1
|
Stephanie F, Tambunan USF, Kuczera K, Siahaan TJ. Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2024; 17:1545. [PMID: 39598454 PMCID: PMC11597662 DOI: 10.3390/ph17111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A novel antitubercular cyclic peptide, Cyclo(1,6)-Ac-CLYHFC-NH2, was designed to bind at the rifampicin (RIF) binding site on the RNA polymerase (RNAP) of Mycobacterium tuberculosis (MTB). This peptide inhibits RNA elongation in the MTB transcription initiation assay in the nanomolar range, which can halt the MTB transcription initiation complex, similar to RIF. Therefore, determining the solution conformation of this peptide is useful in improving the peptide's binding affinity to the RNAP. METHODS Here, the solution structure of Cyclo(1,6)-Ac-CLYHFC-NH2 was determined by two-dimensional (2D) NMR experiments and NMR-restrained molecular dynamic (MD) simulations. RESULTS All protons of Cyclo(1,6)-Ac-CLYHFC-NH2 were assigned using TOCSY and NOE NMR spectroscopy. The NOE cross-peak intensities were used to calculate interproton distances within the peptide. The JNH-HCα coupling constants were used to determine the possible Phi angles within the peptide. The interproton distances and calculated Phi angles from NMR were used in NMR-restrained MD simulations. The NOE spectra showed NH-to-NH cross-peaks at Leu2-to-Tyr3 and Tyr3-to-His4, indicating a βI-turn formation at the Cys1-Leu2-Tyr3-His4 sequence. CONCLUSIONS The NMR-restrained MD simulations showed several low-energy conformations that were congruent with the NMR data. Finally, the conformation of this peptide will be used to design derivatives that can better inhibit RNAP activity.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Indonesia, Depok 16424, Indonesia;
| | | | - Krzysztof Kuczera
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
2
|
Tran H, Aihara E, Mohammed FA, Qu H, Riley A, Su Y, Lai X, Huang S, Aburub A, Chen JJH, Vitale OH, Lao Y, Estwick S, Qi Z, ElSayed MEH. In Vivo Mechanism of Action of Sodium Caprate for Improving the Intestinal Absorption of a GLP1/GIP Coagonist Peptide. Mol Pharm 2023; 20:929-941. [PMID: 36592951 DOI: 10.1021/acs.molpharmaceut.2c00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sodium caprate (C10) has been widely evaluated as an intestinal permeation enhancer for the oral delivery of macromolecules. However, the effect of C10 on the intestinal absorption of peptides with different physicochemical properties and its permeation-enhancing effect in vivo remains to be understood. Here, we evaluated the effects of C10 on intestinal absorption in rats with a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GIP-GLP1) dual agonist peptide (LY) and semaglutide with different enzymatic stabilities and self-association behaviors as well as the oral exposure of the LY peptide in minipigs. Furthermore, we investigated the mechanism of action (MoA) of C10 for improving the intestinal absorption of the LY peptide in vivo via live imaging of the rat intestinal epithelium and tissue distribution of the LY peptide in minipigs. The LY peptide showed higher proteolytic stability in pancreatin and was a monomer in solution compared to that in semaglutide. C10 increased in vitro permeability in the minipig intestinal organoid monolayer to a greater extent for the LY peptide than for semaglutide. In the rat jejunal closed-loop model, C10 increased the absorption of LY peptide better than that of semaglutide, which might be attributed to higher in vitro proteolytic stability and permeability of the LY peptide. Using confocal live imaging, we observed that C10 enabled the rapid oral absorption of a model macromolecule (FD4) in the rat intestine. In the duodenum tissues of minipigs, C10 was found to qualitatively reduce the tight junction protein level and allow peptide uptake to the intestinal cells. C10 decreased the transition temperature of the artificial lipid membrane, indicating an increase in membrane fluidity, which is consistent with the above in vivo imaging results. These data indicated that the LY's favorable physicochemical properties combined with the effects of C10 on the intestinal mucosa resulted in an ∼2% relative bioavailability in minipigs.
Collapse
|
3
|
Abstract
Peptides have traditionally been perceived as poor drug candidates due to unfavorable characteristics mainly regarding their pharmacokinetic behavior, including plasma stability, membrane permeability and circulation half-life. Nonetheless, in recent years, general strategies to tackle those shortcomings have been established, and peptides are subsequently gaining increasing interest as drugs due to their unique ability to combine the advantages of antibodies and small molecules. Macrocyclic peptides are a special focus of drug development efforts due to their ability to address so called ‘undruggable’ targets characterized by large and flat protein surfaces lacking binding pockets. Here, the main strategies developed to date for adapting peptides for clinical use are summarized, which may soon help usher in an age highly shaped by peptide-based therapeutics. Nonetheless, limited membrane permeability is still to overcome before peptide therapeutics will be broadly accepted.
Collapse
|
4
|
Gruber KA, Ji RL, Gallazzi F, Jiang S, Van Doren SR, Tao YX, Newton Northup J. Development of a Therapeutic Peptide for Cachexia Suggests a Platform Approach for Drug-like Peptides. ACS Pharmacol Transl Sci 2022; 5:344-361. [PMID: 35592439 PMCID: PMC9112415 DOI: 10.1021/acsptsci.1c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/19/2022]
Abstract
During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.
Collapse
Affiliation(s)
- Kenneth A Gruber
- John M. Dalton Cardiovascular Research Center, and Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65211, United States.,Tensive Controls, Inc., Columbia, Missouri 65211, United States
| | - Ren-Lai Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interaction Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Shaokai Jiang
- Department of Chemistry and NMR Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States`
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | | |
Collapse
|
5
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
6
|
Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem 2021; 46:116354. [PMID: 34428715 DOI: 10.1016/j.bmc.2021.116354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the highly prevalence disorder and increasing day by day worldwidely. T2DM is a metabolic disorder, which is characterized by deficiency in insulin or resistance to insulin and thus increases the glucose levels in the blood. Various approaches are there to treat diabetes but still there is no cure for this disease. DPP-4 inhibitor is a privileged target in the field of drug discovery and provides various opportunities in exploring this target for development of molecules as antidiabetic agents. DPP-4 acts by inhibiting the incretin action and thus decreases the level of blood glucose by imparting minimal side effects. Sitagliptin, vildagliptin, linagliptin etc. are the different DPP-4 based drugs approved throughout the world for the treatment of diabetes mellitus. Cyanopyrrolidines, triazolopiperazine amide, pyrrolidines are basic core nucleus present in various DPP-4 inhibitors and has potential effects. In the past few years, researchers had applied various approaches to synthesize potent DPP-4 inhibitors as antidiabetic agent without side effects like weight gain, cardiovascular risks, retinopathy etc. This review will also emphasize the recent strategies and rationale utilized by researchers for the development of DPP-4 inhibitors. This review also reveals about the various other approaches like molecular modelling, ligand based drug designing, high throughput screening etc. are used by the various research group for the development of potential DPP-4 inhibitors.
Collapse
Affiliation(s)
- Shubham Kumar
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana 142021, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India.
| |
Collapse
|
7
|
Begnini F, Poongavanam V, Atilaw Y, Erdelyi M, Schiesser S, Kihlberg J. Cell Permeability of Isomeric Macrocycles: Predictions and NMR Studies. ACS Med Chem Lett 2021; 12:983-990. [PMID: 34136079 PMCID: PMC8201747 DOI: 10.1021/acsmedchemlett.1c00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
![]()
Conformation-dependent 3D descriptors
have been shown to provide
better predictions of the physicochemical properties of macrocycles
than 2D descriptors. However, the computational identification of
relevant conformations for macrocycles is nontrivial. Herein, we report
that the Caco-2 cell permeability difference between a pair of diastereomeric
macrocycles correlated with their solvent accessible 3D polar surface
area and radius of gyration. The descriptors were calculated from
the macrocycles’ solution-phase conformational ensembles and
independently from ensembles obtained by conformational sampling.
Calculation of the two descriptors for three other stereo- and regioisomeric
macrocycles also allowed the correct ranking of their cell permeability.
Methods for conformational sampling may thus allow ranking of passive
permeability for moderately flexible macrocycles, thereby contributing
to the prioritization of macrocycles for synthesis in lead optimization.
Collapse
Affiliation(s)
- Fabio Begnini
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | | | - Yoseph Atilaw
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
8
|
Improvement on Permeability of Cyclic Peptide/Peptidomimetic: Backbone N-Methylation as A Useful Tool. Mar Drugs 2021; 19:md19060311. [PMID: 34072121 PMCID: PMC8229464 DOI: 10.3390/md19060311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Peptides have a three-dimensional configuration that can adopt particular conformations for binding to proteins, which are well suited to interact with larger contact surface areas on target proteins. However, low cell permeability is a major challenge in the development of peptide-related drugs. In recent years, backbone N-methylation has been a useful tool for manipulating the permeability of cyclic peptides/peptidomimetics. Backbone N-methylation permits the adjustment of molecule’s conformational space. Several pathways are involved in the drug absorption pathway; the relative importance of each N-methylation to total permeation is likely to differ with intrinsic properties of cyclic peptide/peptidomimetic. Recent studies on the permeability of cyclic peptides/peptidomimetics using the backbone N-methylation strategy and synthetic methodologies will be presented in this review.
Collapse
|
9
|
Brueckner AC, Deng Q, Cleves AE, Lesburg CA, Alvarez JC, Reibarkh MY, Sherer EC, Jain AN. Conformational Strain of Macrocyclic Peptides in Ligand-Receptor Complexes Based on Advanced Refinement of Bound-State Conformers. J Med Chem 2021; 64:3282-3298. [PMID: 33724820 DOI: 10.1021/acs.jmedchem.0c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrocyclic peptides are an important modality in drug discovery, but molecular design is limited due to the complexity of their conformational landscape. To better understand conformational propensities, global strain energies were estimated for 156 protein-macrocyclic peptide cocrystal structures. Unexpectedly large strain energies were observed when the bound-state conformations were modeled with positional restraints. Instead, low-energy conformer ensembles were generated using xGen that fit experimental X-ray electron density maps and gave reasonable strain energy estimates. The ensembles featured significant conformational adjustments while still fitting the electron density as well or better than the original coordinates. Strain estimates suggest the interaction energy in protein-ligand complexes can offset a greater amount of strain for macrocyclic peptides than for small molecules and non-peptidic macrocycles. Across all molecular classes, the approximate upper bound on global strain energies had the same relationship with molecular size, and bound-state ensembles from xGen yielded favorable binding energy estimates.
Collapse
Affiliation(s)
- Alexander C Brueckner
- Computational & Structural Chemistry, Merck & Co Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qiaolin Deng
- Computational & Structural Chemistry, Merck & Co Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ann E Cleves
- Bioengineering and Therapeutic Sciences, University of California San Francisco, Box 0128, San Francisco, California 94158, United States
| | - Charles A Lesburg
- Computational and Structural Chemistry, Merck and Co Inc, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Juan C Alvarez
- Computational and Structural Chemistry, Merck and Co Inc, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mikhail Y Reibarkh
- Analytical Research and Development, Merck & Co Inc, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward C Sherer
- Analytical Research and Development, Merck & Co Inc, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ajay N Jain
- Bioengineering and Therapeutic Sciences, University of California San Francisco, Box 0128, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Pursuing Orally Bioavailable Hepcidin Analogues via Cyclic N-Methylated Mini-Hepcidins. Biomedicines 2021; 9:biomedicines9020164. [PMID: 33567510 PMCID: PMC7915682 DOI: 10.3390/biomedicines9020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
The peptide hormone hepcidin is one of the key regulators of iron absorption, plasma iron levels, and tissue iron distribution. Hepcidin functions by binding to and inducing the internalisation and subsequent lysosomal degradation of ferroportin, which reduces both iron absorption in the gut and export of iron from storage to ultimately decrease systemic iron levels. The key interaction motif in hepcidin has been localised to the highly conserved N-terminal region, comprising the first nine amino acid residues, and has led to the development of mini-hepcidin analogs that induce ferroportin internalisation and have improved drug-like properties. In this work, we have investigated the use of head-to-tail cyclisation and N-methylation of mini-hepcidin as a strategy to increase oral bioavailability by reducing proteolytic degradation and enhancing membrane permeability. We found that backbone cyclisation and N-methylation was well-tolerated in the mini-hepcidin analogues, with the macrocylic analogues often surpassing their linear counterparts in potency. Both macrocyclisation and backbone N-methylation were found to improve the stability of the mini-hepcidins, however, there was no effect on membrane-permeabilizing activity.
Collapse
|
11
|
Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Park SE, Sajid MI, Parang K, Tiwari RK. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools. Mol Pharm 2019; 16:3727-3743. [PMID: 31329448 DOI: 10.1021/acs.molpharmaceut.9b00633] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclic cell-penetrating peptides are relatively a newer class of peptides that have a huge potential for the intracellular delivery of therapeutic agents aimed at treating challenging ailments like multidrug-resistant bacterial diseases, cancer, and HIV infection. Cell-penetrating peptides (CPPs) have been extensively explored as intracellular delivery vehicles; however, they have some inherent limitations like poor stability, endosomal entrapment, toxicity, and suboptimal cell penetration. Owing to their favorable properties that avoid these limitations, cyclic CPPs can provide a good alternative to linear CPPs. Several Reviews have been published in the past decade that cover CPPs and cyclic peptides independently. To the best of our knowledge, this is one of the first Reviews that covers cyclic CPPs comprehensively in the light of studies published so far. In this Review, we have detailed examples of cyclic CPPs, their structures, and cyclization strategies followed by a detailed account of their advantages over their linear counterparts. A hot area in cyclic CPPs is the exploration of cell-penetration mechanisms; this Review highlights this topic in detail. Finally, we will review the applications of cyclic CPPs, followed by conclusions and future prospects.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States.,Faculty of Pharmacy , University of Central Punjab , Lahore 54000 , Pakistan
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| |
Collapse
|
13
|
Caron G, Kihlberg J, Ermondi G. Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Med Res Rev 2019; 39:1707-1729. [PMID: 30659634 DOI: 10.1002/med.21562] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Recent literature shows that intramolecular hydrogen bond (IMHB) formation can positively impact upon the triad of permeability, solubility, and potency of drugs and candidates. IMHB modulation can be applied to compounds in any chemical space as a means for discovering drug candidates with both acceptable potency and absorption, distribution, metabolism, and excretion-Tox profiles. Integrating IMHB formation in design of drugs is, therefore, an exciting and timely challenge for modern medicinal chemistry. In this review, we first provide some background about IMHBs from the medicinal chemist's point of view and highlight some IMHB-associated misconceptions. Second, we propose a classification of IMHBs for drug discovery purposes, review the most common in silico tactics to include IMHBs in lead optimization and list some experimental physicochemical descriptors, which quantify the propensity of compounds to form IMHBs. By focusing on the compounds size and the number of IMHBs that can potentially be formed, we also outline the major difficulties encountered when designing compounds based on the inclusion of IMHBs. Finally, we discuss recent case studies illustrating the application of IMHB to optimize cell permeability and physicochemical properties of small molecules, cyclic peptides and macrocycles.
Collapse
Affiliation(s)
- Giulia Caron
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Arbour CA, Belavek KJ, Tariq R, Mukherjee S, Tom JK, Isidro-Llobet A, Kopach ME, Stockdill JL. Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation. J Org Chem 2018; 84:1035-1041. [DOI: 10.1021/acs.joc.8b02418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christine A. Arbour
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kayla J. Belavek
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rooha Tariq
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Subha Mukherjee
- Bristol-Myers Squibb, Chemical and Synthetic Development, New Brunswick, New Jersey 08903, United States
| | - Janine K. Tom
- Amgen, Inc., Pivotal Drug Substance Process Development, Thousand Oaks, California 91320, United States
| | | | | | - Jennifer L. Stockdill
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Witek J, Wang S, Schroeder B, Lingwood R, Dounas A, Roth HJ, Fouché M, Blatter M, Lemke O, Keller B, Riniker S. Rationalization of the Membrane Permeability Differences in a Series of Analogue Cyclic Decapeptides. J Chem Inf Model 2018; 59:294-308. [PMID: 30457855 DOI: 10.1021/acs.jcim.8b00485] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclization and selected backbone N-methylations are found to be often necessary but not sufficient conditions for peptidic drugs to have a good bioavailability. Thus, the design of cyclic peptides with good passive membrane permeability and good solubility remains a challenge. The backbone scaffold of a recently published series of cyclic decapeptides with six selected backbone N-methylations was designed to favor the adoption of a closed conformation with β-turns and four transannular hydrogen bonds. Although this conformation was indeed adopted by the peptides as determined by NMR measurements, substantial differences in the membrane permeability were observed. In this work, we aim to rationalize the impact of discrete side chain modifications on membrane permeability for six of these cyclic decapeptides. The thermodynamic and kinetic properties were investigated using molecular dynamics simulations and Markov state modeling in water and chloroform. The study highlights the influence that side-chain modifications can have on the backbone conformation. Peptides with a d-proline in the β-turns were more likely to adopt, even in water, the closed conformation with transannular hydrogen bonds, which facilitates transition through the membrane. The population of the closed conformation in water was found to correlate positively with PAMPA log Pe.
Collapse
Affiliation(s)
- Jagna Witek
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Shuzhe Wang
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Benjamin Schroeder
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Robin Lingwood
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Andreas Dounas
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Hans-Jörg Roth
- Novartis Institutes for BioMedical Research , Novartis Pharma AG, Novartis Campus , 4056 Basel , Switzerland
| | - Marianne Fouché
- Novartis Institutes for BioMedical Research , Novartis Pharma AG, Novartis Campus , 4056 Basel , Switzerland
| | - Markus Blatter
- Novartis Institutes for BioMedical Research , Novartis Pharma AG, Novartis Campus , 4056 Basel , Switzerland
| | - Oliver Lemke
- Department of Biology, Chemistry, Pharmacy , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Bettina Keller
- Department of Biology, Chemistry, Pharmacy , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Sereina Riniker
- Department of Biology, Chemistry, Pharmacy , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
16
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
17
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
18
|
Ermondi G, Vallaro M, Camacho-Leal M, Potter T, Visentin S, Caron G. Charged cyclic hexapeptides: Updating molecular descriptors for permeability purposes. Eur J Pharm Sci 2018; 122:85-93. [DOI: 10.1016/j.ejps.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
19
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
20
|
Wang CK, Swedberg JE, Harvey PJ, Kaas Q, Craik DJ. Conformational Flexibility Is a Determinant of Permeability for Cyclosporin. J Phys Chem B 2018; 122:2261-2276. [DOI: 10.1021/acs.jpcb.7b12419] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Wang CK, Craik DJ. Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers 2016; 106:901-909. [DOI: 10.1002/bip.22878] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
22
|
Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 2016; 101:42-61. [PMID: 27067608 DOI: 10.1016/j.addr.2016.03.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS, Monash University, 381 Royal Parade, Parkville, Victoria, Australia
| | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
23
|
Kiptoo P, Calcagno AM, Siahaan TJ. Physiological, Biochemical, and Chemical Barriers to Oral Drug Delivery. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Schowen KB, Schowen RL, Borchardt SE, Borchardt PM, Artursson P, Audus KL, Augustijns P, Nicolazzo JA, Raub TJ, Schöneich C, Siahaan TJ, Takakura Y, Thakker DR, Wolfe MS. A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. J Pharm Sci 2016; 105:370-385. [DOI: 10.1002/jps.24687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022]
|
25
|
Marelli UK, Ovadia O, Frank AO, Chatterjee J, Gilon C, Hoffman A, Kessler H. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? Chemistry 2015; 21:15148-52. [DOI: 10.1002/chem.201501600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/12/2022]
|
26
|
Bockus AT, Schwochert JA, Pye CR, Townsend CE, Sok V, Bednarek MA, Lokey RS. Going Out on a Limb: Delineating The Effects of β-Branching, N-Methylation, and Side Chain Size on the Passive Permeability, Solubility, and Flexibility of Sanguinamide A Analogues. J Med Chem 2015; 58:7409-18. [PMID: 26308180 DOI: 10.1021/acs.jmedchem.5b00919] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that intramolecular hydrogen bonding and N-methylation play important roles in the passive permeability of cyclic peptides, but other structural features have been explored less intensively. Recent studies on the oral bioavailability of the cyclic heptapeptide sanguinamide A have raised the question of whether steric occlusion of polar groups via β-branching is an effective, yet untapped, tool in cyclic peptide permeability optimization. We report the structures of 17 sanguinamide A analogues designed to test the relative contributions of β-branching, N-methylation, and side chain size to passive membrane permeability and aqueous solubility. We demonstrate that β-branching has little effect on permeability compared to the effects of aliphatic carbon count and N-methylation of exposed NH groups. We highlight a new N-methylated analogue of sanguinamide A with a Leu substitution at position 2 that exhibits solvent-dependent flexibility and improved permeability over that of the natural product.
Collapse
Affiliation(s)
- Andrew T Bockus
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Joshua A Schwochert
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Cameron R Pye
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Chad E Townsend
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Vong Sok
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Maria A Bednarek
- Department of Antibody Discovery & Protein Engineering, Medimmune Ltd , Cambridge CB21 6GH, United Kingdom
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
27
|
Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc Natl Acad Sci U S A 2015; 111:17504-9. [PMID: 25416591 DOI: 10.1073/pnas.1417611111] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.
Collapse
|
28
|
Wang CK, Northfield SE, Swedberg JE, Colless B, Chaousis S, Price DA, Liras S, Craik DJ. Exploring experimental and computational markers of cyclic peptides: Charting islands of permeability. Eur J Med Chem 2015; 97:202-13. [PMID: 25974856 DOI: 10.1016/j.ejmech.2015.04.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
An increasing number of macrocyclic peptides that cross biological membranes are being reported, suggesting that it might be possible to develop peptides into orally bioavailable therapeutics; however, current understanding of what makes macrocyclic peptides cell permeable is still limited. Here, we synthesized 62 cyclic hexapeptides and characterized their permeability using in vitro assays commonly used to predict in vivo absorption rates, i.e. the Caco-2 and PAMPA assays. We correlated permeability with experimentally measured parameters of peptide conformation obtained using rapid methods based on chromatography and nuclear magnetic resonance spectroscopy. Based on these correlations, we propose a model describing the interplay between peptide permeability, lipophilicity and hydrogen bonding potential. Specifically, peptides with very high permeability have high lipophilicity and few solvent hydrogen bond interactions, whereas peptides with very low permeability have low lipophilicity or many solvent interactions. Our model is supported by molecular dynamics simulations of the cyclic peptides calculated in explicit solvent, providing a structural basis for the observed correlations. This prospective exploration into biomarkers of peptide permeability has the potential to unlock wider opportunities for development of peptides into drugs.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Northfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara Colless
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David A Price
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Spiros Liras
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
29
|
Jiang T, Zhou Y, Zhu J, Chen Z, Sun P, Zhang Q, Wang Z, Shao Q, Jiang X, Li B, Wang H, Zhu W, Shen J. Design, synthesis, and pharmacological evaluation of highly potent and selective dipeptidyl peptidase-4 inhibitors. Arch Pharm (Weinheim) 2015; 348:399-407. [PMID: 25871012 DOI: 10.1002/ardp.201500082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
The optimization of a series of fused β-homophenylalanine inhibitors of dipeptidyl peptidase-4 (DPP-4) is described. Modification on the P2-binding moiety of 6 (IC50 = 10 nM) led to the discovery of β-homophenylalanine derivatives containing pyrrolidin-2-ylmethyl amides. The introduction of a sulfamine in the meta position of the phenyl ring improved the potency against DPP-4 (6-12-fold increase). Compound 14k showed DPP-4 inhibitory activity with an IC50 value of 0.87 nM. Meanwhile, in vivo experiments exhibited that 14h had an efficiency comparable to sitagliptin at the dose of 10 mg/kg.
Collapse
Affiliation(s)
- Tao Jiang
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuren Zhou
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianming Zhu
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhuxi Chen
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peng Sun
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhang
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Shao
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangrui Jiang
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bo Li
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Heyao Wang
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingshan Shen
- Drug Discovery and Design Center, Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Lewis I, Schaefer M, Wagner T, Oberer L, Sager E, Wipfli P, Vorherr T. A Detailed Investigation on Conformation, Permeability and PK Properties of Two Related Cyclohexapeptides. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9447-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Xue T, Ding S, Guo B, Zhou Y, Sun P, Wang H, Chu W, Gong G, Wang Y, Chen X, Yang Y. Design, Synthesis, and Structure–Activity and Structure–Pharmacokinetic Relationship Studies of Novel [6,6,5] Tricyclic Fused Oxazolidinones Leading to the Discovery of a Potent, Selective, and Orally Bioavailable FXa Inhibitor. J Med Chem 2014; 57:7770-91. [DOI: 10.1021/jm501045e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Xue
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shi Ding
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuren Zhou
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Sun
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heyao Wang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Chu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoqing Gong
- Department
of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yinye Wang
- Department
of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
32
|
Levi I, Eskira Y, Eisenstein M, Gilon C, Hoffman A, Tal-Gan Y, Fanous J, Bersudsky Y, Belmaker RH, Agam G, Almog O, Almog O. Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects. Eur Neuropsychopharmacol 2013; 23:1806-15. [PMID: 23619164 DOI: 10.1016/j.euroneuro.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/01/2013] [Accepted: 02/08/2013] [Indexed: 01/13/2023]
Abstract
Bipolar-disorder (manic-depressive illness) is a severe chronic illness affecting ∼1% of the adult population. It is treated with mood-stabilizers, the prototypic one being lithium-salts (lithium), but it has life threatening side-effects and a significant number of patients fail to respond. The lithium-inhibitable enzyme inositol-monophosphatase (IMPase) is one of the viable targets for lithium's mechanism of action. Calbindin-D28k (calbindin) up-regulates IMPase activity. The IMPase-calbindincomplex was modeled using the program MolFit. The in-silico model indicated that the 55-66 amino-acid segment of IMPase anchors calbindin via Lys59 and Lys61 with a glutamate in between (Lys-Glu-Lys motif) and that the motif interacts with residues Asp24 and Asp26 of calbindin. We found that differently from wildtype calbindin, IMPase was not activated by mutated calbindin in which Asp24 and Asp26 were replaced by alanine. Calbindin's effect was significantly reduced by a linear peptide with the sequence of amino acids 58-63 of IMPase (peptide 1) and by six amino-acid linear peptides including at least part of the Lys-Glu-Lys motif. The three amino-acid peptide Lys-Glu-Lys or five amino-acid linear peptides containing this motif were ineffective. Mice administered peptide 1 intracerebroventricularly exhibited a significant anti-depressant-like reduced immobility in the forced-swim test. Based on the sequence of peptide 1, and to potentially increase the peptide's stability, cyclic and linear pre-cyclic analog peptides were synthesized. One cyclic peptide and one linear pre-cyclic analog peptide inhibited calbindin-activated brain IMPase activity in-vitro. Our findings may lead to the development of molecules capable of inhibiting IMPase activity at an alternative site than that of lithium.
Collapse
Affiliation(s)
- Itzhak Levi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem 2013; 57:278-95. [PMID: 24044773 DOI: 10.1021/jm400887j] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrocycles are ideal in efforts to tackle "difficult" targets, but our understanding of what makes them cell permeable and orally bioavailable is limited. Analysis of approximately 100 macrocyclic drugs and clinical candidates revealed that macrocycles are predominantly used for infectious disease and in oncology and that most belong to the macrolide or cyclic peptide class. A significant number (N = 34) of these macrocycles are administered orally, revealing that oral bioavailability can be obtained at molecular weights up to and above 1 kDa and polar surface areas ranging toward 250 Å(2). Moreover, insight from a group of "de novo designed" oral macrocycles in clinical studies and understanding of how cyclosporin A and model cyclic hexapeptides cross cell membranes may unlock wider opportunities in drug discovery. However, the number of oral macrocycles is still low and it remains to be seen if they are outliers or if macrocycles will open up novel oral druggable space.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Cardiovascular and Metabolic Disorders Research Area, AstraZeneca R&D Mölndal , SE-431 83 Mölndal, Sweden
| | | |
Collapse
|
34
|
Bock JE, Gavenonis J, Kritzer JA. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 2013; 8:488-499. [PMID: 23170954 PMCID: PMC4847942 DOI: 10.1021/cb300515u] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemical biologists commonly seek out correlations between the physicochemical properties of molecules and their behavior in biological systems. However, a new paradigm is emerging for peptides in which conformation is recognized as the primary determinant of bioactivity and bioavailability. This review highlights an emerging body of work that directly addresses how a peptide's conformation controls its biological effects, cell penetration, and intestinal absorption. Based on this work, the dream of mimicking the potency and bioavailability of natural product peptides is getting closer to reality.
Collapse
Affiliation(s)
- Jonathan E. Bock
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jason Gavenonis
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
35
|
Hoveyda HR, Marsault E, Gagnon R, Mathieu AP, Vézina M, Landry A, Wang Z, Benakli K, Beaubien S, Saint-Louis C, Brassard M, Pinault JF, Ouellet L, Bhat S, Ramaseshan M, Peng X, Foucher L, Beauchemin S, Bhérer P, Veber DF, Peterson ML, Fraser GL. Optimization of the Potency and Pharmacokinetic Properties of a Macrocyclic Ghrelin Receptor Agonist (Part I): Development of Ulimorelin (TZP-101) from Hit to Clinic. J Med Chem 2011; 54:8305-20. [DOI: 10.1021/jm2007062] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hamid R. Hoveyda
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - René Gagnon
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Axel P. Mathieu
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Martin Vézina
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Annick Landry
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Zhigang Wang
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamel Benakli
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sylvie Beaubien
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Carl Saint-Louis
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Martin Brassard
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | | | - Luc Ouellet
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Shridhar Bhat
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Mahesh Ramaseshan
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Xiaowen Peng
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Laurence Foucher
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sophie Beauchemin
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Patrick Bhérer
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Daniel F. Veber
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Mark L. Peterson
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Graeme L. Fraser
- Tranzyme Pharma Inc., 3001,
12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
36
|
Bogdan AR, Davies NL, James K. Comparison of diffusion coefficients for matched pairs of macrocyclic and linear molecules over a drug-like molecular weight range. Org Biomol Chem 2011; 9:7727-33. [DOI: 10.1039/c1ob05996c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Functional profiling of p53-binding sites in Hdm2 and Hdmx using a genetic selection system. Bioorg Med Chem 2010; 18:6099-108. [PMID: 20638853 DOI: 10.1016/j.bmc.2010.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/21/2022]
Abstract
Upregulation of structurally homologous oncoproteins Hdm2 and Hdmx has been linked to the depletion or inactivation of their common regulation target the tumor suppressor p53 protein leading to the progression of cancer. The restoration of the p53 function, rendered suppressed or dormant by these negative regulators, establishes, therefore, a unique opportunity for a targeted induction of apoptosis in cancers that retain wild-type p53. While several small molecules have been reported to rescue the tumor suppressor by antagonizing the Hdm2-p53 interaction, these agents displayed limited application scope by being ineffective in tumors enriched with active Hdmx. Here, we describe the use of a genetic selection system and encoded library of conformationally pre-organized peptides to perform functional profiling of each regulator revealing specific recognition features that guide the antagonism of Hdm2-p53 and Hdmx-p53 interactions. Structure-activity relationship analysis of the most effective leads identified functional and structural elements mediating selective recognition of the two structurally related regulators, while providing convenient starting points for further activity optimization.
Collapse
|
38
|
Bucks ME, Savinov SN. Direct evaluation of cellular internalization rates using chromogenic disulfides. MOLECULAR BIOSYSTEMS 2010; 6:1176-9. [PMID: 20405082 DOI: 10.1039/c003969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical assay, which exploits the maintenance of the cytoplasmic redox balance in live cells, has been developed to report in real time on relative cellular internalization rates of molecules derivatized as chromogenic disulfides.
Collapse
Affiliation(s)
- Megan E Bucks
- Department of Chemistry, Purdue University, West Lafayette, IN 47909, USA
| | | |
Collapse
|
39
|
Witoonsaridsilp W, Panyarachun B, Sarisuta N, Müller-Goymann CC. Influence of microenvironment and liposomal formulation on secondary structure and bilayer interaction of lysozyme. Colloids Surf B Biointerfaces 2010; 75:501-9. [DOI: 10.1016/j.colsurfb.2009.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 09/04/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
40
|
Ovadia O, Linde Y, Haskell-Luevano C, Dirain ML, Sheynis T, Jelinek R, Gilon C, Hoffman A. The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: The melanocortin agonist paradigm. Bioorg Med Chem 2010; 18:580-9. [DOI: 10.1016/j.bmc.2009.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
41
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
42
|
Linde Y, Ovadia O, Safrai E, Xiang Z, Portillo FP, Shalev DE, Haskell-Luevano C, Hoffman A, Gilon C. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Biopolymers 2008; 90:671-82. [PMID: 18655141 DOI: 10.1002/bip.21057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Backbone cyclization (BC) and N-methylation have been shown to enhance the activity and/or selectivity of biologically active peptides and improve metabolic stability and intestinal permeability. In this study, we describe the synthesis, structure-activity relationship (SAR) and intestinal metabolic stability of a backbone cyclic peptide library, BL3020, based on the linear alpha-Melanocyte stimulating hormone analog Phe-D-Phe-Arg-Trp-Gly. The drug lead, BL3020-1, selected from the BL3020 library (compound 1) has been shown to inhibit weight gain in mice following oral administration. Another member of the BL3020 library, BL3020-17, showed improved biological activity towards the mMC4R, in comparison to BL3020-1, although neither were selective for MC4R or MC5R. N-methylation, which restrains conformational freedom while increasing metabolic stability beyond that which is imparted by BC, was used to find analogs with increased selectivity. N-methylated backbone cyclic libraries were synthesized based on the BL3020 library. SAR studies showed that all the N-methylated backbone cyclic peptides demonstrated reduced biological activity and selectivity for all the analyzed receptors. N-methylation of active backbone cyclic peptides destabilized the active conformation or stabilized an inactive conformation, rendering the peptides biologically inactive. N-methylation of backbone cyclic peptides maintained stability to degradation by intestinal enzymes.
Collapse
Affiliation(s)
- Yaniv Linde
- Institute of Chemistry, Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hess S, Linde Y, Ovadia O, Safrai E, Shalev DE, Swed A, Halbfinger E, Lapidot T, Winkler I, Gabinet Y, Faier A, Yarden D, Xiang Z, Portillo FP, Haskell-Luevano C, Gilon C, Hoffman A. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J Med Chem 2008; 51:1026-34. [PMID: 18220330 DOI: 10.1021/jm701093y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrapeptide sequence His-Phe-Arg-Trp, derived from melanocyte-stimulating hormone (alphaMSH) and its analogs, causes a decrease in food intake and elevates energy utilization upon binding to the melanocortin-4 receptor (MC4R). To utilize this sequence as an effective agent for treating obesity, we improved its metabolic stability and intestinal permeability by synthesizing a library of backbone cyclic peptidomimetic derivatives. One analog, peptide 1 (BL3020-1), was selected according to its selectivity in activating the MC4R, its favorable transcellular penetration through enterocytes and its enhanced intestinal metabolic stability. This peptide was detected in the brain following oral administration to rats. A single oral dose of 0.5 mg/kg in mice led to reduced food consumption (up to 48% vs the control group) that lasted for 5 h. Repetitive once daily oral dosing (0.5 mg/kg/day) for 12 days reduced weight gain. Backbone cyclization was shown to produce a potential drug lead for treating obesity.
Collapse
Affiliation(s)
- Shmuel Hess
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hess S, Ovadia O, Shalev DE, Senderovich H, Qadri B, Yehezkel T, Salitra Y, Sheynis T, Jelinek R, Gilon C, Hoffman A. Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability. J Med Chem 2007; 50:6201-11. [PMID: 17983214 DOI: 10.1021/jm070836d] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A library of 18 hexapeptide analogs was synthesized, including sub-libraries of N- or C-methylation of the parent hexapeptide Phe-Gly-Gly-Gly-Gly-Phe, as well as backbone cyclized analogs of each linear analog with various ring sizes. N- or C-methylation as well as cyclization (but not backbone cyclization) have been suggested to improve intestinal permeability and metabolic stability of peptides in general. Here we aimed to assess their applicability to hydrophilic peptides. The intestinal permeability (Papp) of the 18-peptide library was in the range of 0.2-6.8 x 10-6 cm/sec. Based on several tests, we concluded that the absorption mechanism of all tested analogs is paracellular, regardless of the structural or conformational modifications. In all cases, backbone cyclization increased Papp (5-fold) in comparison to the linear analogs due to the smaller 3D size and also dramatically decreased peptide proteolysis by brush border enzymes. N- or C-methylation did not enhance the permeability of the linear analogs in this series.
Collapse
Affiliation(s)
- Shmuel Hess
- Departments of Pharmaceutics and Organic Chemistry, and the Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang X, Bao X, McFarland-Mancini M, Isaacsohn I, Drew AF, Smithrud DB. Investigation of the intracellular delivery of fluoresceinated peptides by a host-[2]rotaxane. J Am Chem Soc 2007; 129:7284-93. [PMID: 17516642 DOI: 10.1021/ja067928x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of methods to transport peptides into cells via a passive mechanism would greatly aid in the development of therapeutic agents. We recently demonstrated that an impermeable fluoresceinated pentapeptide enters the cytoplasm and nucleus of COS 7 cells in the presence of a host-[2]rotaxane by a mechanism that does not depend on an active cell-mediated process. In this report, we further investigate the ability of the host-[2]rotaxane to deliver peptides possessing a wide range of polarities (negatively charged, positively charged, polar, and apolar side chains) into live cells. Only in the presence of the host-[2]rotaxane were the Fl-peptides taken up by COS 7 and ES2 cells. Flow cytometry experiments demonstrated that the level of delivery is largely temperature and adenosine 5'-triphosphate (ATP) independent, and the membranes remain intact. Although the level of transport does depend upon the nature of the side chains, it does not correlate with calculated LogD values, indicating that an additional interaction with the host-[2]rotaxane is modifying the permeability properties of the peptide. The amount of Fl-peptides transported from an aqueous phase into a chloroform phase in the presence of the host-[2]rotaxane correlates with the intensity of cellular fluorescence. Extraction and U-tube studies show that the Fl-peptide can be released from its complex with the host-[2]rotaxane into an aqueous phase, and the host-[2]rotaxane can transport a greater than a stoichiometric amount of an Fl-peptide through a CHCl3 layer. These studies demonstrate the utility of the host-[2]rotaxane in delivering peptides of all polarities across a cell membrane.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | | | | | |
Collapse
|
46
|
Chittchang M, Mitra AK, Johnston TP. Interplay of Secondary Structure and Charge on the Diffusion of a Polypeptide through Negatively Charged Aqueous Pores. Pharm Res 2007; 24:502-11. [PMID: 17245654 DOI: 10.1007/s11095-006-9166-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE This study was conducted to investigate the interplay of secondary structure and charge of a polypeptide on its permeability through negatively charged pores of synthetic porous membranes and Caco-2 cell monolayers. MATERIALS AND METHODS Poly(D-glutamic acid) [Poly(D-Glu)] was used as a model polypeptide. Transport studies were conducted at 37 degrees C through both track-etched polycarbonate membranes (using side-by-side diffusion cells) and Caco-2 cell monolayers. Apparent permeability coefficients and diffusion coefficients were calculated. RESULTS When diffusion was unhindered, poly(D-Glu) appeared to be transported at the same rate regardless of whether it existed in the random coil or the alpha-helix secondary structure. When moderately hindered diffusion was evaluated, poly(D-Glu) with partial alpha-helix secondary structure, exhibited significantly greater transport than when the polypeptide predominantly existed as the highly negatively charged random coil. This trend was reversed when the diffusion was severely hindered by the tight junctions of the Caco-2 cell monolayers. CONCLUSIONS Neither charge, nor secondary structure, played a significant role in the unhindered diffusion of poly(D-Glu). When the molecules were moderately hindered, polypeptide/membrane charge interactions significantly influenced the rate of aqueous diffusion. As the overall molecular dimensions of the polypeptide approached the pore size, the inherent molecular flexibility of the random coil secondary structure overcame the effect of charge repulsion.
Collapse
Affiliation(s)
- Montakarn Chittchang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Katz Pharmacy Building, 5005 Rockhill Road, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
47
|
Hadden MK, Orwig KS, Kokko KP, Mazella J, Dix TA. Design, synthesis, and evaluation of the antipsychotic potential of orally bioavailable neurotensin (8-13) analogues containing non-natural arginine and lysine residues. Neuropharmacology 2005; 49:1149-59. [PMID: 16095636 DOI: 10.1016/j.neuropharm.2005.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Neurotensin (NT) and its active fragment NT(8-13) elicit behavioral responses typical of clinically used antipsychotic drugs when administered directly to the brain. However, limited peptide stability and oral bioavailability have prevented these compounds from being developed as relevant pharmaceuticals. Recently, our laboratory designed and studied a first-generation NT(8-13) derivative, KK13, that elicited key pharmacokinetic and behavioral responses typical of clinically used antipsychotic drugs when administered to rats parenterally. This compound was the basis for the rational design of a series of second-generation NT(8-13) analogues (KH1-KH30) studied in this paper. Initial screening of these analogues for CNS activity by monitoring hypothermia induction after peripheral administration defined several compounds (KH11, KH24, KH26, and KH28-KH30) that warranted further investigation. Each compound maintained binding affinity for NTR(1), however, only KH24, KH26, and KH28 (as well as KK13) elicited significant hypothermic responses after oral administration. Of these, KH28 demonstrated an oral activity 3-fold greater than any other analogue; hence it was further characterized in a series of rat behavioral assays. KH28 attenuated d-amphetamine induced hyperlocomotion, a hallmark of current clinically effective antipsychotic drugs, after both IP and oral administration. In addition, tolerance to the compound did not develop after repeated daily dosing, as measured by hypothermic induction as well as attenuation of d-amphetamine induced hyperlocomotion. Finally, KH28 did not produce catalepsy, a deleterious side-effect elicited by classical antipsychotic drugs. KH28 is considered to be an ideal compound for further development as a potential novel antipsychotic.
Collapse
Affiliation(s)
- M Kyle Hadden
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
48
|
Hadden MK, Walle T, Dix TA. Cellular uptake of a radiolabelled analogue of neurotensin in the Caco-2 cell model. J Pharm Pharmacol 2005; 57:327-33. [PMID: 15807988 DOI: 10.1211/0022357055560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Neurotensin is a linear tridecapeptide that elicits a variety of physiological responses in the brain, including hypothermia and antinociception, and reduced levels have been linked to schizophrenia. Previously in our laboratory we developed a truncated neurotensin derivative, KK13. This hexapeptide exhibited key pharmacokinetic and behavioural characteristics of an antipsychotic and elicited central effects after oral administration. To examine the potential mechanism(s) of uptake, a radioactive analogue of KK13 (*KK13) was synthesized, characterized, and evaluated in the Caco-2 cell model of the human intestinal epithelium. Results suggested that uptake of *KK13 was a time-dependent passive process. A general linear trend in uptake was demonstrated over the concentration range (10 microM-1 m M) tested, and uptake was neither pH- nor sodium-dependent. Finally, after 60 min, intact *KK13 was identified associated with the cell components, providing further evidence for uptake and stability of the peptide.
Collapse
Affiliation(s)
- M Kyle Hadden
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
49
|
Salamat-Miller N, Johnston TP. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm 2005; 294:201-16. [PMID: 15814245 DOI: 10.1016/j.ijpharm.2005.01.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/12/2005] [Accepted: 01/27/2005] [Indexed: 11/26/2022]
Abstract
The intent of this paper is to update the reader on various strategies which have been utilized to increase the paracellular permeability of protein and polypeptide drugs across the intestinal epithelium. Structural features of protein and polypeptide drugs, together with the natural anatomical and physiological features of the gastrointestinal (GI) tract, have made oral delivery of this class of compounds extremely challenging. Interest in the paracellular route for the transport of therapeutic proteins and polypeptides following oral administration has recently intensified and continues to be explored. The assumption that molecules with a large molecular weight are not able to diffuse through the tight junctions of the intestinal membrane has been challenged by current research, along with an increased understanding of tight junction physiology.
Collapse
Affiliation(s)
- Nazila Salamat-Miller
- Division of Pharmaceutical Sciences, Room 211A, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | |
Collapse
|
50
|
Salamat-Miller N, Chittchang M, Mitra AK, Johnston TP. A Randomly Coiled, High-Molecular-Weight Polypeptide Exhibits Increased Paracellular Diffusion in Vitro and in Situ Relative to the Highly Ordered ?-Helix Conformer. Pharm Res 2005; 22:245-54. [PMID: 15783072 DOI: 10.1007/s11095-004-1192-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The current investigation was conducted to examine the effect of secondary structure of model polypeptides on their hindered paracellular diffusion. METHODS Poly-D-glutamic acid (PDGlu) was selected as one of the model polypeptides because of its ability to form two secondary structures; a negatively charged random coil and an alpha-helix with partial negative charge at pH 7.4 and 4.7, respectively. Poly-D-lysine (PDL) was selected as a positively charged random coil conformation at pH 7.4. Transport experiments were conducted across both a Caco-2 cell monolayer and the intestinal membrane of Sprague-Dawley rats. Additionally, using NMR, an estimation for the diffusion coefficient and the equivalent hydrodynamic radius for each model polypeptide was obtained. RESULTS PDGlu in the randomly coiled conformation exhibited greater paracellular transport when compared to either the same polypeptide having an alpha-helix secondary structure or the positively charged, randomly coiled PDL. CONCLUSIONS Randomly coiled PDGlu was able to permeate through the negatively charged tight junctions of both biological membranes to a greater extent than PDGlu having an alpha-helix structure and suggests that molecular flexibility associated with the random coil conformation may play a more important role than overall charge and hydrodynamic radius on its hindered paracellular diffusion.
Collapse
Affiliation(s)
- Nazila Salamat-Miller
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|