1
|
Logesh R, Das N, Sellappan G, Piesik D, Mondal A. Unripe fruits of Litchi chinensis (Gaertn.) Sonn.: An overview of its toxicity. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:925-934. [PMID: 37442293 DOI: 10.1016/j.pharma.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Litchi (Litchi chinensis) is a widely consumed fruit that has been used in many food and health-promoting products worldwide. Litchi is a good source of nutrients including vitamin and minerals, dietary fibers, proteins, and carbohydrates. Of note, several studies have reported that the constituents of litchi fruits elicit antioxidant properties and help to maintain blood pressure, and reduce the risk of stroke and heart attack. An unclearly explained outbreak occurred in June 2019 in Muzaffarpur (Bihar), India resulted in the death of more than 150 children in a week, followed by a total of 872 cases and 176 deaths. This outbreak was associated with the consumption of Litchi fruits and the occurrence of acute encephalitis syndrome. In this high Litchi production region, a huge number of acute encephalitis syndrome cases have been registered in children in the past two decades with high mortality due to these neurological disorders linked to the consumption of litchi. While finding out the causes for this recurrent outbreak, whether or not it is caused by a virus or the phytotoxins of litchi is to be considered critical. Amongst the probable causes were observed to be methylene cyclopropyl acetic acid and hypoglycin-A found in unripe Litchi fruits which can cause hypoglycemia and as a plausible cause of AES outbreaks. This review addresses this recurrent outbreak in-depth exploring the possible causes and discusses the possible mechanisms by which phytotoxins of litchi such as hypoglycin A and methylene cyclopropylglycine which may elicit such toxic effects.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka, India
| | - Niranjan Das
- Department of Chemistry, Ramthakur College, Badharghat, Agartala, 799003 Tripura, India.
| | - Gobi Sellappan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education& Research, Rockland's, Ooty, 643001 Tamil Nadu, India
| | - Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. S. Kaliskiego Avenue, building I, 85-796 Bydgoszcz, Poland
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, 743234 West Bengal, India
| |
Collapse
|
2
|
Arfuso F, Giannetto C, Bazzano M, Assenza A, Piccione G. Physiological Correlation between Hypothalamic-Pituitary-Adrenal Axis, Leptin, UCP1 and Lipid Panel in Mares during Late Pregnancy and Early Postpartum Period. Animals (Basel) 2021; 11:ani11072051. [PMID: 34359179 PMCID: PMC8300216 DOI: 10.3390/ani11072051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the dynamic change of adrenocorticotrophic hormone (ACTH), cortisol, leptin, mitochondrial uncoupling protein 1 (UCP1), lipids and lipoproteins in mares during late pregnancy and the postpartum period. A total of 20 mares (10 pregnant mares, monitored from 14 ± 2 days before expected foaling until 14 days after foaling, Group A; 10 non-pregnant and non-lactating mares, Group B) were enrolled in the study. Body Condition Score (BCS) and body weight (BW) values were recorded from each animal. In Group A, blood samples were collected on days 14 ± 2 and 7 ± 2 before foaling (T-14; T-7), and on days 7 and 14 after foaling (T+7; T+14). From mares of Group B, blood samples were collected at the beginning of the study. The levels of ACTH, cortisol, leptin, UCP1, non-esterified fatty acids (NEFAs), total cholesterol, high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), triglycerides and very-low-density lipoproteins (VLDLs) were investigated. While BCS showed no statistical change throughout the monitoring period (p > 0.05), all the other studied parameters displayed statistically significant variations in Group A over the peripartum period (p < 0.0001). A significant effect of pregnancy was found on all studied parameters (p < 0.001). The ACTH and cortisol levels measured in mares belonged to Group A showed a significant positive correlation with the values of leptin, LDLs, triglycerides and VLDLs, whereas they were negatively correlated with the serum UCP1 and NEFAs values. Together, the findings gathered in this study highlight a dynamic change of serum leptin, UCP1 and lipid parameters in peripartum mares and suggest an interaction of the HPA axis with lipid metabolism and mobilization in mares during the peripartum period in order to deal with metabolic and energy demand and maintain energy homeostasis.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.A.); (A.A.); (G.P.)
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.A.); (A.A.); (G.P.)
- Correspondence: ; Tel.: +39-090-6766764
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Andrea D’Accorso, 16, 62032 Macerata, Italy;
| | - Anna Assenza
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.A.); (A.A.); (G.P.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.A.); (A.A.); (G.P.)
| |
Collapse
|
3
|
Abstract
A healthy nutritional state is required for all aspects of reproduction and is signaled by the adipokine leptin. Leptin acts in a relatively narrow concentration range: too much or too little will compromise fertility. The leptin signal timing is important to prepubertal development in both sexes. In the brain, leptin acts on ventral premammillary neurons which signal kisspeptin (Kiss1) neurons to stimulate gonadotropin releasing hormone (GnRH) neurons. Suppression of Kiss1 neurons occurs when agouti-related peptide neurons are activated by reduced leptin, because leptin normally suppresses these orexigenic neurons. In the pituitary, leptin stimulates production of GnRH receptors (GnRHRs) and follicle-stimulating hormone at midcycle, by activating pathways that derepress actions of the messenger ribonucleic acid translational regulatory protein Musashi. In females, rising estrogen stimulates a rise in serum leptin, which peaks at midcycle, synchronizing with nocturnal luteinizing hormone pulses. The normal range of serum leptin levels (10-20 ng/mL) along with gonadotropins and growth factors promote ovarian granulosa and theca cell functions and oocyte maturation. In males, the prepubertal rise in leptin promotes testicular development. However, a decline in leptin levels in prepubertal boys reflects inhibition of leptin secretion by rising androgens. In adult males, leptin levels are 10% to 50% of those in females, and high leptin inhibits testicular function. The obesity epidemic has elucidated leptin resistance pathways, with too much leptin in either sex leading to infertility. Under conditions of balanced nutrition, however, the secretion of leptin is timed and regulated within a narrow level range that optimizes its trophic effects.
Collapse
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence: Gwen V. Childs, PhD, University of Arkansas for Medical Sciences, Little Rock, AR, USA. E-mail:
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
4
|
Uygun B, Kiyici S, Ozmen S, Gul Z, Sigirli D, Cavun S. The Association Between Olfaction and Taste Functions with Serum Ghrelin and Leptin Levels in Obese Women. Metab Syndr Relat Disord 2019; 17:452-457. [DOI: 10.1089/met.2019.0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Burcin Uygun
- Department of Internal Medicine, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Sinem Kiyici
- Department of Endocrinology and Metabolism, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Suay Ozmen
- Department of Otorhinolaryngology, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Zulfiye Gul
- Department of Pharmacology, Medical Faculty, Bahcesehir University, Istanbul, Turkey
| | - Deniz Sigirli
- Department of Bio-Statistics, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sinan Cavun
- Department of Pharmacology, Medical Faculty, Uludag University, Bursa, Turkey
| |
Collapse
|
5
|
Rashad NM, Sayed SE, Sherif MH, Sitohy MZ. Effect of a 24-week weight management program on serum leptin level in correlation to anthropometric measures in obese female: A randomized controlled clinical trial. Diabetes Metab Syndr 2019; 13:2230-2235. [PMID: 31235162 DOI: 10.1016/j.dsx.2019.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Obesity is a major contributor to preventable disease and death across the globe. Obesity is complex. Although its risk factors are myriad and compounding, there is an urgent need for a deeper understanding of the way risk factors interact with each other. Leptin is a peptide regulates food intake and body weight. However, the notion of leptin as an anti-obesity hormone was called into question because obesity is typically associated with high leptin levels and not leptin deficiency thus, we aimed to measure leptin levels in obese female in correlation to anthropometric measures and to evaluate the impact of weight loss on its level and metabolic parameters. SUBJECT AND METHODS case-control study enrolled 40 control groups, 50 obese women. We measured anthropometric measures BMI, Waist/hip ratio (WHR). Fat mass index (FMI%) and free fat mass index (FFMI%) were assessed by dual energy X-Ray absorptiometry (DEXA) The serum levels of leptin were measured by ELISA. RESULTS Our results revealed that serum leptin levels were higher in obese women compared to controls. Moreover, it was positively correlated to anthropometric measures, glycemic and lipid profile. Linear regression analysis revealed that BMI was the main independent studied parameters associated with serum leptin level among other clinical and laboratory biomarkers. Interestingly, after 12 weeks of following the Mediterranean diet (MD)-based weight loss program, serum leptin levels were decreased. Logistic regression analysis was performed to detect the main predictors' biomarkers associated with weight loss among obese women. We found that serum leptin and FMI% were an independent predictor of response with odds ratios of 1.69 and 1.64 respectively (P < 0.001), Receiver operating characteristic analyses revealed that the AUC of serum leptin in discriminating obese women from lean ones was 0.893 (95% CI = 0.815-0.917) with sensitivity = 90%, specificity = 96%, and the cutoff values was 36.32 ng/ml. CONCLUSION Serum leptin could be a valuable diagnostic marker of obesity and its comorbidities. Moreover, significant weight loss leads to decrease serum leptin levels and improvement of glycemic and lipid profiles.
Collapse
Affiliation(s)
- Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sally E Sayed
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed H Sherif
- Organic Chemistry Department, Faculty of Science Zagazig University, Zagazig, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
The effects of different doses of onion (Allium cepa. L) extract on leptin, ghrelin, total antioxidant capacity, and performance of suckling lambs. COMPARATIVE CLINICAL PATHOLOGY 2019. [DOI: 10.1007/s00580-019-02910-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Odle AK, Akhter N, Syed MM, Allensworth-James ML, Beneš H, Melgar Castillo AI, MacNicol MC, MacNicol AM, Childs GV. Leptin Regulation of Gonadotrope Gonadotropin-Releasing Hormone Receptors As a Metabolic Checkpoint and Gateway to Reproductive Competence. Front Endocrinol (Lausanne) 2018; 8:367. [PMID: 29354094 PMCID: PMC5760501 DOI: 10.3389/fendo.2017.00367] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The adipokine leptin signals the body's nutritional status to the brain, and particularly, the hypothalamus. However, leptin receptors (LEPRs) can be found all throughout the body and brain, including the pituitary. It is known that leptin is permissive for reproduction, and mice that cannot produce leptin (Lep/Lep) are infertile. Many studies have pinpointed leptin's regulation of reproduction to the hypothalamus. However, LEPRs exist at all levels of the hypothalamic-pituitary-gonadal axis. We have previously shown that deleting the signaling portion of the LEPR specifically in gonadotropes impairs fertility in female mice. Our recent studies have targeted this regulation to the control of gonadotropin releasing hormone receptor (GnRHR) expression. The hypotheses presented here are twofold: (1) cyclic regulation of pituitary GnRHR levels sets up a target metabolic checkpoint for control of the reproductive axis and (2) multiple checkpoints are required for the metabolic signaling that regulates the reproductive axis. Here, we emphasize and explore the relationship between the hypothalamus and the pituitary with regard to the regulation of GnRHR. The original data we present strengthen these hypotheses and build on our previous studies. We show that we can cause infertility in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. Our findings implicate activin subunit (InhBa) mRNA as a potential leptin target in gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein (but not mRNA levels) following leptin stimulation. In order to try and understand this post-transcriptional regulation, we tested candidate miRNAs (identified with in silico analysis) that may be binding the Gnrhr mRNA. We show significant upregulation of one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided here, combined with our previous work, lay the foundation for metabolically regulated post-transcriptional control of the gonadotrope. We discuss possible mechanisms, including miRNA regulation and the involvement of the RNA binding protein, Musashi. We also demonstrate how this regulation may be vital for the dynamic remodeling of gonadotropes in the cycling female. Finally, we propose that the leptin receptivity of both the hypothalamus and the pituitary are vital for the body's ability to delay or slow reproduction during periods of low nutrition.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mohsin M. Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melody L. Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrea I. Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Chojnowska K, Czerwinska J, Kaminski T, Kaminska B, Kurzynska A, Bogacka I. Leptin plasma concentrations, leptin gene expression, and protein localization in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes of the European beaver ( Castor fiber ). Theriogenology 2017; 87:266-275. [DOI: 10.1016/j.theriogenology.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
|
9
|
HOLUBOVÁ A, ŠTOFKOVÁ A, JURČOVIČOVÁ J, ŠLAMBEROVÁ R. The Effect of Neonatal Maternal Stress on Plasma Levels of Adrenocorticotropic Hormone, Corticosterone, Leptin, and Ghrelin in Adult Male Rats Exposed to Acute Heterotypic Stressor. Physiol Res 2016; 65:S557-S566. [DOI: 10.33549/physiolres.933530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is important for maintenance of homeostasis during stress. Recent studies have shown a connection between the HPA axis and adipose tissue. The present study investigated the effect of acute heterotypic stress on plasma levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), leptin, and ghrelin in adult male rats with respect to neonatal maternal social and physical stressors. Thirty rat mothers and sixty of their male progeny were used. Pups were divided into three groups: unstressed control (C), stressed by maternal social stressor (S), stressed by maternal social and physical stressors (SW). Levels of hormones were measured in adult male progeny following an acute swimming stress (10 min) or no stress. ELISA immunoassay was used to measured hormones. The ACTH and CORT levels were significantly increased in all groups of adult progeny after acute stress; however, CORT levels were significantly lower in both neonatally stressed groups compared to controls. After acute stress, plasma leptin levels were decreased in the C and SW groups but increased in the S group. The data suggest that long-term neonatal stressors lead to lower sensitivity of ACTH receptors in the adrenal cortex, which could be a sign of stress adaptation in adulthood. Acute stress in adult male rats changes plasma levels of leptin differently relative to social or physical neonatal stressors.
Collapse
Affiliation(s)
| | | | | | - R. ŠLAMBEROVÁ
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Mela V, Jimenez S, Freire-Regatillo A, Barrios V, Marco EM, Lopez-Rodriguez AB, Argente J, Viveros MP, Chowen JA. Blockage of neonatal leptin signaling induces changes in the hypothalamus associated with delayed pubertal onset and modifications in neuropeptide expression during adulthood in male rats. Peptides 2016; 86:63-71. [PMID: 27751931 DOI: 10.1016/j.peptides.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 01/02/2023]
Abstract
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5mg/kg, s.c.) from PND 5 to 9 and killed at PND102-103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Sara Jimenez
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; CIBER Fisiopatología de Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Eva-María Marco
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Ana-Belén Lopez-Rodriguez
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - María-Paz Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; CIBER Fisiopatología de Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
McDuffie IA, Akhter N, Childs GV. Regulation of Leptin mRNA and Protein Expression in Pituitary Somatotropes. J Histochem Cytochem 2016; 52:263-73. [PMID: 14729878 DOI: 10.1177/002215540405200214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leptin, the ob protein, regulates food intake and satiety and can be found in the anterior pituitary. Leptin antigens and mRNA were studied in the anterior pituitary (AP) cells of male and female rats to learn more about its regulation. Leptin antigens were found in over 40% of cells in diestrous or proestrous female rats and in male rats. Lower percentages of AP cells were seen in the estrous population (21 ± 7%). During peak expression of antigens, co-expression of leptin and growth hormone (GH) was found in 27 ± 4% of AP cells. Affinity cytochemistry studies detected 24 ± 3% of AP cells with leptin proteins and growth hormone releasing hormone (GHRH) receptors. These data suggested that somatotropes were a significant source of leptin. To test regulatory factors, estrous and diestrous AP populations were treated with estrogen (100 pM) and/or GHRH (2 nM) to learn if either would increase leptin expression in GH cells. To rule out the possibility that the immunoreactive leptin was bound to receptors in somatotropes, leptin mRNA was also detected by non-radioactive in situ hybridization in this group of cells. In estrous female rats, 39 ± 0.9% of AP cells expressed leptin mRNA, indicating that the potential for leptin production was greater than predicted from the immunolabeling. Estrogen and GHRH together (but not alone) increased percentages of cells with leptin protein (41 ± 9%) or mRNA (57 ± 5%). Estrogen and GHRH also increased the percentages of AP cells that co-express leptin mRNA and GH antigens from 20 ± 2% of AP cells to 37 ± 5%. Although the significance of leptin in GH cells is not understood, it is clearly increased after stimulation with GHRH and estrogen. Because GH cells also have leptin receptors, this AP leptin may be an autocrine or paracrine regulator of pituitary cell function.
Collapse
Affiliation(s)
- Iris A McDuffie
- Department of Nutrition, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | |
Collapse
|
12
|
Ma L, Shen X, Gao Y, Wu Q, Ji M, Luo C, Zhang M, Wang T, Chen X, Tao L. Blocking B7-1/CD28 Pathway Diminished Long-Range Brain Damage by Regulating the Immune and Inflammatory Responses in a Mouse Model of Intracerebral Hemorrhage. Neurochem Res 2016; 41:1673-83. [PMID: 26980009 DOI: 10.1007/s11064-016-1883-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 01/21/2023]
Abstract
Acute brain injuries can activate bidirectional crosstalk between the injured brain and the immune system. The immune system, particularly T lymphocytes and cytokines, has been implicated in the progression of brain injury after intracerebral hemorrhage (ICH). Co-stimulatory molecules B7-1 (CD80)/B7-2 (CD86) binding cognate receptor provides a secondary signaling to T cell activation. The aim of our study was to explore the effects of anti-B7-1 antibody on the development and prognosis of cerebral hemorrhage and to investigate the possible underlying mechanism. Mice were inner canthus veniplex administered with anti-B7-1 antibody at 10 min and 24 h after ICH and sacrificed on the third day after ICH. Immune function was assessed via splenocyte proliferation assay and organism index, respectively. IFN-γ and IL-4 were detected by enzyme-linked immuno sorbent assay. The cerebral edema was evaluated via brain water content. The levels of autophagy and apoptosis related proteins were measured by western blotting analysis. In addition, functional outcome was studied with pole-climbing test and morris water maze. The mice were weighed on 0, 1, 3, 14 and 21 days after ICH. The treatment with anti-B7-1 antibody significantly lowered immune function, and reduced the latency of water maze on 18 and 20 days, the ratio of IFN-γ/IL-4 as well as body weight on day 3 after cerebral hemorrhage. Our study suggests that in the cerebral hemorrhage mice brain anti-B7-1 antibody may reduce long-range brain damage by reversing immune imbalance.
Collapse
Affiliation(s)
- Lu Ma
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Xi Shen
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Yuan Gao
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Qiong Wu
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Mengmeng Ji
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, No. 178, Ganjiang East Road, Soochow, 215123, China.
| |
Collapse
|
13
|
Wahab F, Shahab M, Behr R. The involvement of gonadotropin inhibitory hormone and kisspeptin in the metabolic regulation of reproduction. J Endocrinol 2015; 225:R49-66. [PMID: 25957191 DOI: 10.1530/joe-14-0688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction.
Collapse
Affiliation(s)
- F Wahab
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - M Shahab
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - R Behr
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Su D, Pasalich M, Binns CW, Lee AH. Is body size associated with ovarian cancer in southern Chinese women? Cancer Causes Control 2012; 23:1977-84. [PMID: 23065073 DOI: 10.1007/s10552-012-0075-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the association between risk of ovarian cancer and body size among southern Chinese women. METHODS A hospital-based case-control study was undertaken in Guangzhou, Guangdong Province, from 2006 to 2008. Participants were 500 incident ovarian cancer patients and 500 controls, with a mean age of 59 years. Information on adult height and weight was obtained via face-to-face interview using a structured questionnaire. Logistic regression analyses were performed to assess the association between anthropometric factors and the ovarian cancer risk. RESULTS Compared with women having body weight ≤50 kg and body mass index (BMI) <18.5 kg/m(2), the adjusted odds ratios (ORs) of ovarian cancer were 1.84 (95 % confidence interval (CI) 1.34-2.54) and 1.77 (95 % CI 1.04-3.02) in those women who had body weight >55 kg and BMI ≥23 kg/m(2), respectively. Significant dose-response relationships were also observed for both weight and BMI (p < 0.01). Body height was not significantly associated with ovarian cancer risk. CONCLUSION Body weight and BMI were associated with increased risk of ovarian cancer in southern Chinese women.
Collapse
Affiliation(s)
- Dada Su
- School of Public Health, Curtin University, GPO Box U 1987, Perth, WA, 6845, Australia
| | | | | | | |
Collapse
|
15
|
Guarner-Lans V, Rubio-Ruiz ME, Pérez-Torres I, Baños de MacCarthy G. Relation of aging and sex hormones to metabolic syndrome and cardiovascular disease. Exp Gerontol 2011; 46:517-23. [DOI: 10.1016/j.exger.2011.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 11/29/2022]
|
16
|
Childs GV, Akhter N, Haney A, Syed M, Odle A, Cozart M, Brodrick Z, Gaddy D, Suva LJ, Akel N, Crane C, Benes H, Charlesworth A, Luque R, Chua S, Kineman RD. The somatotrope as a metabolic sensor: deletion of leptin receptors causes obesity. Endocrinology 2011; 152:69-81. [PMID: 21084451 PMCID: PMC3033057 DOI: 10.1210/en.2010-0498] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/07/2010] [Indexed: 01/01/2023]
Abstract
Leptin, the product of the Lep gene, reports levels of adiposity to the hypothalamus and other regulatory cells, including pituitary somatotropes, which secrete GH. Leptin deficiency is associated with a decline in somatotrope numbers and function, suggesting that leptin may be important in their maintenance. This hypothesis was tested in a new animal model in which exon 17 of the leptin receptor (Lepr) protein was selectively deleted in somatotropes by Cre-loxP technology. Organ genotyping confirmed the recombination of the floxed LepR allele only in the pituitary. Deletion mutant mice showed a 72% reduction in pituitary cells bearing leptin receptor (LEPR)-b, a 43% reduction in LEPR proteins and a 60% reduction in percentages of immunopositive GH cells, which correlated with reduced serum GH. In mutants, LEPR expression by other pituitary cells was like that of normal animals. Leptin stimulated phosphorylated Signal transducer and activator of transcription 3 expression in somatotropes from normal animals but not from mutants. Pituitary weights, cell numbers, IGF-I, and the timing of puberty were not different from control values. Growth curves were normal during the first 3 months. Deletion mutant mice became approximately 30-46% heavier than controls with age, which was attributed to an increase in fat mass. Serum leptin levels were either normal in younger animals or reflected the level of obesity in older animals. The specific ablation of the Lepr exon 17 gene in somatotropes resulted in GH deficiency with a consequential reduction in lipolytic activity normally maintained by GH and increased adiposity.
Collapse
Affiliation(s)
- Gwen V Childs
- Professor and Chair, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Leitzmann MF, Koebnick C, Danforth KN, Brinton LA, Moore SC, Hollenbeck AR, Schatzkin A, Lacey JV. Body mass index and risk of ovarian cancer. Cancer 2009; 115:812-22. [PMID: 19127552 PMCID: PMC3507338 DOI: 10.1002/cncr.24086] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Convincing epidemiologic evidence links excess body mass to increased risks of endometrial and postmenopausal breast cancers, but the relation between body mass index (BMI) and ovarian cancer risk remains inconclusive. Potential similarities regarding a hormonal mechanism in the etiology of female cancers highlight the importance of investigating associations according to menopausal hormone therapy (MHT) use. However, to the authors' knowledge, data addressing whether the relation between BMI and ovarian cancer differs by MHT use are very sparse. METHODS The authors prospectively investigated the association between BMI and ovarian cancer among 94,525 US women who were followed between 1996 through 1997 to December 31, 2003. During 7 years of follow-up, 303 epithelial ovarian cancer cases were documented. RESULTS Compared with normal weight women (BMI of 18.5-24.9 kg/m(2)), the multivariate relative risk (MVRR) of ovarian cancer for obese women (BMI of >or=30 kg/m(2)) in the cohort as a whole was 1.26 (95% confidence interval [95% CI], 0.94-1.68). Among women who never used MHT, the MVRR for obese versus normal weight women was 1.83 (95% CI, 1.18-2.84). In contrast, no relation between BMI and ovarian cancer was apparent among women who ever used MHT (MVRR = 0.96; 95% CI, 0.65-1.43; P interaction = 0.02). Exploratory analyses also suggested a positive association between BMI and ovarian cancer among women without a family history of ovarian cancer (MVRR comparing obese vs normal weight women = 1.36; 95% CI, 1.00-1.86), but no relation with BMI was apparent among women with a positive family history of ovarian cancer (MVRR = 0.74; 95% CI, 0.34-1.62 [P interaction = .02]). CONCLUSIONS Based on the results of the current study, the authors suspect that obesity is associated with enhanced ovarian cancer risk through a hormonal mechanism.
Collapse
Affiliation(s)
- Michael F Leitzmann
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ambati S, Duan J, Choi YH, Hartzell DL, Della-Fera MA, Baile CA. ICV vs. VMH injection of leptin: Comparative effects on hypothalamic gene expression. Behav Brain Res 2009; 196:279-85. [DOI: 10.1016/j.bbr.2008.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022]
|
19
|
Mashburn KL, Atkinson S. Variability in leptin and adrenal response in juvenile Steller sea lions (Eumetopias jubatus) to adrenocorticotropic hormone (ACTH) in different seasons. Gen Comp Endocrinol 2008; 155:352-8. [PMID: 17888915 DOI: 10.1016/j.ygcen.2007.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/10/2007] [Accepted: 05/26/2007] [Indexed: 11/23/2022]
Abstract
Eight free-ranging juvenile Steller sea lions (SSL; 6 males, 2 females; 14-20 months) temporarily held under ambient conditions at the Alaska SeaLife Center were physiologically challenged through exogenous administration of adrenocorticotropic hormone (ACTH). Four individuals (3 males, 1 female) underwent ACTH challenge in each of two seasons, summer and winter. Following ACTH injection serial blood and fecal samples were collected for up to 3 and 96 h, respectively. A radioimmunoassay (RIA) was validated for leptin, and using a previously validated RIA for cortisol, collected sera were analyzed for both cortisol and leptin. ACTH injection resulted in a 2.9-fold increase (P=0.164) in leptin which preceded a 3.2-fold increase (P=0.0290) in cortisol by 105 min in summer. In winter, a 1.7-fold increase in leptin (P=0.020) preceded a 2.1-fold increase (P=0.001) in serum cortisol by 45 min. Mean fecal corticosteroid maxima were 10.4 and 16.7-fold above baseline 28 and 12 h post-injection and returned to baseline 52 and 32 h post-injection, in summer and winter, respectively. Data indicate acute activity in juvenile adrenal glands is detectable in feces approximately 12-24 h post-stimulus in either season, with a duration of approximately 40 h in summer and 20 h in winter. Changes in serum cortisol proved statistically significant both seasons and elevated concentrations were detected by 30 min post-stimulus (baseline 64.8+/-4.2; peak 209.5+/-18.3 ng/ml: summer; baseline 87.0+/-15.7; peak 237.6+/-10.0 ng/ml: winter), whereas the changes that occurred in serum leptin proved to be significant only in winter (baseline 6.4+/-0.6; peak 18.7+/-7.0 ng/ml: summer; baseline 4.2+/-0.5; peak 7.5+/-0.6 ng/ml: winter). Changes in fecal corticosteroids proved significant only in summer (baseline 117.8+/-36.7; peak 1219.3+/-298.4 ng/g, P=0.038: summer; baseline 71.8+/-13.7; peak 1198.6+/-369.9 ng/g, P=0.053: winter) due to a high degree of individual variability in winter months. The data indicate that ACTH stimulates leptin production earlier than cortisol in both summer and winter, and that while the leptin response appears most variable in summer, fecal corticosteroids are most variable in winter.
Collapse
Affiliation(s)
- Kendall L Mashburn
- University of Alaska, Fairbanks and Alaska SeaLife Center, P.O. Box 1329, 301 Railway Avenue, Seward, AK 99664, USA.
| | | |
Collapse
|
20
|
Abstract
Intra-abdominal fat mass, or central adiposity, and cardiovascular risk are strongly correlated. Adipose tissue is an endocrine organ that secretes hormones and cytokines influencing appetite, energy metabolism, and atherosclerosis. National Heart, Lung, and Blood Institute (NHLBI) guidelines recommend that if dietary and lifestyle interventions fail to produce favorable outcomes in individuals with a body mass index >27 and weight-related comorbidities, as well as those with a body mass index >30, treatment plans may include weight loss medication. The endocannabinoid system has recently emerged as a viable target for the pharmacologic treatment of obesity and cardiometabolic risk factors. This article provides an in-depth review of efficacy results from clinical trials of rimonabant, a selective cannabinoid-1 receptor. (Recently, an FDA Advisory Committee recommended a delay in the approval of rimonabant because of safety issues that need to be addressed in further studies.) Compared with placebo, rimonabant 20 mg significantly decreased body weight and waist circumference measurements. In addition, rimonabant was associated with favorable changes in several other cardiometabolic risk factors, including significant increases in serum levels of high-density lipoprotein cholesterol and adiponectin, as well as reductions in serum levels of triglycerides, small, dense low-density lipoprotein particles, C-reactive protein, insulin resistance, and glycosylated hemoglobin.
Collapse
|
21
|
Malendowicz LK, Rucinski M, Belloni AS, Ziolkowska A, Nussdorfer GG. Leptin and the regulation of the hypothalamic-pituitary-adrenal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:63-102. [PMID: 17725965 DOI: 10.1016/s0074-7696(07)63002-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leptin, the product of the obesity gene (ob) predominantly secreted from adipocytes, plays a major role in the negative control of feeding and acts via a specific receptor (Ob-R), six isoforms of which are known at present. Evidence has been accumulated that leptin, like other peptides involved in the central regulation of food intake, controls the function of the hypothalamic-pituitary-adrenal (HPA) axis, acting on both its central and peripheral branches. Leptin, along with Ob-R, is expressed in the hypothalamus and pituitary gland, where it modulates corticotropin-releasing hormone and ACTH secretion, probably acting in an autocrine-paracrine manner. Only Ob-R is expressed in the adrenal gland, thereby making it likely that leptin affects it by acting as a circulating hormone. Although in vitro and in vivo findings could suggest a glucocorticoid secretagogue action in the rat, the bulk of evidence indicates that leptin inhibits steroid-hormone secretion from the adrenal cortex. In keeping with this, leptin was found to dampen the HPA axis response to many kinds of stress. In contrast, leptin enhances catecolamine release from the adrenal medulla. This observation suggests that leptin activates the sympathoadrenal axis and does not appear to agree with its above-mentioned antistress action. Leptin and/or Ob-R are also expressed in pituitary and adrenal tumors, but little is known about the role of this cytokine in the pathophysiology.
Collapse
Affiliation(s)
- Ludwik K Malendowicz
- Department of Histology and Embryology, School of Medicine, Karol Marcinkowski University of Medical Sciences, PL-60781 Poznan, Poland
| | | | | | | | | |
Collapse
|
22
|
Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 2007; 8:21-34. [PMID: 17212793 DOI: 10.1111/j.1467-789x.2006.00270.x] [Citation(s) in RCA: 819] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leptin and ghrelin are two hormones that have been recognized to have a major influence on energy balance. Leptin is a mediator of long-term regulation of energy balance, suppressing food intake and thereby inducing weight loss. Ghrelin on the other hand is a fast-acting hormone, seemingly playing a role in meal initiation. As a growing number of people suffer from obesity, understanding the mechanisms by which various hormones and neurotransmitters have influence on energy balance has been a subject of intensive research. In obese subjects the circulating level of the anorexigenic hormone leptin is increased, whereas surprisingly, the level of the orexigenic hormone ghrelin is decreased. It is now established that obese patients are leptin-resistant. However, the manner in which both the leptin and ghrelin systems contribute to the development or maintenance of obesity is as yet not clear. The purpose of this review is to provide background information on the leptin and ghrelin hormones, their role in food intake and body weight in humans, and their mechanism of action. Possible abnormalities in the leptin and ghrelin systems that may contribute to the development of obesity will be mentioned. In addition, the potentials of leptin and ghrelin as drug targets will be discussed. Finally, the influence of the diet on leptin and ghrelin secretion and functioning will be described.
Collapse
Affiliation(s)
- M D Klok
- Department of Endocrinology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
23
|
Jackson VR, Lin SH, Wang Z, Nothacker HP, Civelli O. A study of the rat neuropeptide B/neuropeptide W system using in situ techniques. J Comp Neurol 2006; 497:367-83. [PMID: 16736466 DOI: 10.1002/cne.20989] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the rat, the neuropeptide B/neuropeptide W (NPB/NPW) system is composed of two ligands, neuropeptide B (NPB) and neuropeptide W (NPW), and one receptor, GPR7. Although preliminary analyses show roles in feeding, hormone secretion, and analgesia, the lack of a detailed anatomical map impairs our understanding of the NPB/NPW system. We demonstrate in this report the expression patterns of GPR7, NPB, and NPW precursor messenger ribonucleic acid (mRNA) in the rat brain by using in situ hybridization and in situ binding experiments. The amygdala expresses the highest levels of GPR7 mRNA and binding signals. Other nuclei with high levels of expression and binding are the suprachiasmatic and the ventral tuberomamillary nuclei. Moderate levels are seen in the dorsal endopiriform, dorsal tenia tecta, bed nucleus, and the red nucleus. Low levels are in the olfactory bulb, parastrial nucleus, hypothalamus, laterodorsal tegmentum, superior colliculus, locus coeruleus, and the nucleus of the solitary tract. Although the NPB precursor is mostly expressed at low levels in the brain, moderate expression is seen in anterior olfactory nucleus, piriform cortex, median preoptic nucleus, basolateral amygdala, hippocampus, medial tuberal nucleus, substantia nigra, dorsal raphe nucleus, Edinger-Westphal nucleus, and the locus coeruleus. To our surprise, the expression of NPW precursor was not detected. Our study greatly expands the preliminary in situ data previously reported. With this map of the NPB/NPW system in the rat brain, a better understanding of the functional implications of the system in various behavioral paradigms is now possible.
Collapse
Affiliation(s)
- Valerie R Jackson
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697-4625, USA
| | | | | | | | | |
Collapse
|
24
|
Rossing MA, Tang MTC, Flagg EW, Weiss LK, Wicklund KG, Weiss NS. Body Size and Risk of Epithelial Ovarian Cancer (United States). Cancer Causes Control 2006; 17:713-20. [PMID: 16633919 DOI: 10.1007/s10552-006-0010-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 01/12/2006] [Indexed: 01/06/2023]
Abstract
OBJECTIVE We conducted a population-based case-control study of epithelial ovarian cancer in relation to measures of body size and adult weight change. In particular, we sought to characterize the independent relation of body weight at particular ages with risk. METHODS In-person interviews were sought with 35-54 year-old female residents of metropolitan Atlanta, Seattle or Detroit diagnosed with ovarian cancer during 1994-1998, and with controls sampled from these populations. Information provided by 355 cases and 1,637 controls was analyzed using unconditional logistic regression. RESULTS The risk among women in the top tenth, relative to women in the lowest fourth, of the distribution of body weight at age 18 years was 1.5 (95% confidence interval, 1.0-2.2); at age 30, 1.9 (1.2-2.9); and 5 years before the reference date, it was 2.1 (1.4-3.3). While our results did not substantiate risk elevations reported in previous studies among subsets of women (e.g., with particular histologic tumor subtypes or according to past oral contraceptive use), we noted a particularly increased risk among women who reported 10 or more pounds gained during their first year of oral contraceptive use. CONCLUSIONS Our findings suggest that risk of epithelial ovarian cancer may be most closely linked with body weight in the relatively recent past (but before the time in which the disease may manifest as weight loss) among women who develop this disease during the years before or shortly after menopause.
Collapse
Affiliation(s)
- Mary Anne Rossing
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, P.O. Box 19024, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Clark KA, MohanKumar SMJ, Kasturi BS, MohanKumar PS. Effects of central and systemic administration of leptin on neurotransmitter concentrations in specific areas of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 290:R306-12. [PMID: 16210420 DOI: 10.1152/ajpregu.00350.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin, a hormone produced by adipocytes, has been shown to affect a number of central functions, such as regulation of the hypothalamo-pituitary-adrenal axis, feeding, and body weight regulation. Because hypothalamic monoamines are intricately involved in the regulation of these functions, we hypothesized that leptin may produce its effects by altering the activity of these neurotransmitters. To test this hypothesis, male rats received peripheral (0, 100, or 500 μg ip), or central (0 or 5 μg icv) injections of leptin. The animals were killed 5 h later, and their brains were removed, frozen, and sectioned. Serum was collected to measure leptin and corticosterone by RIA. The paraventricular nucleus (PVN), arcuate nucleus (AN), ventromedial hypothalamus (VMH), dorsomedial dorsal nucleus (DMD), median eminence (ME), and medial preoptic area (MPA) were obtained using Palkovits' microdissection technique, and monoamine concentrations in these areas were determined using HPLC-EC. Intraperitoneal administration of leptin increased serum leptin concentrations in a dose-dependent manner ( P < 0.05). Both intraperitoneal and intracerebroventricular administration of leptin decreased serum corticosterone significantly ( P < 0.05). Norepinephrine (NE) concentration decreased significantly in the PVN, AN, and VMH after both intraperitoneal and intracerebroventricular administration of leptin ( P < 0.05). NE concentrations decreased significantly in the DMN after intracerebroventricular administration of leptin ( P < 0.05). Leptin treatment (both ip and icv) decreased dopamine concentrations significantly in the PVN. Serotonin (5-HT) concentration decreased significantly in the PVN after both intraperitoneal and intracerebroventricular injections of leptin and decreased in the VMH only with intracerebroventricular treatment of leptin. Leptin did not affect any of the monoamines in the ME and MPA. These results indicate that both central and systemic administration of leptin can affect hypothalamic monoamines in a region-specific manner, which, in turn, could mediate many of leptin's central and neuroendocrine effects.
Collapse
Affiliation(s)
- Kimberly A Clark
- Neuroscience Program, College of Veterinary Medicine, Michigan State University, MI 48824, USA
| | | | | | | |
Collapse
|
26
|
Masuyama T, Katsuda Y, Shinohara M. A novel model of obesity-related diabetes: introgression of the Lepr(fa) allele of the Zucker fatty rat into nonobese Spontaneously Diabetic Torii (SDT) rats. Exp Anim 2005; 54:13-20. [PMID: 15725677 DOI: 10.1538/expanim.54.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
An fa allele of the leptin receptor gene (Lepr(fa)) of the Zucker fatty rat was introduced into the genome of the Spontaneously Diabetic Torii (SDT) rat, an inbred model of nonobese type 2 diabetes mellitus, through the 'Speed congenic method'. The newly established congenic strain of a SDT rat for Lepr(fa) was maintained by intercrossing between fa-heterozygous littermates, and the phenotypes related to obesity and diabetes were investigated till 32 wks of age. SDT fa/fa rats of both sexes exhibited obesity, adiposity and insulin resistance associated with hyperphagia from the loss of leptin action. Interestingly, they developed diabetes from 5 wks of age in males and 8 wks in females with the incidences reaching 100% at 16 wks in males and 73% at 32 wks in females. In contrast, heterozygous (+/fa) and wild-type (+/+) rats developed spontaneous nonobese diabetes in males from approximately 20 wks, but not in females, as with the original SDT rats. These results indicate that the fa gene accelerates the onset of diabetes in SDT rats by making adiposity and/or insulin resistance as potent risk factors for development of their diabetes. The SDT.Lepr(fa) congenic rat strain is expected to be a novel model of obesity-related diabetes and could be a useful tool for studies of the genetic backgrounds of diabetes in response to fa-induced obesity.
Collapse
Affiliation(s)
- Taku Masuyama
- Toxicology Research Laboratories, Central Pharmaceutical Institute, JAPAN TOBACCO Inc., Kanagawa, Japan
| | | | | |
Collapse
|
27
|
Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA. Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology 2004; 145:4103-12. [PMID: 15166121 DOI: 10.1210/en.2003-1767] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many factors regulate nervous system development, including complex cross-talk between local neuroendocrine systems. The adipocyte-secreted hormone leptin, mainly known for its key roles in nutrition and reproductive balance, may also be involved in neuroanatomical organization, myelination processes, and neuronal/glia maturation. SK-N-SH-SY5Y neuroblastoma cells were employed as an in vitro model of human neuronal cells to determine whether leptin exerts neuroprotective activities. We show that SH-SY5Y cells express leptin, the long and short isoforms of the leptin receptor (ObRl, ObRs). In SH-SY5Y cells, leptin induced signal transducer and activator of transcription (STAT)-3 phosphorylation and suppressor of cytokine signaling-3 mRNA expression. Leptin dose-dependently increased cell number (up to 200% at 1 microm by 48 h, P < 0.01), and at 24-48 h, leptin at 100 nm increased SH-SY5Y cell number by 30-50%, respectively. SH-SY5Y cell viability was reduced in serum-free conditions at 24 h, and addition of leptin at 100 nm significantly reduced apoptosis by approximately 20% (P < 0.001). Leptin's antiapoptotic activity required Janus kinase/STAT, MAPK, and phosphatidylinositol-3-kinase activation because the antiapoptotic effects of leptin were abolished, and caspase-3 immunoreactivity increased in the presence of the specific blockers AG490, U0126, or LY294002. Gene array demonstrated that leptin inhibits apoptosis via potent down-regulation of caspase-10 and TNF-related apoptosis-inducing ligand. Our data thus demonstrate, for the first time, that leptin stimulates, in a time- and dose-dependent manner, neuroblastoma cell proliferation and that the underlying mechanisms involve suppression of apoptosis via the Janus kinase-STAT, phosphatidylinositol-3 kinase, and MAPK pathways that culminate altogether in the down-regulation of the apoptotic factors caspase-10 and TNF-related apoptosis-inducing ligand.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Childrens Research Institute, Parkville 3052, Victoria, Australia.
| | | | | | | | | |
Collapse
|
28
|
Bastarrachea RA, Cole SA, Comuzzie AG. Genómica de la regulación del peso corporal: mecanismos moleculares que predisponen a la obesidad. Med Clin (Barc) 2004; 123:104-17. [PMID: 15225477 DOI: 10.1016/s0025-7753(04)74427-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity has become a worldwide public health problem which affects millions of people. Substantial progress has been made in elucidating the pathogenesis of energy homeostasis over the past few years. The fact that obesity is under strong genetic control has been well established. Twin, adoption and family studies have shown that genetic factors play a significant role in the pathogenesis of obesity. Human monogenic obesity is rare in large populations. The most common form of obesity is considered to be a polygenic disorder. New treatments are currently required for this common metabolic disease and type 2 diabetes. The identification of physiological and biochemical factors that underlie the metabolic disturbances observed in obesity is a key step in developing better therapeutic outcomes. The discovery of new genes and pathways involved in the pathogenesis of such a disease is critical to this process. However, identification of genes that contribute to the risk of developing the disease represents a significant challenge since obesity is a complex disease with many genetic and environmental causes. A number of diverse approaches have been used to discover and validate potential new genes for obesity. To date, DNA-based approaches using candidate genes and genome-wide linkage analysis have not had a great success in identifying genomic regions or genes involved in the development of these diseases. Recent advances in the ability to evaluate linkage analysis data from large family pedigrees (using variance components-based linkage analysis) show great promise in robustly identifying genomic regions associated with the development of obesity. Studying rare mutations in humans and animal models has provided fundamental insight into a complex physiological process, and has complemented population-based studies that seek to reveal primary causes. Remarkable progress has been made in both fronts and the pace of advance is likely to accelerate as functional genomics and the human genome project expand and mature. Approaches based on Mendelian and quantitative genetics may well converge, and ultimately lead to more rational and selective therapies.
Collapse
Affiliation(s)
- Raúl A Bastarrachea
- Department of Genetics, Auxology and Metabolism Working Group, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA.
| | | | | |
Collapse
|
29
|
Han Z, Yan JQ, Luo GG, Liu Y, Wang YL. Leptin receptor expression in the basolateral nucleus of amygdala of conditioned taste aversion rats. World J Gastroenterol 2003; 9:1034-7. [PMID: 12717851 PMCID: PMC4611367 DOI: 10.3748/wjg.v9.i5.1034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To determine whether serum leptin level and the leptin receptor (OB-R) expression in the basolateral amygdala (BLA) change following conditioned taste aversion (CTA) formation.
METHODS: The serum leptin concentration was measured by rat leptin RIA kit, long and short forms of leptin receptor (OB-Rb and OB-Ra) mRNA in the brain sections were examined by in situ hybridization (ISH) and the expression of OB-R was assessed by immunohistochemistry ABC method with a highly specific goat anti-OB-R antibody.
RESULTS: The level of serum leptin didn’t show significant difference between CTA and control group. Comparing with the control group, the CTA group had an increase on count of OB-R immunohistochemistry positive-stained cells in the BLA (127 ± 12 vs 48 ± 9 per 1 mm2). The OB-Rb mRNA expression level enhanced by 11.9% in the BLA, while OB-Ra mRNA level increased by 7.4% on the choroid plexus in CTA group. So BLA was supposed to be a region where interactions between gustatory and vagal signals take place.
CONCLUSION: BLA is one of the sites, which are responsible for CTA formation in the brain. Leptin and OB-R maybe involved in neuronal communication for CTA. So leptin and its receptors probably take part in CTA and integration of autonomic and extroceptive information.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physiology, Xi'an Jiaotong University School of Medicine, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
30
|
Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SMJ, MohanKumar PS. Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 2003; 964:128-35. [PMID: 12573521 DOI: 10.1016/s0006-8993(02)04091-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is characterized by hyperphagia, polydypsia and activation of the HPA axis. However, the mechanisms by which diabetes produces these effects are not clear. This study was conducted to examine the effects of diabetes on the neuroendocrine system and to see if treatment with insulin and/or leptin is capable of reversing these effects. Streptozotocin-induced diabetic adult male rats were subjected to the following treatments: vehicle, insulin (2 U/day, s.c.), leptin (100 microg/kg BW) or leptin+insulin every day for 2 weeks. Food intake, water intake, and body weight were monitored daily. We measured changes in monoamine concentrations in discrete nuclei of the hypothalamus at the end of treatment. Diabetes produced a marked increase in food intake and water intake and this effect was completely reversed by insulin treatment and partially reversed by leptin treatment (P<0.05). Diabetes caused an increase in norepinephrine (NE) concentrations in the paraventricular nucleus with a concurrent increase in serum corticosterone. Treatment with insulin and leptin completely reversed these effects. Induction of diabetes also increased the concentrations of NE, dopamine and serotonin in the arcuate nucleus and NE concentrations in the lateral hypothalamus, ventromedial hypothalamus (VMH) and suprachiasmatic nucleus (P<0.05). Although insulin treatment was capable of reversing all these changes, leptin treatment was unable to decrease diabetes-induced increase in NE concentrations in the VMH. These data provide evidence that hypothalamic monoamines could mediate the neuroendocrine effects of diabetes and that insulin and leptin act as important signals in this process.
Collapse
Affiliation(s)
- Matthew Barber
- Neuroendocrine Research Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|