1
|
Danek PJ, Daniel WA. The effect of new atypical antipsychotic drugs on the expression of transcription factors regulating cytochrome P450 enzymes in rat liver. Pharmacol Rep 2024; 76:895-901. [PMID: 38878234 PMCID: PMC11294401 DOI: 10.1007/s43440-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Our recent studies showed that prolonged administration of novel atypical antipsychotics affected the expression and activity of cytochrome P450 (CYP), as demonstrated in vitro on human hepatocytes and in vivo on the rat liver. The aim of the present work was to study the effect of repeated treatment with asenapine, iloperidone, and lurasidone on the expression of transcription factors regulating CYP drug-metabolizing enzymes in rat liver. METHODS The hepatic mRNA (qRT-PCR) and protein levels (Western blotting) of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPARγ) were measured in male Wistar rats after 2 week-treatment with asenapine, iloperidone or lurasidone. RESULTS The 2-week treatment with asenapine significantly diminished the AhR and PXR expression (mRNA, protein level), and CAR mRNA level in rat liver. Iloperidone lowered the AhR and CAR expression and PXR protein level. Lurasidone did not affect the expression of AhR and CAR, but increased PXR expression. The antipsychotics did not affect PPARγ. CONCLUSIONS Prolonged treatment with asenapine, iloperidone, or lurasidone affects the expression of transcription factors regulating the CYP drug-metabolizing enzymes. The changes in the expression of AhR, CAR, and PXR mostly correlate with alterations in the expression and activity of respective CYP enzymes found in our previous studies. Since these transcription factors are also engaged in the expression of phase II drug metabolism and drug transporters, changes in their expression may affect the metabolism of endogenous substrates and pharmacokinetics of concomitantly used drugs.
Collapse
Affiliation(s)
- Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
3
|
Touloupi K, Küblbeck J, Magklara A, Molnár F, Reinisalo M, Konstandi M, Honkakoski P, Pappas P. The Basis for Strain-Dependent Rat Aldehyde Dehydrogenase 1A7 ( ALDH1A7) Gene Expression. Mol Pharmacol 2019; 96:655-663. [PMID: 31575620 DOI: 10.1124/mol.119.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Aldehyde hydrogenases (ALDHs) belong to a large gene family involved in oxidation of both endogenous and exogenous compounds in mammalian tissues. Among ALDHs, the rat ALDH1A7 gene displays a curious strain dependence in phenobarbital (PB)-induced hepatic expression: the responsive RR strains exhibit induction of both ALDH1A7 and CYP2B mRNAs and activities, whereas the nonresponsive rr strains show induction of CYP2B only. Here, we investigated the responsiveness of ALDH1A1, ALDH1A7, CYP2B1, and CYP3A23 genes to prototypical P450 inducers, expression of nuclear receptors CAR and pregnane X receptor, and structure of the ALDH1A7 promoter in both rat strains. ALDH1A7 mRNA, associated protein and activity were strongly induced by PB and modestly induced by pregnenolone 16α-carbonitrile in the RR strain but negligibly in the rr strain, whereas induction of ALDH1A1 and P450 mRNAs was similar between the strains. Reporter gene and chromatin immunoprecipitation assays indicated that the loss of ALDH1A7 inducibility in the rr strain is profoundly linked with a 16-base pair deletion in the proximal promoter and inability of the upstream DNA sequences to recruit constitutive androstane receptor-retinoid X receptor heterodimers. SIGNIFICANCE STATEMENT: Genetic variation in rat ALDH1A7 promoter sequences underlie the large strain-dependent differences in expression and inducibility by phenobarbital of the aldehyde dehydrogenase activity. This finding has implications for the design and interpretation of pharmacological and toxicological studies on the effects and disposition of aldehydes.
Collapse
Affiliation(s)
- Katerina Touloupi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Jenni Küblbeck
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Angeliki Magklara
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Ferdinand Molnár
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Mika Reinisalo
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Maria Konstandi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Paavo Honkakoski
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Periklis Pappas
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| |
Collapse
|
4
|
Giantin M, Küblbeck J, Zancanella V, Prantner V, Sansonetti F, Schoeniger A, Tolosi R, Guerra G, Da Ros S, Dacasto M, Honkakoski P. DNA elements for constitutive androstane receptor- and pregnane X receptor-mediated regulation of bovine CYP3A28 gene. PLoS One 2019; 14:e0214338. [PMID: 30908543 PMCID: PMC6433341 DOI: 10.1371/journal.pone.0214338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
The regulation of cytochrome P450 3A (CYP3A) enzymes is established in humans, but molecular mechanisms of its basal and xenobiotic-mediated regulation in cattle are still unknown. Here, ~10 kbp of the bovine CYP3A28 gene promoter were cloned and sequenced, and putative transcription factor binding sites were predicted. The CYP3A28 proximal promoter (PP; -284/+71 bp) contained DNA elements conserved among species. Co-transfection of bovine nuclear receptors (NRs) pregnane X and constitutive androstane receptor (bPXR and bCAR) with various CYP3A28 promoter constructs into hepatoma cell lines identified two main regions, the PP and the distal fragment F3 (-6899/-4937 bp), that were responsive to bPXR (both) and bCAR (F3 fragment only). Site-directed mutagenesis and deletion of NR motif ER6, hepatocyte nuclear factor 1 (HNF-1) and HNF-4 binding sites in the PP suggested either the involvement of ER6 element in bPXR-mediated activation or the cooperation between bPXR and liver-enriched transcription factors (LETFs) in PP transactivation. A putative DR5 element within the F3 fragment was involved in bCAR-mediated PP+F3 transactivation. Although DNA enrichment by anti-human NR antibodies was quite low, ChIP investigations in control and RU486-treated BFH12 cells, suggested that retinoid X receptor α (RXRα) bound to ER6 and DR5 motifs and its recruitment was enhanced by RU486 treatment. The DR5 element seemed to be recognized mainly by bCAR, while no clear-cut results were obtained for bPXR. Present results point to species-differences in CYP3A regulation and the complexity of bovine CYP3A28 regulatory elements, but further confirmatory studies are needed.
Collapse
Affiliation(s)
- Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
- * E-mail:
| | - Jenni Küblbeck
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vanessa Zancanella
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Viktoria Prantner
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Fabiana Sansonetti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Axel Schoeniger
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Giorgia Guerra
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Paavo Honkakoski
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Modified cells as potential ocular drug delivery systems. Drug Discov Today 2018; 24:1621-1626. [PMID: 30562585 DOI: 10.1016/j.drudis.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Drug delivery to ocular targets is problematic, especially in retinal disease treatment. Therefore, targeted drug delivery, prolonged drug action, and minimally invasive treatments are needed. In this review, we describe cell technologies for drug delivery. These technologies are based on genetic engineering and nongenetic-based approaches for cell modification. In principle, cell technologies enable targeted delivery, long drug action, and minimally invasive administration, but they have only been sparsely studied for ocular drug delivery. Herein, these technologies are discussed in the ocular context.
Collapse
|
6
|
Küblbeck J, Hakkarainen JJ, Petsalo A, Vellonen KS, Tolonen A, Reponen P, Forsberg MM, Honkakoski P. Genetically Modified Caco-2 Cells With Improved Cytochrome P450 Metabolic Capacity. J Pharm Sci 2016; 105:941-949. [DOI: 10.1016/s0022-3549(15)00187-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
7
|
Küblbeck J, Zancanella V, Prantner V, Molnár F, Squires EJ, Dacasto M, Honkakoski P, Giantin M. Characterization of ligand-dependent activation of bovine and pig constitutive androstane (CAR) and pregnane X receptors (PXR) with interspecies comparisons. Xenobiotica 2015; 46:200-10. [DOI: 10.3109/00498254.2015.1060374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Chen F, Rao XH, Yang JL, Pan MX, Gao Y, Li ZL, Li Y, Zhu YF, Wang Y. Up-regulating CYP3A4 expression in C3A cells by transfection with a novel chimeric regulator of hPXR-p53-AD. PLoS One 2014; 9:e95752. [PMID: 24788541 PMCID: PMC4006776 DOI: 10.1371/journal.pone.0095752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/28/2014] [Indexed: 01/29/2023] Open
Abstract
Most hepatoma cell lines lack proper expression and induction of CYP3A4 enzyme, which limits their use for predicting drug metabolism and toxicity. Nuclear receptor pregnane X receptor (PXR) has been well recognized for its critical role in regulating expression of CYP3A4 gene. However, its physiological activity of binding to the particular site of promoter is significantly weakened in hepatic cell lines. To address this problem, we created “chimeric PXR” constructs by appending a strong activation domain (AD) from p53 subunit to either N- or C- termini of the human PXR (hPXR), that is, hPXR-p53 and p53-hPXR. C3A, a hepatoma cell line, was used as the cell model to test the regulation effect of chimeric hPXR over wild type (WT) hPXR on CYP3A4 expression at gene, protein, and metabolism levels, respectively. Compared with C3A cells transiently transfected with WT hPXR, the activity of CYP3A4.XREM.luc reporter gene in C3A cells transfected with hPXR-p53 or p53-hPXR increased 5- and 9-fold respectively, and the levels of CYP3A4 mRNA expression increased 3.5- and 2.6-fold, respectively. C3A cells stably transfected with hPXR-p53-AD exhibited an improved expression of CYP3A4 at both gene (2-fold) and protein (1.5-fold) levels compared to WT C3A cells. Testosterone, a CYP3A4-specific substrate, was used for detecting the metabolism activity of CYP3A4. No testosterone metabolite could be detected in microsomes from WT C3A cells and WT C3A cells-based array, while the formation of 6β-hydroxytestosterone metabolite in the transfected cells was 714 and 55 pmol/mg protein/min, respectively. In addition, all the above expression levels in the transfected cell models could be further induced with additional treatment of Rifampicin, a specific inducer for CYP3A4. In conclusion, our study established a proof-of-principle example that genetic modification with chimeric hPXR-p53-AD could improve CYP3A4 metabolism ability in hepatic cell line.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Xiao-Hui Rao
- Department of Hepatobiliary Surgery, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jin-Lian Yang
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Ming-Xing Pan
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Yi Gao
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Zhen-Lin Li
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Yang Li
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - You-Fu Zhu
- Department of Infectious Diseases, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yan Wang
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Raucy JL, Lasker JM. Cell-based systems to assess nuclear receptor activation and their use in drug development. Drug Metab Rev 2013; 45:101-9. [DOI: 10.3109/03602532.2012.737333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Ezzat K, Zaghloul EM, El Andaloussi S, Lehto T, El-Sayed R, Magdy T, Smith CIE, Langel U. Solid formulation of cell-penetrating peptide nanocomplexes with siRNA and their stability in simulated gastric conditions. J Control Release 2012; 162:1-8. [PMID: 22698942 PMCID: PMC7126485 DOI: 10.1016/j.jconrel.2012.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) are short cationic peptides that have been extensively studied as drug delivery vehicles for proteins, nucleic acids and nanoparticles. However, the formulation of CPP-based therapeutics into different pharmaceutical formulations and their stability in relevant biological environments have not been given the same attention. Here, we show that a newly developed CPP, PepFect 14 (PF14), forms non-covalent nanocomplexes with short interfering RNA (siRNA), which are able to elicit efficient RNA-interference (RNAi) response in different cell-lines. RNAi effect is obtained at low siRNA doses with a unique kinetic profile. Furthermore, the solid dispersion technique is utilized to formulate PF14/siRNA nanocomplexes into solid formulations that are as active as the freshly prepared nanocomplexes in solution. Importantly, the nanocomplexes are stable and active in mediating RNAi response after incubation with simulated gastric fluid (SGF) that is highly acidic. These results demonstrate the activity of PF14 in delivering and protecting siRNA in different pharmaceutical forms and biological environments.
Collapse
Affiliation(s)
- Kariem Ezzat
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hanzlíková M, Ruponen M, Galli E, Raasmaja A, Aseyev V, Tenhu H, Urtti A, Yliperttula M. Mechanisms of polyethylenimine-mediated DNA delivery: free carrier helps to overcome the barrier of cell-surface glycosaminoglycans. J Gene Med 2011; 13:402-9. [PMID: 21721076 DOI: 10.1002/jgm.1587] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Polyethylenimine (PEI) polyplexes mediate efficient gene transfer only at high +/- charge ratios at which free noncomplexed PEI is present. The excess of PEI gives polyplexes a positive surface charge that plays a role in polyplex binding on the cell membrane. Although positively charged PEI polyplexes are known to interact with anionic cell-surface glycosaminoglycans (GAGs), the exact role of free PEI in such interactions is unclear. METHODS Chinese hamster ovary wild-type cells and mutants lacking cell-surface GAGs were transfected with marker genes using PEI polyplexes with and without free PEI. The total amount of cell-associated plasmid DNA (pDNA) delivered by polyplexes was determined by quantitative real-time PCR and transgene expression was determined using β-galactosidase and luciferase assays. RESULTS Transfection activity of polyplexes without free PEI in cells expressing cell-surface GAGs was low even though pDNA was delivered to cells. In the absence of cell-surface GAGs, polyplexes without free PEI had high transfection efficacy. This indicates that the cell-surface GAGs inhibit transfection by purified polyplexes. PEI polyplexes with free carrier mediated transfection in both normal and GAG-deficient cells because free PEI overcomes the inhibitory effect of cell-surface GAGs on transfection. The intracellular elimination of pDNA was faster in the presence of GAGs and, despite improved transfection, free PEI reduced pDNA association with the cells. CONCLUSIONS Free PEI is essential for minimizing the undesirable binding of polyplexes to cell-surface GAGs that have a negative impact on transfection. The same mechanism may be important in transfections with other polyplexes that require high charge ratios for transfection.
Collapse
Affiliation(s)
- Martina Hanzlíková
- Division of Biopharmaceutics and Pharmacokinetics, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Küblbeck J, Laitinen T, Jyrkkärinne J, Rousu T, Tolonen A, Abel T, Kortelainen T, Uusitalo J, Korjamo T, Honkakoski P, Molnár F. Use of comprehensive screening methods to detect selective human CAR activators. Biochem Pharmacol 2011; 82:1994-2007. [DOI: 10.1016/j.bcp.2011.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/20/2023]
|
13
|
Küblbeck J, Jyrkkärinne J, Molnár F, Kuningas T, Patel J, Windshügel B, Nevalainen T, Laitinen T, Sippl W, Poso A, Honkakoski P. New in vitro tools to study human constitutive androstane receptor (CAR) biology: discovery and comparison of human CAR inverse agonists. Mol Pharm 2011; 8:2424-33. [PMID: 22044162 DOI: 10.1021/mp2003658] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human constitutive androstane receptor (CAR, NR1I3) is one of the key regulators of xenobiotic and endobiotic metabolism. The unique properties of human CAR, such as the high constitutive activity and the complexity of signaling, as well as the lack of functional and predictive cell-based assays to study the properties of the receptor, have hindered the discovery of selective human CAR ligands. Here we report a novel human CAR inverse agonist, 1-[(2-methylbenzofuran-3-yl)methyl]-3-(thiophen-2-ylmethyl) urea (S07662), which suppresses human CAR activity, recruits the corepressor NCoR in cell-based assays, and attenuates the phenytoin- and 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO)-induced expression of CYP2B6 mRNA in human primary hepatocytes. The properties of S07662 are also compared with those of known human CAR inverse agonists by using an array of different in vitro and in silico assays. The identified compound S07662 can be used as a chemical tool to study the biological functions of human CAR and also as a starting point for the development of new drugs for various conditions involving the receptor.
Collapse
Affiliation(s)
- Jenni Küblbeck
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland & Biocenter Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tian J, Huang H, Hoffman B, Liebermann DA, Ledda-Columbano GM, Columbano A, Locker J. Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice. J Clin Invest 2011; 121:4491-502. [PMID: 21965327 DOI: 10.1172/jci38760] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 12/16/2022] Open
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins act in many cellular processes. In the liver, Gadd45b (encoding Gadd45β) is the gene most strongly induced early during both compensatory regeneration and drug-induced hyperplasia. The latter response is associated with the dramatic and rapid hepatocyte growth that follows administration of the xenobiotic TCPOBOP (1,4-bis[2-(3,5)-dichoropyridyloxy] benzene), a ligand of the nuclear receptor constitutive androstane receptor (CAR). Here, we have shown that Gadd45b-/- mice have intact proliferative responses following administration of a single dose of TCPOBOP, but marked growth delays. Moreover, early transcriptional stimulation of CAR target genes was weaker in Gadd45b-/- mice than in wild-type animals, and more genes were downregulated. Gadd45β was then found to have a direct role in transcription by physically binding to CAR, and TCPOBOP treatment caused both proteins to localize to a regulatory element for the CAR target gene cytochrome P450 2b10 (Cyp2b10). Further analysis defined separate Gadd45β domains that mediated binding to CAR and transcriptional activation. Although baseline hepatic expression of Gadd45b was broadly comparable to that of other coactivators, its 140-fold stimulation by TCPOBOP was striking and unique. The induction of Gadd45β is therefore a response that facilitates increased transcription, allowing rapid expansion of liver mass for protection against xenobiotic insults.
Collapse
Affiliation(s)
- Jianmin Tian
- Department of Pathology and Marion Bessin Liver Center, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Küblbeck J, Reinisalo M, Mustonen R, Honkakoski P. Up-regulation of CYP expression in hepatoma cells stably transfected by chimeric nuclear receptors. Eur J Pharm Sci 2010; 40:263-72. [DOI: 10.1016/j.ejps.2010.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/22/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
16
|
Chen T, Tompkins LM, Li L, Li H, Kim G, Zheng Y, Wang H. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J Pharmacol Exp Ther 2009; 332:106-15. [PMID: 19820207 DOI: 10.1124/jpet.109.159210] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wójcikowski J, Daniel WA. The brain dopaminergic system as an important center regulating liver cytochrome P450 in the rat. Expert Opin Drug Metab Toxicol 2009; 5:631-45. [DOI: 10.1517/17425250902973703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Jyrkkärinne J, Windshügel B, Rönkkö T, Tervo AJ, Küblbeck J, Lahtela-Kakkonen M, Sippl W, Poso A, Honkakoski P. Insights into ligand-elicited activation of human constitutive androstane receptor based on novel agonists and three-dimensional quantitative structure-activity relationship. J Med Chem 2009; 51:7181-92. [PMID: 18983136 DOI: 10.1021/jm800731b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The human constitutive androstane receptor (CAR, NR1I3) is an important regulator of xenobiotic metabolism and other physiological processes. So far, only few CAR agonists are known and no explicit mechanism has been proposed for their action. Thus, we aimed to generate a 3D QSAR model that could explain the molecular determinants of CAR agonist action. To obtain a sufficient number of agonists that cover a wide range of activity, we applied a virtual screening approach using both structure- and ligand-based methods. We identified 27 novel human CAR agonists on which a 3D QSAR model was generated. The model, complemented by coregulator recruitment and mutagenesis results, suggests a potential activation mechanism for human CAR and may serve to predict potential activation of CAR for compounds emerging from drug development projects or for chemicals undergoing toxicological risk assessment.
Collapse
Affiliation(s)
- Johanna Jyrkkärinne
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The liver is responsible for key metabolic functions, including control of normal homoeostasis in response to diet and xenobiotic metabolism/detoxification. We have shown previously that inactivation of the hepatic cytochrome P450 system through conditional deletion of POR (P450 oxidoreductase) induces hepatic steatosis, liver growth and P450 expression. We have exploited a new conditional model of POR deletion to investigate the mechanism underlying these changes. We demonstrate that P450 induction, liver growth and hepatic triacylglycerol (triglyceride) homoeostasis are intimately linked and provide evidence that the observed phenotypes result from hepatic accumulation of unsaturated fatty acids, which mediate these phenotypes by activation of the nuclear receptor CAR (constitutive androstane receptor) and, to a lesser degree, PXR (pregnane X receptor). To our knowledge this is the first direct evidence that P450s play a major role in controlling unsaturated fatty acid homoeostasis via CAR. The regulation of P450s involved in xenobiotic metabolism by this mechanism has potentially significant implications for individual responses to drugs and environmental chemicals.
Collapse
|
20
|
Baldwin WS, Roling JA. A concentration addition model for the activation of the constitutive androstane receptor by xenobiotic mixtures. Toxicol Sci 2008; 107:93-105. [PMID: 18832183 DOI: 10.1093/toxsci/kfn206] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of contaminants are typically studied in individual exposures; however, environmental exposures are rarely from a single contaminant. Therefore, the study of chemical mixtures is important in determining the effects of xenobiotics. The constitutive androstane receptor (CAR) responds to endobiotics and xenobiotics, and in turn induces detoxification enzymes involved in their elimination. First, we compared several androgens as inverse agonists, including androgens allegedly used by Bay Area Laboratory Co-operative to enhance athletic performance. CAR inverse agonists ranked in order of potency were dihydroandrosterone (DHA) > tetrahydrogestrinone (THG) > androstanol > norbolethone. Therefore, we used DHA as an inverse agonist during transactivation assays. Next, we examined the effects of several pesticides, plasticizers, steroids, and bile acids on CAR activation. Our data demonstrates that several pesticides and plasticizers, including diethylhexylphthalate, nonylphenol, cypermethrin, and chlorpyrifos activate CAR. Both full and partial CAR activators were discovered, and EC(50) values and Hillslopes were determined for use in the concentration addition models. Concentration addition models with and without restraint values to account for partial activators were developed. Measured results from transactivation assays with a mixture of two to five chemicals indicate that the concentration addition model without restraints correctly predicts activity unless all of the chemicals in the mixture are partial activators, and then restraint values be considered. Overall, our data indicates that it is important to consider that we are exposed to a milieu of chemicals, and the efficacy of each individual chemical is not the sole factor in determining CAR's activity in mixture modeling.
Collapse
Affiliation(s)
- William S Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina 29670, USA.
| | | |
Collapse
|
21
|
Küblbeck J, Jyrkkärinne J, Poso A, Turpeinen M, Sippl W, Honkakoski P, Windshügel B. Discovery of substituted sulfonamides and thiazolidin-4-one derivatives as agonists of human constitutive androstane receptor. Biochem Pharmacol 2008; 76:1288-97. [PMID: 18786510 DOI: 10.1016/j.bcp.2008.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 02/04/2023]
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor responsible for the recognition of potentially toxic endo- and exogenous compounds whose elimination from the body is accelerated by the CAR-mediated inducible expression of metabolizing enzymes and transporters. Despite the importance of CAR, few human agonists are known so far. Following a sequential virtual screening procedure using a 3D pharmacophore and molecular docking approach, we identified 17 novel agonists that could activate human CAR in vitro and enhance its association with the nuclear receptor co-activator SRC1. Selected agonists also increased the expression of the human CAR target CYP2B6 mRNA in primary hepatocytes. Composed of substituted sulfonamides and thiazolidin-4-one derivatives, these agonists represent two novel chemotypes capable of human CAR activation, thus broadening the agonist spectrum of CAR.
Collapse
Affiliation(s)
- Jenni Küblbeck
- Department of Pharmaceutics, University of Kuopio, Yliopistonranta 1C, FI-70210 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
22
|
Li L, Chen T, Stanton JD, Sueyoshi T, Negishi M, Wang H. The peripheral benzodiazepine receptor ligand 1-(2-chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of human constitutive androstane receptor. Mol Pharmacol 2008; 74:443-53. [PMID: 18492798 DOI: 10.1124/mol.108.046656] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a promiscuous xenobiotic sensor, the constitutive androstane receptor (CAR; NR1I3) regulates the expression of multiple drug-metabolizing enzymes and transporters in liver. The constitutively activated nature of CAR in the cell-based transfection assays has hindered its use as a predictor of metabolism-based drug-drug interactions. Here, we have identified 1-(2-chlorophenylmethylpropyl)-3-isoquinoline-carboxamide (PK11195), a typical peripheral benzodiazepine receptor (PBR) ligand, as a selective and potent inhibitor of human (h) CAR. In cell-based transfection assays, PK11195 inhibited the constitutive activity of hCAR more than 80% at the concentration of 10 microM, and the PK11195-inhibited activity was efficiently reactivated by the direct CAR activator, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime, but not by the indirect hCAR activator, phenobarbital. Mammalian two-hybrid and GST pull-down assays showed that PK11195 repressed the interactions of hCAR with the coactivators steroid receptor coactivator-1 and glucocorticoid receptor-interacting protein 1 to inhibit hCAR activity. The inhibition by PK11195 specifically occurred to the hCAR: PK1195 strongly activated human pregnane X receptor (PXR), whereas it did not alter the activity of the mouse CAR and mouse PXR. In addition, PBR played no role in the PK11195 inhibition of hCAR because the inhibition fully occurred in the HeLa cells in which the PBR was knocked down by small interfering RNA. In the Car(-/-) mouse liver, PK11195 translocated enhanced yellow fluorescent protein-hCAR into the nucleus. These results are consistent with the conclusion that PK11195 is a novel hCAR-specific antagonist that represses the CAR-coactivator interactions to inhibit the receptor activity inside the nucleus. Thus, PK11195 can be used as a chemical tool for studying the molecular basis of CAR function.
Collapse
Affiliation(s)
- Linhao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
23
|
Stoner MA, Auerbach SS, Zamule SM, Strom SC, Omiecinski CJ. Transactivation of a DR-1 PPRE by a human constitutive androstane receptor variant expressed from internal protein translation start sites. Nucleic Acids Res 2007; 35:2177-90. [PMID: 17355985 PMCID: PMC1874654 DOI: 10.1093/nar/gkm090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Downstream in-frame start codons produce amino-terminal-truncated human constitutive androstane receptor protein isoforms (ΔNCARs). The ΔNCARs are expressed in liver and in vitro cell systems following translation from in-frame methionine AUG start codons at positions 76, 80, 125, 128, 168 and 265 within the full-length CAR mRNA. The resulting CAR proteins lack the N-terminal DNA-binding domain (DBD) of the receptor, yielding ΔNCAR variants with unique biological function. Although the ΔNCARs maintain full retinoid X receptor alpha (RXRα) heterodimerization capacity, the ΔNCARs are inactive on classical CAR-inducible direct repeat (DR)-4 elements, yet efficiently transactivate a DR-1 element derived from the endogenous PPAR-inducible acyl-CoA oxidase gene promoter. RXRα heterodimerization with CAR1, CAR76 and CAR80 isoforms is necessary for the DR-1 PPRE activation, a function that exhibits absolute dependence on both the respective RXRα DBD and CAR activation (AF)-2 domains, but not the AF-1 or AF-2 domain of RXRα, nor CAR's DBD. A new model of CAR DBD-independent transactivation is proposed, such that in the context of a DR-1 peroxisome proliferator-activated response element, only the RXRα portion of the CAR-RXRα heterodimer binds directly to DNA, with the AF-2 domain of tethered CAR mediating transcriptional activation of the receptor complex.
Collapse
Affiliation(s)
- Matthew A. Stoner
- Center for Molecular Toxicology & Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Scott S. Auerbach
- Center for Molecular Toxicology & Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephanie M. Zamule
- Center for Molecular Toxicology & Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen C. Strom
- Center for Molecular Toxicology & Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Curtis J. Omiecinski
- Center for Molecular Toxicology & Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- *To whom correspondence should be addressed. 814-863-1625814-863-1696
| |
Collapse
|
24
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006; 38:515-97. [PMID: 16877263 DOI: 10.1080/03602530600786232] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenobiotic metabolism and detoxification is regulated by receptors (e.g., PXR, CAR) whose characterization has contributed significantly to our understanding of drug responses in humans. Technologies facilitating the screening of compounds for receptor interactions provide valuable tools applicable in drug development. Most use in vitro systems or mice humanized for receptors in vivo. In vitro assays are limited by the reporter systems and cell lines chosen and are uninformative about effects in vivo. Humanized mouse models provide novel, exciting ways of understanding the functions of these genes. This article evaluates these technologies and current knowledge on PXR/CAR-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, St. Andrews, Fife, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Simonsson USH, Lindell M, Raffalli-Mathieu F, Lannerbro A, Honkakoski P, Lang MA. In vivo and mechanistic evidence of nuclear receptor CAR induction by artemisinin. Eur J Clin Invest 2006; 36:647-53. [PMID: 16919048 DOI: 10.1111/j.1365-2362.2006.01700.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Artemisinin (a sesquiterpene lactone endoperoxide) has become important in multi-drug treatment of malaria. There is evidence that artemisinin induces drug metabolism which could result in drug-drug interactions. The objective of this study was to characterize the inductive properties of artemisinin on drug-metabolizing cytochrome P450 (CYP450) enzymes. The possibility of artemisinin to induce CYP450 was studied in artemisinin-treated (orally for four days) and vehicle-treated rats using reverse transcriptase polymerase chain reaction (RT-PCR). The effect on enzymatic activities in mouse microsomes from multiple artemisinin administration (intraperitonally) to mice were also studied as well as the effect on the expression in mouse primary hepatocytes and HEK293 cells. Increased CYP2B1 mRNA levels in rats could be seen after artemisinin treatment as well as a weak but reproducible increase in the intensity of CYP1A2. Administration of artemisinin to mice up-regulated hepatic CYP2B10-dependent, and to a lesser extent, CYP2A5-dependent enzyme activities. In primary hepatocyte culture, artemisinin significantly increased the CYP2B10 mRNA levels whereas the CYP2A5 mRNA levels were increased to a lesser extent. No significant changes were seen in the levels of other CYP enzymes. Artemisinin was an activator of constitutive androstane receptor (CAR) but not pregnane X receptor (PXR) in HEK293 cells. The results demonstrate that the drug exerts its effects on drug metabolism via the CAR receptor that results in up-regulation of genes such as the Cyp2b. The weaker up-regulation of CYP2A5 might also be CAR-dependent or alternatively, a consequence of artemisinin toxicity. The results of this study are of importance when predicting potential drug-drug interactions in multi-drug therapies with artemisinin.
Collapse
|
26
|
Chang TKH, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 2006; 38:51-73. [PMID: 16684648 DOI: 10.1080/03602530600569828] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are members of the nuclear receptor superfamily. These transcription factors are predominantly expressed in the liver, where they are activated by structurally diverse compounds, including many drugs and endogenous substances. CAR and PXR regulate the expression of a broad range of genes, which contribute to transcellular transport, bioactivation, and detoxification of numerous xenochemicals and endogenous substances. This article discusses the importance of these receptors for pharmacology and toxicology, emphasizing the role of individual drugs and natural products as agonists, indirect activators, inverse agonists, and antagonists of CAR and PXR.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
27
|
Haduch A, Wójcikowski J, Daniel WA. The effect of tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs) and newer antidepressant drugs on the activity and level of rat CYP3A. Eur Neuropsychopharmacol 2006; 16:178-86. [PMID: 16246530 DOI: 10.1016/j.euroneuro.2005.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to investigate the influence of tricyclic antidepressants (TADs: imipramine, amitriptyline, clomipramine, and desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine and sertraline) and novel antidepressant drugs (mirtazapine and nefazodone) on the activity of CYP3A measured as a rate of testosterone 2beta- and 6beta-hydroxylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally (i.p.) for 1 day or 2 weeks with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone 10 mg kg(-1) i.p.; desipramine, fluoxetine, sertraline 5 mg kg(-1) i.p.; mirtazapine 3 mg kg(-1) i.p.), in the absence of the antidepressants in vitro. The investigated antidepressants added to control liver microsomes produced some inhibitory effects on CYP3A activity, which were very weak (most of TADs, K(i)=145-212 microM), modest (clomipramine and sertraline, K(i)=67.5 and 62 microM, respectively) or moderate (nefazodone and fluoxetine, K(i)=42 and 43 microM, respectively). Mirtazapine did not display this kind of properties. One-day exposure of rats to TADs substantially decreased the activity of CYP3A in liver microsomes, which was maintained during chronic treatment. The observed decreases in the enzyme activity were in contrast to the increased CYP3A protein level found after chronic treatment with TADs. On the other hand, sertraline increased the activity of the enzyme after its prolonged administration and its effect correlated positively with the observed elevation in CYP3A protein level. Fluoxetine, mirtazapine and nefazodone did not change the activity of CYP3A in liver microsomes after their administration to rats. Three different mechanisms of the antidepressants-CYP3A interaction are postulated: 1) a direct inhibition of CYP3A by nefazodone, SSRIs and clomipramine, shown in vitro, with the inhibitory effect of nefazodone being the strongest, but weaker than the effects of this drug on human CYP3A4; 2) in vivo inhibition of CYP3A produced by 1 day and maintained during chronic treatment with TADs, which suggests inactivation of the enzyme by reactive metabolites; 3) in vivo induction by sertraline of CYP3A produced only by chronic treatment with the antidepressant, which suggests its influence on the enzyme regulation.
Collapse
Affiliation(s)
- A Haduch
- Polish Academy of Sciences, Institute of Pharmacology, Smetna 12, 31-343 Kraków, Poland
| | | | | |
Collapse
|
28
|
Korjamo T, Honkakoski P, Toppinen MR, Niva S, Reinisalo M, Palmgrén JJ, Mönkkönen J. Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur J Pharm Sci 2005; 26:266-79. [PMID: 16111871 DOI: 10.1016/j.ejps.2005.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 04/28/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Caco-2 cell line is extensively used as an in vitro model in studying small intestinal absorption but it lacks proper expression of efflux pumps and cytochrome P450 enzymes that are involved in absorption and first pass metabolism of drugs. We created two novel Caco-2 cell lines expressing orphan nuclear receptors pregnane X receptor and constitutive androstane receptor that regulate many genes involved in xenobiotic metabolism. We conducted a systematic study on expression of some metabolic genes, P-glycoprotein activity and absorption properties of several drugs with these new cell lines and previously described modified Caco-2 cell lines (MDR1 transfection, vincristine treatment and 1alpha,25-dihydroxyvitamin D3 treatment). A short culture time medium was also included in the study. Most modified cell lines formed tight differentiated monolayers. MDR1, CYP2C9 and CYP3A4 genes were upregulated in some cell lines. Elevated P-glycoprotein activities were observed by calcein-AM uptake experiments but this did not affect significantly the permeability of selected P-glycoprotein substrates. Some cell lines had similar passive and active permeability properties to Caco/WT cells while in few cell lines these were altered. Passive transcellular permeability was modestly elevated in all modified cell lines. In addition, several compounds showed pH-dependent permeability properties.
Collapse
Affiliation(s)
- Timo Korjamo
- Department of Pharmaceutics, University of Kuopio, Harjulantie 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kretschmer XC, Baldwin WS. CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact 2005; 155:111-28. [PMID: 16054614 DOI: 10.1016/j.cbi.2005.06.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 01/05/2023]
Abstract
The pregnane X-receptor (PXR) and the constitutive androstane receptor (CAR) are orphan nuclear receptors activated by a variety of ligands. Currently it remains uncertain whether these receptors have a high-affinity ligand or instead function as more generalized steroid/xenobiotic sensors. Both receptors are important regulators of several steroid and xenobiotic detoxification enzymes and transporters (phases I-III) in the liver and intestine and thus are important regulators of adaptation to chemical stress. The detoxification proteins induced are responsible for the metabolism, deactivation and transport of bile acids, thyroid and steroid hormones, numerous environmental chemicals, and several drugs. PXR and CAR received their names because of steroid ligands that activate and inhibit their transcriptional activity, respectively. Interestingly, some steroids and steroid mimics activate one or both receptors, including several endocrine disrupting chemicals. Environmental estrogens, such as the pesticides methoxychlor, endosulfan, dieldrin, DDT, and the plasticizer nonylphenol activate either PXR or both PXR and CAR. Because PXR and CAR are activated by numerous steroids and endocrine disrupters, it appears that these receptors protect the integrity of the endocrine system. They recognize an increase in steroid-like chemicals and, in turn, induce detoxification. Furthermore, PXR and CAR induce enzymes, such as the CYP2B and CYP3A family members, responsible for the metabolism of steroid and thyroid hormones and this may alter their normal physiological function. This review summarizes the available data on the activity of endocrine disrupters and endocrine active chemicals on PXR and CAR, examines the role of PXR and CAR in protection from these chemicals, and evaluates potential adverse physiological consequences of PXR and CAR activation.
Collapse
Affiliation(s)
- Xiomara C Kretschmer
- University of Texas at El Paso, Biological Sciences, 500 W. University Ave., El Paso, TX 79968, USA
| | | |
Collapse
|
30
|
Daniel WA. The influence of long-term treatment with psychotropic drugs on cytochrome P450: the involvement of different mechanisms. Expert Opin Drug Metab Toxicol 2005; 1:203-17. [PMID: 16922637 DOI: 10.1517/17425255.1.2.203] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper emphasises that besides the direct action of psychotropic drugs on cytochrome P450 (CYP) (i.e., the binding of the parent drug to the enzyme) indirect mechanisms of CYP-psychotropic interactions, namely the formation of CYP-reactive metabolite complexes and their influence on enzyme regulation, are also very important. The described interactions that are time-, drug- and CYP isoform-dependent may overlap during long-term treatment. The final result of the overlapping depends on the dosage and time interval after the last administration of a drug, which determines the concentration of the parent drug and its metabolites in the environment of the enzyme. These interactions may occur not only in the liver, but also in the brain, and may change the activity of CYP towards the metabolism of drugs, sex steroids, neurosteroids and amine neurotransmitters. The role of the CNS in the regulation of CYP by psychotropics and the significance of CYP-psychotropic interactions for pharmacological and clinical profiling of these drugs is discussed. In addition, different experimental approaches for studying CNS-acting drugs are compared.
Collapse
Affiliation(s)
- Wladyslawa Anna Daniel
- Polish Academy of Sciences, Institute of Pharmacology, Smeetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
31
|
Jääskeläinen I, Lappalainen K, Honkakoski P, Urtti A. Requirements for delivery of active antisense oligonucleotides into cells with lipid carriers. Methods Enzymol 2004; 387:210-30. [PMID: 15172166 DOI: 10.1016/s0076-6879(04)87013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
32
|
Honkakoski P, Palvimo JJ, Penttilä L, Vepsäläinen J, Auriola S. Effects of triaryl phosphates on mouse and human nuclear receptors. Biochem Pharmacol 2004; 67:97-106. [PMID: 14667932 DOI: 10.1016/j.bcp.2003.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The constitutively active receptor (CAR) is a crucial regulator of genes encoding for enzymes active in drug/steroid oxidation, conjugation, and transport. In our attempt to isolate the endogenous inhibitory ligand(s) for the mouse CAR, we found surprisingly that the inhibitory activity was associated with di- and tri-isopropylated phenyl phosphates that were present in livers of untreated mice. Trans-activation experiments in mammalian cells with synthetic compounds verified that mouse CAR was inhibited by various isopropylated phenyl phosphates (40-80%). Such triaryl phosphates are widely used as fire retardants, lubricants, and plasticizers, and some of them are known to disturb reproduction by currently unknown mechanisms. Equipped with the finding that these compounds could interact with mouse CAR, we proceeded to determine their functional effects on other nuclear receptors. Human CAR and pregnane X receptor (PXR) were variably activated (2-5-fold) by triaryl phosphates while mouse PXR, peroxisome proliferator-activated receptor-alpha, and vitamin D receptor were refractory. Among steroid hormone receptors, the human androgen receptor was inhibited by triphenyl phosphate and di-ortho-isopropylated phenyl phosphate (40-50%) and activated by di- and tri-para-substituted phenyl phosphates (2-fold). Our results add to the list of CAR and PXR activators and suggest steroid-dependent biological pathways that may contribute to the reproductive effects of triaryl phosphates.
Collapse
Affiliation(s)
- Paavo Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
33
|
Mäkinen J, Reinisalo M, Niemi K, Viitala P, Jyrkkärinne J, Chung H, Pelkonen O, Honkakoski P. Dual action of oestrogens on the mouse constitutive androstane receptor. Biochem J 2003; 376:465-72. [PMID: 12948398 PMCID: PMC1223782 DOI: 10.1042/bj20030553] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 08/27/2003] [Accepted: 09/01/2003] [Indexed: 11/17/2022]
Abstract
mCAR (mouse constitutive androstane receptor; NR1I3) controls the expression of cytochrome P450 as well as other enzymes involved in drug and steroid metabolism. The high basal activity of mCAR can be modulated by inhibitory steroids related to androstenol and by activating xenobiotic chemicals such as 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene and chlorpromazine. The ability of oestrogens and some other xenobiotics to activate mCAR is not clear. In the present study, co-transfection assays in HEK-293 cells indicated that oestrogens varied in their efficacy to activate mCAR, depending on variation at the steroid D-ring and position of hydroxy groups. In general, oestrogens were weaker activators of mCAR than 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene and chlorpromazine. Also, the induction of CYP2B10 mRNA by oestrogens was less pronounced in mouse primary hepatocytes. Yeast two-hybrid assays indicated that, unlike androstenol and the established activators, oestrogens attracted both nuclear receptor co-repressors and co-activators to the mCAR ligand-binding domain, thus limiting the extent of mCAR activation. This novel dual action is not limited to oestrogens, but is shared by some xenobiotic CYP2B inducers such as clotrimazole and methoxychlor. These findings offer an alternative explanation for the recently suggested nuclear activation step of mCAR.
Collapse
Affiliation(s)
- Janne Mäkinen
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jyrkkärinne J, Mäkinen J, Gynther J, Savolainen H, Poso A, Honkakoski P. Molecular Determinants of Steroid Inhibition for the Mouse Constitutive Androstane Receptor. J Med Chem 2003; 46:4687-95. [PMID: 14561088 DOI: 10.1021/jm030861t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The constitutive androstane receptor (CAR) regulates drug and steroid metabolism through binding to cytochrome P450 2B, 2C, and 3A gene enhancers. Uniquely among nuclear receptors, mouse CAR (mCAR) can be suppressed by androstenol and activated by structurally diverse drugs, pesticides, and environmental pollutants. To gain insight into presently ill-defined structural requirements of mCAR ligands, we employed a mCAR inhibition assay in mammalian HEK293 cells to create a QSAR model that could well predict the inhibition by three unknown steroids. Two novel mCAR inhibitors were thus identified. Yeast two-hybrid assays indicated that steroids inhibit mCAR primarily by promoting association of mCAR with the corepressor NCoR, with only minor contribution from other mechanisms. Analysis of chimeric and mutant mCAR constructs suggested that androstenol sensitivity is controlled by residues between amino acids 201-263 (helices 5-7) and it does not depend on the residue 350 within helix 12, as previously suggested.
Collapse
Affiliation(s)
- Johanna Jyrkkärinne
- Department of Pharmaceutics, University of Kuopio, P.O.Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
35
|
Reinisalo M, Urtti A, Honkakoski P. Retina-specific gene expression and improved DNA transfection in WERI-Rb1 retinoblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:169-76. [PMID: 12932829 DOI: 10.1016/s0167-4781(03)00140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied retina-specific gene expression and gene promoter activity in WERI-Rb1 retinoblastoma cells. In general, the expression of endogenous genes matched the efficiency of promoter activity of the transfected gene: interphotoreceptor retinoid binding protein and phosphodiesterase-beta mRNAs and reporter activities were readily detected while other retina-specific messages were at or below the detection limit in WERI-Rb1 cells. Phosphodiesterase-beta promoter appeared active in all six cell lines tested. The viral SV40 promoter is very weak in WERI-Rb1 cells, which has implications for its use in gene constructs targeted to the photoreceptors. Our results also show that polyethyleneimine 25 is an efficient and simple carrier for DNA. The optimized transfection conditions permit the use of 24-well plates and low amounts of DNA for improved analysis of promoter activities, as compared to previous studies. Our results are expected to facilitate further research on retina-specific gene expression.
Collapse
Affiliation(s)
- Mika Reinisalo
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
36
|
Ekins S, Boulanger B, Swaan PW, Hupcey MAZ. Towards a new age of virtual ADME/TOX and multidimensional drug discovery. Mol Divers 2003; 5:255-75. [PMID: 12549676 DOI: 10.1023/a:1021376212320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the continual pressure to ensure follow-up molecules to billion dollar blockbuster drugs, there is a hurdle in profitability and growth for pharmaceutical companies in the next decades. With each success and failure we increasingly appreciate that a key to the success of synthesized molecules through the research and development process is the possession of drug-like properties. These properties include an adequate bioactivity as well as adequate solubility, an ability to cross critical membranes (intestinal and sometimes blood-brain barrier), reasonable metabolic stability and of course safety in humans. Dependent on the therapeutic area being investigated it might also be desirable to avoid certain enzymes or transporters to circumvent potential drug-drug interactions. It may also be important to limit the induction of these same proteins that can result in further toxicities. We have clearly moved the assessment of in vitro absorption, distribution, metabolism, excretion and toxicity (ADME/TOX) parameters much earlier in the discovery organization than a decade ago with the inclusion of higher throughput systems. We are also now faced with huge amounts of ADME/TOX data for each molecule that need interpretation and also provide a valuable resource for generating predictive computational models for future drug discovery. The present review aims to show what tools exist today for visualizing and modeling ADME/TOX data, what tools need to be developed, and how both the present and future tools are valuable for virtual filtering using ADME/TOX and bioactivity properties in parallel as a viable addition to present practices.
Collapse
Affiliation(s)
- Sean Ekins
- Concurrent Pharmaceuticals Inc, 502 West Office Center Drive, Fort Washington, PA 19034, USA.
| | | | | | | |
Collapse
|
37
|
Ekins S, Mirny L, Schuetz EG. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta. Pharm Res 2002; 19:1788-800. [PMID: 12523656 DOI: 10.1023/a:1021429105173] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years discussion of nuclear hormone receptors, transporters, and drug-metabolizing enzymes has begun to take place as our knowledge of the overlapping ligand specificity of each of these proteins has deepened. This ligand specificity is potentially valuable information for influencing future drug design, as it is important to avoid certain enzymes or transporters in order to circumvent potential drug-drug interactions. Similarly, it is critical that the induction of these same proteins via nuclear hormone receptors is avoided, as this can result in further toxicities. Using a ligand-based approach in this review we describe new and previously published computational models for PXR, CAR, FXR, LXRalpha, and LXRbeta that may help in understanding the complexity of interactions between transporters and enzymes. The value of these types of models is that they may enable us to design molecules to selectively modulate pathways for therapeutic effect and in addition predict the potential for drug interactions more reliably. Simultaneously, we might learn which came first: the transporter, the enzyme, or the nuclear hormone receptor?
Collapse
Affiliation(s)
- Sean Ekins
- Concurrent Pharmaceuticals Inc., Fort Washington, Pennsylvania 19034, USA.
| | | | | |
Collapse
|
38
|
Pelkonen O, Hukkanen J, Honkakoski P, Hakkola J, Viitala P, Raunio H. In vitro screening of cytochrome P450 induction potential. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:105-37. [PMID: 11975192 DOI: 10.1007/978-3-662-04383-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- O Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Tetracycline-regulated gene expression systems are widely used to allow temporal and quantitative control of transgene expression in cultured cells and transgenic animals. While working with the Tet-Off system, where tetracycline or the analogue doxycycline suppresses expression, we noted a considerable variability in induced transgene expression after removal of doxycycline. Variable expression of the transgene could not be explained by clonal variation since it was noted when working with clonal cell lines. Instead we found that doxycycline bound nonspecifically to cells and extracellular matrix and was slowly released after it had been removed from tissue culture media. The released doxycycline reached sufficiently high levels to completely suppress transgene expression. The effect was not dependent on cell type or the nature of the transgene. However, robust and rapid transgene expression could be induced if released doxycycline were removed by washing cells 3h after the initial removal of doxycycline. The use of different vector systems, harboring the tetracycline-regulatable components, yielded similar results. These results not only help explain why tetracycline-regulatable transgene expression systems sometimes are variable but also provide simple ways to substantially improve the efficiency, utility, and reliability of these widely used expression systems.
Collapse
Affiliation(s)
- Emma Rennel
- The Rudbeck Laboratory, Vascular Biology Unit, Department of Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden
| | | |
Collapse
|
40
|
Mäkinen J, Frank C, Jyrkkärinne J, Gynther J, Carlberg C, Honkakoski P. Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol Pharmacol 2002; 62:366-78. [PMID: 12130690 DOI: 10.1124/mol.62.2.366] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constitutive androstane receptor (CAR) regulates mouse and human CYP2B genes through binding to the direct repeat-4 (DR4) motifs present in the phenobarbital-responsive enhancer module (PBREM). The preference of PBREM elements for nuclear receptors and the extent of cross-talk between CAR and other nuclear receptors are currently unknown. Our transient transfection and DNA binding experiments indicate that binding to DR4 motifs does not correlate with the activation response and that mouse and human PBREM are efficiently 'insulated' from the effects of other nuclear receptors despite their substantial affinity for DR4 motifs. Certain nuclear receptors that do not bind to DR4 motifs, such as peroxisome proliferator-activated receptor-alpha and farnesoid X receptor, can suppress PBREM function via a coactivator-dependent process that may have relevance in vivo. In competition experiments, mouse PBREM is clearly more selective for CAR than human PBREM. Pregnane X, vitamin D, and thyroid hormone receptors can potentially compete with human CAR on human PBREM. In contrast to the selective nature of PBREM, CYP3A enhancers are highly and comparably responsive to CAR, pregnane X receptor, and vitamin D receptor. In addition, the ligand specificities of human and mouse CAR were defined by mammalian cotransfection and yeast two-hybrid techniques. Our results provide new mechanistic explanations to several previously unresolved aspects of CYP2B and CYP3A gene regulation.
Collapse
Affiliation(s)
- Janne Mäkinen
- Department of Pharmaceutics, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Ekins S, Boulanger B, Swaan PW, Hupcey MAZ. Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des 2002; 16:381-401. [PMID: 12489686 DOI: 10.1023/a:1020816005910] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With the continual pressure to ensure follow-up molecules to billion dollar blockbuster drugs, there is a hurdle in profitability and growth for pharmaceutical companies in the next decades. With each success and failure we increasingly appreciate that a key to the success of synthesized molecules through the research and development process is the possession of drug-like properties. These properties include an adequate bioactivity as well as adequate solubility, an ability to cross critical membranes (intestinal and sometimes blood-brain barrier), reasonable metabolic stability and of course safety in humans. Dependent on the therapeutic area being investigated it might also be desirable to avoid certain enzymes or transporters to circumvent potential drug-drug interactions. It may also be important to limit the induction of these same proteins that can result in further toxicities. We have clearly moved the assessment of in vitro absorption, distribution, metabolism, excretion and toxicity (ADME/TOX) parameters much earlier in the discovery organization than a decade ago with the inclusion of higher throughput systems. We are also now faced with huge amounts of ADME/TOX data for each molecule that need interpretation and also provide a valuable resource for generating predictive computational models for future drug discovery. The present review aims to show what tools exist today for visualizing and modeling ADME/TOX data, what tools need to be developed, and how both the present and future tools are valuable for virtual filtering using ADME/TOX and bioactivity properties in parallel as a viable addition to present practices.
Collapse
Affiliation(s)
- Sean Ekins
- Concurrent Pharmaceuticals Inc, 502 West Office Center Drive, Fort Washington, PA 19034, USA.
| | | | | | | |
Collapse
|
42
|
Gibson GG, Plant NJ, Swales KE, Ayrton A, El-Sankary W. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32:165-206. [PMID: 11958559 DOI: 10.1080/00498250110102674] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The importance of CYP3A enzymes in drug metabolism and toxicology has yielded a wealth of information on the structure, function and regulation of this subfamily and recent research emphasis has been placed on the human forms, namely CYP3A4, CYP3A5, CYP3A7 and CYP3A43. 2. The current review will focus on the receptor-dependency of CYP3A regulation and includes consideration of the regulatory roles of the glucocorticoid (GR), pregnane X (PXR) and constitutive androstane (CAR) receptors. 3. Emphasis has been placed on the topics of expression and substrate specificity, assessment of induction, species differences in induction, CYP3A promoter sequences and regulation of gene expression, structural and functional aspects of receptor-mediated, CYP3A gene activation, receptor variants and interindividual variation in human CYP3A expression, the latter encompassing environmental, physiological and genetic aspects. 4. An outline of future research needs will be discussed in the context of receptor-mediated molecular mechanisms of CYP3A gene regulation and the impact on interindividual variations in CYP3A expression. 5. Taken collectively, this review highlights the importance of understanding the molecular mechanisms of CYP3A induction as a means of rationalizing human responses to many clinically used drugs, in addition to providing a mechanistically coherent platform to understand and predict interindividual variations in response and drug-drug interactions.
Collapse
Affiliation(s)
- G G Gibson
- Molecular Toxicology Group, School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, UK.
| | | | | | | | | |
Collapse
|