1
|
Altaf S, Zeeshan M, Ali H, Zeb A, Afzal I, Imran A, Mazhar D, Khan S, Shah FA. pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Eur J Pharm Biopharm 2024; 204:114461. [PMID: 39306199 DOI: 10.1016/j.ejpb.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 10/27/2024]
Abstract
Inflammatory Bowel Disease is the chronic tissue inflammation of the lower part of the Gastrointestinal tract (GIT). Conventional therapeutic approaches face numerous challenges, often making the delivery system inadequate for treating the disease. This study aimed to integrate a pH-sensitive polymer and nanostructured lipid carriers (NLCs) to develop a hybrid nanocarrier system. Tacrolimus-loaded NLCs coated with Eudragit® FS100 (TAC-NLCs/E FS100) nanoparticles were prepared via double emulsion technique followed by an aqueous enteric coating technique. Various parameters, such as particle size, entrapment efficiency, and zeta potential were optimized using Design Expert software®. Cetyltrimethyl ammonium bromide (CTAB) was used as a cationic surfactant which induces a positive charge on the nanoparticles. These cationic NLCs can adhere to the mucosal surface, thereby enabling prolonged retention. In vitro drug release was assessed, and the results demonstrated that drug release was retarded at pH 1.2 corresponding to upper GIT pH and maximum drug was released at pH 7.4 (colonic pH). Moreover, we evaluated TAC-NLCs/E FS100 nanoparticles in murine colitis models to gauge the efficacy of both coated and uncoated NLCs formulation. The TAC-NLCs/E FS100 showed a pronounced reduction in induced colitis, as evident from the restoration of morphological features, improved histopathological scores, antioxidant levels, and decreased the levels of proinflammatory cytokines. Thus, pH-sensitive TAC-NLCs/EFS 100 are attributed to the enhanced localization and targeted delivery at the specific site.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan; Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Ahmed Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Ayesha Imran
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology of Pharmacy, Prince Sattam Bin Abdul Aziz University Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
3
|
Joshi IV, Chan EC, Lack JB, Liu C, Druey KM. RGS4 controls airway hyperresponsiveness through GAP-independent mechanisms. J Biol Chem 2024; 300:107127. [PMID: 38432633 PMCID: PMC11065749 DOI: 10.1016/j.jbc.2024.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.
Collapse
Affiliation(s)
- Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, Maryland, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Kulebyakina M, Basalova N, Butuzova D, Arbatsky M, Chechekhin V, Kalinina N, Tyurin-Kuzmin P, Kulebyakin K, Klychnikov O, Efimenko A. Balance between Pro- and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int J Mol Sci 2023; 25:290. [PMID: 38203461 PMCID: PMC10779358 DOI: 10.3390/ijms25010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-β, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Daria Butuzova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Mikhail Arbatsky
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Oleg Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, 1-12, Leninskie Gory, Lomonosovskiy Av., 119991 Moscow, Russia;
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| |
Collapse
|
5
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2023:10.1007/s12033-023-00919-4. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
6
|
Wajda A, Bogucka D, Stypińska B, Radkowski MJ, Targowski T, Dudek E, Kmiołek T, Modzelewska E, Paradowska-Gorycka A. Expression of Prostaglandin Genes and β-Catenin in Whole Blood as Potential Markers of Muscle Degeneration. Int J Mol Sci 2023; 24:12885. [PMID: 37629065 PMCID: PMC10454559 DOI: 10.3390/ijms241612885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Prostaglandin signaling pathways are closely related to inflammation, but also muscle regeneration and processes associated with frailty and sarcopenia, whereas β-catenin (CTNNB1 gene) as a part of Wnt signaling is also involved in the differentiation of muscle cells and fibrosis. The present study analyzed the association between selected prostaglandin pathway genes and clinical parameters in patients with sarcopenia and frailty syndrome. The present study was conducted on patients with sarcopenia, frailty syndrome, and control older patients (N = 25). Additionally, two healthy controls at the age of 25-30 years (N = 51) and above 50 years old (N = 42) were included. The expression of the PTRGER4, PTGES2 (COX2), PTGS2, and CTNNB1 genes in whole blood was checked by the qPCR method. The serum cytokine levels (IL-10, TNFα, IFN-y, IL-1α, IL-1β) in patients and controls were checked by the Q-Plex Human Cytokine Panel. The results showed a significant effect of age on PTGER4 gene expression (p = 0.01). A negative trend between the appendicular skeletal muscle mass parameter (ASSM) and the expression of PTGER4 has been noted (r = -0.224, p = 0.484). PTGES2 and PTGS2 expressions negatively correlated with creatine phosphokinase (r = -0.71, p = 0.009; r = -0.58, p = 0.047) and positively with the functional mobility test timed up and go scale (TUG) (r = 0.61, p = 0.04; r = 0.63, p = 0.032). In the older control group, a negative association between iron levels and the expression of PTGS2 (r = -0.47, p = 0.017) was observed. A similar tendency was noted in patients with sarcopenia (r = -0.112, p = 0.729). A negative trend between appendicular skeletal muscle mass (ASMM) and PTGER4 seems to confirm the impairment of muscle regeneration associated with sarcopenia. The expression of the studied genes revealed a trend in associations with the clinical picture of muscular dystrophy and weakening patients. Perhaps PTGS2 and PTGES2 is in opposition to the role of the PTGER4 receptor in muscle physiology. Nevertheless, further, including functional studies is needed.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Diana Bogucka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Marcin Jerzy Radkowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Ewa Dudek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Ewa Modzelewska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| |
Collapse
|
7
|
Turkseven S, Turato C, Villano G, Ruvoletto M, Guido M, Bolognesi M, Pontisso P, Di Pascoli M. Low-Dose Acetylsalicylic Acid and Mitochondria-Targeted Antioxidant Mitoquinone Attenuate Non-Alcoholic Steatohepatitis in Mice. Antioxidants (Basel) 2023; 12:antiox12040971. [PMID: 37107346 PMCID: PMC10135482 DOI: 10.3390/antiox12040971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. NAFLD can evolve from simple fatty liver to non-alcoholic steatohepatitis (NASH), and ultimately, to cirrhosis. Inflammation and oxidative stress, promoted by mitochondrial dysfunction, play a crucial role in the onset and development of NASH. To date, no therapy has been approved for NAFLD and NASH. The aim of this study is to evaluate if the anti-inflammatory activity of acetylsalicylic acid (ASA) and the mitochondria-targeted antioxidant effect of mitoquinone could hinder the progression of non-alcoholic steatohepatitis. In mice, fatty liver was induced through the administration of a deficient in methionine and choline and rich in fat diet. Two experimental groups were treated orally with ASA or mitoquinone. Histopathologic evaluation of steatosis and inflammation was performed; the hepatic expression of genes associated with inflammation, oxidative stress, and fibrosis was evaluated; the protein expression of IL-10, cyclooxygenase 2, superoxide dismutase 1, and glutathione peroxidase 1 in the liver was analyzed; a quantitative analysis of 15-epi-lipoxin A4 in liver homogenates was performed. Mitoquinone and ASA significantly reduced liver steatosis and inflammation by decreasing the expression of TNFα, IL-6, Serpinb3, and cyclooxygenase 1 and 2 and restoring the anti-inflammatory IL-10. Treatment with mitoquinone and ASA increased the gene and protein expression of antioxidants, i.e., catalase, superoxide dismutase 1, and glutathione peroxidase 1, and decreased the expression of profibrogenic genes. ASA normalized the levels of 15-epi-Lipoxin A4. In mice fed with a deficient in methionine and choline and rich in fat diet, mitoquinone and ASA reduce steatosis and necroinflammation and may represent two effective novel strategies for the treatment of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Saadet Turkseven
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine-DIMED, University of Padova, 35100 Padova, Italy
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padova, 35128 Padova, Italy
| | - Mariagrazia Ruvoletto
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine-DIMED, University of Padova, 35100 Padova, Italy
| | - Maria Guido
- Pathology ULSS2, Department of Medicine-DIMED, University of Padova, 31100 Treviso, Italy
| | - Massimo Bolognesi
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine-DIMED, University of Padova, 35100 Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine-DIMED, University of Padova, 35100 Padova, Italy
| | - Marco Di Pascoli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine-DIMED, University of Padova, 35100 Padova, Italy
| |
Collapse
|
8
|
Zeeshan M, Ain QU, Sunny A, Raza F, Mohsin M, Khan S, Weigmann B, Ali H. QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing. Biomater Sci 2023; 11:1373-1397. [PMID: 36594554 DOI: 10.1039/d2bm01719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) via the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells. Nanocarriers were produced using a modified emulsion-evaporation method with a protein adsorption technique. The QbD-risk assessment method was adopted to screen the variables impacting the quality of nanocarriers, which were then optimized using the 33 Box-Behnken design of experiment (DOE). The obtained nanocarriers have the desired physicochemical properties, drug entrapment, tfr adsorption, stability, mucoadhesion, and sustained drug release pattern at pH 7.4 (colon pH). In vitro cell-based studies confirmed the cellular biocompatibility and considerable uptake of nanocarriers by colon and macrophage cells; the uptake was diminished by anti-CD71/TFR1 antibodies. Tofa-P/tfr NCs demonstrated good colon targeting potential in the dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model. In vivo therapeutic efficacy against UC was established through restored morphological and histopathological scores, vascular integrity, antioxidant levels, hematological parameters, pro-inflammatory cytokine/marker levels, and microbial indices. Tofa-P/tfr NCs shut down the elevated STAT-1 and TFR-1 levels, demonstrating the enhanced efficacy of the encapsulated drug. Thus, the QbD-driven approach successfully developed Tofa-P/tfr NCs with good potential to mitigate mucosal inflammation by targeting colon and macrophage surface receptors.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan. .,Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
| | - Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Ahad Sunny
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Mohsin
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
9
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
10
|
dos Santos Pereira M, do Nascimento GC, Bortolanza M, Michel PP, Raisman-Vozari R, Del Bel E. Doxycycline attenuates l-DOPA-induced dyskinesia through an anti-inflammatory effect in a hemiparkinsonian mouse model. Front Pharmacol 2022; 13:1045465. [PMID: 36506543 PMCID: PMC9728610 DOI: 10.3389/fphar.2022.1045465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
The pharmacological manipulation of neuroinflammation appears to be a promising strategy to alleviate l-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Doxycycline (Doxy), a semisynthetic brain-penetrant tetracycline antibiotic having interesting anti-inflammatory properties, we addressed the possibility that this compound could resolve LID in l-DOPA-treated C57BL/6 mice presenting either moderate or intermediate lesions of the mesostriatal dopaminergic pathway generated by intrastriatal injections of 6-OHDA. Doxy, when given subcutaneously before l-DOPA at doses of 20 mg kg-1 and 40 mg kg-1, led to significant LID reduction in mice with moderate and intermediate dopaminergic lesions, respectively. Importantly, Doxy did not reduce locomotor activity improved by l-DOPA. To address the molecular mechanism of Doxy, we sacrificed mice with mild lesions 1) to perform the immunodetection of tyrosine hydroxylase (TH) and Fos-B and 2) to evaluate a panel of inflammation markers in the striatum, such as cyclooxygenase-2 and its downstream product Prostaglandin E2 along with the cytokines TNF-α, IL-1β and IL-6. TH-immunodetection revealed that vehicle and Doxy-treated mice had similar striatal lesions, excluding that LID improvement by Doxy could result from neurorestorative effects. Importantly, LID inhibition by Doxy was associated with decreased Fos-B and COX-2 expression and reduced levels of PGE2, TNF-α, and IL-1β in the dorsolateral striatum of dyskinetic mice. We conclude 1) that Doxy has the potential to prevent LID regardless of the intensity of dopaminergic lesioning and 2) that the anti-inflammatory effects of Doxy probably account for LID attenuation. Overall, the present results further indicate that Doxy might represent an attractive and alternative treatment for LID in PD.
Collapse
Affiliation(s)
| | | | - Mariza Bortolanza
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Phenolic Metabolites from a Deep-Sea-Derived Fungus Aspergillus puniceus A2 and Their Nrf2-Dependent Anti-Inflammatory Effects. Mar Drugs 2022; 20:md20090575. [PMID: 36135764 PMCID: PMC9505415 DOI: 10.3390/md20090575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Four undescribed phenolic compounds, namely asperpropanols A–D (1–4), along with two known congeners 5 and 6, were isolated from Aspergillus puniceus A2, a deep-sea-derived fungus. The gross structures of the compounds were established by detailed analyses of the HRESIMS and NMR data, and their absolute configurations were resolved by modified Mosher’s method and calculations of ECD data. Compounds 1–6 were found to have excellent anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW264.7 cells at 20 μM, evidenced by the reduced nitric oxide (NO), tumor necrosis factor α, and interleukin 6 production. Among them, 5 and 6 showed inhibitory effects on NO production comparable with the positive control (BAY11-7083 at 10 μM). Additionally, the LPS-induced mRNA expressions of inducible nitric oxide synthase and cyclooxygenase-2 were also decreased. Interestingly, mRNA expression of nuclear factor erythroid 2–related factor 2 (Nrf2) was downregulated by LPS and recovered by 1–6, suggesting a vital role of Nrf2 in their effect. We further found that pharmacological inhibition of Nrf2 by ML385 largely abrogated the effects of 1–6 on RAW264.7 cells. Therefore, 1–6 may share a common anti-inflammatory mechanism via Nrf2 upregulation and activation.
Collapse
|
12
|
Unveiling the m6A Methylation Regulator Links between Prostate Cancer and Periodontitis by Transcriptomic Analysis. DISEASE MARKERS 2022; 2022:4030046. [PMID: 36133437 PMCID: PMC9484949 DOI: 10.1155/2022/4030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Objective To identify the N6-methyladenosine (m6A) methylation regulator genes linking prostate adenocarcinoma (PRAD) and periodontitis (PD). Materials and Methods PD and TCGA-PRAD GEO datasets were downloaded and analyzed through differential expression analysis to determine the differentially expressed genes (DEGs) deregulated in both conditions. Twenty-three m6A RNA methylation-related genes were downloaded in total. The m6A-related genes that overlapped between PRAD and PD were identified as crosstalk genes. Survival analysis was performed on these genes to determine their prognostic values in the overall survival outcomes of prostate cancer. The KEGG pathways were the most significantly enriched by m6A-related crosstalk genes. We also performed lasso regression analysis and univariate survival analysis to identify the most important m6A-related crosstalk genes, and a protein-protein interaction (PPI) network was built from these genes. Results Twenty-three m6A methylation-related regulator genes were differentially expressed and deregulated in PRAD and PD. Among these, seven (i.e., ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as m6A-related cross-talk genes. Survival analysis showed that only the FMR1 gene was a prognostic indicator for PRAD. All other genes had no significant influence on the overall survival of patients with PRAD. Lasso regression analysis and univariate survival analysis identified four m6A-related cross-talk genes (i.e., ALKBH5, IGFBP3, RBM15B, and FMR1) that influenced risk levels. A PPI network was constructed from these genes, and 183 genes from this network were significantly enriched in pathogenic Escherichia coli infection, p53 signaling pathway, nucleocytoplasmic transport, and ubiquitin-mediated proteolysis. Conclusion Seven m6A methylation-related genes (ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as cross-talk genes between prostate cancer and PD.
Collapse
|
13
|
Saghi H, Mirzavi F, Afshari AR, Jalili-Nik M, Mashkani B, Soukhtanloo M. Bee venom induces anti-tumor effects in HT-29 colon cancer cells through regulation of cell proliferation and apoptosis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Gargano G, Oliva F, Oliviero A, Maffulli N. Small interfering RNAs in the management of human rheumatoid arthritis. Br Med Bull 2022; 142:34-43. [PMID: 35488320 PMCID: PMC9351475 DOI: 10.1093/bmb/ldac012] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) has unclear pathogenesis, but the molecules that feed its inflammatory state are known. Small interfering RNAs (siRNAs) are useful to identify molecular targets and evaluate the efficacy of specific drugs, and can themselves be used for therapeutic purposes. SOURCES OF DATA A systematic search of different databases to March 2022 was performed to define the role of siRNAs in RA therapy. Twenty suitable studies were identified. AREAS OF AGREEMENT Small interfering RNAs can be useful in the study of inflammatory processes in RA, and identify possible therapeutic targets and drug therapies. AREAS OF CONTROVERSY Many genes and cytokines participate in the inflammatory process of RA and can be regulated with siRNA. However, it is difficult to determine whether the responses to siRNAs and other drugs studied in human cells in vitro are similar to the responses in vivo. GROWING POINTS Inflammatory processes can be affected by the gene dysregulation of siRNAs on inflammatory cytokines. AREAS TIMELY FOR DEVELOPING RESEARCH To date, it is not possible to determine whether the pharmacological response of siRNAs on cells in vitro would be similar to what takes place in vivo for the diseases studied so far.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Antonio Oliviero
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, ST4 7QB, UK
| |
Collapse
|
15
|
Seahorse Protein Hydrolysate Ameliorates Proinflammatory Mediators and Cartilage Degradation on Posttraumatic Osteoarthritis with an Obesity Rat Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4117520. [PMID: 35509713 PMCID: PMC9060998 DOI: 10.1155/2022/4117520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is one of the age-related diseases and is highly present on the knees. Obesity and mechanical injuries as a risk factor of OA are attributed to cartilage disintegration, joint loading, and inflammation. This study is aimed at investigating the effects of seahorse protein hydrolysate (SH) on posttraumatic osteoarthritis in an obesity rat. The OA model was developed by anterior cruciate ligament transection with medial meniscectomy in a high-fat diet- (HFD-) induced obesity rat model. The male Sprague-Dawley rats were fed a HFD for 6 weeks before OA surgery. The OA rats were treated with oral gavage by 4, 8, or 20 mg/kg of body weight of SH for 6 weeks of treatment. The expressions of plasma proinflammatory factors, C-telopeptide of type II collagen, and matrix metalloproteinase- (MMP-) 3 and MMP-13 were reduced by SH treatment. Plasma superoxide dismutase and glutathione peroxidase activities were enhanced by SH. SH also relieved the pain of the knee joint and swelling as well as decreased proteoglycan loss in the knee articular cartilage caused by osteoarthritis. Based on these results, SH suppressed proinflammatory factors and attenuated cartilage degradation and pain in the OA model. Therefore, seahorse protein hydrolysate might be a potential opportunity for improving the development of osteoarthritis.
Collapse
|
16
|
Kim HG, Lee C, Yoon JH, Kim JH, Cho JY. BN82002 alleviated tissue damage of septic mice by reducing inflammatory response through inhibiting AKT2/NF-κB signaling pathway. Pharmacotherapy 2022; 148:112740. [DOI: 10.1016/j.biopha.2022.112740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/20/2023]
|
17
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
18
|
Ricke-Hoch M, Stelling E, Lasswitz L, Gunesch AP, Kasten M, Zapatero-Belinchón FJ, Brogden G, Gerold G, Pietschmann T, Montiel V, Balligand JL, Facciotti F, Hirsch E, Gausepohl T, Elbahesh H, Rimmelzwaan GF, Höfer A, Kühnel MP, Jonigk D, Eigendorf J, Tegtbur U, Mink L, Scherr M, Illig T, Schambach A, Pfeffer TJ, Hilfiker A, Haverich A, Hilfiker-Kleiner D. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS One 2021; 16:e0255335. [PMID: 34347801 PMCID: PMC8336874 DOI: 10.1371/journal.pone.0255335] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglandin-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.
Collapse
Affiliation(s)
- Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Elisabeth Stelling
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Lisa Lasswitz
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
| | - Antonia P Gunesch
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
- German Center for Infection Research, Hanover-Braunschweig Site, Braunschweig, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Martina Kasten
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Francisco J Zapatero-Belinchón
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Graham Brogden
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
| | - Gisa Gerold
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hanover Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hanover, Germany
- German Center for Infection Research, Hanover-Braunschweig Site, Braunschweig, Germany
| | - Virginie Montiel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, and Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, and Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Thomas Gausepohl
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Hannover, Germany
| | - Anne Höfer
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hanover, Germany
- Institute for Pathology, Hannover Medical School, Hanover, Germany
| | - Mark P Kühnel
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hanover, Germany
- Institute for Pathology, Hannover Medical School, Hanover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hanover, Germany
- Institute for Pathology, Hannover Medical School, Hanover, Germany
| | - Julian Eigendorf
- Institute of Sports Medicine, Hannover Medical School, Hanover, Germany
| | - Uwe Tegtbur
- Institute of Sports Medicine, Hannover Medical School, Hanover, Germany
| | - Lena Mink
- Institute of Sports Medicine, Hannover Medical School, Hanover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Hannover Unified Biobank (HUB), Hannover Medical School, Hanover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Tobias J Pfeffer
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Andres Hilfiker
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, Marburg, Germany
| |
Collapse
|
19
|
Yang CM, Yang CC, Hsiao LD, Yu CY, Tseng HC, Hsu CK, Situmorang JH. Upregulation of COX-2 and PGE 2 Induced by TNF-α Mediated Through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 Cascade in Human Cardiac Fibroblasts. J Inflamm Res 2021; 14:2807-2824. [PMID: 34234507 PMCID: PMC8254141 DOI: 10.2147/jir.s313665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) has been shown to exert as a pathogenic factor in cardiac fibrosis and heart failure which were associated with the up-regulation of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) axis. However, whether TNF-α-induced COX-2/PGE2 upregulation mediated through ROS-dependent cascade remains elusive in human cardiac fibroblasts (HCFs). This study aims to address the underlying mechanisms of TNF-α-induced COX-2/PGE2 expression. Methods Here, we used TNF receptor neutralizing antibody (TNFR nAb), pharmacologic inhibitors, and siRNAs to dissect the involvement of signaling components examined by Western blot and ELISA in TNF-α-mediated responses in HCFs. MitoSOX Red was used to measure mitoROS generation. Isolation of subcellular fractions was performed to determine membrane translocation of PKCα. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to determine the role of transcription factor. Results We found that TNF-α time- and concentration-dependently upregulated COX-2 protein and mRNA expression as well as PGE2 synthesis which was attenuated by TNFR1 nAb, the inhibitor of mitochondrial ROS scavenger (MitoTEMPO), protein kinase C [(PKC)α, Gö6976], p38 MAPK [p38 inhibitor VIII, (p38i VIII)], JNK1/2 (SP600125), or forkhead box protein O1 [(FoxO1), AS1842856], and transfection with their respective siRNAs in HCFs. TNF-α-stimulated PKCα phosphorylation was inhibited by TNFR1 nAb, MitoTEMPO, or Gö6976. TNF-α stimulated phosphorylation of p38 MAPK and JNK1/2 was attenuated by TNFR1 nAb, MitoTEMPO, Gö6976, and their inhibitors p38i VIII and SP600125. Moreover, TNF-α-triggered FoxO1 phosphorylation was abolished by AS1842856, TNFR1 nAb, and its upstream inhibitors MitoTEMPO, Gö6976, p38i VIII, and SP600125. Phosphorylation of FoxO1 could enhance its interaction with the COX-2 promoter element revealed by ChIP assay, which was attenuated by AS1842856. Conclusion Our results suggested that TNF-α-induced COX-2/PGE2 upregulation is mediated through TNFR1-dependent MitoROS/PKCα/p38 MAPK and JNK1/2 cascade to activate FoxO1 binding with the COX-2 promoter in HCFs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Ying Yu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Kai Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Jiro Hasegawa Situmorang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
20
|
Silva LP, Santos EC, Borges BA, Veloso MP, Chagas-Paula DA, Gonçalves RV, Novaes RD. Tagitinin F has anti-inflammatory, anti-nociceptive and anti-matrix metalloproteinase properties: An in silico, in vitro and in vivo study. Pharmacol Res 2020; 164:105303. [PMID: 33212290 DOI: 10.1016/j.phrs.2020.105303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023]
Abstract
Sesquiterpene lactones (SL) are natural bioactive molecules indicated as potential scaffolds for anti-inflammatory and analgesic drug design. However, their anti-inflammatory applicability remains underestimated since the impact of SL on inflammatory nociception and tissue repair are overlooked. Thus, we used an integrated in silico, in vitro and in vivo framework to investigate the impact of tagitinin F (TAG-F) on lipopolysaccharide (LPS)-challenged macrophages, excisional skin wounds, and carrageenan-induced paw edema and mechanical hyperalgesia in mice. RAW 264.7 macrophages in culture were challenged with LPS and treated with TAG-F (5, 10, 50 and 100 μM). The paw of BALB/c mice was injected with carrageenan and treated with 0.5% and 1% TAG-F. Excisional wounds were also produced in BALB/c mice and treated with 0.5% and 1% TAG-F. Our results indicated a consistent concentration-dependent downregulation in 5-lipoxygenase, cyclooxygenase 1 and 2 (COX-1 and COX-2), matrix metalloproteinase 1 and 2 (MMP-1 and MMP-2) activities; as well as attenuation in prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and tumor necrosis factor-α (TNF-α) production in both in vitro and in vivo models. In vivo, TAG-F also attenuated carrageenan-induced paw edema and mechanical hyperalgesia in mice. From the excisional skin wound, TAG-F was still effective in reducing neutrophils and macrophages infiltration and stimulating collagen deposition in the scar tissue, accelerating tissue maturation. Together, our findings indicate that the anti-inflammatory effect of TAG-F is more comprehensive than previously suggested, exerting a significant impact on the control of edema, inflammatory pain and modulating central metabolic processes linked to skin wound healing.
Collapse
Affiliation(s)
- Laíla Pereira Silva
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil; Center of Heath Sciences, University Jose do Rosario Vellano, Minas Gerais, Brazil
| | - Eliziária Cardoso Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Bruno Arantes Borges
- Institute of Chemistry, Federal University of Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Marcia Paranho Veloso
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil
| | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil.
| |
Collapse
|
21
|
Jeon S, Liu QF, Cai H, Jeong HJ, Kim SH, Kim DI, Lee JH. Administration of a herbal formulation enhanced blastocyst implantation via IκB activation in mouse endometrium. Chin Med 2020; 15:112. [PMID: 33093859 PMCID: PMC7576727 DOI: 10.1186/s13020-020-00395-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023] Open
Abstract
Background BaelanChagsangBang (BCB), a herbal formulation consisting of eleven herbs, may be prescribed as a reproductive functional supplement to improve ovulation and implantation during the treatment of infertility and recurrent abortion in Korean Medicine. This study aimed to investigate the effects and action mechanisms of water-extracted BCB on endometrial receptivity and blastocyst implantation under normal conditions and in a mifepristone (RU486)-induced implantation failure murine model. Methods In vitro, the antioxidant potentials of BCB were evaluated using DPPH and superoxide anion radical scavenging assays and a DCFH-DA assay, and the cytotoxic and cytoprotective effects of BCB were confirmed using an MTT assay. In vivo, C57BL/6 female mice (n = 6 per group) orally received BCB (300 mg/kg/day), a dose similar to that used clinically, from 7 days before pregnancy until the end of the experiment. On day 4 of pregnancy, RU486 (4 mg/kg) was injected subcutaneously to induce implantation failure. The effect of BCB on embryo implantation was evaluated by implantation rate analysis, histological examination, and western blotting of uterus tissues. Results BCB water extract showed strong anti-oxidative and cytoprotective effects in vitro. In vivo administration of BCB water extract increased the number of newborn pups in BCB-treated mice versus sham-treated mice under normal conditions and improved the number of implantation sites in pregnant mice despite RU486 injection. BCB increased the protein levels of cyclooxygenase-2 and inducible nitric oxide synthase through IκB activation. Moreover, the expression levels of matrix metalloproteinases at uterus implantation sites were up-regulated in the BCB-treated group as compared with those in the RU486-treated group. Conclusion These results show BCB improved embryo implantation through IκB activation in our mouse model and suggest that BCB has therapeutic potential in the context of poor endometrial receptivity.
Collapse
Affiliation(s)
- Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Quan Feng Liu
- Department of Neuropsychiatry, Graduate School of Korean Medicine, Dongguk University, Gyeongju, 38066 Republic of Korea
| | - Hua Cai
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Ha Jin Jeong
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Su-Hyun Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26338 Republic of Korea
| | - Dong-Il Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Dongguk University Ilsan Hospital of Korean Medicine, Goyang, Gyeonggi-do 10326 Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
22
|
Fu YW, Li L, Wang XQ, Zhou Y, Zhu LF, Mei YM, Xu Y. The inhibitory effect of the deubiquitinase cylindromatosis (CYLD) on inflammatory responses in human gingival fibroblasts. Oral Dis 2020; 27:1487-1497. [PMID: 33031609 DOI: 10.1111/odi.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Nguyen V, Chen YW, Johnson JD, Paranjpe A. In Vivo Evaluation of Effect of Preoperative Ibuprofen on Proinflammatory Mediators in Irreversible Pulpitis Cases. J Endod 2020; 46:1210-1216. [DOI: 10.1016/j.joen.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
|
24
|
Liu GY, Moon SH, Jenkins CM, Sims HF, Guan S, Gross RW. A functional role for eicosanoid-lysophospholipids in activating monocyte signaling. J Biol Chem 2020; 295:12167-12180. [PMID: 32641497 PMCID: PMC7443508 DOI: 10.1074/jbc.ra120.013619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, eicosanoid-lysophospholipids were identified as novel metabolites generated from the direct cyclooxygenase- or lipoxygenase-catalyzed oxidation of 2-arachidonoyl-lysophospholipids produced from either phospholipase A1-mediated hydrolysis of diacyl arachidonoyl-phospholipids or through the cytochrome c-catalyzed oxidative hydrolysis of the vinyl ether linkage of arachidonoyl-plasmalogens. Although the metabolic pathways generating eicosanoid-lysophospholipids have been increasingly appreciated, the signaling functions of eicosanoid-lysophospholipids remain largely unknown. Herein, we demonstrate that 2-12(S)-HETE-lysophospholipids as well as nonesterified 12(S)-HETE are potent lipid mediators that activate THP-1 human monocytic cells to generate tumor necrosis factor α (TNFα) and interleukin 8 (IL8). Remarkably, low nanomolar concentrations of 12(S)-HETE-lysophospholipids, but not other oxidized signaling lipids examined activated THP-1 cells resulting in the production of large amounts of TNFα. Moreover, TNFα release induced by 12(S)-HETE-lysophospholipids was inhibited by the TNFα converting enzyme inhibitor TAPI-0 indicating normal processing of TNFα in THP-1 cells stimulated with these agonists. Western blotting analyses revealed that 12(S)-HETE-lysophospholipids activated the phosphorylation of NFκB p65, suggesting activation of the canonical NFκB signaling pathway. Importantly, activation of THP-1 cells to release TNFα was stereoselective with 12(S)-HETE favored over 12(R)-HETE. Furthermore, the EC50 of 2-12(S)-HETE-lysophosphatidylcholine in activating THP-1 cells was 2.1 nm, whereas the EC50 of free 12(S)-HETE was 23 nm Additionally, lipid extracts of activated platelets were separated by RP-HPLC demonstrating the coelution of 12(S)-HETE with fractions initiating TNFα release. Collectively, these results demonstrate the potent signaling properties of 2-12(S)-HETE-lysophospholipids and 12(S)-HETE by their ability to release TNFα and activate NFκB signaling thereby revealing a previously unknown role of 2-12(S)-HETE-lysophospholipids in mediating inflammatory responses.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- Department of Chemistry, Washington University, Saint Louis, Missouri, USA; Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Richard W Gross
- Department of Chemistry, Washington University, Saint Louis, Missouri, USA; Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA; Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
25
|
Qi YF, Liu M, Zhang Y, Liu W, Xiao H, Luo B. EBV down-regulates COX-2 expression via TRAF2 and ERK signal pathway in EBV-associated gastric cancer. Virus Res 2019; 272:197735. [PMID: 31473273 DOI: 10.1016/j.virusres.2019.197735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer (EBVaGC) accounts for nearly 10% of gastric cancer. Cyclooxygenase-2 (COX-2) plays a crucial role in cancer progression. However, there is no experimental study on the regulation mechanism of EBV on COX-2 in EBVaGC. To understand more about the tumorigenic mechanism of EBVaGC, the study investigated the role of EBV encode latent membrane protein LMP1 and LMP2A in the regulation of COX-2. The expression of COX-2 was examined in EBVaGC and EBV negative gastric cancer (EBVnGC) cell lines. The plasmids were transfected in SGC7901 to overexpress LMP1/2A. Small interfering RNA (si-RNA) targeting LMP1/2A in GT38 and targeting TRAF2 in SGC7901 were used to detect the expression of COX-2. Furthermore, si-ERK1/2 and the MEK inhibitor PD0325901 were used to investigate whether p-ERK participate in the regulation of COX-2 in SGC7901. The overexpression of LMP1 or LMP2A in SGC7901 down-regulates both COX-2 and TRAF2 expression, and knockdown of LMP1 or LMP2A in GT38 resulted in a certain recovery of COX-2 and TRAF2 expression. Moreover, si-TRAF2 indicated that a sharp down-regulation of COX-2. And the decrease of p-ERK also mediates the inhibitory effect of LMP1 on COX-2. In summary, overexpression of LMP1 and LMP2A inhibits COX-2, which is mediated by a decrease of TRAF2, and p-ERK is involved in the inhibition of COX-2 by LMP1 in gastric cancer.
Collapse
Affiliation(s)
- Yi-Fan Qi
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Mengyang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 19 Jiangsu Road, Qingdao, 266021, China
| | - Yan Zhang
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 19 Gongqingtuan Road, ZiBo, 255036, China
| | - Wen Liu
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hua Xiao
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Bing Luo
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
26
|
Li Y, Mu W, Ren J, Wuermanbieke S, Wahafu T, Ji B, Ma H, Amat A, Zhang K, Cao L. Artesunate alleviates interleukin‑1β‑induced inflammatory response and apoptosis by inhibiting the NF‑κB signaling pathway in chondrocyte‑like ATDC5 cells, and delays the progression of osteoarthritis in a mouse model. Int J Mol Med 2019; 44:1541-1551. [PMID: 31364719 DOI: 10.3892/ijmm.2019.4290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is a progressive and degenerative joint disorder that is highly prevalent worldwide and for which there is currently no effective medical therapy. Artesunate (ART), a natural compound used to treat malaria, possesses diverse biological properties, including the regulation of inflammation and apoptosis in various cells; however, its role in OA remains unclear. The aim of the present study was to investigate the effects of ART on interleukin (IL)‑1β‑induced chondrocyte‑like ATDC5 cells and in an OA mouse model. The results revealed that ART dose‑dependently relieved the inhibitory effect of IL‑1β on cell viability. Moreover, ART significantly reduced the overexpression of matrix metalloproteinase (MMP)‑3, MMP‑13, a disintegrin and metalloproteinase with thrombospondin motifs‑5 and cyclooxygenase‑2 at both the gene and protein levels in chondrocyte‑like ATDC5 cells stimulated by IL‑1β. Furthermore, ART decreased the expression of pro‑apoptotic Bax, cleaved caspase‑3 and cleaved caspase‑7 in a dose‑dependent manner, and increased the expression of the anti‑apoptotic factor Bcl‑2. These changes were mediated by the inhibitory effect of ART on the nuclear factor‑κB signaling pathway, defined as repression of the phosphorylation of IκBα and p65, and improved redistribution of p65. Additionally, ART blocked the advancement of the calcified cartilage zone and the loss of proteoglycan, and lowered histological scoring of OA in a mouse model. Taken together, these results indicate that ART may be of value as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wenbo Mu
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jiangdong Ren
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Shalitanati Wuermanbieke
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tuerhongjiang Wahafu
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Baochao Ji
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdusami Amat
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Keyuan Zhang
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
27
|
Bloch S, Tomek MB, Friedrich V, Messner P, Schäffer C. Nonulosonic acids contribute to the pathogenicity of the oral bacterium Tannerella forsythia. Interface Focus 2019; 9:20180064. [PMID: 30842870 PMCID: PMC6388019 DOI: 10.1098/rsfs.2018.0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O-glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia's unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O-glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O-glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.
Collapse
|
28
|
Voicu SN, Balas M, Stan MS, Trică B, Serban AI, Stanca L, Hermenean A, Dinischiotu A. Amorphous Silica Nanoparticles Obtained by Laser Ablation Induce Inflammatory Response in Human Lung Fibroblasts. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1026. [PMID: 30925685 PMCID: PMC6479987 DOI: 10.3390/ma12071026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Silica nanoparticles (SiO₂ NPs) represent environmentally born nanomaterials that are used in multiple biomedical applications. Our aim was to study the amorphous SiO₂ NP-induced inflammatory response in MRC-5 human lung fibroblasts up to 72 hours of exposure. The intracellular distribution of SiO₂ NPs was measured by transmission electron microscopy (TEM). The lactate dehydrogenase (LDH) test was used for cellular viability evaluation. We have also investigated the lysosomes formation, protein expression of interleukins (IL-1β, IL-2, IL-6, IL-8, and IL-18), COX-2, Nrf2, TNF-α, and nitric oxide (NO) production. Our results showed that the level of lysosomes increased in time after exposure to the SiO₂ NPs. The expressions of interleukins and COX-2 were upregulated, whereas the expressions and activities of MMP-2 and MMP-9 decreased in a time-dependent manner. Our findings demonstrated that the exposure of MRC-5 cells to 62.5 µg/mL of SiO₂ NPs induced an inflammatory response.
Collapse
Affiliation(s)
- Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
- Department of Pharmacy, Faculty of Pharmacy, Titu Maiorescu University, 004051 Bucharest, Romania.
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Bogdan Trică
- The National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Andreea Iren Serban
- Department of Preclinical Sciences, University of Agronomical Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania.
| | - Loredana Stanca
- Department of Preclinical Sciences, University of Agronomical Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania.
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
- Department of Histology, Faculty of Medicine, Vasile Goldis Western, University of Arad, 1 Feleacului, 310396 Arad, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
29
|
Shukla V, Kaushal JB, Sankhwar P, Manohar M, Dwivedi A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J Endocrinol 2019; 240:417-429. [PMID: 30667362 DOI: 10.1530/joe-18-0459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
30
|
Yang A, Fan H, Zhao Y, Chen X, Zhu Z, Zha X, Zhao Y, Chai X, Li J, Tu P, Hu Z. An immune-stimulating proteoglycan from the medicinal mushroom Huaier up-regulates NF-κB and MAPK signaling via Toll-like receptor 4. J Biol Chem 2019; 294:2628-2641. [PMID: 30602571 DOI: 10.1074/jbc.ra118.005477] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/31/2018] [Indexed: 12/21/2022] Open
Abstract
Trametes robiniophila Murr. (Huaier) is a mushroom with a long history of use as a medicinal ingredient in China and exhibits good clinical efficacy in cancer management. However, the antitumor components of Huaier and the underlying molecular mechanisms remain poorly understood. Here, we isolated a proteoglycan with a molecular mass of ∼5.59 × 104 Da from Huaier aqueous extract. We named this proteoglycan TPG-1, and using FTIR and additional biochemical analyses, we determined that its total carbohydrate and protein compositions are 43.9 and 41.2%, respectively. Using biochemical assays and immunoblotting, we found that exposing murine RAW264.7 macrophages to TPG-1 promotes the production of nitric oxide (NO), tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) through Toll-like receptor 4 (TLR4)-dependent activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling. Of note, the TPG-1 treatment significantly inhibited the tumorigenesis of human hepatoma HepG2 cells likely at least in part by increasing serum levels of TNFα and promoting leukocyte infiltration into tumors in nude mice. TPG-1 also exhibited good antitumor activity in hepatoma H22-bearing mice and had no obvious adverse effects in these mice. We conclude that TPG-1 exerts antitumor activity partially through an immune-potentiating effect due to activation of the TLR4-NF-κB/MAPK signaling cassette. Therefore, TPG-1 may be a promising candidate drug for cancer immunotherapy. This study has identified the TPG-1 proteoglycan as an antitumor agent and provided insights into TPG-1's molecular mechanism, suggesting a potential utility for applying this agent in cancer therapy.
Collapse
Affiliation(s)
- Ailin Yang
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Haitao Fan
- the College of Bioengineering, Beijing Polytechnic, Beijing 100029, China, and
| | - Yanan Zhao
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xiaonan Chen
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhixiang Zhu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xiaojun Zha
- the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yunfang Zhao
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xingyun Chai
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Jun Li
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Pengfei Tu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China,
| | - Zhongdong Hu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China,
| |
Collapse
|
31
|
Jin M, Lee S, Choi YA, Jang HJ, Lee S, Park PH, Shin TY, Rho MC, Jang Y, Kim SH. Lactococcus lactisKR-050L extract suppresses house dust mite induced-atopic skin inflammation through inhibition of keratinocyte and mast cell activation. J Appl Microbiol 2018; 126:230-241. [DOI: 10.1111/jam.14116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/02/2023]
Affiliation(s)
- M. Jin
- CMRI; Department of Pharmacology; School of Medicine; Kyungpook National University; Daegu Korea
| | - S. Lee
- Immunoregulatory Materials Research Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup Korea
| | - Y.-A. Choi
- CMRI; Department of Pharmacology; School of Medicine; Kyungpook National University; Daegu Korea
| | - H.-J. Jang
- Immunoregulatory Materials Research Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup Korea
| | - S.W. Lee
- Immunoregulatory Materials Research Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup Korea
| | - P.-H. Park
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - T.-Y. Shin
- College of Pharmacy; Woosuk University; Jeonju Korea
| | - M.-C. Rho
- Immunoregulatory Materials Research Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup Korea
| | - Y.H. Jang
- Department of Dermatology; School of Medicine; Kyungpook National University; Daegu Korea
| | - S.-H. Kim
- CMRI; Department of Pharmacology; School of Medicine; Kyungpook National University; Daegu Korea
| |
Collapse
|
32
|
Kim HJ, Choi JH, Hwang JH, Kim KS, Noh JR, Choi DH, Moon SJ, Kim HY, Kim SW, Choi S, Eum SM, Bach TT, Rho J, Lee JY, Park JG, Oh SR, Lee CH, Oh WK, Kim YH. 3,5-Di-C-β-D-glucopyranosyl phloroacetophenone, a major component of Melicope ptelefolia, suppresses fibroblast activation and alleviates arthritis in a mouse model: Potential therapeutics for rheumatoid arthritis. Int J Mol Med 2018; 42:2763-2775. [PMID: 30226571 PMCID: PMC6192774 DOI: 10.3892/ijmm.2018.3849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Melicope ptelefolia has been traditionally used to treat rheumatism and fever. The present study aimed to investigate the therapeutic effect of 3,5-di-C-β-d-glucopyranosyl phloroacetophenone (βGP), a main component of M. ptelefolia, on rheumatoid arthritis (RA). A model of collagen-induced arthritis (CIA) was established in mice using the RAW 264.7 murine macrophage cell line and mouse embryonic fibroblasts (MEFs). The clinical scores of arthritis, swelling, histopathological findings, and micro-computed tomography in CIA mouse paws were assessed. The levels of anti-type II collagen antibody and cytokines were determined in the plasma and cell culture supernatant, respectively. Protein and gene expression levels were analyzed by western blot and reverse transcription-quantitative polymerase chain reaction analyses. βGP significantly decreased the gross arthritic scores of CIA mice and joint swelling, and decreased articular inflammation, cartilage degradation and bone erosion. However, βGP did not exert any effect on anti-type II collagen immunoglobulin G plasma levels or inflammatory cytokine expression in macrophages. βGP significantly suppressed the expression of interleukin-6 and leukemia inhibitory factor and decreased the phosphorylation of signal transducer and activator of transcription 3, and expression of receptor activator of nuclear factor-κB ligand in tumor necrosis factor-α-stimulated MEFs and in CIA mouse paws. Osteoclast-related gene expression was significantly reduced in CIA mouse paws. Taken together, βGP suppressed the development of RA by regulating the activation of synovial fibroblasts.
Collapse
Affiliation(s)
- Hyun Jong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji Hyun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyong-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Je Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Yong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Woo Kim
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Chungcheongbuk‑do 28160, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Mi Eum
- International Biological Material Research Center, Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Yong Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Geun Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Ryang Oh
- University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Anti-Inflammatory Effect of a Polyphenol-Enriched Fraction from Acalypha wilkesiana on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages and Acetaminophen-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7858094. [PMID: 30159118 PMCID: PMC6109486 DOI: 10.1155/2018/7858094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.
Collapse
|
34
|
Gong J, Lang BJ, Weng D, Eguchi T, Murshid A, Borges TJ, Doshi S, Song B, Stevenson MA, Calderwood SK. Genotoxic stress induces Sca-1-expressing metastatic mammary cancer cells. Mol Oncol 2018; 12:1249-1263. [PMID: 29738110 PMCID: PMC6068352 DOI: 10.1002/1878-0261.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
We describe a cell damage-induced phenotype in mammary carcinoma cells involving acquisition of enhanced migratory and metastatic properties. Induction of this state by radiation required increased activity of the Ptgs2 gene product cyclooxygenase 2 (Cox2), secretion of its bioactive lipid product prostaglandin E2 (PGE2), and the activity of the PGE2 receptor EP4. Although largely transient, decaying to low levels in a few days to a week, this phenotype was cumulative with damage and levels of cell markers Sca-1 and ALDH1 increased with treatment dose. The Sca-1+ , metastatic phenotype was inhibited by both Cox2 inhibitors and PGE2 receptor antagonists, suggesting novel approaches to radiosensitization.
Collapse
Affiliation(s)
- Jianlin Gong
- Department of MedicineBoston University Medical CenterMAUSA
| | - Benjamin J. Lang
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Desheng Weng
- Department of MedicineBoston University Medical CenterMAUSA
| | - Takanori Eguchi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Ayesha Murshid
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Thiago J. Borges
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Sachin Doshi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Baizheng Song
- Department of MedicineBoston University Medical CenterMAUSA
| | - Mary A. Stevenson
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Stuart K. Calderwood
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
35
|
Qu X, Mei J, Yu Z, Zhai Z, Qiao H, Dai K. Lenalidomide regulates osteocytes fate and related osteoclastogenesis via IL-1β/NF-κB/RANKL signaling. Biochem Biophys Res Commun 2018; 501:547-555. [PMID: 29746861 DOI: 10.1016/j.bbrc.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/05/2018] [Indexed: 01/12/2023]
Abstract
Osteolytic diseases are closely associated with osteocyte fate, indicating a more efficient and crucial role of osteocyte-targeting strategy in inhibiting osteoclastogenesis. Here, we investigated the effects of lenalidomide (Lena) on osteocyte fate in order to regulate osteoclastogenesis via effective cascade-controlling response. Our data revealed that lenalidomide treatment notably rescued IL-1β induced loss of osteocyte viability by inhibiting osteocyte apoptosis with decreased osteoclast-related factors, RANKL and Sclerostin, as demonstrated by the restricted osteoclast formation and reduced bone resorption. Additionally, iTRAQ assay revealed that IL-1β induced activation of NF-κB inhibitor α/β were remarkably downregulated by lenalidomide, showing that lenalidomide impaired NF-κB signaling in osteocytes for inhibiting the expression of osteoclast specific genes in osteoclasts, which was further confirmed by KEGG pathway analysis and Western blot. More interestingly, the in vivo analysis of osteocyte apoptosis and osteoclastogenesis in osteoarthritis mice model indicated a role of lenalidomide in the regulation of osteocyte fate and the consequent inhibition of RANKL-induced osteoclastogenesis. Together, these results suggest that lenalidomide regulates osteocyte fate by attenuating IL-1β/NF-κB signaling, thereby inhibiting RANKL expression for the attenuated osteoclastogenesis both in vitro and vivo, indicating a more efficient remedy among future anti-osteoclastogenesis approaches.
Collapse
Affiliation(s)
- Xinhua Qu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
36
|
Nettleford SK, Prabhu KS. Selenium and Selenoproteins in Gut Inflammation-A Review. Antioxidants (Basel) 2018; 7:antiox7030036. [PMID: 29494512 PMCID: PMC5874522 DOI: 10.3390/antiox7030036] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), characterized by severe flares and remissions, is a debilitating condition. While the etiology is unknown, many immune cells, such as macrophages, T cells and innate lymphoid cells, are implicated in the pathogenesis of the disease. Previous studies have shown the ability of micronutrient selenium (Se) and selenoproteins to impact inflammatory signaling pathways implicated in the pathogenesis of the disease. In particular, two transcription factors, nuclear factor-κB (NF-κB), and peroxisome proliferator activated receptor (PPAR)γ, which are involved in the activation of immune cells, and are also implicated in various stages of inflammation and resolution, respectively, are impacted by Se status. Available therapies for IBD produce detrimental side effects, resulting in the need for alternative therapies. Here, we review the current understanding of the role of NF-κB and PPARγ in the activation of immune cells during IBD, and how Se and selenoproteins modulate effective resolution of inflammation to be considered as a promising alternative to treat IBD.
Collapse
Affiliation(s)
- Shaneice K Nettleford
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
37
|
Armstrong GM, Maybin JA, Murray AA, Nicol M, Walker C, Saunders PTK, Rossi AG, Critchley HOD. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci Rep 2017; 7:17416. [PMID: 29234102 PMCID: PMC5727295 DOI: 10.1038/s41598-017-17565-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/24/2017] [Indexed: 01/06/2023] Open
Abstract
Menstruation is characterised by synchronous shedding and restoration of tissue integrity. An in vivo model of menstruation is required to investigate mechanisms responsible for regulation of menstrual physiology and to investigate common pathologies such as heavy menstrual bleeding (HMB). We hypothesised that our mouse model of simulated menstruation would recapitulate the spatial and temporal changes in the inflammatory microenvironment of human menses. Three regulatory events were investigated: cell death (apoptosis), neutrophil influx and cytokine/chemokine expression. Well-characterised endometrial tissues from women were compared with uteri from a mouse model (tissue recovered 0, 4, 8, 24 and 48 h after removal of a progesterone-secreting pellet). Immunohistochemistry for cleaved caspase-3 (CC3) revealed significantly increased staining in human endometrium from late secretory and menstrual phases. In mice, CC3 was significantly increased at 8 and 24 h post-progesterone-withdrawal. Elastase+ human neutrophils were maximal during menstruation; Ly6G+ mouse neutrophils were maximal at 24 h. Human endometrial and mouse uterine cytokine/chemokine mRNA concentrations were significantly increased during menstrual phase and 24 h post-progesterone-withdrawal respectively. Data from dated human samples revealed time-dependent changes in endometrial apoptosis preceding neutrophil influx and cytokine/chemokine induction during active menstruation. These dynamic changes were recapitulated in the mouse model of menstruation, validating its use in menstrual research.
Collapse
Affiliation(s)
- Gregory M Armstrong
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jacqueline A Maybin
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Alison A Murray
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Moira Nicol
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Catherine Walker
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Inflammation Research (CIR), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- MRC Centre for Inflammation Research (CIR), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Hilary O D Critchley
- MRC Centre for Reproductive Health (CRH), University of Edinburgh, The Queen's Medical Research Institute (QMRI), 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
38
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
39
|
Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, Yao Z, Goodman SB. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther 2017; 8:277. [PMID: 29212557 PMCID: PMC5719931 DOI: 10.1186/s13287-017-0730-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs exposed to interferon gamma (IFN-γ) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) synergistically suppressed T-cell activation. Methods In the current study, we developed a novel preconditioning strategy for MSCs using LPS plus TNF-α to optimize the immunomodulating ability of MSCs on macrophage polarization. Results Preconditioned MSCs enhanced anti-inflammatory M2 macrophage marker expression (Arginase 1 and CD206) and decreased inflammatory M1 macrophage marker (TNF-α/IL-1Ra) expression using an in-vitro coculture model. Immunomodulation of MSCs on macrophages was significantly increased compared to the combination of IFN-γ plus TNF-α or single treatment controls. Increased osteogenic differentiation including alkaline phosphate activity and matrix mineralization was only observed in the LPS plus TNF-α preconditioned MSCs. Mechanistic studies showed that increased prostaglandin E2 (PGE2) production was associated with enhanced Arginase 1 expression. Selective cyclooxygenase-2 inhibition by Celecoxib decreased PGE2 production and Arginase 1 expression in cocultured macrophages. Conclusions The novel preconditioned MSCs have increased immunomodulation and bone regeneration potential and could be applied to the treatment of inflammatory bone disorders including periprosthetic osteolysis, fracture healing/nonunions, and osteonecrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0730-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Laura Lu
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Eemeli Jämsen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA. .,Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Ansari S, Chen C, Hasani-Sadrabadi MM, Yu B, Zadeh HH, Wu BM, Moshaverinia A. Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomater 2017; 60:181-189. [PMID: 28711686 DOI: 10.1016/j.actbio.2017.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
The host immune system (T-lymphocytes and their pro-inflammatory cytokines) has been shown to compromise bone regeneration ability of mesenchymal stem cells (MSCs). We have recently shown that hydrogel, used as an encapsulating biomaterial affects the cross-talk among host immune cells and MSCs. However, the role of hydrogel elasticity and porosity in regulation of cross-talk between dental-derived MSCs and immune cells is unclear. In this study, we demonstrate that the modulus of elasticity and porosity of the scaffold influence T-lymphocyte-dental MSC interplay by regulating the penetration of inflammatory T cells and their cytokines. Moreover, we demonstrated that alginate hydrogels with different elasticity and microporous structure can regulate the viability and determine the fate of the encapsulated MSCs through modulation of NF-kB pathway. Our in vivo data show that alginate hydrogels with smaller pores and higher elasticity could prevent pro-inflammatory cytokine-induced MSC apoptosis by down-regulating the Caspase-3- and 8- associated proapoptotic cascades, leading to higher amounts of ectopic bone regeneration. Additionally, dental-derived MSCs encapsulated in hydrogel with higher elasticity exhibited lower expression levels of NF-kB p65 and Cox-2 in vivo. Taken together, our findings demonstrate that the mechanical characteristics and microarchitecture of the microenvironment encapsulating MSCs, in addition to presence of T-lymphocytes and their pro-inflammatory cytokines, affect the fate of encapsulated dental-derived MSCs. STATEMENT OF SIGNIFICANCE In this study, we demonstrate that alginate hydrogel regulates the viability and the fate of the encapsulated dental-derived MSCs through modulation of NF-kB pathway. Alginate hydrogels with smaller pores and higher elasticity prevent pro-inflammatory cytokine-induced MSC apoptosis by down-regulating the Caspase-3- and 8- associated proapoptotic cascade, leading to higher amounts of ectopic bone regeneration. MSCs encapsulated in hydrogel with higher elasticity exhibited lower expression levels of NF-kB p65 and Cox-2 in vivo. These findings confirm that the fate of encapsulated MSCs are affected by the stiffness and microarchitecture of the encapsulating hydrogel biomaterial, as well as presence of T-lymphocytes/pro-inflammatory cytokines providing evidence concerning material science, stem cell biology, the molecular mechanism of dental-derived MSC-associated therapies, and the potential clinical therapeutic impact of MSCs.
Collapse
|
41
|
Verma S, Kalita B, Bajaj S, Prakash H, Singh AK, Gupta ML. A Combination of Podophyllotoxin and Rutin Alleviates Radiation-Induced Pneumonitis and Fibrosis through Modulation of Lung Inflammation in Mice. Front Immunol 2017. [PMID: 28649248 PMCID: PMC5465247 DOI: 10.3389/fimmu.2017.00658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pneumonitis and pulmonary fibrosis are predominant consequences of radiation exposure, whether planned or accidental. The present study, demonstrates radioprotective potential of a formulation, prepared by combining podophyllotoxin and rutin (G-003M), in mice exposed to 11 Gy thoracic gamma radiation (TGR). Treated mice were observed for survival and other symptomatic features. Formation of reactive oxygen species (ROS)/nitric oxide (NO) was measured in bronchoalveolar lavage cells. DNA damage and cell death were assessed in alveolar cells by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Total protein (TP), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) were measured in bronchoalveolar lavage fluid (BALF)/serum of mice to assess lung vascular permeability. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), cluster of differentiation 45, inducible nitric oxide synthase (iNOS), and nitrotyrosine were also estimated in lungs/BALF of differentially treated mice. Our observations revealed 100% survival in G-003M-pretreated mice against 66.50% in 11 Gy TGR exposed. Other symptoms like reduction in graying of hair, weight loss, and breathing rate were also observed in pretreated groups. Significant decline in ROS/NO and cell death in formulation pretreated mice were also observed. Decreased level of TP, LDH, and ALP in BALF/serum samples revealed G-003M-induced inhibition in lung permeability. Level of IL-6, TNF-α, and TGF-β1 in the lungs of these mice was found corresponding to control group at 8 weeks posttreatment. On the contrary, these cytokines raised significantly in 11 Gy TGR-exposed mice. Lung pneumonitis and fibrosis were found significantly countered in these mice. The observations revealed that G-003M could regulate immune system by curtailing radiation-induced oxidative and inflammatory stress, which has helped in minimizing radiation-inflicted pneumonitis and fibrosis.
Collapse
Affiliation(s)
- Savita Verma
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Bhargab Kalita
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ajay Kumar Singh
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Manju Lata Gupta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| |
Collapse
|
42
|
Geraniol attenuates 4NQO-induced tongue carcinogenesis through downregulating the activation of NF-κB in rats. Mol Cell Biochem 2017; 434:7-15. [DOI: 10.1007/s11010-017-3030-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/01/2017] [Indexed: 12/24/2022]
|
43
|
Park HJ, Baek K, Baek JH, Kim HR. TNFα Increases RANKL Expression via PGE₂-Induced Activation of NFATc1. Int J Mol Sci 2017; 18:ijms18030495. [PMID: 28245593 PMCID: PMC5372511 DOI: 10.3390/ijms18030495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea.
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do 25457, Korea.
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea.
| | | |
Collapse
|
44
|
James LRA, Sluyter R, Dillon CT, Ralph SF. Effects of Gold Nanoparticles and Gold Anti-Arthritic Compounds on Inflammation Marker Expression in Macrophages. Aust J Chem 2017. [DOI: 10.1071/ch17062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of aurothiomalate and auranofin to alter the production of several cellular mediators of inflammation by RAW264.7 macrophages, was compared with each other and that of gold nanoparticles (Au NPs). Addition of auranofin was found to have a pronounced ability to lower the production of reactive nitrogen and oxygen species (RNS and ROS respectively), as well as interleukin-10 (IL-10) and tumour necrosis factor (TNF), by macrophages that were subsequently treated with lipopolysaccharide (LPS) to stimulate production of the mediators. In contrast, prior treatment of the cells with either aurothiomalate or Au NPs had either little or no significant effect on production of RNS and ROS. Treatment of the macrophages with Au NPs had a small effect on production of TNF by cells that were subsequently stimulated with LPS; however, the effect was much smaller than that elicited by auranofin. Similarly, aurothiomalate had a small but significant effect on production of IL-10. Varying the size of the Au NPs or the identity of the protective sheath surrounding the nanoparticles did not have a significant effect on the production of RNS or ROS by LPS-stimulated macrophages. The results of some of these investigations are discussed in the light of other studies reported in the literature. In addition, results obtained by scanning electron microscopy and energy-dispersive X-ray spectroscopy are presented that provide evidence for the accumulation of gold within macrophages exposed to Au NPs.
Collapse
|
45
|
Role for NF-κB inflammatory signalling pathway in tenofovir disoproxil fumarate (TDF) induced renal damage in rats. Food Chem Toxicol 2017; 99:103-118. [DOI: 10.1016/j.fct.2016.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/28/2023]
|
46
|
Nakayama Y, Takai H, Matsui S, Matsumura H, Zhou L, Kato A, Ganss B, Ogata Y. Proinflammatory cytokines induce amelotin transcription in human gingival fibroblasts. J Oral Sci 2016; 56:261-8. [PMID: 25500923 DOI: 10.2334/josnusd.56.261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amelotin (AMTN) is a secreted protein transcribed predominantly during the maturation stage of enamel formation and localized in the junctional epithelium. We investigated differences in the levels of AMTN gene expression between non-inflamed gingiva and inflamed gingiva from patients with chronic periodontitis. Total RNAs were isolated from these tissues and their gene expression profiles were monitored by DNA microarray. The observed induction of AMTN mRNA in inflamed gingiva and cultured human gingival fibroblasts (HGF) was confirmed by real-time PCR. Transient transfection assays were performed using chimeric constructs of mouse AMTN gene promoter fragments linked to a luciferase reporter gene. Immunohistochemical localization of AMTN in inflamed and non-inflamed gingiva was assessed by immunohistochemistry. Among many differentially expressed genes, the level of AMTN mRNA was significantly increased in inflamed gingiva. Treatment of HGF with interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) induced the expression of AMTN mRNA, and increased the luciferase activities of the AMTN promoter constructs. AMTN protein was detected in inflamed gingival connective tissue and junctional epithelium. These findings demonstrate that proinflammatory cytokines induce AMTN gene expression in human gingival fibroblasts and suggest a role for AMTN in gingival inflammation.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Borghi SM, Pinho-Ribeiro FA, Fattori V, Bussmann AJC, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice. PLoS One 2016; 11:e0162267. [PMID: 27583449 PMCID: PMC5008838 DOI: 10.1371/journal.pone.0162267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/16/2016] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Allan J. C. Bussmann
- Laboratório de Anatomia Patológica, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
- * E-mail: ;
| |
Collapse
|
48
|
Dey P, Roy Chowdhuri S, Sarkar MP, Chaudhuri TK. Evaluation of anti-inflammatory activity and standardisation of hydro-methanol extract of underground tuber of Dioscorea alata. PHARMACEUTICAL BIOLOGY 2016; 54:1474-1482. [PMID: 26864460 DOI: 10.3109/13880209.2015.1104702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context The underground edible tuber of Dioscorea alata L. (Dioscoreaceae) is a functional food with high nutritive value and therapeutic potential. The tuber is known to possess anti-inflammatory properties in traditional medicine. Objective The present study explores the anti-inflammatory activity and standardisation of D. alata tuber hydromethanol extract. Materials and methods Hydromethanol extract (70%) of D. alata tuber was chemically characterised using HPLC and GC-MS techniques. Murine lymphocytes were cultured for 48 h with six different concentrations (0-80 μg/mL) of the extract. The expression of nitric oxide (NO), TNF-α, COX-1, COX-2, and PGE2 were evaluated using colorimetric and ELISA methods. Results Dioscorea alata extract inhibited the expression of NO and TNF-α with an IC50 value of 134.51 ± 6.75 and 113.30 ± 7.44 μg/mL, respectively. The IC50 values for inhibition of total COX, COX-1, COX-2 activities and PGE2 level were 41.96 ± 3.07, 141.41 ± 8.99, 32.50 ± 1.69, and 186.34 ± 15.36 μg/mL, respectively. Inhibition of PGE2 level and COX-2 activity was positively correlated (R(2) = 0.9393). Gallic acid (GA), 4-hydroxy benzoic acid (4HBA), syringic acid (SYA), p-coumaric acid (PCA), and myricetin (MY) were identified and quantified using HPLC. GC-MS analysis revealed the presence of 13 different phytocompounds such as hexadecanoic acid, methyl stearate, cinnamyl cinnamate, and squalene. Conclusion The D. alata extract significantly down-regulated the pro-inflammatory signals in a gradual manner compared with control (0 μg/mL). Different bioactive phytocompounds individually possessing anti-inflammatory activities contributed to the overall bioactivity of the D. alata tuber extract.
Collapse
Affiliation(s)
- Priyankar Dey
- a Cellular Immunology Laboratory, Department of Zoology , University of North Bengal , Siliguri , West Bengal , India
| | - Sumedha Roy Chowdhuri
- b Chemical Signal and Lipidomics Laboratory, Department of Botany , University of Calcutta , Kolkata , West Bengal , India
| | - Mousumi Poddar Sarkar
- b Chemical Signal and Lipidomics Laboratory, Department of Botany , University of Calcutta , Kolkata , West Bengal , India
| | - Tapas Kumar Chaudhuri
- a Cellular Immunology Laboratory, Department of Zoology , University of North Bengal , Siliguri , West Bengal , India
| |
Collapse
|
49
|
Yang Z, Concannon J, Ng KS, Seyb K, Mortensen LJ, Ranganath S, Gu F, Levy O, Tong Z, Martyn K, Zhao W, Lin CP, Glicksman MA, Karp JM. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci Rep 2016; 6:30263. [PMID: 27457881 PMCID: PMC4960598 DOI: 10.1038/srep30263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.
Collapse
Affiliation(s)
- Zijiang Yang
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US.,Advanced Industrial Technology Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Kelvin S Ng
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Luke J Mortensen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, and College of Engineering, University of Georgia, Athens, GA, US
| | - Sudhir Ranganath
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Fangqi Gu
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Oren Levy
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Zhixiang Tong
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Keir Martyn
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center and Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, US
| | - Charles P Lin
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US
| | - Marcie A Glicksman
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Jeffrey M Karp
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| |
Collapse
|
50
|
Woo SM, Lee WK, Min KJ, Kim DE, Park SH, Nam SI, Kwon TK. Rottlerin induces cyclooxygenase-2 upregulation through an ATF4 and reactive oxygen species-independent pathway in HEI-OC1 cells. Mol Med Rep 2016; 14:845-50. [PMID: 27222046 DOI: 10.3892/mmr.2016.5320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
Hearing loss can be caused by infection, inflammation, loud noise and ototoxic drugs. The induction of cyclooxygenase-2 (COX‑2) expression is an important event during the cellular inflammatory response. The present study investigated the effect of rottlerin on CO-2 mRNA and protein expression in HEI-OC1 cells. Cell viability was determined using an MTT assay. Western blotting was used to examine the expression of COX‑2, endoplasmic reticulum stress-associated transcription factors and activation of the MAPK pathway. ROS was measured using the fluorescent probe 2', 7'-dichlorodihydrofluorescein diacetate. Treatment with the natural protein kinase C δ inhibitor, rottlerin, was shown to increase COX‑2 expression at the protein and mRNA levels in a dose‑dependent manner. Rottlerin was shown to induce increased reactive oxygen species (ROS) generation, however, ROS were not critical for rottlerin‑induced upregulation of COX‑2 expression in HEI‑OC1 cells. In addition, rottlerin was shown to increase the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The pharmacological inhibition of p38MAPK and suppression of activating transcription factor 4 (an ER stress‑associated transcription factor) expression by small interfering RNA inhibited rottlerin-induced COX‑2 upregulation. Furthermore, COX‑2 expression levels were increased further when cells were treated with rottlerin and interleukin‑1β or protein kinase C activator, PMA. In conclusion, the results of the present study demonstrated that rottlerin is a novel inducer of COX‑2 expression and identified the mechanisms involved in this process. Rottlerin may be considered a potential activator of repair and remodeling.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Woo Keun Lee
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Soon Hyung Park
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Sung Il Nam
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| |
Collapse
|