1
|
Richards LA, Guo S, Lapworth DJ, White D, Civil W, Wilson GJL, Lu C, Kumar A, Ghosh A, Khamis K, Krause S, Polya DA, Gooddy DC. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121626. [PMID: 37054870 DOI: 10.1016/j.envpol.2023.121626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. Here we have investigated the composition and spatial distribution of EOCs in surface water along a ∼500 km segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of pharmaceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atrazine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded predicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and associated transformation products. Associations between EOCs and other hydrochemical parameters including excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correlations between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential sources and controls on EOC distribution in the River Ganga and other large river systems.
Collapse
Affiliation(s)
- Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Shuaizhi Guo
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Debbie White
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Wayne Civil
- Environment Agency, National Laboratory Service, Starcross, Devon, EX6 8FD, UK
| | - George J L Wilson
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Chuanhe Lu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; LEHNA - Laboratoire D'ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
2
|
Tang J, Zhu Y, Li Y, Xiang B, Tan T, Lv L, Luo Q. Occurrence characteristics and health risk assessment of per- and polyfluoroalkyl substances from water in residential areas around fluorine chemical industrial areas, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60733-60743. [PMID: 35426024 DOI: 10.1007/s11356-022-20155-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Recently, identifying the contamination status and assessing the health risk of per- and polyfluoroalkyl substances (PFASs) in surface water and groundwater have been of great significance. Eighteen individual PFASs were analyzed in thirty-three surface/groundwater samples during one period in a fluorine chemical park (Park A) and during two periods in Park B. The mean total concentration of 18 PFASs (∑PFASs) in Park A (9104.63 ng·L-1) was significantly higher than that in the wet season (WS) (801.68 ng·L-1) or DS (714.64 ng·L-1) in Park B. The perfluorobutane sulfonate (PFBS) was the predominant substance in the two parks, and the maximum concentration in groundwater exceeded 10,000 ng·L-1. The contamination status in the wet season (WS) was higher than that in the dry season (DS) in Park B. The ∑PFASs in Park A presented an increasing tendency following the groundwater flow direction, whereas this rule was limited to all periods in Park B. Two relative source contributions (RSCs) of 20% or 100% allowed assessing the PFASs risk to different age groups, and the results revealed that some PFASs (4 ≤ C ≤ 7 or 9 ≤ C ≤ 12) were identified as having a low risk quotient (RQ), except for perfluorooctane sulfonate (PFOS) and PFOA (C = 8). The RQmix value mainly relies on PFOA and PFOS, with a larger contribution rate of 80-90%. All assessed cases (case 1, case 2, case 3, and case 4) in all age groups revealed that infants were vulnerable to PFASs influence, followed by children, teenagers, and adults.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Linyou Lv
- Liaoning Research Institute of Sand Control and Utilization, Fuxin, 123000, China
| | - Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China.
| |
Collapse
|
3
|
Li BB, Hu LX, Yang YY, Wang TT, Liu C, Ying GG. Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113996. [PMID: 31991359 DOI: 10.1016/j.envpol.2020.113996] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) are a group of chemicals with a wide range of industrial and commercial applications, but little is known about the contamination of PFASs in groundwater and their linkage to surface water. Here we investigated the occurrence of PFASs in groundwater and surface water at the Maozhou River basin in order to understand their contamination profiles and potential health risks. The results showed that total PFASs concentrations ranged from 9.9 to 592.2 ng/L, 50.2-339.9 ng/L and 3.7-74.3 ng/g in groundwater, river water and sediment, respectively. The detection frequencies of C4-C8 chains (C4-C8) PFASs were higher than C9-C14 chains PFASs in the river and groundwater. Statistical analysis showed an obvious correlation between the major contaminants in the river and those in the groundwater, indicating the potential linkage of PFASs in the groundwater to the surface water. The wastewater indicator found in groundwater suggested domestic wastewater was only one of the source for the PFASs in the river and groundwater of Maozhou River basin. Moreover, human health risk assessment showed low risks from the PFASs to the residents by drinking groundwater.
Collapse
Affiliation(s)
- Bei-Bei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Tuan-Tuan Wang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
4
|
Comer-Warner S, Knapp JLA, Blaen P, Klaar M, Shelley F, Zarnetske J, Lee-Cullin J, Folegot S, Kurz M, Lewandowski J, Harvey J, Ward A, Mendoza-Lera C, Ullah S, Datry T, Kettridge N, Gooddy D, Drummond J, Martí E, Milner A, Hannah D, Krause S. The method controls the story - Sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136075. [PMID: 31887527 DOI: 10.1016/j.scitotenv.2019.136075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Biogeochemical gradients in streambeds are steep and can vary over short distances often making adequate characterisation of sediment biogeochemical processes challenging. This paper provides an overview and comparison of streambed pore-water sampling methods, highlighting their capacity to address gaps in our understanding of streambed biogeochemical processes. This work reviews and critiques available pore-water sampling techniques to characterise streambed biogeochemical conditions, including their characteristic spatial and temporal resolutions, and associated advantages and limitations. A field study comparing three commonly-used pore-water sampling techniques (multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gels) was conducted to assess differences in observed nitrate and ammonium concentration profiles. Pore-water nitrate concentrations did not differ significantly between sampling methods (p-value = 0.54) with mean concentrations of 2.53, 4.08 and 4.02 mg l-1 observed with the multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gel samplers, respectively. Pore-water ammonium concentrations, however, were significantly higher in pore-water extracted by multilevel mini-piezometers (3.83 mg l-1) and significantly lower where sampled with miniature drivepoint samplers (1.05 mg l-1, p-values <0.01). Differences in observed pore-water ammonium concentration profiles between active (suction: multilevel mini-piezometers) and passive (equilibrium; diffusive equilibrium in thin-film gels) samplers were further explored under laboratory conditions. Measured pore-water ammonium concentrations were significantly greater when sampled by diffusive equilibrium in thin-film gels than with multilevel mini-piezometers (all p-values ≤0.02). The findings of this study have critical implications for the interpretation of field-based research on hyporheic zone biogeochemical cycling and highlight the need for more systematic testing of sampling protocols. For the first time, the impact of different active and passive pore-water sampling methods is addressed systematically here, highlighting to what degree the choice of pore-water sampling methods affects research outcomes, with relevance for the interpretation of previously published work as well as future studies.
Collapse
Affiliation(s)
- Sophie Comer-Warner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Julia L A Knapp
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Phillip Blaen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Megan Klaar
- School of Geography and Water, University of Leeds, Leeds, UK
| | - Felicity Shelley
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jay Zarnetske
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
| | - Joseph Lee-Cullin
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
| | - Silvia Folegot
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Marie Kurz
- Department of Hydrogeology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Patrick Center for Environmental Research, The Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Jorg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology, Müggelseedamm 310, D-12587 Berlin, Germany
| | - Judson Harvey
- U.S. Geological Survey, Earth System Processes Division, Reston, VA, USA
| | - Adam Ward
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Clara Mendoza-Lera
- IRSTEA, UR MALY, Centre de Lyon, 5 rue de la Doua BP 32108, 69616 Villeurbanne Cedex, France
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thibault Datry
- IRSTEA, UR MALY, Centre de Lyon, 5 rue de la Doua BP 32108, 69616 Villeurbanne Cedex, France
| | - Nicholas Kettridge
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daren Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Jennifer Drummond
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Eugènia Martí
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Alexander Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Hannah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments. WATER 2020. [DOI: 10.3390/w12010167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of riparian wetlands on the cycling, retention and export of nutrients from land to water varies according to local environmental conditions and is poorly resolved in catchment management approaches. To determine the role a specific wetland might play in a catchment mitigation strategy, an alternative approach is needed to the high-frequency and spatially detailed monitoring programme that would otherwise be needed. Here, we present a new approach using a combination of novel and well-established geochemical, geophysical and isotope ratio methods. This combined approach was developed and tested against a 2-year high-resolution sampling programme in a lowland permeable wetland in the Lambourn catchment, UK. The monitoring programme identified multiple pathways and water sources feeding into the wetland, generating large spatial and temporal variations in nutrient cycling, retention and export behaviours within the wetland. This complexity of contributing source areas and biogeochemical functions within the wetland were effectively identified using the new toolkit approach. We propose that this technique could be used to determine the likely net source/sink function of riparian wetlands prior to their incorporation into any catchment management plan, with relatively low resource implications when compared to a full high-frequency nutrient speciation and isotope geochemistry-based monitoring approach.
Collapse
|
6
|
Chiu TP, Huang WS, Chen TC, Yeh YL. Fluorescence Characteristics of Dissolved Organic Matter (DOM) in Percolation Water and Lateral Seepage Affected by Soil Solution (S-S) in a Lysimeter Test. SENSORS 2019; 19:s19184016. [PMID: 31533366 PMCID: PMC6767287 DOI: 10.3390/s19184016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022]
Abstract
The composition and structure of dissolved organic matter (DOM) are sensitive indicators that guide the water infiltration process in soil. The DOM chemical composition in seepage affects river water quality and changes soil organic matter (SOM). In this lysimeter test study, fluorescence spectra and optical indices were used to examine the interaction between the percolation water (P-W) and leachate water (L-W) DOMs affected by the soil solution (S-S). The L-W DOM had a higher aromaticity (SUVA254), average molecular weight (S275-295) and terrestrial source (fluorescence index (FI)), but fewer autochthonous sources (biological index (BIX)) than the P-W DOM. Organic carbon standardization (OCS) and protein- (PLF), fulvic- (FLF) and humic-like fluorescence (HLF) intensity showed that L-W DOM increased 44%, 55% and 81%, respectively, compared to the P-W DOM. The linear regression slopes between OCS FLF and PLF were 0.62, 1.74 and 1.79 for P-W, L-W and S-S, respectively. The slopes between OCS HLF and PLF were 0.15, 0.58 and 0.64 for P-W, L-W and S-S, respectively. The P-W DOM was in contact with the soil litter layer, where S-S labile lignin phenolic compounds released and dissolved into the L-W DOM. This increased its aromaticity, and extent of humification.
Collapse
Affiliation(s)
- Teng-Pao Chiu
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wei-Shiang Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yi-Lung Yeh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
7
|
Ascott MJ, Stuart ME, Gooddy DC, Marchant BP, Talbot JC, Surridge BWJ, Polya DA. Provenance of drinking water revealed through compliance sampling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1052-1064. [PMID: 31140996 DOI: 10.1039/c8em00437d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding drinking water hydrochemistry is essential for maintaining safe drinking water supplies. Whilst targeted research surveys have characterised drinking water hydrochemistry, vast compliance datasets are routinely collected but are not interrogated amidst concerns regarding the impact of mixed water sources, treatment, the distribution network and customer pipework. In this paper, we examine whether compliance samples retain hydrochemical signatures of their provenance. We first created and subsequently undertook the first hydrochemical analysis of a novel national database of publically available drinking water compliance analyses (n = 3 873 941) reported for 2015 across England and Wales. k-means cluster analysis revealed three spatially coherent clusters. Cluster 1 is dominated by groundwater sources, with high nitrate concentrations and mineralisation, and lower organic carbon, residual chlorine and THM formation. Cluster 2 was dominated by surface water sources and characterised by low mineralisation (low conductivity and major ion concentrations), low nitrate and high organic carbon concentrations (and hence residual chlorine and THM formation). Cluster 3 shows a mixture of groundwater overlain by confining layers and superficial deposits (resulting in higher trace metal concentrations and mineralisation) and surface water sources. These analyses demonstrate that, despite extensive processing of drinking water, at the national scale signatures of the provenance of drinking water remain. Analysis of compliance samples is therefore likely to be a helpful tool in the characterisation of processes that may affect drinking water chemistry. The methodology used is generic and can be applied in any area where drinking water chemistry samples are taken.
Collapse
Affiliation(s)
- Matthew J Ascott
- British Geological Survey, Maclean Building, Benson Lane, Crowmarsh, Oxfordshire OX10 8BB, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhou C, Liu Y, Liu C, Liu Y, Tfaily MM. Compositional changes of dissolved organic carbon during its dynamic desorption from hyporheic zone sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:16-23. [PMID: 30572211 DOI: 10.1016/j.scitotenv.2018.12.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) is an important driver for biogeochemical reactions that affect microbial community function, and regulate changes in porewater chemical composition and redox properties in the environment. This study investigated the variation in DOM molecular composition during the detachment of organic matter (OM) from hyporheic zone (HZ) sediments using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). Diffusive mass transfer and microbial degradation were the two primary processes controlling the rate of OM release and molecular composition changes during the detachment from sediments. The diffusive mass transfer process limited the rate of OM release from the sediments, but had negligible effect on the molecular signature of the released OM. Microbial degradation on the other hand preferentially consumed the protein- and lipid-like fractions of the DOM, characterized by lower nominal oxidation states of carbon (NOSC), lower molecular weight, and a higher saturation of chemical bonds. The results have strong implication to the organic carbon dynamics and related microbial activities and contaminant transformation in hyporheic zones, an important critical area in river systems.
Collapse
Affiliation(s)
- Chenxin Zhou
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yunde Liu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanyuan Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richmond, WA 99354, USA; Department of Soil, Water and Environmental Science, University of Arizona, Tucosn, AZ 85721, USA
| |
Collapse
|
9
|
Old GH, Naden PS, Harman M, Bowes MJ, Roberts C, Scarlett PM, Nicholls DJE, Armstrong LK, Wickham HD, Read DS. Using dissolved organic matter fluorescence to identify the provenance of nutrients in a lowland catchment; the River Thames, England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1240-1252. [PMID: 30759564 DOI: 10.1016/j.scitotenv.2018.10.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Catchment based solutions are being sought to mitigate water quality pressures and achieve multiple benefits but their success depends on a sound understanding of catchment functioning. Novel approaches to monitoring and data analysis are urgently needed. In this paper we explore the potential of river water fluorescence at the catchment scale in understanding nutrient concentrations, sources and pathways. Data were collected from across the River Thames basin from January 2012 to March 2015. Analysing emission excitation matrices (EEMs) using both PARAFAC and optimal area averaging produced consistent results for humic-like component 1 and tryptophan-like component 4 in the absence of a subset of samples that exhibited an unusual peak; illustrating the importance of inspecting the entire EEM before using peak averaging methods. Strong relationships between fluorescence components and dissolved organic carbon (DOC), soluble reactive phosphorus (SRP), and ammonium clearly demonstrated its potential, in this study basin, as a field based surrogate for nutrients. Analysing relationships between fluorescence, catchment characteristics and boron from across the basin enabled new insights into the provenance of nutrients. These include evidence for diffuse sources of DOC from near surface hydrological pathways (i.e. soil horizons); point source inputs of nutrients from sewage effluent discharges; and diffuse contributions of nutrients from agriculture and/or sewage (e.g. septic tanks). The information gained by broad scale catchment wide monitoring of fluorescence could support catchment managers in (a) prioritising subcatchments for nutrient mitigation; (b) providing information on relative nutrient source contributions; and (c) providing evidence of the effectiveness of investment in pollution mitigation measures. The collection of high resolution fluorescence data at the catchment scale and, in particular, over shorter event timescales would complement broad scale assessments by enhancing our hydro-biogeochemical process understanding.
Collapse
Affiliation(s)
- G H Old
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
| | - P S Naden
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - M Harman
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - M J Bowes
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - C Roberts
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - P M Scarlett
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - D J E Nicholls
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - L K Armstrong
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - H D Wickham
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - D S Read
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
10
|
Nowicki S, Lapworth DJ, Ward JST, Thomson P, Charles K. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:782-791. [PMID: 30064104 DOI: 10.1016/j.scitotenv.2018.07.274] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Microbial water quality is frequently assessed with a risk indicator approach that relies on Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource settings, and we argue that risk assessments could be improved by a complementary parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and thermotolerant coliforms (total n = 1082). Using three World Health Organization defined classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly different from risk indicated by E. coli (p = 0.85). However, the TLF and E. coli risk classifications did show disagreement, with TLF indicating higher risk for 14% of samples and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated that precision is higher for TLF (average relative percent difference of duplicates = 14%) compared to culture-based methods (average RPD of duplicates ≥ 26%). Additionally, TLF sampling is more practical because it requires less time and resources. Precision and practicality make TLF well-suited to high-frequency sampling in low resource contexts. Interpretation and interference challenges are minimised when TLF is measured in groundwaters, which typically have low dissolved organic carbon, relatively consistent temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for E. coli on an individual sample basis, but it can add value to groundwater risk assessments by improving prioritization of sampling and by increasing understanding of spatiotemporal variability.
Collapse
Affiliation(s)
- Saskia Nowicki
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK.
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - Jade S T Ward
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK; University of Surrey, Department of Civil and Environmental Engineering, Guildford GU2 7XH, UK
| | - Patrick Thomson
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| | - Katrina Charles
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| |
Collapse
|
11
|
Liu Y, Ma L, Yang Q, Li G, Zhang F. Occurrence and spatial distribution of perfluorinated compounds in groundwater receiving reclaimed water through river bank infiltration. CHEMOSPHERE 2018; 211:1203-1211. [PMID: 30223336 DOI: 10.1016/j.chemosphere.2018.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Perfluorinated compounds (PFCs) in groundwater are of widespread concern due to their potential toxicity to human health and ecological systems. PFCs in rivers can infiltrate into groundwater through riverbank infiltration, potentially endangering the safety of drinking water and causing a deterioration in the groundwater environment. This study investigated the occurrence of PFCs in rivers and riverside groundwater from 2014 to 2017 in a city in north China. PFCs were detected in most of the groundwater samples, ranging from not detected to 64.8 ng L-1. The predominant PFCs in both river and groundwater samples were perfluorooctane sulfonate, perfluorooctanoic acid, perfluorobutane sulfonate and perfluorobutanoic acid. The PFC concentrations and major compounds were consistent in both the river and riverside groundwater samples at each site, suggesting that the adjacent river was the source of the PFCs in the riverside groundwater. The spatial distribution of the PFCs in the riverside groundwater was affected by the hydraulic connection between the groundwater and the river, the lithology of the aquifer and the properties of the compounds. The results indicated that PFCs were attenuated during riverbank infiltration and the ability of different riverbank lithologies to remove PFCs was in the order sandy clay > fine sand > sandy gravel. Perfluorooctane sulfonate concentrations decreased sharply with increasing distances from river, whereas perfluorooctanoic acid, perfluorobutane sulfonate and perfluorobutanoic acid could by transported for greater distances in riverside groundwater. This study provides valuable information on PFCs in riverside groundwater affected by riverbank infiltration.
Collapse
Affiliation(s)
- Yifei Liu
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Lin Ma
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Qing Yang
- Beijing Institute of Hydrogeology and Engineering Geology, Beijing 100195, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Fang Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Frank S, Goeppert N, Goldscheider N. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1446-1459. [PMID: 28935241 DOI: 10.1016/j.scitotenv.2017.09.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Karst springs, especially in alpine regions, are important for drinking water supply but also vulnerable to contamination, especially after rainfall events. This high variability of water quality requires rapid quantification of contamination parameters. Here, we used a fluorescence-based multi-parameter approach to characterize the dynamics of organic carbon, faecal bacteria, and particles at three alpine karst springs. We used excitation emission matrices (EEMs) to identify fluorescent dissolved organic material (FDOM). At the first system, peak A fluorescence and total organic carbon (TOC) were strongly correlated (Spearman's rs of 0.949), indicating that a large part of the organic matter is related to humic-like substances. Protein-like fluorescence and cultivation-based determination of coliform bacteria also had a significant correlation with rs=0.734, indicating that protein-like fluorescence is directly related to faecal pollution. At the second system, which has two spring outlets, the absolute values of all measured water-quality parameters were lower; there was a significant correlation between TOC and humic-like fluorescence (rs=0.588-0.689) but coliform bacteria and protein-like fluorescence at these two springs were not correlated. Additionally, there was a strong correlation (rs=0.571-0.647) between small particle fractions (1.0 and 2.0μm), a secondary turbidity peak and bacteria. At one of these springs, discharge was constant despite the reaction of all other parameters to the rainfall event. Our results demonstrated that i) all three springs showed fast and marked responses of all investigated water-quality parameters after rain events; ii) a constant discharge does not necessarily mean constant water quality; iii) at high contamination levels, protein-like fluorescence is a good indicator of bacterial contamination, while at low contamination levels no correlation between protein-like fluorescence and bacterial values was detected; and iv) a combination of fluorescence measurements and particle-size analysis is a promising approach for a rapid assessment of organic contamination, especially relative to time-consuming conventional bacterial determination methods.
Collapse
Affiliation(s)
- Simon Frank
- Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Nadine Goeppert
- Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Nico Goldscheider
- Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
13
|
Ascott MJ, Lapworth DJ, Gooddy DC, Sage RC, Karapanos I. Impacts of extreme flooding on riverbank filtration water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:89-101. [PMID: 26950623 DOI: 10.1016/j.scitotenv.2016.02.169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 05/22/2023]
Abstract
Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration site.
Collapse
Affiliation(s)
- M J Ascott
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK.
| | - D J Lapworth
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK
| | - D C Gooddy
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK
| | - R C Sage
- Affinity Water Ltd., Tamblin Way, Hatfield, Hertfordshire AL10 9EZ, UK
| | - I Karapanos
- Affinity Water Ltd., Tamblin Way, Hatfield, Hertfordshire AL10 9EZ, UK
| |
Collapse
|
14
|
Stuart ME, Lapworth DJ, Thomas J, Edwards L. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:564-577. [PMID: 24055671 DOI: 10.1016/j.scitotenv.2013.08.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone.
Collapse
Affiliation(s)
- Marianne E Stuart
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 163:287-303. [PMID: 22306910 DOI: 10.1016/j.envpol.2011.12.034] [Citation(s) in RCA: 822] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/21/2011] [Accepted: 12/15/2011] [Indexed: 05/19/2023]
Abstract
Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority.
Collapse
Affiliation(s)
- D J Lapworth
- British Geological Survey, Mclean Building, Wallingford, Oxfordshire OX10 8BB, UK.
| | | | | | | |
Collapse
|
16
|
Old GH, Naden PS, Granger SJ, Bilotta GS, Brazier RE, Macleod CJA, Krueger T, Bol R, Hawkins JMB, Haygarth P, Freer J. A novel application of natural fluorescence to understand the sources and transport pathways of pollutants from livestock farming in small headwater catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:169-182. [PMID: 22277148 DOI: 10.1016/j.scitotenv.2011.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
This paper demonstrates the application of a low-cost and rapid natural fluorescence technique for tracing and quantifying the transport of pollutants from livestock farming through a small headwater catchment. Fluorescence intensities of Dissolved Organic Matter (DOM) present in different pollutant sources and drainage waters in the Den Brook catchment (Devon, UK) were monitored through storm events occurring between January 2007 and June 2008. Contrasting fluorescence signals from different sources confirmed the technique's usefulness as a tracer of pollutants from livestock farming. Changes in fluorescence intensities of drainage waters throughout storm events were used to assess the dynamics of key pollutant sources. The farmyard area of the catchment studied was shown to contribute polluted runoff at the onset of storm events in response to only small amounts of rain, when flows in the Den Brook first-order channel were low. The application of slurry to a field within the catchment did not elevate the fluorescence of drainage waters during storm events suggesting that when slurry is applied to undrained fields the fluorescent DOM may become quickly adsorbed onto soil particles and/or immobilised through bacterial breakdown. Fluorescence intensities of drainage waters were successfully combined with discharge data in a two component mixing model to estimate pollutant fluxes from key sources during the January 2007 storm event. The farmyard was shown to be the dominant source of tryptophan-like material, contributing 61-81% of the total event flux at the catchment outlet. High spatial and temporal resolution measurements of fluorescence, possibly using novel in-situ fluorimeters, may thus have great potential in quickly identifying and quantifying the presence, dynamics and sources of pollutants from livestock farming in catchments.
Collapse
Affiliation(s)
- G H Old
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mudarra M, Andreo B, Baker A. Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3448-3462. [PMID: 21680013 DOI: 10.1016/j.scitotenv.2011.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/09/2011] [Accepted: 05/15/2011] [Indexed: 05/30/2023]
Abstract
From analysis of spectrophotometric properties of dissolved organic matter (OM) and the hydrochemical responses of some karst springs under different hydrologic conditions, an assessment of the origin and transfer pathway of OM present in karst spring waters, from soil and epikarst toward the spring, has been conducted for three karst aquifers in southern Spain: Alta Cadena, Sierra de Enmedio and Los Tajos. Intrinsic fluorescence (excitation-emission matrices or EEMs), together with major water chemistry (electrical conductivity, temperature, alkalinity, Cl⁻, Mg⁺²) and P(CO₂) along with natural hydrochemical tracers (TOC and NO₃⁻, have been monitored in 19 springs which drain the three karst aquifers examined in this study. The spring water EEM spectra indicate that fulvic acid-like substances, produced in the soil as a consequence of the decomposition of OM, are the dominant fluorophores, although some of the OM appears to originate from in situ microbiological activity but could be indicative of contamination present in recharge waters from livestock. During each recharge event, TOC and NO₃⁻ concentrations increased and variations in fluorescence intensities of peaks attributed to fulvic acid-like compounds were observed. In areas with minimal soil development, spatial and temporal variations in the fluorescence intensity of fulvic acid-like substances and other fluorophores derived from microbiological activity, together with other hydrochemical parameters, provide insights into the hydrogeological functioning of karst aquifers and the infiltration velocity of water from soil and facilitate assessment of contamination vulnerability in these aquifers.
Collapse
Affiliation(s)
- M Mudarra
- Centro de Hidrogeología de la Universidad de Málaga (CEHIUMA), Departamento de Geología, Facultad de Ciencias, 29071 Málaga, Spain.
| | | | | |
Collapse
|
18
|
Hartland A, Fairchild IJ, Lead JR, Baker A. Fluorescent properties of organic carbon in cave dripwaters: effects of filtration, temperature and pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5940-5950. [PMID: 20858563 DOI: 10.1016/j.scitotenv.2010.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
For the first time the specific fluorescent characteristics of organic carbon (OC) in sequentially filtered cave dripwater samples have been studied and the proportions of organic carbon in each size fraction quantified. We examined the effects of pH, temperature and filtration on the fluorescent properties of OC sampled from four drip points in different seasons. Dripwaters were sampled from both normal (pH 7.5-8.5) and hyper-alkaline (pH 9-13) drip points in Poole's Cavern, Buxton, UK, which provides a model system for understanding the effects of pH on the chemical properties of OC. At high-pH values, charge stabilisation of OC is greatly enhanced, resulting in 10-20 times more coarse colloidal and particulate (>100 nm) organic carbon than in lower pH dripwaters; indicating that destabilisation (e.g. charge shielding) of colloidal OC is an important process control on the transmission of OC in cave dripwaters at near-neutral pH. OC fluorescence in high-pH dripwaters exhibited a high degree of pH sensitivity between pH 10 and 12, consistent with substantial changes in the coordination or neighbouring environment of fluorescent acidic functional groups. Inner-filter effects (IFE) associated with the coarse colloidal and particulate fraction of OM mask the true fluorescent signal, so that size fractionation is necessary to obtain a signal which is correlated with the concentration of organic carbon. Fluorescence intensities in the samples studied were best correlated with organic carbon with a dimension <100 nm. These results have important implications for the use of fluorescence as a tracer in hydrogeological studies.
Collapse
Affiliation(s)
- A Hartland
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | |
Collapse
|
19
|
Larsen LG, Aiken GR, Harvey JW, Noe GB, Crimaldi JP. Using fluorescence spectroscopy to trace seasonal DOM dynamics, disturbance effects, and hydrologic transport in the Florida Everglades. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jg001140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|