1
|
Han T, Liggio J, Narayan J, Liu Y, Hayden K, Mittermeier R, Darlington A, Wheeler M, Cober S, Zhang Y, Xie C, Yang Y, Huang Y, Wolde M, Smyth S, Barrigar O, Li SM. Quantification of Methane Emissions from Cold Heavy Oil Production with Sand Extraction in Alberta and Saskatchewan, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 38832692 PMCID: PMC11295119 DOI: 10.1021/acs.est.4c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Cold heavy oil production with sand (CHOPS) is an extraction process for heavy oil in Canada, with the potential to lead to higher CH4 venting than conventional oil sites, that have not been adequately characterized. In order to quantify CH4 emissions from CHOPS activities, a focused aerial measurement campaign was conducted in the Canadian provinces of Alberta and Saskatchewan in June 2018. Total CH4 emissions from each of 10 clusters of CHOPS wells (containing 22-167 well sites per cluster) were derived using a mass balance computation algorithm that uses in situ wind data measurement on board aircraft. Results show that there is no statistically significant difference in CH4 emissions from CHOPS wells between the two provinces. Cluster-aggregated emission factors (EF) were determined using correspondingly aggregated production volumes. The average CH4 EF was 70.4 ± 36.9 kg/m3 produced oil for the Alberta wells and 55.1 ± 13.7 kg/m3 produced oil for the Saskatchewan wells. Using these EF and heavy oil production volumes reported to provincial regulators, the annual CH4 emissions from CHOPS were estimated to be 121% larger than CHOPS emissions extracted from Canada's National Inventory Report (NIR) for Saskatchewan. The EF were found to be positively correlated with the percentage of nonpiped production volumes in each cluster, indicating higher emissions for nonpiped wells while suggesting an avenue for methane emission reductions. A comparison with recent measurements indicates relatively limited effectiveness of regulations for Saskatchewan compared to those in Alberta. The results of this study indicate the substantial contribution of CHOPS operations to the underreporting observed in the NIR and provide measurement-based EF that can be used to develop improved emissions inventories for this sector and mitigate CH4 emissions from CHOPS operations.
Collapse
Affiliation(s)
- Tianran Han
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - John Liggio
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Julie Narayan
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Yayong Liu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Katherine Hayden
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Richard Mittermeier
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Andrea Darlington
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael Wheeler
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Stewart Cober
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Yuheng Zhang
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Conghui Xie
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanrong Yang
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yufei Huang
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengistu Wolde
- Flight
Research Laboratory, National Research Council
Canada Aerospace Research Centre, Ottawa, Ontario K1V 1J8, Canada
| | - Steve Smyth
- Pollutant
Inventories and Reporting Division, Environment
and Climate Change Canada, Gatineau, Québec K1A 0H6, Canada
| | - Owen Barrigar
- Pollutant
Inventories and Reporting Division, Environment
and Climate Change Canada, Gatineau, Québec K1A 0H6, Canada
| | - Shao-Meng Li
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Bradley A, Croes BE, Harkins C, McDonald BC, de Gouw JA. Air Pollution Inequality in the Denver Metroplex and its Relationship to Historical Redlining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4226-4236. [PMID: 38380822 PMCID: PMC10919081 DOI: 10.1021/acs.est.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO2 columns and modeled PM2.5 concentrations from 2019 are higher in communities subject to redlining. We calculated and compared Spearman coefficients for pollutants and race at the census tract level for every city that underwent redlining to contextualize the disparities in Denver. We find that the location of polluting infrastructure leads to higher populations of POC living near point sources, including 40% higher Hispanic and Latino populations. This influences pollution distribution, with annual average PM2.5 surface concentrations of 6.5 μg m-3 in census tracts with 0-5% Hispanic and Latino populations and 7.5 μg m-3 in census tracts with 60-65% Hispanic and Latino populations. Traffic analysis and emission inventory data show that POC are more likely to live near busy highways. Unequal spatial distribution of pollution sources and POC have allowed for pollution disparities to persist despite attempts by the city to rectify them. Finally, we identify the core causes of the pollution disparities to provide direction for remediation.
Collapse
Affiliation(s)
- Alexander
C. Bradley
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Bart E. Croes
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Joost A. de Gouw
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Yang Y, Liu S, Ma H. Impact of unrecovered shale gas reserve on methane emissions from abandoned shale gas wells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169750. [PMID: 38163596 DOI: 10.1016/j.scitotenv.2023.169750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Shale gas, with its abundance and lower carbon footprint compared to other fossil fuels, is an important bridge fuel in the ongoing energy transition. However, a notable concern in shale gas exploration is fugitive methane emissions during the extraction, development, and transport of natural gas. While most existing works evaluate methane emissions released by well fracking, completion and operation, the greenhouse footprint of unproductive shale gas wells (often abandoned or orphaned) has received little scrutiny. A large fraction of these emissions from abandoned shale gas wells are due to the diffusive transport of methane trapped in nanoporous shale matrix, which is poorly understood. Here, we develop a theoretical kinetic approach to predict methane diffusive flux from heterogeneous shale matrix. Our theoretical model is based on a layer sequence formulation and accurately considers multiple flow mechanisms, including viscous flow, gas slippage, and Knudsen diffusion and their mutual interactions. The model is validated against the observed methane diffusion data obtained from high-pressure and high-temperature experimental measurements on Marcellus shale. We find that methane diffusive flux increases as reservoir pressure decreases. We estimate methane emission due to diffusive transport up to 20 × 103 m3 per well per day, which is comparable to emissions from flowback fluid. For the first time, unrecovered natural gas in the shale matrix is demonstrated to be the main source of methane emissions from abandoned shale gas wells. Given the long-lasting nature of diffusive transport to shale gas seepage, it is suggested that regulatory requirements should be implemented to provide long-term monitoring of methane emissions from abandoned shale gas wells.
Collapse
Affiliation(s)
- Yun Yang
- Department of Energy and Mineral Engineering, G3 Center and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA; University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G3 Center and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoming Ma
- University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
4
|
Trickey KS, Chen Z, Sanghavi P. Hospitalisations for cardiovascular and respiratory disease among older adults living near unconventional natural gas development: a difference-in-differences analysis. Lancet Planet Health 2023; 7:e187-e196. [PMID: 36889860 DOI: 10.1016/s2542-5196(23)00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND During 2008-15, the Marcellus shale region of the US state of Pennsylvania experienced a boom in unconventional natural gas development (UNGD) or "fracking". However, despite much public debate, little is known about the effects of UNGD on population health in local communities. Among other mechanisms, air pollution from UNGD might affect individuals living nearby through cardiovascular or respiratory disease, and older adults could be particularly susceptible. METHODS To study the health impacts of Pennsylvania's fracking boom, we exploited the ban on UNGD in neighbouring New York state. Using 2002-15 Medicare claims, we conducted difference-in-differences analyses over multiple timepoints to estimate the risk of living near UNGD for hospitalisation with acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and bronchiectasis, heart failure, ischaemic heart disease, and stroke among older adults (aged ≥65 years). FINDINGS Pennsylvania ZIP codes that started UNGD in 2008-10 were associated with more hospitalisations for cardiovascular diseases in 2012-15 than would be expected in the absence of UNGD. Specifically, in 2015, we estimated an additional 11·8, 21·6, and 20·4 hospitalisations for AMI, heart failure, and ischaemic heart disease, respectively, per 1000 Medicare beneficiaries. Hospitalisations increased even as UNGD growth slowed. Results were robust in sensitivity analyses. INTERPRETATION Older adults living near UNGD could be at high risk of poor cardiovascular outcomes. Mitigation policies for existing UNGD might be needed to address current and future health risks. Future consideration of UNGD should prioritise local population health. FUNDING University of Chicago and Argonne National Laboratories.
Collapse
Affiliation(s)
- Kevin S Trickey
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Zihan Chen
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Prachi Sanghavi
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Su H, Liu J, Hu Y, Ai T, Gong C, Lu J, Luo Y. Comparative Study of α- and β-MnO 2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:775. [PMID: 36839143 PMCID: PMC9964818 DOI: 10.3390/nano13040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g-1 h-1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g-1 h-1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32-, and SO42- were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs.
Collapse
Affiliation(s)
- Hong Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Tianhao Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Chenhao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yongming Luo
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Lackey G, Pfander I, Gardiner J, Sherwood OA, Rajaram H, Ryan JN, Dilmore RM, Thomas B. Composition and Origin of Surface Casing Fluids in a Major US Oil- and Gas-Producing Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17227-17235. [PMID: 36379467 PMCID: PMC9731267 DOI: 10.1021/acs.est.2c05239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fluids leaked from oil and gas wells often originate from their surface casing─a steel pipe installed beneath the deepest underlying source of potable groundwater that serves as the final barrier around the well system. In this study, we analyze a regulatory dataset of surface casing geochemical samples collected from 2573 wells in northeastern Colorado─the only known publicly available dataset of its kind. Thermogenic gas was present in the surface casings of 96.2% of wells with gas samples. Regulatory records indicate that 73.3% of these wells were constructed to isolate the formation from which the gas originated with cement. This suggests that gas migration into the surface casing annulus predominantly occurs through compromised barriers (e.g., steel casings or cement seals), indicative of extensive integrity issues in the region. Water was collected from 22.6% of sampled surface casings. Benzene, toluene, ethylbenzene, and xylenes were detected in 99.7% of surface casing water samples tested for these compounds, which may be due to the presence of leaked oil, natural gas condensate, or oil-based drilling mud. Our findings demonstrate the value of incorporating surface casing geochemical analysis in well integrity monitoring programs to identify integrity issues and focus leak mitigation efforts.
Collapse
Affiliation(s)
- Greg Lackey
- National
Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box
10940, Pittsburgh, Pennsylvania15236-0940, United States
- NETL
Support
Contractor, 626 Cochrans
Mill Road, Pittsburgh, Pennsylvania15236, United States
| | - Isabelle Pfander
- National
Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, Oregon97321, United
States
- NETL Support
Contractor, 1450 Queen
Avenue SW, Albany, Oregon97321, United States
| | - James Gardiner
- National
Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box
10940, Pittsburgh, Pennsylvania15236-0940, United States
- NETL
Support
Contractor, 626 Cochrans
Mill Road, Pittsburgh, Pennsylvania15236, United States
| | - Owen A. Sherwood
- Department
of Earth and Environmental Sciences, Dalhousie
University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Harihar Rajaram
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland21205, United States
| | - Joseph N. Ryan
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Robert M. Dilmore
- National
Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box
10940, Pittsburgh, Pennsylvania15236-0940, United States
| | - Burt Thomas
- National
Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, Oregon97321, United
States
| |
Collapse
|
7
|
Tian R, Lu J, Xu Z, Zhang W, Liu J, Wang L, Xie Y, Zhao Y, Cao X, Luo Y. Unraveling the Synergistic Reaction and the Deactivation Mechanism for the Catalytic Degradation of Double Components of Sulfur-Containing VOCs over ZSM-5-Based Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 57:1443-1455. [PMID: 36196013 DOI: 10.1021/acs.est.2c04033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The competitive adsorption behavior, the synergistic catalytic reaction, and deactivation mechanisms under double components of sulfur-containing volatile organic compounds (VOCs) are a bridge to solve their actual pollution problems. However, they are still unknown. Herein, simultaneous catalytic decomposition of methyl mercaptan (CH3SH) and ethyl mercaptan (C2H5SH) is investigated over lanthanum (La)-modified ZSM-5, and kinetic and thermodynamic results confirm a great difference in the adsorption property and catalytic transformation behavior. Meanwhile, the new synergistic reaction and deactivation mechanisms are revealed at the molecular level by combining with in situ diffuse reflectance infrared spectroscopy (in situ DRIFTS) and density functional theory (DFT) calculations. The CH3CH2* and SH* groups are presented in decomposing C2H5SH, while the new species of CH2*, active H* and S*, instead of CH3* and SH*, are proved as the key elementary groups in decomposing CH3SH. The competitive recombining of SH* in C2H5SH with highly active H* in dimethyl sulfide (CH3SCH3), an intermediate in decomposing CH3SH, would aggravate the deposition of carbon and sulfur. La/ZSM-5 exhibits potential environmental application due to the excellent stability of 200 h and water resistance. This work gives an understanding of the adsorption, catalysis, reaction, and deactivation mechanisms for decomposing double components of sulfur-containing VOCs.
Collapse
Affiliation(s)
- Rui Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Zhizhi Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Wenjun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
| | - Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
| | - Yutong Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Xiaohua Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| |
Collapse
|
8
|
Prenni AJ, Benedict KB, Day DE, Sive BC, Zhou Y, Naimie L, Gebhart KA, Dombek T, De Boskey M, Hyslop NP, Spencer E, Chew QM, Collett JL, Schichtel BA. Wintertime haze and ozone at Dinosaur National Monument. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:951-968. [PMID: 35254216 DOI: 10.1080/10962247.2022.2048922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Dinosaur National Monument (DINO) is located near the northeastern edge of the Uinta Basin and often experiences elevated levels of wintertime ground-level ozone. Previous studies have shown that high ozone mixing ratios in the Uinta Basin are driven by elevated levels of volatile organic compounds (VOCs) and nitrogen oxides (NOx) from regional oil and gas development coupled with temperature inversions and enhanced photochemistry from persistent snow cover. Here, we show that persistent snow cover and temperature inversions, along with abundant ammonia, also lead to wintertime haze in this region. A study was conducted at DINO from November 2018 through May 2020 where ozone, speciated fine and coarse aerosols, inorganic gases, and VOCs were measured. Three National Ambient Air Quality Standards (NAAQS) ozone exceedances were observed in the first winter, and no exceedances were observed in the second winter. In contrast, elevated levels of particulate matter were observed both winters, with 24-h averaged particle light extinction exceeding 100 Mm-1. These haze events were dominated by ammonium nitrate, and particulate organics were highly correlated with ammonium nitrate. Ammonium nitrate formation was limited by nitric acid in winter. As such, reductions in regional NOx emissions should reduce haze levels and improve visibility at DINO in winter. Long-term measurements of particulate matter from nearby Vernal, Utah, suggest that visibility impairment is a persistent issue in the Uinta Basin in winter. From April through October 2019, relatively clean conditions occurred, with average particle extinction of ~10 Mm-1. During this period, ammonium nitrate concentrations were lower by more than an order of magnitude, and contributions from coarse mass and soil to haze levels increased. VOC markers indicated that the high levels of observed pollutants in winter were likely from local sources related to oil and gas extraction activities.Implications: Elevated ground-level ozone and haze levels were observed at Dinosaur National Monument in winter. Haze episodes were dominated by ammonium nitrate, with 24-h averaged particle light extinction exceeding 100 Mm-1, reducing visual range near the surface to ~35 km. Despite elevated ammonium nitrate concentrations, additional gas-phase ammonia was available, such that any increase in NOx emissions in the region is likely to lead to even greater haze levels.
Collapse
Affiliation(s)
- Anthony J Prenni
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
| | - Katherine B Benedict
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Derek E Day
- Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, Colorado, USA
| | - Barkley C Sive
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
| | - Yong Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Lilly Naimie
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Kristi A Gebhart
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
| | - Tracy Dombek
- Analytical Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Miranda De Boskey
- Analytical Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Nicole P Hyslop
- University of California, Davis, Air Quality Research Center, Davis, California, USA
| | | | | | - Jeffrey L Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Bret A Schichtel
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
| |
Collapse
|
9
|
Helmig D, Fangmeyer J, Fuchs J, Hueber J, Smith K. Evaluation of selected solid adsorbents for passive sampling of atmospheric oil and natural gas non-methane hydrocarbons. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:235-255. [PMID: 34738882 DOI: 10.1080/10962247.2021.2000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
This project investigated passive adsorbent sampling of light (C2-C5) hydrocarbons which are sensitive tracers of fugitive emissions from oil and natural gas (O&NG) sources. Stronger adsorbent materials, i.e. Carboxen 1000 and Carboxen 1016, than those typically used in adsorbent sampling were considered. Experiments were conducted in laboratory and field settings using thermal desorption - gas chromatography analysis. Uptake of water vapor and system blanks were challenges inherent to the increased affinity of these adsorbents. Carboxen 1000 exhibited the best signal-to-noise ratio for the target compounds after optimizing conditioning parameters to reduce blanks, and by reducing the adsorbent mass loaded in the cartridge. This strategy reduced blanks to equivalent ambient air mole fractions of <0.05 nmol mol-1 (ppb), and allowed determination of these O&NG tracers over three-day sampling intervals with a lower detection limit of ≥0.5-1 ppb. Linear VOCs uptake was observed in dry air. Water uptake was as high as 0.65 gH2O g-1adsorbent at relative humidity (RH) above ≈ 75%. The water collection passivates adsorbent sites and competes with the uptake rates of VOCs; under the worst case relative humidity level of 95% RH, VOCs uptake rates dropped to 27-39% of those in dry air. This effect potentially causes results to be biased low when cartridges are deployed at high relative humidity (RH), including overnight, when RH is often elevated over daytime levels. Nonetheless, representative sampling results were obtained under ambient conditions during three field studies where cartridges were evaluated alongside whole air sample collection in canisters. Agreement varied by compound: Ethane and alkenes correlated poorly and could not be analyzed with satisfactory results; results for C3-C5 alkanes were much better: i-butane correlated with R2 > 0.5, and propane, n-butane, i-pentane, and n-pentane with R2 > 0.75, which demonstrates the feasibility of the passive sampling of these latter O&NG tracers. Implications: Oil and natural gas development has been associated with emissions of petroleum hydrocarbons that impact air quality and human health. This research characterizes and defines the application possibilities of solid adsorbent sampling for atmospheric passive sampling monitoring of low molecular weight volatile organic compounds (i.e. ethane through pentane isomers) that are most commonly emitted from natural gas drilling and well sites. The passive sampling of these pollutants offers a simple, low cost, and readily applicable monitoring method for assessing emissions and air quality impacts in the surroundings of oil and gas operations.
Collapse
Affiliation(s)
- Detlev Helmig
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Boulder A.I.R. LLC, Boulder, Colorado, USA
| | - Jens Fangmeyer
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany
| | - Joshua Fuchs
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany
| | - Jacques Hueber
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Kate Smith
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry, University of York, York, UK
| |
Collapse
|
10
|
Microorganisms harbor keys to a circular bioeconomy making them useful tools in fighting plastic pollution and rising CO 2 levels. Extremophiles 2022; 26:10. [PMID: 35118556 PMCID: PMC8813813 DOI: 10.1007/s00792-022-01261-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
The major global and man-made challenges of our time are the fossil fuel-driven climate change a global plastic pollution and rapidly emerging plant, human and animal infections. To meet the necessary global changes, a dramatic transformation must take place in science and society. This transformation will involve very intense and forward oriented industrial and basic research strongly focusing on (bio)technology and industrial bioprocesses developments towards engineering a zero-carbon sustainable bioeconomy. Within this transition microorganisms-and especially extremophiles-will play a significant and global role as technology drivers. They harbor the keys and blueprints to a sustainable biotechnology in their genomes. Within this article, we outline urgent and important areas of microbial research and technology advancements and that will ultimately make major contributions during the transition from a linear towards a circular bioeconomy.
Collapse
|
11
|
|
12
|
Hallar AG, Brown SS, Crosman E, Barsanti K, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL, Mallia DV, Martin R, Mendoza D, Oldroyd HJ, Pichugina Y, Pratt KA, Saide P, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A. Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2021; 0:1-94. [PMID: 34446943 PMCID: PMC8384125 DOI: 10.1175/bams-d-20-0017.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.
Collapse
Affiliation(s)
| | | | - Erik Crosman
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of California, Davis 95616 USA
| | - Ian Faloona
- Department of Land, Air and Water Resources, University of California, Davis
| | - Jerome Fast
- Atmospheric Science and Global Change Division, Pacific Northwest, National Laboratory, Richland, Washington, USA
| | - Heather A. Holmes
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT
| | - John Horel
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - John Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Logan Mitchell
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Jennifer Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado/ NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Viney Aneja
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | | | - Roya Bahreini
- Environmental Sciences, University of California, Riverside, CA
| | | | - Casey Bray
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | - Alan Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Dana Caulton
- Department of Atmospheric Science, University of Wyoming
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences & Department of Chemistry, University of Colorado, Boulder, CO
| | | | | | - Cassandra J. Gaston
- Department of Atmospheric Science - Rosenstiel School of Marine and Atmospheric Science, University of Miami
| | - Sebastian Hoch
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Nakul N. Karle
- Environmental Science and Engineering, The University of Texas at El Paso, TX
| | - James T. Kelly
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC
| | - Kerry Kelly
- Chemical Engineering, University of Utah, Salt Lake City, UT
| | - Neil Lareau
- Atmospheric Sciences and Environmental Sciences and Health, University of Nevada, Reno, NV
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871
| | - Roy L. Mauldin
- National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Derek V. Mallia
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Randal Martin
- Civil and Environmental Engineering, Utah State University, Utah Water Research Laboratory, Logan, UT
| | - Daniel Mendoza
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Holly J. Oldroyd
- Department of Civil and Environmental Engineering, University of California, Davis
| | | | | | - Pablo Saide
- Department of Atmospheric and Oceanic Sciences, and Institute of the Environment and Sustainability, University of California, Los Angeles
| | - Phillip J. Silva
- Food Animal Environmental Systems Research Unit, USDA-ARS, Bowling Green, KY
| | - William Simpson
- Department of Chemistry, Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160
| | - Britton B. Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
| | - Amy Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO
| |
Collapse
|
13
|
Abstract
This paper examines whether public perceptions of the claimed advantages and disadvantages of fracking are consistent with an evidence-based assessment of the claimed advantages and disadvantages. Public assessments are obtained from an internet-based opinion survey in 2014 in six states: California, Illinois, New York, Ohio, Pennsylvania, and Texas. The survey presented eleven advantages and eleven disadvantages of fracking derived from local media stories, from advocacy claims made by pro- or anti-fracking groups, and from think tank pieces. Then the respondents were asked to indicate their feelings about how important each claimed advantage and disadvantage was to their support of/opposition to fracking. Scientific assessments regarding the same claims are compiled from available peer-reviewed literature and evidence-based reviews. We classify each claim as either (a) supported by the weight of the available evidence, (b) not supported by the weight of the available evidence, or (c) there is inadequate evidence to assess it. We find less consistency with respect to the disadvantages than advantages. Respondents perceive four disadvantages out of eleven as extremely important while there is inadequate evidence to assess them or the available evidence does not support them. Our comparison has interesting implications for understanding the controversy about fracking.
Collapse
|
14
|
Bera B, Bhattacharjee S, Shit PK, Sengupta N, Saha S. Variation and correlation between ultraviolet index and tropospheric ozone during COVID-19 lockdown over megacities of India. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2021; 36:409-427. [PMID: 34093082 PMCID: PMC8164408 DOI: 10.1007/s00477-021-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 05/29/2023]
Abstract
Worldwide spread out of COVID-19 in a short-time has brought a significant decline of road traffic, tourist flow and industrial ventures. During this emergency period, the restricted human dealings with nature have appeared as blessing for health of the total environment. The variation of atmospheric O3 may modulate the range of UV index (UVI) at any region of the earth. The objective of the study is to examine the variation of UV index over the megacities of India with respect to tropospheric O3 level modification during COVID-19 lockdown. The meteorological or environmental data (temperature in °C, gust in km/h, wind speed km/h, relative humidity in %, air pressure in mb and cloud cover in okta) of four selective megacities of India (Kolkata, Chennai, Delhi, Mumbai) during and pre lockdown period have been obtained to comprehend about the variation of UV index and tropospheric O3. The descriptive statistical applications i.e. standard deviation, standard errors and K-means clustering have been done through standard statistical software. In the present study, t-test has been used to understand level of significance of surface O3 and UVI during pre-lockdown (2019) and lockdown (2020) phase. The result shows that the four major megacities in India namely New Delhi, Mumbai, Kolkata and Chennai have experienced the vibrant diminution in terms of the concentration of UV index with slightly increasing the tropospheric O3 level during the lockdown phase. The higher accumulation of O3 during the lockdown in the lower atmosphere of four megacities does not exceed the permissible limit. The excess amount of O3 has remarkably contributed to trap the harmful UV radiation which has lowered the UVI in these worst polluted megacities of India. In the meantime, the prominent reduction of NOx during the lockdown period decreases the titration impact to O3 and this mechanism helps to revitalize the ozone concentration level. The uniqueness of the current study is highlighted the ground reality regarding reduction of UV index and amplification of tropospheric O3 concentration during lockdown phase. This study definitely assists to make new environmental policy, act and law for recover the health of the total environment.
Collapse
Affiliation(s)
- Biswajit Bera
- Department of Geography, Sidho-Kanho-Birsha University, Sainik School, Ranchi Road, P.O., Purulia, 723104 India
| | - Sumana Bhattacharjee
- Department of Geography, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, 700019 India
| | - Pravat Kumar Shit
- Department of Geography and Environment Management, Raja Narendralal Khan Women’s College, Gope Palace, P.O. Vidyasagar University, Paschim Medinipur, 721102 India
| | - Nairita Sengupta
- Department of Geography, Diamond Harbour Women’s University, Sarisha, 743368 India
| | - Soumik Saha
- Department of Geography, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, 700019 India
| |
Collapse
|
15
|
Asher E, Hills AJ, Hornbrook RS, Shertz S, Gabbard S, Stephens BB, Helmig D, Apel EC. Unpiloted Aircraft System Instrument for the Rapid Collection of Whole Air Samples and Measurements for Environmental Monitoring and Air Quality Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5657-5667. [PMID: 33881834 DOI: 10.1021/acs.est.0c07213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new airborne system, the Whole Air Sampling Pilotless Platform (WASPP), is described for the collection of whole air samples and in situ meteorological measurements onboard a commercial hexacopter. Rapid sample collection enables the collection ≤15 air samples per flight in positively pressurized miniature canisters, subsequently analyzed on a mated analytical system for up to 80 nonmethane volatile organic compounds (VOCs). The WASPP is well suited to investigate VOC gradients in urban environments impacted by traffic, industry, and oil and natural gas (O&NG) development, but has the sensitivity to characterize continental background conditions, as shown here using a subset of >40 species. We document empirical tests to minimize the influence of rotor wash and other sampling artifacts and report favorable results of laboratory-based calibrations of the WASPP's meteorological sensors and field-based comparisons of WASPP's VOC measurements and horizontal wind velocity measurements. Airborne WASPP measurements can complement and enhance ground-based VOC monitoring efforts by providing substantial meteorological and VOC measurement capability across vertical and horizontal spatial scales. These measurements reveal strong vertical gradients in VOC mixing ratios, depending on local meteorology and sources. WASPP has wide applicability for pollution source identification and quantification of hazardous air pollutants and precursors of criteria pollutants, including monitoring O&NG emissions or industry fenceline monitoring.
Collapse
Affiliation(s)
- Elizabeth Asher
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
- National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Alan J Hills
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Rebecca S Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Stephen Shertz
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Stephen Gabbard
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Britton B Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Detlev Helmig
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, United States
| | - Eric C Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| |
Collapse
|
16
|
Scott M, Sander R, Nemet G, Patz J. Improving Human Health in China Through Alternative Energy. Front Public Health 2021; 9:613517. [PMID: 33968876 PMCID: PMC8096989 DOI: 10.3389/fpubh.2021.613517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we estimate the health benefits of more stringent alternative energy goals and the costs of reducing coal-fired power plant pollution in China projected in 2030. One of our two overarching alternative energy goals was to estimate the health benefits of complete elimination of coal energy, supplemented by natural gas and renewables. The second was a policy scenario similar to the U.S. 2013 Climate Action Plan (CAP), which played a pivotal role leading up to the 2015 Paris Climate Agreement. We used the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model created by the International Institute for Applied Systems Analysis for our model simulations. We found that 17,137–24,220 premature deaths can be avoided if coal energy is completely replaced by alternative energy, and 8,693–9,281 premature deaths can be avoided if coal energy is replaced by alternatives in a CAP-like scenario. A CAP-like scenario using emission-controls in coal plants costs $11–18 per person. Reducing coal energy in China under a CAP-like scenario would free up $9.4 billion in the annual energy budget to spend on alternatives, whereas eliminating the cost of coal energy frees up $32 billion. This study's estimates show that more stringent alternative energy targets in China are worth the investment in terms of health.
Collapse
Affiliation(s)
- Melissa Scott
- Duke Samuel DuBois Cook Center on Social Equity, Duke University, Durham, NC, United States
| | - Robert Sander
- Air Quality and Greenhouse Gases Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Gregory Nemet
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan Patz
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Caron-Beaudoin É, Whitworth KW, Bosson-Rieutort D, Wendling G, Liu S, Verner MA. Density and proximity to hydraulic fracturing wells and birth outcomes in Northeastern British Columbia, Canada. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:53-61. [PMID: 32651474 DOI: 10.1038/s41370-020-0245-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/29/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Hydraulic fracturing, a method used in Northeastern British Columbia (Canada) to extract natural gas, can release contaminants with potential deleterious health effects on fetal development. To date, the association between hydraulic fracturing activity and birth outcomes has not been evaluated in this region. OBJECTIVE To evaluate the association between the hydraulic fracturing well density/proximity and birth outcomes (birthweight, head circumference, preterm birth and small for gestational age (SGA)). METHODS We used birth records from the Fort St John hospital between December 30, 2006 and December 29, 2016 (n = 6333 births). To estimate gestational exposure, we used inverse distance weighting (IDW) to calculate the density/proximity of hydraulic fracturing wells to pregnant women's postal code centroid. For each birth, we calculated three IDWs using 2.5, 5, and 10 km buffer zones around women's postal code centroid. We used linear and logistic regressions to evaluate associations between quartiles of postal code well density/proximity and birth outcomes, controlling for relevant covariates. RESULTS No associations were found between postal code well density/proximity and head circumference or SGA. A negative association was found between postal code well density/proximity and birthweight for infants born to women in the 2nd quartile of the 10 km buffer (β [95% confidence interval (CI)]: -47.28 g [-84.30; -10.25]), and in the 2nd (β [95% CI]: -40.87 g [-78.01; -3.73]) and 3rd (β [95% CI]: -42.01 g [-79.15; -4.87]) quartiles of the 5 km buffer. Increased odds of preterm birth were observed among women in the 2nd quartile of the 2.5 km buffer (odds ratio (OR) [95% CI]: 1.60 [1.30; 2.43]). CONCLUSIONS This is the first epidemiological study in Northeastern British Columbia evaluating associations between hydraulic fracturing and health outcomes. Our results show inconsistent patterns of association between hydraulic fracturing, preterm birth and reduced birthweight, and effect estimates did not match expected dose-response relationships.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada.
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada.
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver Coastal Health Research Institute, 828 West 10th Avenue, Research Pavilion, Vancouver, BC, Canada.
- Department of Health and Society and Department of Environmental and Physical Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Kristina W Whitworth
- Department of Medicine, Epidemiology and Population Sciences Section, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Delphine Bosson-Rieutort
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada
- Department of Health Policy, Management & Evaluation (DGEPS), School of Public Health, Université de Montréal, 7101 Avenue du Parc, H3N 1×9, Montreal, QC, Canada
- National Institute for Excellence in Health and Social Services (INESS), Information Management Team, 202 Avenue Union, Montreal, QC, Canada
| | - Gilles Wendling
- GW Solutions, Inc., 201-5180 Dublin Way, Nanaimo, BC, Canada
| | - Suyang Liu
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada
| |
Collapse
|
18
|
Abstract
We measured the spatial distribution and composition of ozone-forming hydrocarbons, alcohols, and carbonyls in Utah’s Uinta Basin during the winter months of 2019 and 2020. The Uinta Basin contains about 10,000 producing oil and gas wells. Snow cover and the region’s unique topography (i.e., a large basin entirely surrounded by mountains) promote strong, multi-day temperature inversion episodes that concentrate pollution and lead to wintertime ozone production. Indeed, organic compound concentrations were about eight times higher during inversion episodes than during snow-free springtime conditions. We examined spatial associations between wintertime concentrations of organics and oil and gas sources in the region, and we found that concentrations of highly reactive alkenes were higher in areas with dense oil production than in areas with dense gas production. Total alkene+acetylene concentrations were 267 (42, 1146; lower and upper 95% confidence limits) µg m−3 at locations with 340 or more producing oil wells within 10 km (i.e., 75th percentile) versus 12 (9, 23) µg m−3 at locations with 15 or fewer oil wells (i.e., 25th percentile). Twenty-eight percent of the potential for organic compounds to produce ozone was due to alkenes in areas with dense oil production. Spatial correlations and organic compound ratios indicated that the most likely source of excess alkenes in oil-producing areas was natural gas-fueled engines, especially lean-burning (i.e., high air:fuel ratio) artificial lift engines.
Collapse
|
19
|
Chan E, Worthy DEJ, Chan D, Ishizawa M, Moran MD, Delcloo A, Vogel F. Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14899-14909. [PMID: 33169990 DOI: 10.1021/acs.est.0c04117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The provinces of Alberta and Saskatchewan account for 70% of Canada's methane emissions from the oil and gas sector. In 2018, the Government of Canada introduced methane regulations to reduce emissions from the sector by 40-45% from the 2012 levels by 2025. Complementary to inventory accounting methods, the effectiveness of regulatory practices to reduce emissions can be assessed using atmospheric measurements and inverse models. Total anthropogenic (oil and gas, agriculture, and waste) emission rates of methane from 2010 to 2017 in Alberta and Saskatchewan were derived using hourly atmospheric methane measurements over a six-month winter period from October to March. Scaling up the winter estimate to annual indicated an anthropogenic emission rate of 3.7 ± 0.7 MtCH4/year, about 60% greater than that reported in Canada's National Inventory Report (2.3 MtCH4). This discrepancy is tied primarily to the oil and gas sector emissions as the reported emissions from livestock operations (0.6 MtCH4) are well substantiated in both top-down and bottom-up estimates and waste management (0.1 MtCH4) emissions are small. The resulting estimate of 3.0 MtCH4 from the oil and gas sector is nearly twice that reported in Canada's National Inventory (1.6 MtCH4).
Collapse
Affiliation(s)
- Elton Chan
- Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Douglas E J Worthy
- Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Douglas Chan
- Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Misa Ishizawa
- Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael D Moran
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Andy Delcloo
- Royal Meteorological Institute of Belgium, B-1180 Ukkel, Brussels, Belgium
| | - Felix Vogel
- Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
20
|
Pozzer A, Schultz MG, Helmig D. Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12423-12433. [PMID: 32902267 PMCID: PMC7547866 DOI: 10.1021/acs.est.9b06983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/25/2023]
Abstract
Observations of volatile organic compounds (VOCs) from a surface sampling network and simulation results from the EMAC (ECHAM5/MESSy for Atmospheric Chemistry) model were analyzed to assess the impact of increased emissions of VOCs and nitrogen oxides from U.S. oil and natural gas (O&NG) sources on air quality. In the first step, the VOC observations were used to optimize the magnitude and distribution of atmospheric ethane and higher-alkane VOC emissions in the model inventory for the base year 2009. Observation-based increases of the emissions of VOCs and NOx stemming from U.S. oil and natural gas (O&NG) sources during 2009-2014 were then added to the model, and a set of sensitivity runs was conducted for assessing the influence of the increased emissions on summer surface ozone levels. For the year 2014, the added O&NG emissions are predicted to affect surface ozone across a large geographical scale in the United States. These emissions are responsible for an increased number of days when the averaged 8-h ozone values exceed 70 ppb, with the highest sensitivity being in the central and midwestern United States, where most of the O&NG growth has occurred. These findings demonstrate that O&NG emissions significantly affect the air quality across most of the United States, can regionally offset reductions of ozone precursor emissions made in other sectors, and can have a determining influence on a region's ability to meet National Ambient Air Quality Standard (NAAQS) obligations for ozone.
Collapse
Affiliation(s)
- Andrea Pozzer
- Max
Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Martin G. Schultz
- Jülich
Supercomputing Centre, Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Street, 52425 Jülich, Germany
| | - Detlev Helmig
- Institute
of Arctic and Alpine Research, University
of Colorado, Boulder, Colorado 80305, United States
| |
Collapse
|
21
|
Johnston JE, Chau K, Franklin M, Cushing L. Environmental Justice Dimensions of Oil and Gas Flaring in South Texas: Disproportionate Exposure among Hispanic communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6289-6298. [PMID: 32338877 PMCID: PMC8915929 DOI: 10.1021/acs.est.0c00410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Unconventional extraction techniques including hydraulic fracturing or "fracking" have led to a boom in oil and gas production in the Eagle Ford shale play, Texas, one of the most productive regions in the United States. Nearly 400000 people live within 5 km of an unconventional oil or gas well in this largely rural area. Flaring is associated primarily with unconventional oil wells and is an increasingly common practice in the Eagle Ford to dispose of excess gas through combustion. Flares can operate continuously for months and release hazardous air pollutants such as particulate matter and volatile organic compounds in addition to causing light and noise pollution and noxious odors. We estimated ethnic disparities in exposure to flaring using satellite observations from the Visible Infrared Imaging Spectroradiometer between March 2012-December 2016. Census blocks with majority Hispanic (>60%) populations were exposed to twice as many nightly flare events within 5 km as those with <20% Hispanics. We found that Hispanics were exposed to more flares despite being less likely than non-Hispanic White residents to live near unconventional oil and gas wells. Our findings suggest Hispanics are disproportionately exposed to flares in the Eagle Ford shale, a pattern known as environmental injustice, which could contribute to disparities in air pollution and other nuisance exposures.
Collapse
Affiliation(s)
- Jill E. Johnston
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Khang Chau
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Lara Cushing
- Department of Health Education, San Francisco State University, San Francisco California, 94132, United States
| |
Collapse
|
22
|
de Gouw JA, Veefkind JP, Roosenbrand E, Dix B, Lin JC, Landgraf J, Levelt PF. Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States. Sci Rep 2020; 10:1379. [PMID: 31992727 PMCID: PMC6987228 DOI: 10.1038/s41598-020-57678-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022] Open
Abstract
Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane emissions associated with oil and natural gas production.
Collapse
Affiliation(s)
- Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States. .,Department of Chemistry, University of Colorado, Boulder, CO, United States.
| | - J Pepijn Veefkind
- Royal Netherlands Meteorological Institute, de Bilt, The Netherlands.,Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Esther Roosenbrand
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States.,Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Barbara Dix
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States
| | - John C Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jochen Landgraf
- SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
| | - Pieternel F Levelt
- Royal Netherlands Meteorological Institute, de Bilt, The Netherlands.,Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
23
|
Stockwell WR, Saunders E, Goliff WS, Fitzgerald RM. A perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:44-70. [PMID: 31750791 DOI: 10.1080/10962247.2019.1694605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
An essential component of a three-dimensional air quality model is its gas-phase mechanism. We present an overview of the necessary atmospheric chemistry and a discussion of the types of mechanisms with some specific examples such as the Master Chemical Mechanism, the Carbon Bond, SAPRC and the Regional Atmospheric Chemistry Mechanism (RACM). The first versions of the Carbon Bond and SAPRC mechanisms were developed through a hierarchy of chemical species approach that relied heavily on chemical environmental chamber data. Now a new approach has been proposed where the first step is to develop a highly detailed explicit mechanism such as the Master Chemical Mechanism and the second step is to test the detailed explicit mechanism against laboratory and field data. Finally, the detailed mechanism is condensed for use in a three-dimensional air quality model. Here it is argued that the development of highly detailed explicit mechanisms is very valuable for research, but we suggest that combining the hierarchy of chemical species and the detailed explicit mechanism approaches would be better than either alone.Implication: Many gas-phase mechanisms are available for urban, regional and global air quality modeling. A "hierarchy of chemical species approach," relying heavily on smog-chamber data was used for the development of the early series of mechanisms. Now the development of large, explicit master mechanisms that may be condensed is a significant, trend. However, a continuing problem with air quality mechanism development is due to the high complexity of atmospheric chemistry and the current availability of laboratory measurements. This problem requires a balance between completeness and speculation so that models maintain their utility for policymakers.
Collapse
Affiliation(s)
- William R Stockwell
- Department of Physics, University of Texas El Paso, El Paso, TX, USA
- Division of Atmospheric Sciences, Desert Research Institute, Nevada System of Higher Education, Reno, NV, USA
| | - Emily Saunders
- Science Systems and Applications, Inc. and Global Modeling Assimilation Office (GMAO), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Wendy S Goliff
- Chemistry Department, Riverside City College, Riverside, CA, USA
| | - Rosa M Fitzgerald
- Department of Physics, University of Texas El Paso, El Paso, TX, USA
| |
Collapse
|
24
|
McKenzie LM, Allshouse W, Daniels S. Congenital heart defects and intensity of oil and gas well site activities in early pregnancy. ENVIRONMENT INTERNATIONAL 2019; 132:104949. [PMID: 31327466 DOI: 10.1016/j.envint.2019.104949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Preliminary studies suggest that offspring to mothers living near oil and natural gas (O&G) well sites are at higher risk of congenital heart defects (CHDs). OBJECTIVES Our objective was to address the limitations of previous studies in a new and more robust evaluation of the relationship between maternal proximity to O&G well site activities and births with CHDs. METHODS We employed a nested case-control study of 3324 infants born in Colorado between 2005 and 2011. 187, 179, 132, and 38 singleton births with an aortic artery and valve (AAVD), pulmonary artery and valve (PAVD), conotruncal (CTD), or tricuspid valve (TVD) defect, respectively, were frequency matched 1:5 to controls on sex, maternal smoking, and race and ethnicity yielding 2860 controls. We estimated monthly intensities of O&G activity at maternal residences from three months prior to conception through the second gestational month with our intensity adjusted inverse distance weighted model. We used logistic regression models adjusted for O&G facilities other than wells, intensity of air pollution sources not associated with O&G activities, maternal age and socioeconomic status index, and infant sex and parity, to evaluate associations between CHDs and O&G activity intensity groups (low, medium, and high). RESULTS Overall, CHDs were 1.4 (1.0, 2.0) and 1.7 (1.1, 2.6) times more likely than controls in the medium and high intensity groups, respectively, compared to the low intensity group. PAVDs were 1.7 (0.93, 3.0) and 2.5 (1.1, 5.3) times more likely in the medium and high intensity groups for mothers with an address found in the second gestational month. In rural areas, AAVDs, CTDs, and TVDs were 1.8 (0.97, 3.3) and 2.6 (1.1, 6.1); 2.1 (0.96, 4.5) and 4.0 (1.4, 12); and 3.4 (0.95, 12) and 4.6 (0.81, 26) times more likely than controls in the medium and high intensity groups. CONCLUSIONS This study provides further evidence of a positive association between maternal proximity to O&G well site activities and several types of CHDs, particularly in rural areas.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA.
| | - William Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, USA
| |
Collapse
|
25
|
Garcia-Gonzales DA, Popoola O, Bright VB, Paulson SE, Wang Y, Jones RL, Jerrett M. Associations among particulate matter, hazardous air pollutants and methane emissions from the Aliso Canyon natural gas storage facility during the 2015 blowout. ENVIRONMENT INTERNATIONAL 2019; 132:104855. [PMID: 31255256 DOI: 10.1016/j.envint.2019.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 05/27/2023]
Abstract
In October of 2015, a large underground storage well at the Aliso Canyon natural gas storage facility experienced a massive methane leak (also referred to as "natural gas blowout"), which resulted in the largest ever anthropogenic release of methane from a single point source in the United States. Additional sampling conducted during the event revealed unique gas and particle concentrations in ambient air and a characteristic "fingerprint" of metals in the indoor dust samples similar to samples taken at the blowout site. We further investigated the association between the Aliso Canyon natural gas storage site and several measured air pollutants by: (a) conducting additional emission source studies using meteorological data and correlations between particulate matter, methane, and hazardous air pollutants (HAPs) collected during the natural gas blowout at distances ranging from 1.2 to 7.3 km due south of well SS25, (b) identifying the unique i/n-pentane ratio signature associated with emissions from the blowout event, and (c) identifying characteristics unique to the homes that tested positive for air pollutants using data collected from extensive indoor environmental assessment surveys. Results of air quality samples collected near Aliso Canyon during the final weeks of the event revealed that elevated levels of several HAP compounds were likely influenced by the active natural gas blowout. Furthermore, the final attempts to plug the well during the days preceding the well kill were associated with particle emissions likely from the well site. Together, this investigation suggests uncontrolled leaks or blowout events at natural gas storage facilities have the potential to release harmful pollutants with adverse health and environmental consequences into proximate communities. With this evidence, our recommendations include facility-specific meteorological and air quality data-collection equipment installed at natural gas storage facilities and support of environmental surveillance after severe off-normal operation events.
Collapse
Affiliation(s)
- Diane A Garcia-Gonzales
- Environmental Health Sciences Division, University of California at Berkeley, 50 University Hall, School of Public Health, Berkeley, CA 94720, United States of America.
| | - Olalekan Popoola
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Vivien B Bright
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Suzanne E Paulson
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095, United States of America.
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road Haidian District, Beijing 100871, China; Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan South Li, Chaoyang District, Beijing 100021, China.
| | - Roderic L Jones
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Michael Jerrett
- Environmental Health Sciences Division, University of California at Berkeley, 50 University Hall, School of Public Health, Berkeley, CA 94720, United States of America; Center for Occupational and Environmental Health, Fielding School of Public Health University of California, Los Angeles, 650 Charles E. Young Drive South, 56-070 CHS, Los Angeles, CA 90095, United States of America; Department of Environmental Health Sciences, Fielding School of Public Health University of California, Los Angeles, 650 Charles E. Young Drive South, 56-070B CHS, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
26
|
Day M, Pouliot G, Hunt S, Baker KR, Beardsley M, Frost G, Mobley D, Simon H, Henderson BB, Yelverton T, Rao V. Reflecting on progress since the 2005 NARSTO emissions inventory report. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1023-1048. [PMID: 31184543 PMCID: PMC6784547 DOI: 10.1080/10962247.2019.1629363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emission inventories are the foundation for cost-effective air quality management activities. In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American emissions inventories and made recommendations for improving their effectiveness. This paper reviews the recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. The findings reveal that all emissions inventory improvement areas identified by the 2005 NARSTO publication have been explored and implemented to some degree. The U.S. National Emissions Inventory has become more detailed and has incorporated new research into previously under-characterized sources such as fine particles and biomass burning. Additionally, it is now easier to access the emissions inventory and the documentation of the inventory via the internet. However, many emissions-related research needs exist, on topics such as emission estimation methods, speciation, scalable emission factor development, incorporation of new emission measurement techniques, estimation of uncertainty, top-down verification, and analysis of uncharacterized sources. A common theme throughout this retrospective summary is the need for increased coordination among stakeholders. Researchers and inventory developers must work together to ensure that planned emissions research and new findings can be used to update the emissions inventory. To continue to address emissions inventory challenges, industry, the scientific community, and government agencies need to continue to leverage resources and collaborate as often as possible. As evidenced by the progress noted, continued investment in and coordination of emissions inventory activities will provide dividends to air quality management programs across the country, continent, and world. Implications: In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American air pollution emissions inventories. This paper reviews the eight recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. Although progress has been made, many opportunities exist for the scientific agencies, industry, and government agencies to leverage resources and collaborate to continue improving emissions inventories.
Collapse
Affiliation(s)
- Melissa Day
- 2015-2017 AAAS Science & Technology Policy Fellow, Environmental Protection Agency , Washington , DC , USA
| | - George Pouliot
- Office of Research and Development, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Sherri Hunt
- Office of Research and Development, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Kirk R Baker
- Office of Air and Radiation, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Megan Beardsley
- Office of Transportation and Air Quality, Environmental Protection Agency , Ann Arbor , MI , USA
| | - Gregory Frost
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration , Boulder , CO , USA
| | - David Mobley
- Office of Research and Development, Environmental Protection Agency , Research Triangle Park , NC , USA
- Office of Air and Radiation, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Heather Simon
- Office of Air and Radiation, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Barron B Henderson
- Office of Air and Radiation, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Tiffany Yelverton
- Office of Research and Development, Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Venkatesh Rao
- Office of Air and Radiation, Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
27
|
Nsanzineza R, Capps SL, Milford JB. Modeling Emissions and Ozone Air Quality Impacts of Future Scenarios for Energy and Power Production in the Rocky Mountain States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7893-7902. [PMID: 31180656 DOI: 10.1021/acs.est.9b00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study examines air quality impacts of scenarios for energy production and use in 2030 across Colorado, northern New Mexico, Utah, and Wyoming. Scenarios feature contrasting levels of oil and gas production and shares of electricity from coal, natural gas, and renewables. Hourly emissions are resolved for individual power plants; oil and gas emissions are basin-specific. Ozone decreased from 2011 to the 2030 baseline, with median and 90th percentile reductions in maximum daily 8 h average (MDA8) ozone across the four-state domain of 3.5 and 7.1 ppb, respectively, resulting in 200 fewer premature deaths annually. Relative to the 2030 baseline, MDA8 ozone increased in the "cheap gas" scenario, with median and 90th percentile increases of 0.1 and 1.0 ppb, and declined in a scenario with greenhouse gas (GHG) emissions fees, with median and 90th percentile reductions of 0.2 and 1.5 ppb. Reduced coal generation lowered SO2 emissions in all future scenarios compared to 2011. GHG emissions from electricity and oil and gas production declined by 4% (CO2-equivalent) from 2011 to the 2030 baseline, increased by 10% from the 2030 baseline to the cheap gas scenario, and declined by 28% from the 2030 baseline to the GHG fees scenario.
Collapse
Affiliation(s)
- Rene Nsanzineza
- Department of Mechanical Engineering , University of Colorado at Boulder , Boulder , Colorado 80309-0427 , United States
| | - Shannon L Capps
- Department of Civil, Architectural, and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Jana B Milford
- Department of Mechanical Engineering , University of Colorado at Boulder , Boulder , Colorado 80309-0427 , United States
| |
Collapse
|
28
|
Garcia-Gonzales DA, Shonkoff SB, Hays J, Jerrett M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 2019; 40:283-304. [DOI: 10.1146/annurev-publhealth-040218-043715] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.
Collapse
Affiliation(s)
- Diane A. Garcia-Gonzales
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Seth B.C. Shonkoff
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Environment Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake Hays
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
29
|
Tzompa-Sosa ZA, Henderson BH, Keller CA, Travis K, Mahieu E, Franco B, Estes M, Helmig D, Fried A, Richter D, Weibring P, Walega J, Blake DR, Hannigan JW, Ortega I, Conway S, Strong K, Fischer EV. Atmospheric implications of large C 2-C 5 alkane emissions from the U.S. oil and gas industry. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:1148-1169. [PMID: 32832312 PMCID: PMC7433792 DOI: 10.1029/2018jd028955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/18/2018] [Indexed: 06/10/2023]
Abstract
Emissions of C2-C5 alkanes from the U.S. oil and gas sector have changed rapidly over the last decade. We use a nested GEOS-Chem simulation driven by updated 2011NEI emissions with aircraft, surface and column observations to 1) examine spatial patterns in the emissions and observed atmospheric abundances of C2-C5 alkanes over the U.S., and 2) estimate the contribution of emissions from the U.S. oil and gas industry to these patterns. The oil and gas sector in the updated 2011NEI contributes over 80% of the total U.S. emissions of ethane (C2H6) and propane (C3H8), and emissions of these species are largest in the central U.S. Observed mixing ratios of C2-C5 alkanes show enhancements over the central U.S. below 2 km. A nested GEOS-Chem simulation underpredicts observed C3H8 mixing ratios in the boundary layer over several U.S. regions and the relative underprediction is not consistent, suggesting C3H8 emissions should receive more attention moving forward. Our decision to consider only C4-C5 alkane emissions as a single lumped species produces a geographic distribution similar to observations. Due to the increasing importance of oil and gas emissions in the U.S., we recommend continued support of existing long-term measurements of C2-C5 alkanes. We suggest additional monitoring of C2-C5 alkanes downwind of northeastern Colorado, Wyoming and western North Dakota to capture changes in these regions. The atmospheric chemistry modeling community should also evaluate whether chemical mechanisms that lump larger alkanes are sufficient to understand air quality issues in regions with large emissions of these species.
Collapse
Affiliation(s)
- Z A Tzompa-Sosa
- Department of Atmospheric Science, Colorado State University, Colorado, USA
| | - B H Henderson
- Air Quality Modeling Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency, USA
| | - C A Keller
- Universities Space Research Association / GESTAR, National Aeronautics and Space Administration, Maryland, USA
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - K Travis
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Mahieu
- Institut d'Astrophysique et de Géophysique, Université de Liège, Quartier Agora, Liège, Belgium
| | - B Franco
- Université libre de Bruxelles (ULB), Atmospheric Spectroscopy, Service de Chimie Quantique et Photophysique, Brussels, Belgium
| | - M Estes
- Air Modeling and Data Analysis Section, Texas Commission on Environmental Quality, Texas, USA
| | - D Helmig
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Colorado, USA
| | - A Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Colorado, USA
| | - D Richter
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Colorado, USA
| | - P Weibring
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Colorado, USA
| | - J Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Colorado, USA
| | - D R Blake
- Department of Chemistry, University of California, Irvine, California, USA
| | - J W Hannigan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - I Ortega
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - S Conway
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - K Strong
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - E V Fischer
- Department of Atmospheric Science, Colorado State University, Colorado, USA
| |
Collapse
|
30
|
Williams PJ, Reeder M, Pekney NJ, Risk D, Osborne J, McCawley M. Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:406-416. [PMID: 29793082 DOI: 10.1016/j.scitotenv.2018.04.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The Marcellus Shale Energy and Environment Laboratory (MSEEL) in West Virginia provides a unique opportunity in the field of unconventional energy research. By studying near-surface atmospheric chemistry over several phases of a hydraulic fracturing event, the project will help evaluate the impact of current practices, as well as new techniques and mitigation technologies. A total of 10 mobile surveys covering a distance of approximately 1500 km were conducted through Morgantown. Our surveying technique involved using a vehicle-mounted Los Gatos Research gas analyzer to provide geo-located measurements of methane (CH4) and carbon dioxide (CO2). The ratios of super-ambient concentrations of CO2 and CH4 were used to separate well-pad emissions from the natural background concentrations over the various stages of well-pad development, as well as for comparisons to other urban sources of CH4. We found that regional background methane concentrations were elevated in all surveys, with a mean concentration of 2.699 ± 0.006 ppmv, which simply reflected the complexity of this riverine urban location. Emissions at the site were the greatest during the flow-back phase, with an estimated CH4 volume output of 20.62 ± 7.07 g/s, which was significantly higher than other identified urban emitters. Our study was able to successfully identify and quantify MSEEL emissions within this complex urban environment.
Collapse
Affiliation(s)
- Philip J Williams
- Department of Earth Sciences, FluxLab, Physical Sciences Complex 2066, St. Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada.
| | - Matthew Reeder
- National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, Pennsylvania, United States
| | - Natalie J Pekney
- National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, Pennsylvania, United States
| | - David Risk
- Department of Earth Sciences, FluxLab, Physical Sciences Complex 2066, St. Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - John Osborne
- Glowink LLC, Montgomery Center, Vermont, United States
| | - Michael McCawley
- West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
31
|
Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott RP, Kincl L, Haynes EN, Anderson KA. Environmental and individual PAH exposures near rural natural gas extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:397-405. [PMID: 29857308 PMCID: PMC7169985 DOI: 10.1016/j.envpol.2018.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants' homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Collapse
Affiliation(s)
- L Blair Paulik
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Kevin A Hobbie
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Brian W Smith
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Laurel Kincl
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Erin N Haynes
- College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
32
|
Hill EL. Shale gas development and infant health: Evidence from Pennsylvania. JOURNAL OF HEALTH ECONOMICS 2018; 61:134-150. [PMID: 30114565 PMCID: PMC6629042 DOI: 10.1016/j.jhealeco.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 04/08/2018] [Accepted: 07/07/2018] [Indexed: 05/17/2023]
Abstract
This research exploits the introduction of shale gas wells in Pennsylvania in response to growing controversy around the drilling method of hydraulic fracturing. Using detailed location data on maternal addresses and GIS coordinates of gas wells, this study examines singleton births to mothers residing close to a shale gas well from 2003 to 2010 in Pennsylvania. The introduction of drilling increased low birth weight and decreased term birth weight on average among mothers living within 2.5 km of a well compared to mothers living within 2.5 km of a permitted well. Adverse effects were also detected using measures such as small for gestational age and APGAR scores, while no effects on gestation periods were found. In the intensive margin, an additional well is associated with a 7 percent increase in low birth weight, a 5 g reduction in term birth weight and a 3 percent increase in premature birth. These results are robust to other measures of infant health, many changes in specification and falsification tests. These findings suggest that shale gas development poses significant risks to human health.
Collapse
Affiliation(s)
- Elaine L Hill
- University of Rochester Medical Center, School of Medicine & Dentistry, 265 Crittenden Blvd Box 420644, Rochester, NY 14642, United States.
| |
Collapse
|
33
|
McMullin TS, Bamber AM, Bon D, Vigil DI, Van Dyke M. Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (U.S.A.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071500. [PMID: 30012994 PMCID: PMC6069077 DOI: 10.3390/ijerph15071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 11/30/2022]
Abstract
The study objective was to use a preliminary risk based framework to evaluate the sufficiency of existing air data to answer an important public health question in Colorado: Do volatile organic compounds (VOCs) emitted into the air from oil and gas (OG) operations result in exposures to Coloradoans living at or greater than current state setback distances (500 feet) from OG operations at levels that may be harmful to their health? We identified 56 VOCs emitted from OG operations in Colorado and compiled 47 existing air monitoring datasets that measured these VOCs in 34 locations across OG regions. From these data, we estimated acute and chronic exposures and compared these exposures to health guideline levels using maximum and mean air concentrations. Acute and chronic non-cancer hazard quotients were below one for all individual VOCs. Hazard indices combining exposures for all VOCs were slightly above one. Lifetime excess cancer risk estimates for benzene were between 1.0 × 10−5–3.6 × 10−5 and ethylbenzene was 7.3 × 10−6. This evaluation identified a small sub-set of VOCs, including benzene and n-nonane, which should be prioritized for additional exposure characterization in site-specific studies that collect comprehensive time-series measurements of community scale exposures to better assess community exposures.
Collapse
Affiliation(s)
- Tami S McMullin
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Alison M Bamber
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Daniel Bon
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Daniel I Vigil
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Michael Van Dyke
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| |
Collapse
|
34
|
McKenzie LM, Blair B, Hughes J, Allshouse WB, Blake NJ, Helmig D, Milmoe P, Halliday H, Blake DR, Adgate JL. Ambient Nonmethane Hydrocarbon Levels Along Colorado's Northern Front Range: Acute and Chronic Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4514-4525. [PMID: 29584423 DOI: 10.1021/acs.est.7b05983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oil and gas (O&G) facilities emit air pollutants that are potentially a major health risk for nearby populations. We characterized prenatal through adult health risks for acute (1 h) and chronic (30 year) residential inhalation exposure scenarios to nonmethane hydrocarbons (NMHCs) for these populations. We used ambient air sample results to estimate and compare risks for four residential scenarios. We found that air pollutant concentrations increased with proximity to an O&G facility, as did health risks. Acute hazard indices for neurological (18), hematological (15), and developmental (15) health effects indicate that populations living within 152 m of an O&G facility could experience these health effects from inhalation exposures to benzene and alkanes. Lifetime excess cancer risks exceeded 1 in a million for all scenarios. The cancer risk estimate of 8.3 per 10 000 for populations living within 152 m of an O&G facility exceeded the United States Environmental Protection Agency's 1 in 10 000 upper threshold. These findings indicate that state and federal regulatory policies may not be protective of health for populations residing near O&G facilities. Health risk assessment results can be used for informing policies and studies aimed at reducing and understanding health effects associated with air pollutants emitted from O&G facilities.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Benjamin Blair
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - John Hughes
- Department of Biostatistics and Informatics, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - William B Allshouse
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Nicola J Blake
- Department of Chemistry , University of California , Irvine , California 92617 , United States
| | - Detlev Helmig
- Institute of Arctic and Alpine Research (INSTAAR) , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Pam Milmoe
- Boulder County Public Health , 1333 Iris Avenue , Boulder , Colorado 80304 , United States
| | | | - Donald R Blake
- Department of Chemistry , University of California , Irvine , California 92617 , United States
| | - John L Adgate
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
35
|
Webb E, Moon J, Dyrszka L, Rodriguez B, Cox C, Patisaul H, Bushkin S, London E. Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:3-29. [PMID: 29068792 DOI: 10.1515/reveh-2017-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/28/2017] [Indexed: 05/05/2023]
Abstract
Heavy metals (arsenic and manganese), particulate matter (PM), benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and endocrine disrupting chemicals (EDCs) have been linked to significant neurodevelopmental health problems in infants, children and young adults. These substances are widely used in, or become byproducts of unconventional oil and natural gas (UOG) development and operations. Every stage of the UOG lifecycle, from well construction to extraction, operations, transportation and distribution can lead to air and water contamination. Residents near UOG operations can suffer from increased exposure to elevated concentrations of air and water pollutants. Here we focus on five air and water pollutants that have been associated with potentially permanent learning and neuropsychological deficits, neurodevelopmental disorders and neurological birth defects. Given the profound sensitivity of the developing brain and central nervous system, it is reasonable to conclude that young children who experience frequent exposure to these pollutants are at particularly high risk for chronic neurological diseases. More research is needed to understand the extent of these concerns in the context of UOG, but since UOG development has expanded rapidly in recent years, the need for public health prevention techniques, well-designed studies and stronger state and national regulatory standards is becoming increasingly apparent.
Collapse
Affiliation(s)
- Ellen Webb
- Center for Environmental Health, 2201 Broadway, Suite 302, Oakland, CA 94612, USA
| | | | - Larysa Dyrszka
- Physicians for Social Responsibility, Glen Spey, NY, USA
| | | | - Caroline Cox
- Center for Environmental Health, Oakland, CA, USA
| | - Heather Patisaul
- North Carolina State University College of Sciences, Raleigh, NC, USA
| | - Sheila Bushkin
- Institute for Health and the Environment, Albany, NY, USA
| | - Eric London
- Institute for Basic Research, New York, NY, USA
| |
Collapse
|
36
|
Bolden AL, Schultz K, Pelch KE, Kwiatkowski CF. Exploring the endocrine activity of air pollutants associated with unconventional oil and gas extraction. Environ Health 2018; 17:26. [PMID: 29558955 PMCID: PMC5861625 DOI: 10.1186/s12940-018-0368-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/20/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND In the last decade unconventional oil and gas (UOG) extraction has rapidly proliferated throughout the United States (US) and the world. This occurred largely because of the development of directional drilling and hydraulic fracturing which allows access to fossil fuels from geologic formations that were previously not cost effective to pursue. This process is known to use greater than 1,000 chemicals such as solvents, surfactants, detergents, and biocides. In addition, a complex mixture of chemicals, including heavy metals, naturally-occurring radioactive chemicals, and organic compounds are released from the formations and can enter air and water. Compounds associated with UOG activity have been linked to adverse reproductive and developmental outcomes in humans and laboratory animal models, which is possibly due to the presence of endocrine active chemicals. METHODS Using systematic methods, electronic searches of PubMed and Web of Science were conducted to identify studies that measured chemicals in air near sites of UOG activity. Records were screened by title and abstract, relevant articles then underwent full text review, and data were extracted from the studies. A list of chemicals detected near UOG sites was generated. Then, the potential endocrine activity of the most frequently detected chemicals was explored via searches of literature from PubMed. RESULTS Evaluation of 48 studies that sampled air near sites of UOG activity identified 106 chemicals detected in two or more studies. Ethane, benzene and n-pentane were the top three most frequently detected. Twenty-one chemicals have been shown to have endocrine activity including estrogenic and androgenic activity and the ability to alter steroidogenesis. Literature also suggested that some of the air pollutants may affect reproduction, development, and neurophysiological function, all endpoints which can be modulated by hormones. These chemicals included aromatics (i.e., benzene, toluene, ethylbenzene, and xylene), several polycyclic aromatic hydrocarbons, and mercury. CONCLUSION These results provide a basis for prioritizing future primary studies regarding the endocrine disrupting properties of UOG air pollutants, including exposure research in wildlife and humans. Further, we recommend systematic reviews of the health impacts of exposure to specific chemicals, and comprehensive environmental sampling of a broader array of chemicals.
Collapse
Affiliation(s)
- Ashley L. Bolden
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Kim Schultz
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Katherine E. Pelch
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado USA
- Biological Sciences, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
37
|
Ghosh B. Impact of Changes in Oil and Gas Production Activities on Air Quality in Northeastern Oklahoma: Ambient Air Studies in 2015-2017. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3285-3294. [PMID: 29439573 DOI: 10.1021/acs.est.7b05726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A total of three ground-based ambient air studies were conducted in February through March of 2015, 2016, and 2017 at the Phillips 66 Research Center in northeastern Oklahoma. C2-C12 nonmethane hydrocarbons (NMHCs) were measured using whole-air sampling and gas chromatography-mass spectrometry. In 2016 and 2017, online methane and ethane measurements were also conducted. Strong methane-ethane correlation identified oil and gas (O&G) upstream and midstream operations to be the primary methane source. C2-C5 alkanes were the dominant NMHCs whose average mixing ratio peaked in 2016 before dropping in 2017. This observation is attributed to regional O&G upstream operations, which peaked in 2015. Mean mixing ratios of C2-C5 alkanes ranged from 0.99 to 16.99 ppb. Measured ratios of i-C5/ n-C5 were 0.97 ± 0.03, 1.18 ± 0.04, and 1.06 ± 0.02 in 2015, 2016, and 2017, respectively, indicating that O&G upstream and midstream operations were their primary source. Photochemical age was estimated using observed ratio between hexane and propane. Emission ratios of NMHCs at zero photochemical age were calculated, which resembled the composition reported in the literature for natural gas field condensate tank flashing. Back-trajectory analysis showed that hydrocarbon-rich plumes came from the south and west directions, where O&G upstream and midstream operations are abundant. High OH reactivity values were calculated from C2-C6 alkanes mixing ratios, with the average reactivity for the 3 years being 1.55, 1.88, and 1.16 s-1. This indicates that VOC emissions from O & G operations may contribute to ozone production.
Collapse
Affiliation(s)
- Buddhadeb Ghosh
- Phillips 66 Research Center , Highway 60 and 123, Bartlesville , Oklahoma 74003 , United States
| |
Collapse
|
38
|
Caron-Beaudoin É, Valter N, Chevrier J, Ayotte P, Frohlich K, Verner MA. Gestational exposure to volatile organic compounds (VOCs) in Northeastern British Columbia, Canada: A pilot study. ENVIRONMENT INTERNATIONAL 2018; 110:131-138. [PMID: 29122312 DOI: 10.1016/j.envint.2017.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Northeastern British Columbia (Canada) is an area of intense hydraulic fracturing for unconventional natural gas exploitation. There have been multiple reports of air and water contamination by volatile organic compounds in the vicinity of gas wells. Although these chemicals are known developmental toxicants, no biomonitoring effort has been carried out in the region. OBJECTIVE To evaluate gestational exposure to benzene and toluene in the Peace River Valley, Northeastern British Columbia (Canada). METHODS Urine samples were collected over five consecutive days from 29 pregnant women. Metabolites of benzene (s-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t,t-MA)) and toluene (s-benzylmercapturic acid (S-BMA)) were measured in pooled urine samples from each participant. Levels of benzene metabolites were compared to those from the general Canadian population and from a biomonitoring study of residents from an area of active gas exploitation in Pavillion, Wyoming (USA). Levels measured in participants from the two recruitment sites, and self-identifying as Indigenous or non-Indigenous, were also compared. RESULTS Whereas the median S-PMA level (0.18μg/g creatinine) in our study was similar to that in the general Canadian population, the median t,t-MA level (180μg/g creatinine) was approximately 3.5 times higher. Five women had t,t-MA levels above the biological exposure index® proposed by the American Conference of Governmental Industrial Hygienists. The median urinary S-BMA level in our pilot study was 7.00μg/g creatinine. Urinary metabolite levels were slightly higher in self-identifying Indigenous women, but this difference was only statistically significant for S-PMA. DISCUSSION Urinary t,t-MA levels, but not S-PMA levels, measured in our study are suggestive of a higher benzene exposure in participating pregnant women from the Peace River Valley than in the general Canadian population. Given the small sample size and limitations of t,t-MA measurements (e.g., non-specificity), more extensive monitoring is warranted.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 chemin de la Cote-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, 7101, Parc Ave., Montreal, QC H3N 1X7, Canada; INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Naomi Valter
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 chemin de la Cote-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, 7101, Parc Ave., Montreal, QC H3N 1X7, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University Faculty of Medecine, 1020 Pine Avenue West, room 42, Montreal, QC H3A 1A2, Canada
| | - Pierre Ayotte
- Centre de toxicologie du Québec, Institut National de la Santé Publique du Québec, 945 avenue Wolfe, Québec, QC G1V 5B3, Canada; Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1S 4L8, Canada
| | - Katherine Frohlich
- Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, 7101, Parc Ave., Montreal, QC H3N 1X7, Canada; Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 chemin de la Cote-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, 7101, Parc Ave., Montreal, QC H3N 1X7, Canada
| |
Collapse
|
39
|
Czolowski ED, Santoro RL, Srebotnjak T, Shonkoff SBC. Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:086004. [PMID: 28858829 PMCID: PMC5783652 DOI: 10.1289/ehp1535] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health-relevant assessment and decision-making. OBJECTIVES We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. METHODS We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. RESULTS Nationally, we estimate that 17.6 million people live within 1,600m (∼1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. CONCLUSIONS The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells. https://doi.org/10.1289/EHP1535.
Collapse
Affiliation(s)
| | | | | | - Seth B C Shonkoff
- PSE Healthy Energy , Oakland, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley , Berkeley, California, USA
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
40
|
Lavoie TN, Shepson PB, Cambaliza MOL, Stirm BH, Conley S, Mehrotra S, Faloona IC, Lyon D. Spatiotemporal Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8001-8009. [PMID: 28678487 DOI: 10.1021/acs.est.7b00814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methane emissions from oil and gas facilities can exhibit operation-dependent temporal variability; however, this variability has yet to be fully characterized. A field campaign was conducted in June 2014 in the Eagle Ford basin, Texas, to examine spatiotemporal variability of methane emissions using four methods. Clusters of methane-emitting sources were estimated from 14 aerial surveys of two ("East" or "West") 35 × 35 km grids, two aircraft-based mass balance methods measured emissions repeatedly at five gathering facilities and three flares, and emitting equipment source-types were identified via helicopter-based infrared camera at 13 production and gathering facilities. Significant daily variability was observed in the location, number (East: 44 ± 20% relative standard deviation (RSD), N = 7; West: 37 ± 30% RSD, N = 7), and emission rates (36% of repeat measurements deviate from mean emissions by at least ±50%) of clusters of emitting sources. Emission rates of high emitters varied from 150-250 to 880-1470 kg/h and regional aggregate emissions of large sources (>15 kg/h) varied up to a factor of ∼3 between surveys. The aircraft-based mass balance results revealed comparable variability. Equipment source-type changed between surveys and alterations in operational-mode significantly influenced emissions. Results indicate that understanding temporal emission variability will promote improved mitigation strategies and additional analysis is needed to fully characterize its causes.
Collapse
Affiliation(s)
| | | | - Maria O L Cambaliza
- Department of Physics, Ateneo de Manila University , Loyola Heights, Quezon City 1108, Philippines
| | | | - Stephen Conley
- Department of Land, Air and Water Resources, University of California , Davis, California 95616, United States
| | - Shobhit Mehrotra
- Department of Land, Air and Water Resources, University of California , Davis, California 95616, United States
| | - Ian C Faloona
- Department of Land, Air and Water Resources, University of California , Davis, California 95616, United States
| | - David Lyon
- Environmental Defense Fund, Austin, Texas 78701, United States
| |
Collapse
|
41
|
Schwietzke S, Pétron G, Conley S, Pickering C, Mielke-Maday I, Dlugokencky EJ, Tans PP, Vaughn T, Bell C, Zimmerle D, Wolter S, King CW, White AB, Coleman T, Bianco L, Schnell RC. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7286-7294. [PMID: 28548824 DOI: 10.1021/acs.est.7b01810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. Our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R2 = 0.75) and active gas well pad count (R2 = 0.81), and (iii) 2× higher emissions in the western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ∼1/3 of the total emissions detected midday by the aircraft and ∼2/3 of the west-east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. While the aircraft approach is valid, quantitative, and independent, our study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.
Collapse
Affiliation(s)
- Stefan Schwietzke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Gabrielle Pétron
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Stephen Conley
- Scientific Aviation, Inc. , 3335 Airport Road Suite B, Boulder, Colorado 80301, United States
- Department of Land, Air, and Water Resources, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Cody Pickering
- Department of Mechanical Engineering, Colorado State University , 400 Isotope Dr, Fort Collins, Colorado 80521, United States
| | - Ingrid Mielke-Maday
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Edward J Dlugokencky
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Pieter P Tans
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Tim Vaughn
- Department of Mechanical Engineering, Colorado State University , 400 Isotope Dr, Fort Collins, Colorado 80521, United States
| | - Clay Bell
- Department of Mechanical Engineering, Colorado State University , 400 Isotope Dr, Fort Collins, Colorado 80521, United States
| | - Daniel Zimmerle
- Department of Mechanical Engineering, Colorado State University , 400 Isotope Dr, Fort Collins, Colorado 80521, United States
| | - Sonja Wolter
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Clark W King
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Allen B White
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Timothy Coleman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Laura Bianco
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| | - Russell C Schnell
- NOAA Earth System Research Laboratory , 325 Broadway, Boulder, Colorado 80305, United States
| |
Collapse
|
42
|
Ren X, Hall DL, Vinciguerra T, Benish SE, Stratton PR, Ahn D, Hansford JR, Cohen MD, Sahu S, He H, Grimes C, Salawitch RJ, Ehrman SH, Dickerson RR. Methane emissions from the Marcellus Shale in southwestern Pennsylvania and northern West Virginia based on airborne measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:4639-4653. [PMID: 28603681 PMCID: PMC5439486 DOI: 10.1002/2016jd026070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 05/31/2023]
Abstract
Natural gas production in the U.S. has increased rapidly over the past decade, along with concerns about methane (CH4) leakage (total fugitive emissions), and climate impacts. Quantification of CH4 emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound, cost-effective policies for mitigating greenhouse gases. We use aircraft measurements and a mass balance approach for three flight experiments in August and September 2015 to estimate CH4 emissions from O&NG operations in the southwestern Marcellus Shale region. We estimate the mean ± 1σ CH4 emission rate as 36.7 ± 1.9 kg CH4 s-1 (or 1.16 ± 0.06 Tg CH4 yr-1) with 59% coming from O&NG operations. We estimate the mean ± 1σ CH4 leak rate from O&NG operations as 3.9 ± 0.4% with a lower limit of 1.5% and an upper limit of 6.3%. This leak rate is broadly consistent with the results from several recent top-down studies but higher than the results from a few other observational studies as well as in the U.S. Environmental Protection Agency CH4 emission inventory. However, a substantial source of CH4 was found to contain little ethane (C2H6), possibly due to coalbed CH4 emitted either directly from coalmines or from wells drilled through coalbed layers. Although recent regulations requiring capture of gas from the completion venting step of the hydraulic fracturing appear to have reduced losses, our study suggests that for a 20 year time scale, energy derived from the combustion of natural gas extracted from this region will require further controls before it can exert a net climate benefit compared to coal.
Collapse
Affiliation(s)
- Xinrong Ren
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
- Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Dolly L. Hall
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Timothy Vinciguerra
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Sarah E. Benish
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Phillip R. Stratton
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Doyeon Ahn
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| | | | - Mark D. Cohen
- Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Sayantan Sahu
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| | - Hao He
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Courtney Grimes
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| | - Ross J. Salawitch
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
- Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkMarylandUSA
| | - Sheryl H. Ehrman
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Russell R. Dickerson
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMarylandUSA
- Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
43
|
Thompson TM, Shepherd D, Stacy A, Barna MG, Schichtel BA. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:445-461. [PMID: 27819534 DOI: 10.1080/10962247.2016.1251508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
UNLABELLED Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. IMPLICATIONS In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.
Collapse
Affiliation(s)
- Tammy M Thompson
- a Cooperative Institute for Research in the Atmosphere , Colorado State University , Fort Collins , CO , USA
| | - Donald Shepherd
- b Air Resources Division , National Park Service , Lakewood , CO , USA
| | - Andrea Stacy
- b Air Resources Division , National Park Service , Lakewood , CO , USA
| | - Michael G Barna
- a Cooperative Institute for Research in the Atmosphere , Colorado State University , Fort Collins , CO , USA
- c Air Resources Division , National Park Service , Fort Collins , CO , USA
| | - Bret A Schichtel
- a Cooperative Institute for Research in the Atmosphere , Colorado State University , Fort Collins , CO , USA
- c Air Resources Division , National Park Service , Fort Collins , CO , USA
| |
Collapse
|
44
|
Lackey G, Rajaram H, Sherwood OA, Burke TL, Ryan JN. Surface Casing Pressure As an Indicator of Well Integrity Loss and Stray Gas Migration in the Wattenberg Field, Colorado. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3567-3574. [PMID: 28207242 DOI: 10.1021/acs.est.6b06071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The risk of environmental contamination by oil and gas wells depends strongly on the frequency with which they lose integrity. Wells with compromised integrity typically exhibit pressure in their outermost annulus (surface casing pressure, SfCP) due to gas accumulation. SfCP is an easily measured but poorly documented gauge of well integrity. Here, we analyze SfCP data from the Colorado Oil and Gas Conservation Commission database to evaluate the frequency of well integrity loss in the Wattenberg Test Zone (WTZ), within the Wattenberg Field, Colorado. Deviated and horizontal wells were found to exhibit SfCP more frequently than vertical wells. We propose a physically meaningful well-specific critical SfCP criterion, which indicates the potential for a well to induce stray gas migration. We show that 270 of 3923 wells tested for SfCP in the WTZ exceeded critical SfCP. Critical SfCP is strongly controlled by the depth of the surface casing. Newer horizontal wells, drilled during the unconventional drilling boom, exhibited critical SfCP less frequently than other wells because they were predominantly constructed with deeper surface casings. Thus, they pose a lower risk for inducing stray gas migration than legacy vertical or deviated wells with surface casings shorter than modern standards.
Collapse
Affiliation(s)
- Greg Lackey
- Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Harihar Rajaram
- Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Owen A Sherwood
- Institute of Arctic and Alpine Research, University of Colorado , Boulder, Colorado 80309, United States
| | - Troy L Burke
- Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Joseph N Ryan
- Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
45
|
Meng Q. The impacts of fracking on the environment: A total environmental study paradigm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:953-957. [PMID: 27986321 DOI: 10.1016/j.scitotenv.2016.12.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Fracking has become a hot topic in the media and public discourse not only because of its economic benefit but also its environmental impacts. Recently, scientists have investigated the environmental impacts of fracking, and most studies focus on its air and ground water pollution. A systematic research structure and an overall evaluation of fracking's impacts on the environment are needed, because fracking does not only influence ground water but most environmental elements including but not limited to air, water, soil, rock, vegetation, wildlife, human, and many other ecosystem components. From the standpoint of the total environment, this communication assesses the overall impacts of fracking on the environment and then designs a total environmental study paradigm that effectively examines the complicated relationship among the total environment. Fracking dramatically changes the anthroposphere, which in turn significantly impacts the atmosphere, hydrosphere, lithosphere, and biosphere through the significant input or output of water, air, liquid or solid waste disposals, and the complex chemical components in fracking fluids. The proposed total environment study paradigm of fracking can be applied to other significant human activities that have dramatic impacts on the environment, such as mountain top coal mining or oil sands for environmental studies.
Collapse
Affiliation(s)
- Qingmin Meng
- Department of Geosciences, Mississippi State University, MS 39762, USA.
| |
Collapse
|
46
|
McKenzie LM, Allshouse WB, Byers TE, Bedrick EJ, Serdar B, Adgate JL. Childhood hematologic cancer and residential proximity to oil and gas development. PLoS One 2017; 12:e0170423. [PMID: 28199334 PMCID: PMC5310851 DOI: 10.1371/journal.pone.0170423] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oil and gas development emits known hematological carcinogens, such as benzene, and increasingly occurs in residential areas. We explored whether residential proximity to oil and gas development was associated with risk for hematologic cancers using a registry-based case-control study design. METHODS Participants were 0-24 years old, living in rural Colorado, and diagnosed with cancer between 2001-2013. For each child in our study, we calculated inverse distance weighted (IDW) oil and gas well counts within a 16.1-kilometer radius of residence at cancer diagnosis for each year in a 10 year latency period to estimate density of oil and gas development. Logistic regression, adjusted for age, race, gender, income, and elevation was used to estimate associations across IDW well count tertiles for 87 acute lymphocytic leukemia (ALL) cases and 50 non-Hodgkin lymphoma (NHL) cases, compared to 528 controls with non-hematologic cancers. FINDINGS Overall, ALL cases 0-24 years old were more likely to live in the highest IDW well count tertiles compared to controls, but findings differed substantially by age. For ages 5-24, ALL cases were 4.3 times as likely to live in the highest tertile, compared to controls (95% CI: 1.1 to 16), with a monotonic increase in risk across tertiles (trend p-value = 0.035). Further adjustment for year of diagnosis increased the association. No association was found between ALL for children aged 0-4 years or NHL and IDW well counts. While our study benefited from the ability to select cases and controls from the same population, use of cancer-controls, the limited number of ALL and NHL cases, and aggregation of ages into five year ranges, may have biased our associations toward the null. In addition, absence of information on O&G well activities, meteorology, and topography likely reduced temporal and spatial specificity in IDW well counts. CONCLUSION Because oil and gas development has potential to expose a large population to known hematologic carcinogens, further study is clearly needed to substantiate both our positive and negative findings. Future studies should incorporate information on oil and gas development activities and production levels, as well as levels of specific pollutants of interest (e.g. benzene) near homes, schools, and day care centers; provide age-specific residential histories; compare cases to controls without cancer; and address other potential confounders, and environmental stressors.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, Colorado, United States of America
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, Colorado, United States of America
| | - Tim E. Byers
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, Colorado, United States of America
| | - Edward J. Bedrick
- Epidemiology and Biostatistics Department, Mel &Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - Berrin Serdar
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, Colorado, United States of America
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, Colorado, United States of America
| |
Collapse
|
47
|
Evans JM, Helmig D. Investigation of the influence of transport from oil and natural gas regions on elevated ozone levels in the northern Colorado front range. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:196-211. [PMID: 27629587 DOI: 10.1080/10962247.2016.1226989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED The Northern Colorado Front Range (NCFR) has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004, which has led to much debate over the sources of ozone precursors to the region, as this area is home to both the Denver, CO, metropolitan area and the Denver-Julesburg Basin, which has experienced rapid growth of oil and natural gas (O&NG) operations and associated emissions. Several recent studies have reported elevated levels of atmospheric volatile organic compounds (VOCs) as a result of O&NG emissions and the potential for significant ozone production from these emissions, despite implementation of stricter O&NG VOC emissions regulations in 2008. Approximately 88% of 1-hr elevated ozone events (>75 ppbv) occur during June-August, indicating that elevated ozone levels are driven by regional photochemistry. Analyses of surface ozone and wind observations from two sites, namely, South Boulder and the Boulder Atmospheric Observatory, both near Boulder, CO, show a preponderance of elevated ozone events associated with east-to-west airflow from regions with O&NG operations in the N-ESE, and a relatively minor contribution of transport from the Denver Metropolitan area to the SE-S. Transport from upwind areas associated with abundant O&NG operations accounts for on the order of 65% (mean for both sites) of 1-hr averaged elevated ozone levels, while the Denver urban corridor accounts for 9%. These correlations contribute to mounting evidence that air transport from areas with O&NG operation has a significant impact on ozone and air quality in the NCFR. IMPLICATIONS This article builds on several previous pieces of research that implied significant contributions from oil and natural gas emissions on ozone production in the Northern Colorado Front Range. By correlating increased ozone events with transport analyses we show that there is a high abundance of transport events with elevated ozone originating from the Denver-Julesburg oil and natural gas basin. These findings will help air quality regulators to better assess contributing sources to ozone production and in directing policies to curb ozone pollution in this region.
Collapse
Affiliation(s)
- Jason M Evans
- a Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder , Boulder , CO , USA
| | - Detlev Helmig
- a Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
48
|
Leifer I, Melton C, Tratt DM, Buckland KN, Clarisse L, Coheur P, Frash J, Gupta M, Johnson PD, Leen JB, Van Damme M, Whitburn S, Yurganov L. Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:37-51. [PMID: 27993424 DOI: 10.1016/j.envpol.2016.09.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Methane (CH4) and ammonia (NH3) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH3 allowing discrimination of husbandry from other CH4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH4, carbon dioxide (CO2) and NH3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20 km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1 × 105 kg CH4, 2.2 × 105 kg NH3, and 2.3 × 107 kg CO2, suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42 Gg CH4 and 8.4 Gg NH3 implying ∼200k cows, ∼30% more than Peischl et al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH3 occurs within the confines of the Los Angeles Basin on a four to six h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas could increase those of others.
Collapse
Affiliation(s)
- Ira Leifer
- Bubbleology Research International (BRI), Solvang, CA 93463, United States.
| | - Christopher Melton
- Bubbleology Research International (BRI), Solvang, CA 93463, United States
| | - David M Tratt
- The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA 90245, United States
| | - Kerry N Buckland
- The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA 90245, United States
| | | | - Pierre Coheur
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jason Frash
- Bubbleology Research International (BRI), Solvang, CA 93463, United States
| | - Manish Gupta
- ABB, 3055 Orchard Drive, San Jose, CA 95134, United States
| | - Patrick D Johnson
- The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA 90245, United States
| | - J Brian Leen
- ABB, 3055 Orchard Drive, San Jose, CA 95134, United States
| | | | | | - Leonid Yurganov
- University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, United States
| |
Collapse
|
49
|
Zavala-Araiza D, Alvarez RA, Lyon DR, Allen DT, Marchese AJ, Zimmerle DJ, Hamburg SP. Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nat Commun 2017; 8:14012. [PMID: 28091528 PMCID: PMC5241676 DOI: 10.1038/ncomms14012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.
Collapse
Affiliation(s)
- Daniel Zavala-Araiza
- Environmental Defense Fund, 301 Congress Avenue, Suite 1300, Austin, Texas 78701, USA
| | - Ramón A Alvarez
- Environmental Defense Fund, 301 Congress Avenue, Suite 1300, Austin, Texas 78701, USA
| | - David R. Lyon
- Environmental Defense Fund, 301 Congress Avenue, Suite 1300, Austin, Texas 78701, USA
| | - David T. Allen
- Center for Energy and Environmental Resources, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, USA
| | - Anthony J. Marchese
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Daniel J. Zimmerle
- The Energy Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Steven P. Hamburg
- Environmental Defense Fund, 301 Congress Avenue, Suite 1300, Austin, Texas 78701, USA
| |
Collapse
|
50
|
Eilerman SJ, Peischl J, Neuman JA, Ryerson TB, Aikin KC, Holloway MW, Zondlo MA, Golston LM, Pan D, Floerchinger C, Herndon S. Characterization of Ammonia, Methane, and Nitrous Oxide Emissions from Concentrated Animal Feeding Operations in Northeastern Colorado. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10885-10893. [PMID: 27662008 DOI: 10.1021/acs.est.6b02851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atmospheric emissions from animal husbandry are important to both air quality and climate, but are hard to characterize and quantify as they differ significantly due to management practices and livestock type, and they can vary substantially throughout diurnal and seasonal cycles. Using a new mobile laboratory, ammonia (NH3), methane (CH4), nitrous oxide (N2O), and other trace gas emissions were measured from four concentrated animal feeding operations (CAFOs) in northeastern Colorado. Two dairies, a beef cattle feedlot, and a sheep feedlot were chosen for repeated diurnal and seasonal measurements. A consistent diurnal pattern in the NH3 to CH4 enhancement ratio is clearly observed, with midday enhancement ratios approximately four times greater than nighttime values. This diurnal pattern is similar, with slight variations in magnitude, at the four CAFOs and across seasons. The average NH3 to CH4 enhancement ratio from all seasons and CAFOs studied is 0.17 (+0.13/-0.08) mol/mol, in agreement with statewide inventory averages and previous literature. Enhancement ratios for NH3 to N2O and N2O to CH4 are also reported. The enhancement ratios can be used as a source signature to distinguish feedlot emissions from other NH3 and CH4 sources, such as fertilizer application and fossil fuel development, and the large diurnal variability is important for refining inventories, models, and emission estimates.
Collapse
Affiliation(s)
- Scott J Eilerman
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
| | - J Andrew Neuman
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
| | - Thomas B Ryerson
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder , 216 UCB, Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
| | - Maxwell W Holloway
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division , 325 Broadway, Boulder, Colorado 80305, United States
- Science and Technology Corporation, Hampton, Virginia 23666, United States
| | - Mark A Zondlo
- Department of Civil and Environmental Engineering, Princeton University , E209A Olden Street, Princeton, New Jersey 08544, United States
| | - Levi M Golston
- Department of Civil and Environmental Engineering, Princeton University , E209A Olden Street, Princeton, New Jersey 08544, United States
| | - Da Pan
- Department of Civil and Environmental Engineering, Princeton University , E209A Olden Street, Princeton, New Jersey 08544, United States
| | - Cody Floerchinger
- Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821-3976, United States
| | - Scott Herndon
- Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821-3976, United States
| |
Collapse
|