 31100511 DOI: 10.1016/j.envres.2019.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on haemocyte parameters of the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum were investigated for the first time. Animals were maintained for one week (T0) in natural pH condition (8.1) and two reduced pH values (pH -0.4 units and pH -0.7 units). Bivalves were then exposed for additional 14 days (T1 and T2) to the three experimental pH values in both the presence and absence of environmentally realistic concentrations of diclofenac (0.05 and 0.50 μg/L). To assess potential impairment in immunosurveillance, haemocyte parameters (total haemocyte count, haemocyte volume and diameter, Neutral Red uptake, haemocyte proliferation and lysozyme activity) were measured after 7, 14 and 21 days of exposure to differing pH value or pH/diclofenac combinations. In both species, pH affected the whole haemocyte data set at all sampling times, influencing most of the parameters measured at T0 and T1 in clams, and at T2 in mussels. Conversely, in both species diclofenac affected the overall haemocyte response at T2 only. However, in R. philippinarum a higher number of haemocyte parameters were significantly influenced even at T1. A significant interaction between pH and diclofenac was mainly evident in mussels, affecting haemocyte size and lysozyme activity at both T1 and T2. Overall, the results obtained demonstrated that the experimental conditions tested can alter markedly haemocyte parameters in marine bivalves.
Collapse
Affiliation(s)
- Marco Munari
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Giulia Chemello
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Verena Riedl
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy.
| |
Collapse
|
47
|
Silva HAMF, Sá JLF, Siqueira WND, Lima MDV, Martins MCB, Aires ADL, Albuquerque MCPDA, Falcão EPDS, Buril MDLL, Pereira EC, Melo AMMDA, Silva NHD. Toxicological effects of Ramalina aspera (lichen) on Biomphalaria glabrata snails and Schistosoma mansoni cercariae. Acta Trop 2019; 196:172-179. [PMID: 31082366 DOI: 10.1016/j.actatropica.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023]
Abstract
In this study, the molluscicidal activities against Biomphalaria glabrata and cercaricidal activities against Schistosoma mansoni of the ether extract of Ramalina aspera were evaluated. Additionally, toxicity parameters were evaluated at sublethal doses in terms of the influence of the extract on the fertility and fecundity of snails, as well as morphological alterations and quantification of their immunological cells. A test with Artemia salina was also carried out, in order to verify the environmental toxicity of the compound. The ether extract of R. aspera, in which divaricatic acid was identified as the major compound, demonstrated molluscicidal activity at low concentrations against both embryos (LC90 of 22.78, 24.23, 16.63 and 16.03 μg mL-1 for the gastrula, blastula, trochophore and veliger, respectively) and against adult snails (LC90 of 8.66 μg mL-1), after 24 h of exposure. At the sublethal doses, it was possible to observe a decrease in fecundity and quantitative and morphological changes in the defense cells of the exposed snails. In addition, the extract of R. aspera showed a cercaricidal effect on S. mansoni from the concentration of 5.0 μg mL-1, while showing low toxicity to Artemia salina. The ether extract of R. aspera demonstrated effective molluscicidal activity on embryos and adult snails of the species B. glabrata, cercariae of S. mansoni, and presenting low toxicity on Artemia salina. In this way, it could be considered a promising compound in the development of future molluscicidal and cercaricidal agents, thus helping to combat schistosomiasis.
Collapse
|
48
|
Parisi MG, Maisano M, Cappello T, Oliva S, Mauceri A, Toubiana M, Cammarata M. Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:1-9. [PMID: 30905845 DOI: 10.1016/j.cbpc.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Bivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosis, while clearance was observed within 24 h p.i. A recruitment of hemocytes at the injection site was found in mussel PAM, together with marked morphological changes in the volume of muscular fibers, with a recovery of muscle tissue organization after 48 h p.i. A concomitant impairment in the osmoregulatory processes were observed in PAM by an initial inhibition of aquaporins and increased immunopositivity of Na+/K+ ATPase ionic pump, strictly related to the histological alterations and hemocyte infiltration detected in PAM. Accordingly, an intense cell turnover activity was also recorded following the infection event. Overall, results indicated the hemolymph as the system responsible for the physiological adaptations in mussels to stressful factors, such as pathogenicity, for the maintenance of homeostasis and immune defence. Also, the osmotic balance and cell turnover can be used as objective diagnostic criteria to evaluate the physiological state of mussels following bacterial infection, which may be relevant in aquaculture and biomonitoring studies.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mylene Toubiana
- HSM, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy.
| |
Collapse
|
49
|
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:11-28. [PMID: 30877957 DOI: 10.1016/j.scitotenv.2019.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 03/03/2019] [Indexed: 05/14/2023]
Abstract
Lymnaea stagnalis, also referred to as great or common pond snail, is an abundant and widespread invertebrate species colonizing temperate limnic systems. Given the species importance, studies involving L. stagnalis have the potential to produce scientifically relevant information, leading to a better understanding of the damage caused by aquatic contamination, as well as the modes of action of toxicants. Lymnaea stagnalis individuals are easily maintained in laboratory conditions, with a lifespan of about two years. The snails are hermaphrodites and sexual maturity occurs about three months after egg laying. Importantly, they can produce a high number of offspring all year round and are considered well suited for use in investigations targeting the identification of developmental and reproductive impairments. The primary aims of this review were two-fold: i) to provide an updated and insightful compilation of established toxicological measures determined in both chronic and acute toxicity assays, as useful tool to the design and development of future research; and ii) to provide a state of the art related to direct toxicant exposure and its potentially negative effects on this species. Relevant and informative studies were analysed and discussed. Knowledge gaps in need to be addressed in the near future were further identified.
Collapse
Affiliation(s)
- João Amorim
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Isabel Abreu
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Rodrigues
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diogo Peixoto
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Pinheiro
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Aurélia Saraiva
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Luis Oliva-Teles
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
50
|
Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. FISH & SHELLFISH IMMUNOLOGY 2019; 89:158-169. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.
Collapse
Affiliation(s)
- Younes Bouallegui
- University of Carthage, Faculty of Sciences Bizerte, LR01ES14 Laboratory of Environmental Biomonitoring, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|