1
|
Mousa NA, Hussein A, Elemam NM, Mohammed G, Elwany M, Basha T, AlHammadi AA, Majzob RS, Talaat IM. Are embryonic stem cell markers and ALDH1A1 relevant in the context of breast cancer estrogen positivity? Cancer Med 2024; 13:e7004. [PMID: 38400679 PMCID: PMC10891463 DOI: 10.1002/cam4.7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.
Collapse
Affiliation(s)
- Noha A. Mousa
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal Hussein
- Family and Community Medicine and Behavioural Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Noha M. Elemam
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute for Medical and Health Sciences, University of SharjahSharjahUnited Arab Emirates
| | - Ghada Mohammed
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Mona Elwany
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Tasneem Basha
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal A. AlHammadi
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Rana S. Majzob
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
- Pathology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| |
Collapse
|
2
|
Liang Y, Liu X, Yun Z, Li K, Li H. Endocrine therapy plus HER2-targeted therapy, another favorable option for HR+/HER2+ advanced breast cancer patients. Ther Adv Med Oncol 2024; 16:17588359231220501. [PMID: 38188468 PMCID: PMC10771751 DOI: 10.1177/17588359231220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Advanced breast cancer (ABC) that is positive for hormone receptors (HRs) and human epidermal growth factor receptor 2 (HER2) is a cancer subtype with distinctive characteristics. The primary treatment guidelines suggest that a combination therapy comprising anti-HER2 therapy and chemotherapy should be administered as the initial treatment for HR-positive/ HER2-positive (HR+/HER2+) ABC. However, crosstalk between the HR and HER2 pathways can partially account for the resistance of HR+/HER2+ disease to HER2-targeted therapy. This, in turn, provides a rationale for the concomitant administration of HER2-targeted therapy and endocrine therapy (ET). Many clinical studies have confirmed that the combination of HER2-targeted therapy and ET as a first-line treatment is not inferior to the combination of HER2-targeted therapy and chemotherapy, and support its use as a first-line treatment choice for HR+/HER2+ ABC. Other drugs, such as antibody-drug conjugates, cyclin-dependent kinase 4/6 inhibitors, phosphatidylinositol 3-kinase-protein kinase B (AKT)-mammalian target of rapamycin inhibitors, and programmed cell death protein 1 or programmed cell death ligand 1 inhibitors, may also improve the prognosis of patients with breast cancer by blocking signaling pathways associated with tumor proliferation and break new ground for the treatment of HR+/HER2+ ABC.
Collapse
Affiliation(s)
- Yuehua Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zehui Yun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kun Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Maurya VK, Ying Y, Lanza DG, Heaney JD, Lydon JP. A CRISPR/Cas9-engineered mouse carrying a conditional knockout allele for the early growth response-1 transcription factor. Genesis 2023; 61:e23515. [PMID: 36949241 PMCID: PMC10514223 DOI: 10.1002/dvg.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Early growth response 1 (EGR1) mediates transcriptional programs that are indispensable for cell division, differentiation, and apoptosis in numerous physiologies and pathophysiologies. Whole-body EGR1 knockouts in mice (Egr1KO ) have advanced our understanding of EGR1 function in an in vivo context. To extend the utility of the mouse to investigate EGR1 responses in a tissue- and/or cell-type-specific manner, we generated a mouse model in which exon 2 of the mouse Egr1 gene is floxed by CRISPR/Cas9 engineering. The floxed Egr1 alleles (Egr1f/f ) are designed to enable spatiotemporal control of Cre-mediated EGR1 ablation in the mouse. To confirm that the Egr1f/f alleles can be abrogated using a Cre driver, we crossed the Egr1f/f mouse with a global Cre driver to generate the Egr1 conditional knockout (Egr1d/d ) mouse in which EGR1 expression is ablated in all tissues. Genetic and protein analysis confirmed the absence of exon 2 and loss of EGR1 expression in the Egr1d/d mouse, respectively. Moreover, the Egr1d/d female exhibits overt reproductive phenotypes previously reported for the Egr1KO mouse. Therefore, studies described in this short technical report underscore the potential utility of the murine Egr1 floxed allele to further resolve EGR1 function at a tissue- and/or cell-type-specific level.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Denise G. Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| |
Collapse
|
4
|
Laskar YB, Mazumder PB, Talukdar AD. Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: a computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:611-633. [PMID: 34854367 DOI: 10.1080/07391102.2021.2009914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The estrogen hormone receptor (ER) mediated gene expression mainly regulate the development and physiology of the primary and secondary reproductive system alongside bone-forming, metabolism and behaviour. Over-expressed ER is associated with several pathological conditions and play a crucial role in breast cancer occurrence, progression and metastasis. Hibiscus sabdariffa L. or roselle is a rich source of naturally occurring polyphenolic compounds that reportedly have robust estrogenic activity. However, the estrogen-like ingredient of the plant remains ambiguous. This study has screened a library of already recorded and less-explored compounds of Hibiscus sabdariffa for their estrogen receptor binding affinity and safety using a suite of computational methods that include protein-ligand docking, ADME and Toxicity prediction, and 2D/3D QSAR. The study revealed that the estrogen-receptor binding potential of Pelargonidin, Delphinidin, Cyanidin, and Hibiscetin are more efficient than popular breast cancer drugs, Tamoxifen and Raloxifene. Besides, the compounds exhibited favourable toxicological parameters with potent bioactivity towards binding ER-α subunit. Thus, these compounds can serve as prototypes for designing novel Selective Estrogen Receptor Modulator molecules with a few structural modifications. This is the first report exploring the phytochemical basis of estrogenic activity of Hibiscus sabdariffa L.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
5
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
6
|
Optimization Method of an Antibreast Cancer Drug Candidate Based on Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4133663. [PMID: 36105244 PMCID: PMC9467812 DOI: 10.1155/2022/4133663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Breast cancer is a common but serious and even lethal disease. Fortunately, compared with other cancers, breast cancer treatments currently are relatively well developed. The use of specific drugs is typically essential in the majority of breast cancer treatment strategies. Given the aforementioned factors, it is important to continue researching effective antibreast cancer drug design. Machine learning-based computer-aided drug design is currently a common practice in both drug industries and academic institutes. According to the characteristics of breast cancer, we selected multiple candidate compounds; based on the corresponding molecular descriptors, biological activities, and pharmacokinetic properties, a dataset of inhibition potency and pharmacokinetic properties paired with multiple features of compounds was constructed. On this basis, the random forest method was utilized to choose greater-influenced feature embeddings; thus, 224 main operating variables were selected for further analysis; we then employed the efficient MobileNetV3 deep neural network as the backbone to establish the prediction models for the inhibition potency and pharmacokinetic properties of the compounds. After data preprocessing, the weights are obtained by training on the refined dataset. Finally, we define an optimization problem to discover compounds with the best properties. The problem is solved using the genetic algorithm with the acquired prediction model, and the solution value for the corresponding operating variables with the best clinical properties in theory is then obtained. Analysis demonstrates that our approach could be used to aid the screening process of antibreast cancer drug candidates.
Collapse
|
7
|
Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B, Vandenberg LN. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol 2022; 112:51-67. [PMID: 35764275 PMCID: PMC9491517 DOI: 10.1016/j.reprotox.2022.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica Daum
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK 2800, Denmark
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
8
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
9
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
10
|
|
11
|
Seachrist DD, Anstine LJ, Keri RA. FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers (Basel) 2021; 13:cancers13205205. [PMID: 34680352 PMCID: PMC8533709 DOI: 10.3390/cancers13205205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pioneering function of FOXA1 establishes estrogen-responsive transcriptomes in luminal breast cancer. Dysregulated FOXA1 chromatin occupancy through focal amplification, mutation, or cofactor recruitment modulates estrogen receptor (ER) transcriptional programs and drives endocrine-resistant disease. However, ER is not the sole nuclear receptor (NR) expressed in breast cancers, nor is it the only NR for which FOXA1 serves as a licensing factor. Receptors for androgens, glucocorticoids, and progesterone are also found in the majority of breast cancers, and their functions are also impacted by FOXA1. These NRs interface with ER transcriptional programs and, depending on their activation level, can reprogram FOXA1-ER cistromes. Thus, NR interplay contributes to endocrine therapy response and resistance and may provide a vulnerability for future therapeutic benefit in patients. Herein, we review what is known regarding FOXA1 regulation of NR function in breast cancer in the context of cell identity, endocrine resistance, and NR crosstalk in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Darcie D. Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Lindsey J. Anstine
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
12
|
Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:385-400. [PMID: 34528025 PMCID: PMC8439438 DOI: 10.37349/etat.2021.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70–80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.
Collapse
Affiliation(s)
- Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer whereas Resveratrol and N-acetylcysteine Are the Preventers. Int J Mol Sci 2021; 22:ijms22158238. [PMID: 34361004 PMCID: PMC8347442 DOI: 10.3390/ijms22158238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
This article reviews evidence suggesting that a common mechanism of initiation leads to the development of many prevalent types of cancer. Endogenous estrogens, in the form of catechol estrogen-3,4-quinones, play a central role in this pathway of cancer initiation. The catechol estrogen-3,4-quinones react with specific purine bases in DNA to form depurinating estrogen-DNA adducts that generate apurinic sites. The apurinic sites can then lead to cancer-causing mutations. The process of cancer initiation has been demonstrated using results from test tube reactions, cultured mammalian cells, and human subjects. Increased amounts of estrogen-DNA adducts are found not only in people with several different types of cancer but also in women at high risk for breast cancer, indicating that the formation of adducts is on the pathway to cancer initiation. Two compounds, resveratrol, and N-acetylcysteine, are particularly good at preventing the formation of estrogen-DNA adducts in humans and are, thus, potential cancer-prevention compounds.
Collapse
|
14
|
Vandenberg LN. Endocrine disrupting chemicals and the mammary gland. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:237-277. [PMID: 34452688 DOI: 10.1016/bs.apha.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland requires coordination of hormone signaling pathways including those mediated by estrogen, progesterone, androgen and prolactin receptors. These hormones play important roles at several distinct stages of life including embryonic/fetal development, puberty, pregnancy, lactation, and old age. This also makes the gland sensitive to perturbations from environmental agents including endocrine disrupting chemicals (EDCs). Although there is evidence from human populations of associations between EDCs and disruptions to breast development and lactation, these studies are often complicated by the timing of exposure assessments and the latency to develop breast diseases (e.g., years to decades). Rodents have been instrumental in providing insights-not only to the basic biology and endocrinology of the mammary gland, but to the effects of EDCs on this tissue at different stages of development. Studies, mostly but not exclusively, of estrogenic EDCs have shown that the mammary gland is a sensitive tissue, that exposures during perinatal development can produce abnormal mammary structures (e.g., alveolar buds, typically seen in pregnant females) in adulthood; that exposures during pregnancy can alter milk production; and that EDC exposures can enhance the response of the mammary tissue to hormones and chemical carcinogens. Other studies of persistent organic pollutants have shown that EDC exposures during critical windows of development can delay development of the gland, with lifelong consequences for the individual. Collectively, this work continues to support the conclusion that EDCs can harm the mammary gland, with effects that depend on the period of exposure and the period of evaluation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
15
|
Xie Y, Huang D, Chu L, Liu Y, Sun X, Li J, Cheng CHK. Igf3 is essential for ovary differentiation in zebrafish†. Biol Reprod 2020; 104:589-601. [PMID: 33276384 DOI: 10.1093/biolre/ioaa218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Zebrafish gonadal sexual differentiation is an important but poorly understood subject. Previously, we have identified a novel insulin-like growth factor (Igf) named insulin-like growth factor 3 (Igf3) in teleosts. The importance of Igf3 in oocyte maturation and ovulation has been recently demonstrated by us in zebrafish. In this study, we have further found the essential role of Igf3 in gonadal sexual differentiation of zebrafish. A differential expression pattern of igf3 between ovary and testis during sex differentiation (higher level in ovary than in testis) was found in zebrafish. An igf3 knockout zebrafish line was established using TALENs-mediated gene knockout technique. Intriguingly, all igf3 homozygous mutants were males due to the female-to-male sex reversal occurred during sex differentiation. Further analysis showed that Igf3 did not seem to affect the formation of so-called juvenile ovary and oocyte-like germ cells. Oocyte development was arrested at primary growth stage, and the ovary was gradually sex-reversed to testis before 60 day post fertilization (dpf). Such sex reversal was likely due to decreased germ cell proliferation by suppressing PI3K/Akt pathway in early ovaries of igf3 mutants. Estrogen is considered as a master regulator in fish sex differentiation. Here, we found that igf3 expression could be upregulated by estrogen in early stages of ovarian follicles as evidenced in in vitro treatment assays and cyp19a1a mutant zebrafish, and E2 failed to rescue the defects of igf3 mutants in ovarian development, suggesting that Igf3 may serve as a downstream factor of estrogen signaling in sex differentiation. Taken together, we demonstrated that Igf3 is essential for ovary differentiation in zebrafish.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lianhe Chu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yun Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
16
|
Cunha GR, Li Y, Mei C, Derpinghaus A, Baskin LS. Ontogeny of estrogen receptors in human male and female fetal reproductive tracts. Differentiation 2020; 118:107-131. [PMID: 33176961 DOI: 10.1016/j.diff.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Cao Mei
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
Nagel SC, Kassotis CD, Vandenberg LN, Lawrence BP, Robert J, Balise VD. Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of experimental effects on adult health, behavior, and disease. Mol Cell Endocrinol 2020; 513:110722. [PMID: 32147523 PMCID: PMC7539678 DOI: 10.1016/j.mce.2020.110722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
Unconventional oil and natural gas extraction (UOG) combines directional drilling and hydraulic fracturing and produces billions of liters of wastewater per year. Herein, we review experimental studies that evaluated the potential endocrine-mediated health impacts of exposure to a mixture of 23 UOG chemicals commonly found in wastewater. The purpose of this manuscript is to synthesize and summarize a body of work using the same UOG-mix but with different model systems and physiological endpoints in multiple experiments. The studies reviewed were conducted in laboratory animals (mice or tadpoles) and human tissue culture cells. A key feature of the in vivo studies was the use of four environmentally relevant doses spanning three orders of magnitude ranging from concentrations found in surface and ground water in UOG dense areas to concentrations found in UOG wastewater. This UOG-mix exhibited potent antagonist activity for the estrogen, androgen, glucocorticoid, progesterone, and thyroid receptors in human tissue culture cells. Subsequently, pregnant mice were administered the UOG-mix in drinking water and offspring were examined in adulthood or to tadpoles. Developmental exposure profoundly impacted pituitary hormone concentrations, reduced sperm counts, altered folliculogenesis, and increased mammary gland ductal density and preneoplastic lesions in mice. It also altered energy expenditure, exploratory and risk-taking behavior, the immune system in three immune models in mice, and affected basal and antiviral immunity in frogs. These findings highlight the diverse systems affected by developmental EDC exposure and the need to examine human and animal health in UOG regions.
Collapse
Affiliation(s)
- S C Nagel
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, DC051.00 One Hospital Drive, Columbia, MO, 65211, USA.
| | - C D Kassotis
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC, 27708, USA
| | - L N Vandenberg
- School of Public Health & Health Sciences, Department of Environmental Health Sciences, University of Massachusetts Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| | - B P Lawrence
- Departments of Microbiology and Immunology, and Environmental Medicine, 601 Elmwood Avenue, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - J Robert
- Departments of Microbiology and Immunology, and Environmental Medicine, 601 Elmwood Avenue, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - V D Balise
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
18
|
Li Y, Hamilton KJ, Perera L, Wang T, Gruzdev A, Jefferson TB, Zhang AX, Mathura E, Gerrish KE, Wharey L, Martin NP, Li JL, Korach KS. ESR1 Mutations Associated With Estrogen Insensitivity Syndrome Change Conformation of Ligand-Receptor Complex and Altered Transcriptome Profile. Endocrinology 2020; 161:bqaa050. [PMID: 32242619 PMCID: PMC7947601 DOI: 10.1210/endocr/bqaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
Estrogen insensitivity syndrome (EIS) arises from rare mutations in estrogen receptor-α (ERα, encoded by ESR1 gene) resulting in the inability of estrogen to exert its biological effects. Due to its rarity, mutations in ESR1 gene and the underlying molecular mechanisms of EIS have not been thoroughly studied. Here, we investigate known ESR1 mutants, Q375H and R394H, associated with EIS patients using in vitro and in vivo systems. Comparison of the transcriptome and deoxyribonucleic acid methylome from stable cell lines of both Q375H and R394H clinical mutants shows a differential profile compared with wild-type ERα, resulting in loss of estrogen responsiveness. Molecular dynamic simulation shows that both ESR1 mutations change the ERα conformation of the ligand-receptor complexes. Furthermore, we generated a mouse model Esr1-Q harboring the human mutation using CRISPR/Cas9 genome editing. Female and male Esr1-Q mice are infertile and have similar phenotypes to αERKO mice. Overall phenotypes of the Esr1-Q mice correspond to those observed in the patient with Q375H. Finally, we explore the effects of a synthetic progestogen and a gonadotropin-releasing hormone inhibitor in the Esr1-Q mice for potentially reversing the impaired female reproductive tract function. These findings provide an important basis for understanding the molecular mechanistic consequences associated with EIS.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Artiom Gruzdev
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Tanner B Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Austin X Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Emilie Mathura
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kevin E Gerrish
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Laura Wharey
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Negin P Martin
- Viral Vector Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
19
|
Wang Z, Li Q, Xu L, Ma J, Wei B, An Z, Wu W, Liu S. Silver nanoparticles compromise the development of mouse pubertal mammary glands through disrupting internal estrogen signaling. Nanotoxicology 2020; 14:740-756. [PMID: 32401081 DOI: 10.1080/17435390.2020.1755470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite numerous studies on the environmental health and safety (EHS) of silver nanoparticles (AgNPs), most studies looked into their gross toxicities with rather limited understanding on their labyrinthine implicit effects on the target sites, such as the endocrine system. Burgeoning evidence documents the disrupting effects of AgNPs on endocrine functions; however, little research has been invested to recognize the potential impacts on the mammary gland, a susceptible estrogen-responsive organ. Under this setting, we here aimed to scrutinize AgNP-induced effects on the development of pubertal mammary glands at various concentrations that bear significant EHS relevance. We unearthed that AgNPs could accumulate in mouse mammary glands and result in a decrease in the percentage of ducts and terminal ducts in the adult mice after chronic exposure. Strikingly, smaller sized AgNPs showed greater capability to alter the pubertal mammary development than larger sized particles. Intriguingly, mechanistic investigation revealed that the reduction of epithelial proliferation in response to AgNPs was ascribed to reduced ERα expression, which, at least partially, accounted for diseased epithelial morphology in mammary glands. Meanwhile, the decline in fibrous collagen deposition around the epithelium was found to contribute to the compromised development of mammary glands under the exposure of AgNPs. Moreover, as an extension of the mechanism, AgNPs diminished serum levels of estradiol in exposed animals. Together, these results uncovered a novel toxicity feature of AgNPs: compromised development of mouse pubertal mammary glands through the endocrine-disrupting actions. This study would open a new avenue to unveil the EHS impacts of AgNPs.
Collapse
Affiliation(s)
- Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Qingqing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.,School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.,School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Bing Wei
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.,School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
20
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Zhu H, Jia X, Ren M, Yang L, Chen J, Han L, Ding Y, Ding M. Mifepristone Treatment in Pregnant Murine Model Induced Mammary Gland Dysplasia and Postpartum Hypogalactia. Front Cell Dev Biol 2020; 8:102. [PMID: 32154252 PMCID: PMC7047202 DOI: 10.3389/fcell.2020.00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Mammary gland dysplasia and postpartum hypogalactia often occur in humans and in the livestock breeding industry. However, their underlying mechanisms are not clear yet. Mifepristone, which has a high affinity for progesterone (P4) and glucocorticoid receptors, was exploited here to induce the disorders of mammary gland development and lactation. Four strategies were devised for treating pregnant mice with mifepristone. In the first strategy, mice were administered 1.20 mg mifepristone/kg body weight (BW) on pregnancy day 4 (Pd4). In the second strategy, mifepristone was administered to mice twice, with 1.20 mg/kg BW on Pd4 and 0.40 mg/kg BW on Pd8. In the third strategy, mice were treated with a single dose of 0.40 mg mifepristone/kg BW on Pd8. In the fourth strategy, mice were administered 0.40 mg mifepristone/kg BW on Pd8 and 0.20 mg mifepristone/kg BW on Pd12. The results suggested that mifepristone administration at the dose of 1.20 mg/kg BW on Pd4 caused significant reduction in milk production on lactation day 1 (Ld1), Ld2, and Ld3, as assessed using a weigh-suckle-weigh assay. Mammary β-casein expression, milk yields, litter growth rates, gland structure, and serum concentrations of 17-β estrogen (E2), P4, prolactin (PRL), growth hormone (GH), corticosterone (CORT) and oxytocin (OT) as well as the receptors of these hormones were determined during pregnancy or lactation after performing the first (Pd4) strategy. The results demonstrated that mifepristone administration during early pregnancy decreased β-casein expression, milk yields and litter growth rates, induced fewer alveoli, enlarged alveolar lumina, and altered the levels of E2, P4, PRL, GH, CORT, and OT as well as the mRNA expression of these hormonal receptors during pregnancy or early lactation. The present study on pregnant mice treated with mifepristone offers an innovative murine model to study the mechanism underlying mammary gland dysplasia and postpartum hypogalactia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Cornelissen LM, Henneman L, Drenth AP, Schut E, de Bruijn R, Klarenbeek S, Zwart W, Jonkers J. Exogenous ERα Expression in the Mammary Epithelium Decreases Over Time and Does Not Contribute to p53-Deficient Mammary Tumor Formation in Mice. J Mammary Gland Biol Neoplasia 2019; 24:305-321. [PMID: 31729597 DOI: 10.1007/s10911-019-09437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/09/2022] Open
Abstract
Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Mouse Clinic for Cancer and Aging - Transgenic facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Zhang D, Ku J, Yi Y, Zhang J, Liu R, Tang N. The prognostic values of estrogen receptor alpha and beta in patients with gastroesophageal cancer: A meta-analysis. Medicine (Baltimore) 2019; 98:e17954. [PMID: 31725654 PMCID: PMC6867741 DOI: 10.1097/md.0000000000017954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Published studies have investigated the prognostic roles of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in gastroesophageal cancer patients with the controversial results. The aim of the study was to systematically evaluate the impacts of ERα and ERβ on the overall survival (OS) in patients. METHOD Relevant eligible studies were extracted from PubMed, Embase, Web of Science, CNKI and Wanfang databases (from the start date to November 2018) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. HR (hazard ratio) with 95% confidence intervals (CIs) were used to assess the prognostic values of ERα and ERβ for OS in patients. RESULTS High ERα expression was associated with poor OS (HR = 1.58, 95% CI = 1.29-1.94, P < .001) and ERβ with better OS (HR = 0.56, 95% CI = 0.37-0.83, P = .004) in gastroesophageal cancer. Furthermore, unfavorable OS was found in Chinese gastroesophageal patients with higher ERα expression (HR = 1.57, 95% CI = 1.25-1.96, P < .001) and better OS with higher ERβ expression (HR = 0.51, 95% CI = 0.31-0.83, P < .01) in our subgroup analysis. Meanwhile, worse OS was found in esophageal squamous cell carcinoma (ESCC) patients with high ERα expression (HR = 1.74, 95% CI = 1.33-2.26, P < .001), and favorable OS in ESCC with ERβ overexpression (HR = 0.40, 95% CI = 0.31-0.52, P < .001). Besides, high ERα expression was associated with lower tumor differentiation in ESCC (OR = 1.64; 95% CI = 1.02-2.64, P = .04) and ERβ was linked with better tumor differentiation in gastric adenocarcinoma (GCA) (OR = 0.49; 95% CI = 0.26-0.94, P = .03). CONCLUSIONS ERα and ERβ might serve as potential prognostic biomarkers for gastroesophageal cancer patients. ERα overexpression predicted poor OS and lower tumor differentiation, and ERβ suggested favorable OS and better tumor differentiation. Further related studies should be performed to test these results.
Collapse
Affiliation(s)
| | - Jianwei Ku
- The Second Affiliated Hospital of Nanyang Medical College
| | | | - Junhui Zhang
- Department of Traditional Chinese Medicine, Nanyang Medical College, Nanyang, Henan, China
| | | | | |
Collapse
|
24
|
Samocha A, Doh H, Kessenbrock K, Roose JP. Unraveling Heterogeneity in Epithelial Cell Fates of the Mammary Gland and Breast Cancer. Cancers (Basel) 2019; 11:E1423. [PMID: 31554261 PMCID: PMC6826786 DOI: 10.3390/cancers11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Fluidity in cell fate or heterogeneity in cell identity is an interesting cell biological phenomenon, which at the same time poses a significant obstacle for cancer therapy. The mammary gland seems a relatively straightforward organ with stromal cells and basal- and luminal- epithelial cell types. In reality, the epithelial cell fates are much more complex and heterogeneous, which is the topic of this review. Part of the complexity comes from the dynamic nature of this organ: the primitive epithelial tree undergoes extensively remodeling and expansion during puberty, pregnancy, and lactation and, unlike most other organs, the bulk of mammary gland development occurs late, during puberty. An active cell biological debate has focused on lineage commitment to basal- and luminal- epithelial cell fates by epithelial progenitor and stem cells; processes that are also relevant to cancer biology. In this review, we discuss the current understanding of heterogeneity in mammary gland and recent insights obtained through lineage tracing, signaling assays, and organoid cultures. Lastly, we relate these insights to cancer and ongoing efforts to resolve heterogeneity in breast cancer with single-cell RNAseq approaches.
Collapse
Affiliation(s)
- Alexandr Samocha
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Hanna Doh
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Maiti S, Nazmeen A. Impaired redox regulation of estrogen metabolizing proteins is important determinant of human breast cancers. Cancer Cell Int 2019; 19:111. [PMID: 31114446 PMCID: PMC6518504 DOI: 10.1186/s12935-019-0826-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Estrogen evidently involves critically in the pathogenesis of gynaecological-cancers. Reports reveal that interference in estrogen-signalling can influence cell-cycle associated regulatory-processes in female reproductive-organs. The major determinants that influence E2-signallings are estrogen-receptor (ER), estrogen-sulfotransferase (SULT1E1), sulfatase (STS), and a formylglycine-generating-enzyme (FGE) which regulates STS activity. The purpose of this mini review was to critically analyze the correlation between oxidative-threats and redox-regulation in the process of estrogen signalling. It is extensively investigated and reported that oxidative-stress is linked to cancer. But no definite mechanism has been explored till date. The adverse effects of oxidative-threat/free-radicals (like genotoxic-effects, gene-regulation, and mitochondrial impairment) have been linked to several diseases like diabetes/cardiovascular-syndrome/stroke and cancer. However, a significant correlation between oxidative-stress and gynaecological-cancers are repeatedly reported without pointing a definite mechanism. For the first time in our study we have investigated the relationship between oxidative stress and the regulation of estrogen via estrogen metabolizing proteins. Reports reveal that ER, SULT1E1, STS and FGE are target-molecules of oxidative-stress and may function differently in oxidizing and reducing environment. In addition, estrogen itself can induce oxidative-stress. This fact necessitates identifying the critical connecting events between oxidative-stress and regulation of estrogen-associated-molecules (ER, SULT1E1, STS, and FGE) that favors tumorigenesis/carcinogenesis. The current review focus is on unique redox-regulation of estrogen and its regulatory-molecules via oxidative-stress. This mechanistic-layout may identify new therapeutic-targets and open further scopes to treat gynecological-cancers more effectively.
Collapse
Affiliation(s)
- Smarajit Maiti
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
- Department of Biochemistry and Biotechnology, Cell & Molecular Therapeutics Lab, OIST, Midnapore, 721102 India
| | - Aarifa Nazmeen
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
| |
Collapse
|
26
|
Cranford TL, Velázquez KT, Enos RT, Sougiannis AT, Bader JE, Carson MS, Bellone RR, Chatzistamou I, Nagarkatti M, Murphy EA. Effects of high fat diet-induced obesity on mammary tumorigenesis in the PyMT/MMTV murine model. Cancer Biol Ther 2018; 20:487-496. [PMID: 30388923 DOI: 10.1080/15384047.2018.1537574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical studies provide strong evidence that obesity and associated adipose tissue (AT) inflammation are risk factors for breast cancer (BrCA); however, mechanistic knowledge of the interaction of obesity, BrCA, and menopausal status has proven to be not only lacking, but contradictory. Obesity-induced inflammation and elevated biosynthesis of estrogens, through aromatase-mediated metabolism of precursors, have been linked with hormone receptor positive (HP) postmenopausal BrCA but not previously associated with premenopausal BrCA risk. Thus, further delineation of the interaction of obesity, inflammation, and aromatase is required for the development of therapeutic treatment options. The purpose of this study was to examine the effect of high fat diet (HFD)-induced inflammation on tumorigenesis in a model of pre and postmenopausal HP BrCA. Female PyMT/MMTV ovary intact and ovariectomized mice were fed low and HFD diets to examine the role of obesity-induced inflammation and hormone production in the development of HP BrCA. Tumor statistics for number, volume, weight, histopathology scoring and gene expression of macrophage and inflammatory mediators were measured in the AT and mammary gland at sacrifice. HFD feedings of ovary intact mice resulted in increased adiposity and tumorigenesis, indicated by increased primary tumor volume, multiplicity, tumor burden, and increased tumor progression represented by histopathological scoring. HFD-induced obesity significantly upregulated aromatase and macrophage marker expression in the AT (F4/80 and CD11c) and mammary gland (Mertk) in a premenopausal model of BrCA. Conversely, HFD feedings had no significant effect on tumorigenesis in a postmenopausal model of BrCA despite large increases in adiposity in ovariectomized mice; however, limitations within the model may have precluded any significant findings. This data suggests that obesity-induced increases in inflammation and hormone production, via aromatase expression, is associated with increases in tumorigenesis in a model of premenopausal HP BrCA in the PyMT/MMTV strain.
Collapse
Affiliation(s)
- Taryn L Cranford
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Kandy T Velázquez
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Reilly T Enos
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Alexander T Sougiannis
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Jackie E Bader
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Meredith S Carson
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Rebecca R Bellone
- b Department of Population Health & Reproduction, School of Veterinary Medicine , University of California at Davis , Davis , CA , USA
| | - Ioulia Chatzistamou
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Mitzi Nagarkatti
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - E Angela Murphy
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
27
|
Guillette TC, Jackson TW, Belcher SM. Duality of estrogen receptor β action in cancer progression. Curr Opin Pharmacol 2018; 41:66-73. [PMID: 29772419 PMCID: PMC8008732 DOI: 10.1016/j.coph.2018.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
The physiological actions of estrogens are primarily mediated by the nuclear hormone receptors estrogen receptor alpha (ERα) and beta (ERβ). Activities of these nuclear steroid hormone receptors in etiology and progression of many hormone-responsive cancers are well-established, yet the specific role of each receptor, and their various expressed isoforms, in estrogen-responsive cancers remains unclear. Recent advances in nuclear receptor profiling, characterization of expressed splice variants, and the availability of new experimental cancer models, has extended the understanding of the complex interplay between the differentially expressed nuclear estrogen receptors. In this review, we discuss proposed roles of ERβ in several subtypes of cancers that lack significant ERα expression and define current understanding of how different ERs collaborate to regulate cellular processes.
Collapse
Affiliation(s)
- T C Guillette
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27695-7617, USA
| | - Thomas W Jackson
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27695-7617, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
28
|
Liu LL, Fang C, Liu WJ. Identification on novel locus of dairy traits of Kazakh horse in Xinjiang. Gene 2018; 677:105-110. [PMID: 30257803 DOI: 10.1016/j.gene.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023]
Abstract
The utility of high-density single nucleotide polymorphism (SNP) data help to accurately identify genomic regions that have undergone positive selection. In this study, the Affymetrix Equine 670 K high-density SNP array was used to genotype Kazakh and Yili horse population. After quality control, 370,227 autosomal SNPs were used to detect selection signatures by using global fixation index (FST) and cross-population extended haplotype homozygosity (XP-EHH). The database of Ensemble, Genecards, and NCBI were used to make gene annotation and functional analysis. The results showed that there were 134 candidate SNPs overlapped between FST and XP-EHH in Kazakh horse. We also discovered some potential selective sweep regions associated with milk trait, including NUMB, LGALS2, ADCY8, SLC25A30, and CA8 genes. New findings from this research have potential value for milk traits selecting in horse.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chao Fang
- Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Wu-Jun Liu
- Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China.
| |
Collapse
|
29
|
Dall GV, Hawthorne S, Seyed-Razavi Y, Vieusseux J, Wu W, Gustafsson JA, Byrne D, Murphy L, Risbridger GP, Britt KL. Estrogen receptor subtypes dictate the proliferative nature of the mammary gland. J Endocrinol 2018; 237:323-336. [PMID: 29636363 DOI: 10.1530/joe-17-0582] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Estrogen induces proliferation of breast epithelial cells and is responsible for breast development at puberty. This tightly regulated control is lost in estrogen-receptor-positive (ER+) breast cancers, which comprise over 70% of all breast cancers. Currently, breast cancer diagnosis and treatment considers only the α isoform of ER; however, there is a second ER, ERβ. Whilst ERα mediates estrogen-driven proliferation of the normal breast in puberty and breast cancers, ERβ has been shown to exert an anti-proliferative effect on the normal breast. It is not known how the expression of each ER (alone or in combination) correlates with the ability of estrogen to induce proliferation in the breast. We assessed the levels of each ER in normal mouse mammary glands subdivided into proliferative and non-proliferative regions. ERα was most abundant in the proliferative regions of younger mice, with ERβ expressed most abundantly in old mice. We correlated this expression profile with function by showing that the ability of estrogen to induce proliferation was reduced in older mice. To show that the ER profile associated with breast cancer risk, we assessed ER expression in parous mice which are known to have a reduced risk of developing ERα breast cancer. ERα expression was significantly decreased yet co-localization analysis revealed ERβ expression increased with parity. Parous mice had less unopposed nuclear ERα expression and increased levels of ERβ. These changes suggest that the nuclear expression of ERs dictates the proliferative nature of the breast and may explain the decreased breast cancer risk with parity.
Collapse
Affiliation(s)
| | - Samuel Hawthorne
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | | | - Wanfu Wu
- Department of Biology and BiochemistryUniversity of Houston, Houston, Texas, USA
| | - Jan-Ake Gustafsson
- Department of Biology and BiochemistryUniversity of Houston, Houston, Texas, USA
| | - David Byrne
- Department of PathologyPeter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Gail P Risbridger
- Peter MacCallum Cancer CentreMelbourne, Australia
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | - Kara L Britt
- Peter MacCallum Cancer CentreMelbourne, Australia
- The Sir Peter MacCallumDepartment of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
30
|
Sapouckey SA, Kassotis CD, Nagel SC, Vandenberg LN. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice. Endocrinology 2018; 159:1277-1289. [PMID: 29425295 PMCID: PMC5809159 DOI: 10.1210/en.2017-00866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies.
Collapse
Affiliation(s)
- Sarah A. Sapouckey
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Christopher D. Kassotis
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
31
|
Applegate R, Olin S, Sabatino B. Urethral Sphincter Mechanism Incompetence in Dogs: An Update. J Am Anim Hosp Assoc 2018; 54:22-29. [DOI: 10.5326/jaaha-ms-6524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Urethral sphincter mechanism incompetence (USMI) is the most common cause of acquired urinary incontinence in dogs. The pathogenesis of USMI is multifactorial and complex. Studies have shown variable results regarding the effects and timing of sterilization on the incidence of USMI. Diagnosis of USMI is often based on history, physical examination, and elimination of other differentials. Treatment options for USMI include medications, such as α-adrenergic agents and estrogen products, minimally-invasive urethral bulking procedures, surgical procedures (e.g., indwelling urethral occluders), or combination therapy. The overall prognosis for USMI is typically fair to good with long-term therapy.
Collapse
Affiliation(s)
- Rory Applegate
- From the University of Tennessee, Knoxville, Tennessee (R.A., S.O.); and Affiliated Veterinary Specialists, Gainesville, Florida (B.S.)
| | - Shelly Olin
- From the University of Tennessee, Knoxville, Tennessee (R.A., S.O.); and Affiliated Veterinary Specialists, Gainesville, Florida (B.S.)
| | - Bethany Sabatino
- From the University of Tennessee, Knoxville, Tennessee (R.A., S.O.); and Affiliated Veterinary Specialists, Gainesville, Florida (B.S.)
| |
Collapse
|
32
|
Current Approaches to Diagnosis and Treatment of Ductal Carcinoma In Situ and Future Directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:33-80. [PMID: 29096897 DOI: 10.1016/bs.pmbts.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and treatment of ductal carcinoma in situ (DCIS) has changed substantially over the years. While previously an incidental pathologic finding in more advanced, palpable tumors, the institution of screening mammography has repositioned this disease entity as one largely diagnosed as a non-palpable lesion, often prior to any invasive disease. As DCIS is a precursor to invasive carcinoma, evolution in the approach to treatment has followed in the footsteps of that for invasive disease, including breast conservation therapy, adjuvant radiation, and use of antihormonal therapy. Survival outcomes for DCIS are very high and more recent literature has investigated tailoring therapeutic approaches to avoid overtreatment. Two important areas of ongoing clinical debate concerning overtreatment include use of preoperative MRI and the role of adjuvant radiation. The heterogeneity of the disease makes it difficult to differentiate lesions that would benefit from more aggressive treatment from those in which overtreatment could be avoided. Clinical characteristics, such as histologic appearance, age at diagnosis, and margin status at tumor excision have been established as moderate predictors of disease recurrence, but none has provided strong enough evidence as to guide consensus decisions on adjuvant therapy. Continuing research seeks to define the genetic and molecular characteristics that can predict disease course and serve as the potential targets for novel therapeutic agents. While several markers have shown promise in differentiating tumor aggressiveness, there is still much to be discovered about the precise mechanisms of disease progression and how this can be applied clinically to optimize treatment.
Collapse
|
33
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
34
|
Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia 2017; 22:93-108. [PMID: 28168376 PMCID: PMC5488158 DOI: 10.1007/s10911-017-9372-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.
Collapse
Affiliation(s)
- Ingrid S Paine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Wu HJ, Oh JW, Spandau DF, Tholpady S, Diaz J, Schroeder LJ, Offutt CD, Glick AB, Plikus MV, Koyama S, Foley J. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 2017; 144:1498-1509. [PMID: 28289136 DOI: 10.1242/dev.141630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.
Collapse
Affiliation(s)
- Hsing-Jung Wu
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Korea
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesus Diaz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Laura J Schroeder
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Carlos D Offutt
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sachiko Koyama
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
36
|
Monkkonen T, Landua JD, Visbal AP, Lewis MT. Epithelial and non-epithelial Ptch1 play opposing roles to regulate proliferation and morphogenesis of the mouse mammary gland. Development 2017; 144:1317-1327. [PMID: 28275010 PMCID: PMC5399619 DOI: 10.1242/dev.140434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Patched 1 (Ptch1) has epithelial, stromal and systemic roles in murine mammary gland organogenesis, yet specific functions remain undefined. Cre-recombinase-mediated Ptch1 ablation in mammary epithelium increased proliferation and branching, but did not phenocopy transgenic expression of activated smoothened (SmoM2). The epithelium showed no evidence of canonical hedgehog signaling, and hyperproliferation was not blocked by smoothened (SMO) inhibition, suggesting a non-canonical function of PTCH1. Consistent with this possibility, nuclear localization of cyclin B1 was increased. In non-epithelial cells, heterozygous Fsp-Cre-mediated Ptch1 ablation increased proliferation and branching, with dysplastic terminal end buds (TEB) and ducts. By contrast, homozygous Ptch1 ablation decreased proliferation and branching, producing stunted ducts filled with luminal cells showing altered ovarian hormone receptor expression. Whole-gland transplantation into wild-type hosts or estrogen/progesterone treatment rescued outgrowth and hormone receptor expression, but not the histological changes. Bone marrow transplantation failed to rescue outgrowth. Ducts of Fsp-Cre;Ptch1fl/fl mice were similar to Fsp-Cre;SmoM2 ducts, but Fsp-Cre;SmoM2 outgrowths were not stunted, suggesting that the histology might be mediated by Smo in the local stroma, with systemic Ptch1 required for ductal outgrowth and proper hormone receptor expression in the mammary epithelium. Summary: Systemic and tissue-specific depletion of patched 1 in epithelial and stromal compartments of the mammary gland defines functions in ductal patterning, proliferation and gene expression.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John D Landua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adriana P Visbal
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
37
|
Bernard V, Kherra S, Francou B, Fagart J, Viengchareun S, Guéchot J, Ladjouze A, Guiochon-Mantel A, Korach KS, Binart N, Lombès M, Christin-Maitre S. Familial Multiplicity of Estrogen Insensitivity Associated With a Loss-of-Function ESR1 Mutation. J Clin Endocrinol Metab 2017; 102:93-99. [PMID: 27754803 PMCID: PMC5413105 DOI: 10.1210/jc.2016-2749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens influence many physiological processes in mammals, including reproduction. Estrogen peripheral actions are mainly mediated through estrogen receptors (ERs) α and β, encoded by ESR1 and ESR2 genes, respectively. OBJECTIVE The study's aim was to describe a family in which 3 members presented with estrogen insensitivity. DESIGN AND SETTING Clinical evaluation and genetic and mutational analysis were performed in an academic medical center. PATIENTS AND INTERVENTIONS An ESR1 mutation was identified in 2 sisters and 1 brother, originating from a consanguineous Algerian family, who did not enter puberty and presented with delayed bone maturation consistent with estrogen insensitivity. The 2 sisters had enlarged multicystic ovaries. Hormonal evaluation as well as genetic and mutational analysis were performed. RESULTS Hormonal evaluation revealed extremely high plasma 17β-estradiol (>50-fold normal range) associated with elevated gonadotropin levels (greater than threefold normal range), highly suggestive of estrogen resistance. The 3 affected patients carried a homozygous mutation of a highly conserved arginine 394 for which histidine was substituted through an autosomal recessive mode of transmission. Structural and functional analysis of the mutant ERα revealed strongly reduced transcriptional activity and the inability to securely anchor the activating hormone, estradiol, compared with wild-type ERα. A group of other potential ER activating ligands were tested, but none overcame the estrogen insensitivity in these patients. CONCLUSION Description and analysis of this family of patients with mutant ERα provide additional clinical findings toward identification and characterization of what was previously thought to be a highly rare clinical condition.
Collapse
Affiliation(s)
- Valérie Bernard
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Sakina Kherra
- Service de Pédiatrie, Hôpital Nafissa Hamoud, Alger, 16040 Algeria;
| | - Bruno Francou
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, and
| | - Jérôme Fagart
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Say Viengchareun
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Jérôme Guéchot
- Laboratoire d’Hormonologie, Pôle de Biologie Médicale et Pathologie, site Saint-Antoine, Hôpitaux Universitaires Est Parisien, Assistance Publique–Hôpitaux de Paris, 75012 Paris, France;
| | | | - Anne Guiochon-Mantel
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, and
| | - Kenneth S. Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina 27709;
| | - Nadine Binart
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Marc Lombès
- INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
- Service d’Endocrinologie et Maladies de la Reproduction, Centre Hospitalier Universitaire de Bicêtre, Hôpitaux Universitaires Paris-Sud, Assistance Publique–Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France;
| | - Sophie Christin-Maitre
- Service d’Endocrinologie et Maladies de la Reproduction, Hôpital Saint-Antoine, Assistance Publique–Hôpitaux de Paris, 75012 Paris, France; and
- INSERM 933, Université Pierre et Marie Curie, 75011 Paris, France
| |
Collapse
|
38
|
Abstract
The mouse mammary gland is widely used as a model for human breast cancer and has greatly added to our understanding of the molecular mechanisms involved in breast cancer development and progression. To fully appreciate the validity and limitations of the mouse model, it is essential to be aware of the similarities and also the differences that exist between the mouse mammary gland and the human breast. This introduction therefore describes the parallels and contrasts in mouse mammary gland and human breast morphogenesis from an early embryonic phase through to puberty, adulthood, pregnancy, parturition, and lactation, and finally the regressive stage of involution.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
40
|
Stanko JP, Kissling GE, Chappell VA, Fenton SE. Differences in the Rate of in Situ Mammary Gland Development and Other Developmental Endpoints in Three Strains of Female Rat Commonly Used in Mammary Carcinogenesis Studies: Implications for Timing of Carcinogen Exposure. Toxicol Pathol 2016; 44:1021-33. [PMID: 27613105 DOI: 10.1177/0192623316655222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potential of chemicals to alter susceptibility to mammary tumor formation is often assessed using a carcinogen-induced study design in various rat strains. The rate of mammary gland (MG) development must be considered so that the timing of carcinogen administration is impactful. In this study, in situ MG development was assessed in females of the Harlan Sprague-Dawley (Hsd:SD), Charles River Sprague-Dawley (Crl:SD), and Charles River Long-Evans (Crl:LE) rat strains at postnatal days 25, 33, and 45. Development was evaluated by physical assessment of growth parameters, developmental scoring, and quantitative morphometric analysis. Although body weight (BW) was consistently lower and day of vaginal opening (VO) occurred latest in female Hsd:SD rats, they exhibited accelerated pre- and peripubertal MG development compared to other strains. Glands of Crl:SD and Crl:LE rats exhibited significantly more terminal end buds (TEBs) and TEB/mm than Hsd:SD rats around the time of VO. These data suggest a considerable difference in the rate of MG development across commonly used strains, which is independent of BW and timing of VO. In mammary tumor induction studies employing these strains, administration of the carcinogen should be timed appropriately, based on strain, to specifically target the peak of TEB occurrence.
Collapse
Affiliation(s)
- Jason P Stanko
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Grace E Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Vesna A Chappell
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Luo A, Su D, Zhang X, Qi L, Fu L, Dong JT. Estrogen-estrogen receptor signaling suppresses the transcription of ERRF in breast cancer cells. J Genet Genomics 2016; 43:565-567. [DOI: 10.1016/j.jgg.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/13/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
42
|
Droog M, Mensink M, Zwart W. The Estrogen Receptor α-Cistrome Beyond Breast Cancer. Mol Endocrinol 2016; 30:1046-1058. [PMID: 27489947 DOI: 10.1210/me.2016-1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although many tissues express estrogen receptor (ER)α, most studies focus on breast cancer where ERα occupies just a small fraction of its total repertoire of potential DNA-binding sites, based on sequence. This raises the question: Can ERα occupy these other potential binding sites in a different context? Ligands, splice variants, posttranslational modifications, and acquired mutations of ERα affect its conformation, which may alter chromatin interactions. To date, literature describes the DNA-binding sites of ERα (the ERα cistrome) in breast, endometrium, liver, and bone, in which the receptor mainly binds to enhancers. Chromosomal boundaries provide distinct areas for dynamic gene regulation between tissues, where the usage of enhancers deviates. Interactions of ERα with enhancers and its transcriptional complex depend on the proteome, which differs per cell type. This review discusses the biological variables that influence ERα cistromics, using reports from human specimens, cell lines, and mouse tissues, to assess whether ERα genomics in breast cancer can be translated to other tissue types.
Collapse
Affiliation(s)
- Marjolein Droog
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mark Mensink
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
43
|
Chen J, Yang C, Guo B, Sena ES, Macleod MR, Yuan Y, Hirst TC. The Efficacy of Trastuzumab in Animal Models of Breast Cancer: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0158240. [PMID: 27463246 PMCID: PMC4963137 DOI: 10.1371/journal.pone.0158240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/12/2016] [Indexed: 11/24/2022] Open
Abstract
Background Breast cancer is the most frequent cancers and is the second leading cause of cancer death among women. Trastuzumab is an effective treatment, the first monoclonal antibody directed against the human epidermal growth factor receptor 2 (HER2). To inform the development of other effective treatments we report summary estimates of efficacy of trastuzumab on survival and tumour volume in animal models of breast cancer. Methods We searched PubMed and EMBASE systematically to identify publications testing trastuzumab in animal models of breast cancer. Data describing tumour volume, median survival and animal features were extracted and we assessed quality using a 12-item checklist. We analysed the impact of study design and quality and evidence for publication bias. Results We included data from 83 studies reporting 169 experiments using 2076 mice. Trastuzumab treatment caused a substantial reduction in tumour growth, with tumours in treated animals growing to 32.6% of the volume of tumours in control animals (95%CI 27.8%-38.2%). Median survival was prolonged by a factor of 1.45 (1.30–1.62). Many study design and quality features accounted for between-study heterogeneity and we found evidence suggesting publication bias. Conclusion We have found trastuzumab to be effective in animal breast cancer models across a range of experimental circumstances. However the presence of publication bias and a low prevalence of measures to reduce bias provide a focus for future improvements in preclinical breast cancer research.
Collapse
Affiliation(s)
- Jiarong Chen
- Department of Oncology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong 529030, P. R. China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou DaDao Bei, Guangzhou, Guangdong 510515, P. R. China
| | - Canhong Yang
- Department of Neurology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, P. R. China
| | - Bin Guo
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, Chancellors Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, Chancellors Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou DaDao Bei, Guangzhou, Guangdong 510515, P. R. China
- * E-mail:
| | - Theodore C. Hirst
- Centre for Clinical Brain Sciences, Chancellors Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
ERRF is essential for Estrogen-Estrogen Receptor alpha signaling pathway in ER positive breast cancer cells. Biochem Biophys Res Commun 2016; 474:400-405. [PMID: 27125460 DOI: 10.1016/j.bbrc.2016.04.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022]
Abstract
Estrogen-Estrogen Receptor alpha (ERα) belongs to one of the most important signaling pathways controlling breast tissue development and progression of breast cancer. ERRF was recently identified as a candidate breast cancer associated protein and showed positive association with ERα status in clinical samples and cell lines. To further explore the relationship between ERRF and ERα, we studied whether ERRF plays any roles in estrogen-ERα pathway. Knockdown of ERRF in ER positive breast cancer cells T-47D and BT-474 reduced the level of p-AKT, p-MAPK, and phosphorylation of ERα at Ser 118 and Ser 167, and the transcriptional activity of ERα was inhibited as well. Further mechanism study proved ERRF to be an interacting partner of ERα. In total, these data revealed that ERRF is essential for the activity of E2-ERα pathway.
Collapse
|
45
|
Yuan L, Dietrich AK, Ziegler YS, Nardulli AM. 17β-Estradiol alters oxidative damage and oxidative stress response protein expression in the mouse mammary gland. Mol Cell Endocrinol 2016; 426:11-21. [PMID: 26872614 PMCID: PMC4818174 DOI: 10.1016/j.mce.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/29/2022]
Abstract
Although substantial evidence has demonstrated that parity and 17β-estradiol (E2) reduce mammary carcinogenesis, it is not clear how this protection is conferred. Thus, we examined the effects of parity and E2 treatment in the mammary glands of ovariectomized 15 week-old virgin mice, 15 week-old primiparous mice, and 9 month-old retired breeders. E2 treatment significantly increased lipid peroxidation, protein carbonylation, and protein nitrosylation in the virgin mice, but not in the age-matched primiparous mice or retired breeders. Mammary gland expression of the oxidative stress response protein Cu/Zn superoxide dismutase was consistently reduced in all of the E2-treated mice regardless of parity. Expression of the oxidative stress and DNA repair protein apurinic endonuclease (Ape1) was significantly increased only in the mammary glands of the E2-treated retired breeders. These findings suggest that E2 and parity help to reduce mammary oncogenesis by maintaining the structure and function of proteins, lipids, and DNA.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yvonne S Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
46
|
Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer. Folia Histochem Cytobiol 2016; 47:S107-12. [PMID: 20067880 DOI: 10.2478/v10042-009-0047-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9.
Collapse
|
47
|
Effects of lifelong exercise training on mammary tumorigenesis induced by MNU in female Sprague-Dawley rats. Clin Exp Med 2016; 17:151-160. [PMID: 27094311 DOI: 10.1007/s10238-016-0419-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide. Several studies have suggested that exercise training may decrease the risk of breast cancer development. This study aimed to evaluate the effects of long-term exercise training on mammary tumorigenesis in an animal model of mammary cancer. Fifty female Sprague-Dawley rats were randomly divided into four groups: MNU sedentary, MNU exercised, control sedentary and control exercised. Animals from MNU groups received an intraperitoneal administration of N-methyl-N-nitrosourea (MNU). Animals were exercised on a treadmill during 35 weeks. When animals were killed, blood samples were collected to determine the hematocrit and to perform the biochemical analysis. Mammary tumors were collected and histologically evaluated; the expression of ERs α and β was evaluated in tumor sections by immunohistochemistry. All survived animals from both MNU groups developed mammary tumors. The number of mammary tumors (p > 0.05) and lesions (p = 0.056) was lower in MNU exercised than in MNU sedentary animals. MNU exercised animals showed lower number of malignant lesions than MNU sedentary animals (p = 0.020). C-reactive protein serum concentration was lower in exercised animals; however, the levels of 17-β estradiol were higher in exercised animals. Tumors from exercised animals exhibited higher expression of ER α than tumors from sedentary animals (p < 0.05). This study analyzes the impact of the longest exercise training protocol on mammary tumorigenesis ever performed. We concluded that the lifelong endurance training has beneficial effects on mammary tumorigenesis in female rats (reduced the inflammation, the number of mammary tumors and lesions, and histological grade of malignancy). Additionally, the mammary tumors from MNU exercised group exhibited higher immunoexpression of ER α that is an indicator of well-differentiated tumors and better response to hormone therapy.
Collapse
|
48
|
Shugan Liangxue Decoction () Down-Regulates Estrogen Receptor α Expression in Breast Cancer Cells. Chin J Integr Med 2016; 24:518-524. [PMID: 26740221 DOI: 10.1007/s11655-015-2123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To observe the effect of Shugan Liangxue Decoction (, SGLXD) on estrogen receptor α (ERα) in human breast cancer cells. METHODS The effect of SGLXD (0.85-5.10 mg/mL) on the proliferation of breast cancer cells were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The nuclear ERα protein levels in MCF-7, T47D and ZR-75-1 cells which treated by SGLXD for 24 h were examined by western blot and immunofluorescence assay. MCF-7 and MDA-MB-231 cells were treated by 17β-estradiol (E2) with or without SGLXD, for 24 h, and the E2 targeted genes c-myc and bcl-2 protein product was evaluated by western blot. RESULTS SGLXD showed dose-dependent inhibition on the proliferation of MCF-7, T47D and ZR-75-1 cells, but did not inhibit the proliferation of MDA-MB-231 cells. Furthermore, the promotive effect on cell growth induced by E2 was also significantly inhibited by SGLXD treatment. With the treatment of 1.70, 3.40, 5.10 mg/mL SGLXD, the nuclear ERα protein level was reduced to 88.1%, 70.4% and 60.9% in MCF-7 cells, and was decreased to 43.0%, 38.4% and 5.9% in ZR-75-1 cells as compared with the control group. In T47D cells, the nuclear ERα protein was down-regulated to 51.3% and 4.3% by 3.40 and 5.10 mg/mL SGLXD treatment. The down-regulative effect of SGLXD on nuclear ERα was confirmed by immunofluorescence assay. SGLXD decreased the protein product of c-myc and bcl-2. CONCLUSIONS SGLXD may exhibit selective inhibition effect on the proliferation of ER positive breast cancer cells. SGLXD reduced the nuclear ERα expression and the protein product of E2 target gene c-myc and bcl-2.
Collapse
|
49
|
Simões BM, Alferez DG, Howell SJ, Clarke RB. The role of steroid hormones in breast cancer stem cells. Endocr Relat Cancer 2015; 22:T177-86. [PMID: 26381288 DOI: 10.1530/erc-15-0350] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/22/2022]
Abstract
Breast cancer stem cells (BCSCs) are potent tumor-initiating cells in breast cancer, the most common cancer among women. BCSCs have been suggested to play a key role in tumor initiation which can lead to disease progression and formation of metastases. Moreover, BCSCs are thought to be the unit of selection for therapy-resistant clones since they survive conventional treatments, such as chemotherapy, irradiation, and hormonal therapy. The importance of the role of hormones for both normal mammary gland and breast cancer development is well established, but it was not until recently that the effects of hormones on BCSCs have been investigated. This review will discuss recent studies highlighting how ovarian steroid hormones estrogen and progesterone, as well as therapies against them, can regulate BCSC activity.
Collapse
Affiliation(s)
- Bruno M Simões
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Denis G Alferez
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sacha J Howell
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Robert B Clarke
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
50
|
Delisle A, Ferraris E, Plante I. Chronic exposure to hexachlorobenzene results in down-regulation of connexin43 in the breast. ENVIRONMENTAL RESEARCH 2015; 143:229-240. [PMID: 26519829 DOI: 10.1016/j.envres.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Decreased expression of connexins has been associated with cancer, but the underlying mechanisms are poorly understood. We have previously shown that a 5 day exposure to hexachlorobenzene (HCB) resulted in decreased connexins expression in hepatocytes 45 days later, and that this down-regulation was linked to activation of Akt through the ILK pathway. Because HCB promotes cancer in both the liver and breast, the present study aimed to determine if the mechanisms are similar in both tissues. MCF-12A breast cells were thus transfected with vectors coding for either Akt or a constitutively active form of Akt. In those cells, activation of Akt was correlated with decreased Cx43 levels. Female rats were then exposed to HCB by gavage either following the same protocol used previously for the liver or through a chronic exposure. While no changes were observed after the 5 days exposure protocol, chronic exposure to HCB resulted in increased Akt levels and decreased Cx43 levels in breast cells. In vitro, Akt was activated in MCF-12A cells exposed to HCB either for 7 days or chronically, but no changes were observed in junctional proteins. Together, these results suggested that, while activation of Akt can decrease Cx43 expression in breast cells in vitro, other mechanisms are involved during HCB exposure, leading to a decrease in Cx43 levels in a model- and duration-dependent manner. Finally, we showed that HCB effects are tissue specific, as we did not observe the same results in breast and liver tissues.
Collapse
Affiliation(s)
- Ariane Delisle
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | - Isabelle Plante
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7. http://www.inrs.ca
| |
Collapse
|