1
|
Li L, Wang W, Chang HH, Alonso A, Liu Y. Wildland Fire-Related Smoke PM 2.5 and Cardiovascular Disease ED Visits in the Western United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314367. [PMID: 39484248 PMCID: PMC11527094 DOI: 10.1101/2024.10.08.24314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The impact of short-term exposure to fine particulate matter (PM 2.5 ) due to wildland fire smoke on the risk of cardiovascular disease (CVD) remains unclear. We investigated the association between short-term exposure to wildfire smoke PM 2.5 and Emergency Department (ED) visits for acute CVD in the Western United States from 2007 to 2018. Methods ED visits for primary or secondary diagnoses of atrial fibrillation (AF), acute myocardial infarction (AMI), heart failure (HF), stroke, and total CVD were obtained from hospital associations or state health departments in California, Arizona, Nevada, Oregon, and Utah. ED visits included those that were subsequently hospitalized. Daily smoke, non-smoke, and total PM 2.5 were estimated using a satellite-driven multi-stage model with a high resolution of 1 km. The data were aggregated to the zip code level and a case-crossover study design was employed. Temperature, relative humidity, and day of the year were included as covariates. Results We analyzed 49,759,958 ED visits for primary or secondary CVD diagnoses, which included 6,808,839 (13.7%) AFs, 1,222,053 (2.5%) AMIs, 7,194,474 (14.5%) HFs, and 808,396 (1.6%) strokes. Over the study period from 2007-01-01 to 2018-12-31, the mean smoke PM 2.5 was 1.27 (Q1: 0, Q3: 1.29) µg/m 3 . A 10 µg/m 3 increase in smoke PM 2.5 was associated with a minuscule decreased risk for AF (OR 0.994, 95% CI 0.991-0.997), HF (OR 0.995, 95% CI 0.992-0.998), and CVD (OR 0.9997, 95% CI 0.996-0.998), but not for AMI and stroke. Adjusting for non-smoke PM 2.5 did not alter these associations. A 10 µg/m 3 increase in total PM 2.5 was linked to a small increased risk for all outcomes except stroke (OR for CVD 1.006, 95% CI 1.006-1.007). Associations were similar across sex and age groups. Conclusion We identified an unexpected slight lower risk of CVD ED visits associated with short-term wildfire smoke PM 2.5 exposure. Whether these findings are due to methodological issues, behavioral changes, or other factors requires further investigation.
Collapse
|
2
|
Matte T, Lane K, Tipaldo JF, Barnes J, Knowlton K, Torem E, Anand G, Yoon L, Marcotullio P, Balk D, Constible J, Elszasz H, Ito K, Jessel S, Limaye V, Parks R, Rutigliano M, Sorenson C, Yuan A. NPCC4: Climate change and New York City's health risk. Ann N Y Acad Sci 2024; 1539:185-240. [PMID: 38922909 DOI: 10.1111/nyas.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 06/28/2024]
Abstract
This chapter of the New York City Panel on Climate Change 4 (NPCC4) report considers climate health risks, vulnerabilities, and resilience strategies in New York City's unique urban context. It updates evidence since the last health assessment in 2015 as part of NPCC2 and addresses climate health risks and vulnerabilities that have emerged as especially salient to NYC since 2015. Climate health risks from heat and flooding are emphasized. In addition, other climate-sensitive exposures harmful to human health are considered, including outdoor and indoor air pollution, including aeroallergens; insect vectors of human illness; waterborne infectious and chemical contaminants; and compounding of climate health risks with other public health emergencies, such as the COVID-19 pandemic. Evidence-informed strategies for reducing future climate risks to health are considered.
Collapse
Affiliation(s)
- Thomas Matte
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathryn Lane
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Jenna F Tipaldo
- CUNY Graduate School of Public Health and Health Policy and CUNY Institute for Demographic Research, New York, New York, USA
| | - Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Kim Knowlton
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Torem
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Gowri Anand
- City of New York, Department of Transportation, New York, New York, USA
| | - Liv Yoon
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - Peter Marcotullio
- Department of Geography and Environmental Science, Hunter College, CUNY, New York, New York, USA
| | - Deborah Balk
- Marxe School of Public and International Affairs, Baruch College and also CUNY Institute for Demographic Research, New York, New York, USA
| | | | - Hayley Elszasz
- City of New York, Mayors Office of Climate and Environmental Justice, New York, New York, USA
| | - Kazuhiko Ito
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Vijay Limaye
- Natural Resources Defense Council, New York, New York, USA
| | - Robbie Parks
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mallory Rutigliano
- New York City Mayor's Office of Management and Budget, New York, New York, USA
| | - Cecilia Sorenson
- Mailman School of Public Health, Columbia University, New York, New York, USA
- Global Consortium on Climate and Health Education, Columbia University, New York, New York, USA
- Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ariel Yuan
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| |
Collapse
|
3
|
Ghodsi E, Aloosh M. La fumée des incendies de forêt. CMAJ 2024; 196:E958-E959. [PMID: 39134314 PMCID: PMC11318978 DOI: 10.1503/cmaj.240135-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Affiliation(s)
- Elaheh Ghodsi
- Centre de Recherche du CHUM (Ghodsi), Montréal, Qc; Windsor-Essex County Health Unit (Aloosh), Windsor, Ont.; Department of Health Research Methods, Evidence and Impact (Aloosh), Michael G. Degroote School of Medicine, McMaster University, Hamilton, Ont
| | - Mehdi Aloosh
- Centre de Recherche du CHUM (Ghodsi), Montréal, Qc; Windsor-Essex County Health Unit (Aloosh), Windsor, Ont.; Department of Health Research Methods, Evidence and Impact (Aloosh), Michael G. Degroote School of Medicine, McMaster University, Hamilton, Ont.
| |
Collapse
|
4
|
Jerrett M, Connolly R, Garcia-Gonzales DA, Bekker C, Nguyen JT, Su J, Li Y, Marlier ME. Climate change and public health in California: A structured review of exposures, vulnerable populations, and adaptation measures. Proc Natl Acad Sci U S A 2024; 121:e2310081121. [PMID: 39074290 PMCID: PMC11317598 DOI: 10.1073/pnas.2310081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024] Open
Abstract
California faces several serious direct and indirect climate exposures that can adversely affect public health, some of which are already occurring. The public health burden now and in the future will depend on atmospheric greenhouse gas concentrations, underlying population vulnerabilities, and adaptation efforts. Here, we present a structured review of recent literature to examine the leading climate risks to public health in California, including extreme heat, extreme precipitation, wildfires, air pollution, and infectious diseases. Comparisons among different climate-health pathways are difficult due to inconsistencies in study design regarding spatial and temporal scales and health outcomes examined. We find, however, that the current public health burden likely affects thousands of Californians each year, depending on the exposure pathway and health outcome. Further, while more evidence exists for direct and indirect proximal health effects that are the focus of this review, distal pathways (e.g., impacts of drought on nutrition) are more uncertain but could add to this burden. We find that climate adaptation measures can provide significant health benefits, particularly in disadvantaged communities. We conclude with priority recommendations for future analyses and solution-driven policy actions.
Collapse
Affiliation(s)
- Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| | - Rachel Connolly
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| | - Diane A. Garcia-Gonzales
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| | - Claire Bekker
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| | - Jenny T. Nguyen
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| | - Jason Su
- Department of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA94720
| | - Yang Li
- Department of Environmental Science, Baylor University, Waco, TX76798
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
5
|
Ghodsi E, Aloosh M. Wildfire smoke. CMAJ 2024; 196:E789. [PMID: 38885979 PMCID: PMC11182682 DOI: 10.1503/cmaj.240135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Affiliation(s)
- Elaheh Ghodsi
- Centre de Recherche du CHUM (Ghodsi) Montréal, Que.; Windsor-Essex County Health Unit (Aloosh), Windsor, Ont.; Department of Health Research Methods, Evidence and Impact (Aloosh), Michael G. Degroote School of Medicine, McMaster University, Hamilton, Ont
| | - Mehdi Aloosh
- Centre de Recherche du CHUM (Ghodsi) Montréal, Que.; Windsor-Essex County Health Unit (Aloosh), Windsor, Ont.; Department of Health Research Methods, Evidence and Impact (Aloosh), Michael G. Degroote School of Medicine, McMaster University, Hamilton, Ont.
| |
Collapse
|
6
|
Arabadjis SD, Sweeney SH. Residuals in space: Potential pitfalls and applications from single-institution survival analysis. Spat Spatiotemporal Epidemiol 2024; 49:100646. [PMID: 38876556 DOI: 10.1016/j.sste.2024.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 06/16/2024]
Abstract
In practice, survival analyses appear in pharmaceutical testing, procedural recovery environments, and registry-based epidemiological studies, each reasonably assuming a known patient population. Less commonly discussed is the additional complexity introduced by non-registry and spatially-referenced data with time-dependent covariates in observational settings. In this short report we discuss residual diagnostics and interpretation from an extended Cox proportional hazard model intended to assess the effects of wildfire evacuation on risk of a secondary cardiovascular events for patients of a specific healthcare system on the California's central coast. We describe how traditional residuals obscure important spatial patterns indicative of true geographical variation, and their impacts on model parameter estimates. We briefly discuss alternative approaches to dealing with spatial correlation in the context of Bayesian hierarchical models. Our findings/experience suggest that careful attention is needed in observational healthcare data and survival analysis contexts, but also highlights potential applications for detecting observed hospital service areas.
Collapse
Affiliation(s)
- Sophia D Arabadjis
- Department of Geography, University of California, Santa Barbara, CA 93106-2150, United States of America.
| | - Stuart H Sweeney
- Department of Geography, University of California, Santa Barbara, CA 93106-2150, United States of America.
| |
Collapse
|
7
|
Berns K, Haertel AJ. Excess prenatal loss and respiratory illnesses of infant macaques living outdoors and exposed to wildfire smoke. Am J Primatol 2024; 86:e23605. [PMID: 38342984 PMCID: PMC11229821 DOI: 10.1002/ajp.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Global climate change has transformed predictions of fire seasons in the near future, and record-breaking wildfire events have had catastrophic consequences in recent years. In September 2020, multiple wildfires subjected Oregon to hazardous air quality for several days. In this retrospective cohort study, we aimed to examine prenatal loss, morbidity, and mortality of rhesus (Macaca mulatta) and Japanese macaques (Macaca fuscata) exposed to poor air quality from the nearby wildfires. Detailed medical records from 2014 to 2020 of 580 macaques housed outdoors at a research facility in Beaverton, Oregon were used to evaluate the association between these health outcomes and wildfire smoke exposure. Logistic regression models estimated excess prenatal loss, hospitalization rates, respiratory problems, and mortality during and following the wildfire event, and Kruskal-Wallis statistics were used to determine if infant growth was affected by wildfire smoke exposure. Risk of pregnancy loss (relative risk = 4.1; p < 0.001) and odds of diagnosis with a respiratory problem (odds ratio = 4.47; p = 0.003) were higher in exposed infant macaques compared to nonexposed infants. Infant growth was not affected by poor air quality exposure. Our findings suggest wildfire smoke exposure poses a risk to the health of infants and pregnant individuals and should be monitored more closely in the future.
Collapse
Affiliation(s)
- Kathryn Berns
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Andrew J Haertel
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
8
|
Johnston FH, Williamson G, Borchers-Arriagada N, Henderson SB, Bowman DMJS. Climate Change, Landscape Fires, and Human Health: A Global Perspective. Annu Rev Public Health 2024; 45:295-314. [PMID: 38166500 DOI: 10.1146/annurev-publhealth-060222-034131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Landscape fires are an integral component of the Earth system and a feature of prehistoric, subsistence, and industrial economies. Specific spatiotemporal patterns of landscape fire occur in different locations around the world, shaped by the interactions between environmental and human drivers of fire activity. Seven distinct types of landscape fire emerge from these interactions: remote area fires, wildfire disasters, savanna fires, Indigenous burning, prescribed burning, agricultural burning, and deforestation fires. All can have substantial impacts on human health and well-being directly and indirectly through (a) exposure to heat flux (e.g., injuries and destructive impacts), (b) emissions (e.g., smoke-related health impacts), and (c) altered ecosystem functioning (e.g., biodiversity, amenity, water quality, and climate impacts). Minimizing the adverse effects of landscape fires on population health requires understanding how human and environmental influences on fire impacts can be modified through interventions targeted at individual, community, and regional levels.
Collapse
Affiliation(s)
- Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia;
- National Health and Medical Research Council (NHMRC) Centre for Safe Air, Hobart, Tasmania, Australia
| | - Grant Williamson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- National Health and Medical Research Council (NHMRC) Centre for Safe Air, Hobart, Tasmania, Australia
| | | | - Sarah B Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - David M J S Bowman
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
Coker ES, Stone SL, McTigue E, Yao JA, Brigham EP, Schwandt M, Henderson SB. Climate change and health: rethinking public health messaging for wildfire smoke and extreme heat co-exposures. Front Public Health 2024; 12:1324662. [PMID: 38590812 PMCID: PMC10999651 DOI: 10.3389/fpubh.2024.1324662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
With the growing climate change crisis, public health agencies and practitioners must increasingly develop guidance documents addressing the public health risks and protective measures associated with multi-hazard events. Our Policy and Practice Review aims to assess current public health guidance and related messaging about co-exposure to wildfire smoke and extreme heat and recommend strengthened messaging to better protect people from these climate-sensitive hazards. We reviewed public health messaging published by governmental agencies between January 2013 and May 2023 in Canada and the United States. Publicly available resources were eligible if they discussed the co-occurrence of wildfire smoke and extreme heat and mentioned personal interventions (protective measures) to prevent exposure to either hazard. We reviewed local, regional, and national governmental agency messaging resources, such as online fact sheets and guidance documents. We assessed these resources according to four public health messaging themes, including (1) discussions around vulnerable groups and risk factors, (2) symptoms associated with these exposures, (3) health risks of each exposure individually, and (4) health risks from combined exposure. Additionally, we conducted a detailed assessment of current messaging about measures to mitigate exposure. We found 15 online public-facing resources that provided health messaging about co-exposure; however, only one discussed all four themes. We identified 21 distinct protective measures mentioned across the 15 resources. There is considerable variability and inconsistency regarding the types and level of detail across described protective measures. Of the identified 21 protective measures, nine may protect against both hazards simultaneously, suggesting opportunities to emphasize these particular messages to address both hazards together. More precise, complete, and coordinated public health messaging would protect against climate-sensitive health outcomes attributable to wildfire smoke and extreme heat co-exposures.
Collapse
Affiliation(s)
- Eric S. Coker
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Susan Lyon Stone
- Office of Air Quality Planning and Standards, United States Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Erin McTigue
- Air and Radiation Division, United States Environmental Protection Agency, Region, Seattle, WA, United States
| | - Jiayun Angela Yao
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Emily P. Brigham
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Michael Schwandt
- Office of the Chief Medical Health Officer, Vancouver Coastal Health Authority, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| |
Collapse
|
11
|
Barkoski J, Van Fleet E, Liu A, Ramsey S, Kwok RK, Miller AK. Data Linkages for Wildfire Exposures and Human Health Studies: A Scoping Review. GEOHEALTH 2024; 8:e2023GH000991. [PMID: 38487553 PMCID: PMC10937504 DOI: 10.1029/2023gh000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/17/2024]
Abstract
Wildfires are increasing in frequency and intensity, with significant consequences that impact human health. A scoping review was conducted to: (a) understand wildfire-related health effects, (b) identify and describe environmental exposure and health outcome data sources used to research the impacts of wildfire exposures on health, and (c) identify gaps and opportunities to leverage exposure and health data to advance research. A literature search was conducted in PubMed and a sample of 83 articles met inclusion criteria. A majority of studies focused on respiratory and cardiovascular outcomes. Hospital administrative data was the most common health data source, followed by government data sources and health surveys. Wildfire smoke, specifically fine particulate matter (PM2.5), was the most common exposure measure and was predominantly estimated from monitoring networks and satellite data. Health data were not available in real-time, and they lacked spatial and temporal coverage to study health outcomes with longer latency periods. Exposure data were often available in real-time and provided better temporal and spatial coverage but did not capture the complex mixture of hazardous wildfire smoke pollutants nor exposures associated with non-air pathways such as soil, household dust, food, and water. This scoping review of the specific health and exposure data sources used to underpin these studies provides a framework for the research community to understand: (a) the use and value of various environmental and health data sources, and (b) the opportunities for improving data collection, integration, and accessibility to help inform our understanding of wildfires and other environmental exposures.
Collapse
Affiliation(s)
- J. Barkoski
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - E. Van Fleet
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - A. Liu
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
- Kelly Government SolutionsRockvilleMDUSA
| | - S. Ramsey
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - R. K. Kwok
- Department of Health and Human ServicesNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - A. K. Miller
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
| |
Collapse
|
12
|
Luedders J, Poole JA, Rorie AC. Extreme Weather Events and Asthma. Immunol Allergy Clin North Am 2024; 44:35-44. [PMID: 37973258 PMCID: PMC11472832 DOI: 10.1016/j.iac.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The objective of this article is to review recent literature on the implications of extreme weather events such as thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes in relationship to asthma symptoms. Several studies have shown worsening of asthma symptoms with thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes. In particular, thunderstorm asthma can be exacerbated by certain factors such as temperature, precipitation, and allergen sensitization. Therefore, it is imperative that the allergy and immunology community be aware of the health effects associated with these extreme weather events in order to educate patients and engage in mitigation strategies.
Collapse
Affiliation(s)
- Jennilee Luedders
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew C Rorie
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Wilgus ML, Merchant M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare (Basel) 2024; 12:307. [PMID: 38338192 PMCID: PMC10855577 DOI: 10.3390/healthcare12030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Wildfires are a global natural phenomenon. In North America, wildfires have not only become more frequent, but also more severe and longer in duration, a trend ascribed to climate change combined with large fuel stores left from modern fire suppression. The intensification of wildfire activity has significant implications for planetary health and public health, as exposure to fine particulate matter (PM2.5) in wildfire smoke is linked to adverse health effects. This review focuses on respiratory morbidity from wildfire smoke exposure. Inhalation of wildfire PM2.5 causes lung injury via oxidative stress, local and systemic inflammation, airway epithelium compromise, and increased vulnerability to infection. Wildfire PM2.5 exposure results in exacerbations of pre-existing asthma and chronic obstructive pulmonary disease, with an escalation in healthcare utilization, including emergency department visits and hospitalizations. Wildfire smoke exposure may be associated with asthma onset, long-term impairment of lung function, and increased all-cause mortality. Children, older adults, occupationally-exposed groups, and possibly women are the most at risk from wildfire smoke. Future research is needed to clarify best practices for risk mitigation and wildfire management.
Collapse
Affiliation(s)
- May-Lin Wilgus
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1405, USA;
| | | |
Collapse
|
14
|
Chen AI, Ebisu K, Benmarhnia T, Basu R. Emergency department visits associated with wildfire smoke events in California, 2016-2019. ENVIRONMENTAL RESEARCH 2023; 238:117154. [PMID: 37716386 DOI: 10.1016/j.envres.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 μg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Collapse
Affiliation(s)
- Annie I Chen
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
15
|
Kinney PL, Ge B, Sampath V, Nadeau K. Health-based strategies for overcoming barriers to climate change adaptation and mitigation. J Allergy Clin Immunol 2023; 152:1053-1059. [PMID: 37742936 DOI: 10.1016/j.jaci.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Climate change poses an unequivocal threat to the respiratory health of current and future generations. Human activities-largely through the release of greenhouse gases-are driving rising global temperatures. Without a concerted effort to mitigate greenhouse gas emissions or adapt to the effects of a changing climate, each increment of warming increases the risk of climate hazards (eg, heat waves, floods, and droughts) that that can adversely affect allergy and immunologic diseases. For instance, wildfires, which release large quantities of particulate matter with a diameter of less than 2.5 μm (an air pollutant), occur with greater intensity, frequency, and duration in a hotter climate. This increases the risk of associated respiratory outcomes such as allergy and asthma. Fortunately, many mitigation and adaptation strategies can be applied to limit the impacts of global warming. Adaptation strategies, ranging from promotions of behavioral changes to infrastructural improvements, have been effectively deployed to increase resilience and alleviate adverse health effects. Mitigation strategies aimed at reducing greenhouse gas emissions can not only address the problem at the source but also provide numerous direct health cobenefits. Although it is possible to limit the impacts of climate change, urgent and sustained action must be taken now. The health and scientific community can play a key role in promoting and implementing climate action to ensure a more sustainable and healthy future.
Collapse
Affiliation(s)
- Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, Mass.
| | - Beverly Ge
- Department of Environmental Health, Boston University School of Public Health, Boston, Mass
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston
| | - Kari Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston
| |
Collapse
|
16
|
Zhang B, Weuve J, Langa KM, D’Souza J, Szpiro A, Faul J, Mendes de Leon C, Gao J, Kaufman JD, Sheppard L, Lee J, Kobayashi LC, Hirth R, Adar SD. Comparison of Particulate Air Pollution From Different Emission Sources and Incident Dementia in the US. JAMA Intern Med 2023; 183:1080-1089. [PMID: 37578757 PMCID: PMC10425875 DOI: 10.1001/jamainternmed.2023.3300] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Importance Emerging evidence indicates that exposure to fine particulate matter (PM2.5) air pollution may increase dementia risk in older adults. Although this evidence suggests opportunities for intervention, little is known about the relative importance of PM2.5 from different emission sources. Objective To examine associations of long-term exposure of total and source-specific PM2.5 with incident dementia in older adults. Design, Setting, and Participants The Environmental Predictors of Cognitive Health and Aging study used biennial survey data from January 1, 1998, to December 31, 2016, for participants in the Health and Retirement Study, which is a nationally representative, population-based cohort study in the US. The present cohort study included all participants older than 50 years who were without dementia at baseline and had available exposure, outcome, and demographic data between 1998 and 2016 (N = 27 857). Analyses were performed from January 31 to May 1, 2022. Exposures The 10-year mean total PM2.5 and PM2.5 from 9 emission sources at participant residences for each month during follow-up using spatiotemporal and chemical transport models. Main Outcomes and Measures The main outcome was incident dementia as classified by a validated algorithm incorporating respondent-based cognitive testing and proxy respondent reports. Adjusted hazard ratios (HRs) were estimated for incident dementia per IQR of residential PM2.5 concentrations using time-varying, weighted Cox proportional hazards regression models with adjustment for the individual- and area-level risk factors. Results Among 27 857 participants (mean [SD] age, 61 [10] years; 15 747 [56.5%] female), 4105 (15%) developed dementia during a mean (SD) follow-up of 10.2 [5.6] years. Higher concentrations of total PM2.5 were associated with greater rates of incident dementia (HR, 1.08 per IQR; 95% CI, 1.01-1.17). In single pollutant models, PM2.5 from all sources, except dust, were associated with increased rates of dementia, with the strongest associations for agriculture, traffic, coal combustion, and wildfires. After control for PM2.5 from all other sources and copollutants, only PM2.5 from agriculture (HR, 1.13; 95% CI, 1.01-1.27) and wildfires (HR, 1.05; 95% CI, 1.02-1.08) were robustly associated with greater rates of dementia. Conclusion and Relevance In this cohort study, higher residential PM2.5 levels, especially from agriculture and wildfires, were associated with higher rates of incident dementia, providing further evidence supporting PM2.5 reduction as a population-based approach to promote healthy cognitive aging. These findings also indicate that intervening on key emission sources might have value, although more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | | | - Jiaqi Gao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Lianne Sheppard
- Department of Biostatistics, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Jinkook Lee
- Center for Economic and Social Research, University of Southern California, Los Angeles
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Richard Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
17
|
Heft-Neal S, Gould CF, Childs ML, Kiang MV, Nadeau KC, Duggan M, Bendavid E, Burke M. Emergency department visits respond nonlinearly to wildfire smoke. Proc Natl Acad Sci U S A 2023; 120:e2302409120. [PMID: 37722035 PMCID: PMC10523589 DOI: 10.1073/pnas.2302409120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/28/2023] [Indexed: 09/20/2023] Open
Abstract
Air pollution negatively affects a range of health outcomes. Wildfire smoke is an increasingly important contributor to air pollution, yet wildfire smoke events are highly salient and could induce behavioral responses that alter health impacts. We combine geolocated data covering all emergency department (ED) visits to nonfederal hospitals in California from 2006 to 2017 with spatially resolved estimates of daily wildfire smoke PM[Formula: see text] concentrations and quantify how smoke events affect ED visits. Total ED visits respond nonlinearly to smoke concentrations. Relative to a day with no smoke, total visits increase by 1 to 1.5% in the week following low or moderate smoke days but decline by 6 to 9% following extreme smoke days. Reductions persist for at least a month. Declines at extreme levels are driven by diagnoses not thought to be acutely impacted by pollution, including accidental injuries and several nonurgent symptoms, and declines come disproportionately from less-insured populations. In contrast, health outcomes with the strongest physiological link to short-term air pollution increase dramatically in the week following an extreme smoke day: We estimate that ED visits for asthma, COPD, and cough all increase by 30 to 110%. Data from internet searches, vehicle traffic sensors, and park visits indicate behavioral changes on high smoke days consistent with declines in healthcare utilization. Because low and moderate smoke days vastly outweigh high smoke days, we estimate that smoke was responsible for an average of 3,010 (95% CI: 1,760-4,380) additional ED visits per year 2006 to 2017. Given the increasing intensity of wildfire smoke events, behavioral mediation is likely to play a growing role in determining total smoke impacts.
Collapse
Affiliation(s)
- Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Carlos F. Gould
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| | | | - Mathew V. Kiang
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA94305
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard University, Cambridge, MA02138
| | - Mark Duggan
- Department of Economics, Stanford University, Stanford, CA94305
- Stanford Institute of Economic Policy Research, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| | - Eran Bendavid
- Department of Health Policy, Stanford University, Stanford, CA94305
- Department of Medicine, Stanford University, Stanford, CA94305
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| |
Collapse
|
18
|
Alahmad B, Khraishah H, Althalji K, Borchert W, Al-Mulla F, Koutrakis P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can J Cardiol 2023; 39:1182-1190. [PMID: 37030516 PMCID: PMC11097327 DOI: 10.1016/j.cjca.2023.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, more people die from cardiovascular disease than any other cause. Climate change, through amplified environmental exposures, will promote and contribute to many noncommunicable diseases, including cardiovascular disease. Air pollution, too, is responsible for millions of deaths from cardiovascular disease each year. Although they may appear to be independent, interchangeable relationships and bidirectional cause-and-effect arrows between climate change and air pollution can eventually lead to poor cardiovascular health. In this topical review, we show that climate change and air pollution worsen each other, leading to several ecosystem-mediated effects. We highlight how increases in hot climates as a result of climate change have increased the risk of major air pollution events such as severe wildfires and dust storms. In addition, we show how altered atmospheric chemistry and changing patterns of weather conditions can promote the formation and accumulation of air pollutants: a phenomenon known as the climate penalty. We demonstrate these amplified environmental exposures and their associations to adverse cardiovascular health outcomes. The community of health professionals-and cardiologists, in particular-cannot afford to overlook the risks that climate change and air pollution bring to the public's health.
Collapse
Affiliation(s)
- Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Environmental and Occupational Health Department, College of Public Health, Kuwait University, Kuwait City, Kuwait; Dasman Diabetes Institute (DDI), Kuwait City, Kuwait.
| | - Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Khalid Althalji
- Jaber Alahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - William Borchert
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fahd Al-Mulla
- Dasman Diabetes Institute (DDI), Kuwait City, Kuwait
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
19
|
McArdle CE, Dowling TC, Carey K, DeVies J, Johns D, Gates AL, Stein Z, van Santen KL, Radhakrishnan L, Kite-Powell A, Soetebier K, Sacks JD, Sircar K, Hartnett KP, Mirabelli MC. Asthma-Associated Emergency Department Visits During the Canadian Wildfire Smoke Episodes - United States, April- August 2023. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2023; 72:926-932. [PMID: 37616233 PMCID: PMC10468220 DOI: 10.15585/mmwr.mm7234a5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
During April 30-August 4, 2023, smoke originating from wildfires in Canada affected most of the contiguous United States. CDC used National Syndromic Surveillance Program data to assess numbers and percentages of asthma-associated emergency department (ED) visits on days with wildfire smoke, compared with days without wildfire smoke. Wildfire smoke days were defined as days when concentrations of particulate matter (particles generally ≤2.5 μm in aerodynamic diameter) (PM2.5) triggered an Air Quality Index ≥101, corresponding to the air quality categorization, "Unhealthy for Sensitive Groups." Changes in asthma-associated ED visits were assessed across U.S. Department of Health and Human Services regions and by age. Overall, asthma-associated ED visits were 17% higher than expected during the 19 days with wildfire smoke that occurred during the study period; larger increases were observed in regions that experienced higher numbers of continuous wildfire smoke days and among persons aged 5-17 and 18-64 years. These results can help guide emergency response planning and public health communication strategies, especially in U.S. regions where wildfire smoke exposure was previously uncommon.
Collapse
|
20
|
Noah TL, Worden CP, Rebuli ME, Jaspers I. The Effects of Wildfire Smoke on Asthma and Allergy. Curr Allergy Asthma Rep 2023; 23:375-387. [PMID: 37171670 PMCID: PMC10176314 DOI: 10.1007/s11882-023-01090-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE OF REVIEW To review the recent literature on the effects of wildfire smoke (WFS) exposure on asthma and allergic disease, and on potential mechanisms of disease. RECENT FINDINGS Spatiotemporal modeling and increased ground-level monitoring data are allowing a more detailed picture of the health effects of WFS exposure to emerge, especially with regard to asthma. There is also epidemiologic and some experimental evidence to suggest that WFS exposure increases allergic predisposition and upper airway or sinonasal disease, though much of the literature in this area is focused more generally on PM2.5 and is not specific for WFS. Experimental evidence for mechanisms includes disruption of epithelial integrity with downstream effects on inflammatory or immune pathways, but experimental models to date have not consistently reflected human disease in this area. Exposure to WFS has an acute detrimental effect on asthma. Potential mechanisms are suggested by in vitro and animal studies.
Collapse
Affiliation(s)
- Terry L Noah
- Department of Pediatrics, University of North Carolina at Chapel Hill, 260 Macnider Building, 333 S. Columbia St., Chapel Hill, NC, 27599, USA.
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | - Cameron P Worden
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Meghan E Rebuli
- Department of Pediatrics, University of North Carolina at Chapel Hill, 260 Macnider Building, 333 S. Columbia St., Chapel Hill, NC, 27599, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, 260 Macnider Building, 333 S. Columbia St., Chapel Hill, NC, 27599, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
21
|
Schwarz L, Aguilera R, Aguilar-Dodier LC, Castillo Quiñones JE, García MEA, Benmarhnia T. Wildfire smoke knows no borders: Differential vulnerability to smoke effects on cardio-respiratory health in the San Diego-Tijuana region. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001886. [PMID: 37347761 DOI: 10.1371/journal.pgph.0001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023]
Abstract
Exposure to fine particles in wildfire smoke is deleterious for human health and can increase cases of cardio-respiratory illnesses and related hospitalizations. Neighborhood-level risk factors can increase susceptibility to environmental hazards, such as air pollution from smoke, and the same exposure can lead to different health effects across populations. While the San Diego-Tijuana border can be exposed to the same wildfire smoke event, socio-demographic differences may drive differential effects on population health. We used the October 2007 wildfires, one the most devastating wildfire events in Southern California that brought smoke to the entire region, as a natural experiment to understand the differential effect of wildfire smoke on both sides of the border. We applied synthetic control methods to evaluate the effects of wildfire smoke on cardio-respiratory hospitalizations in the Municipality of Tijuana and San Diego County separately. During the study period (October 11th- October 26th, 2007), 2009 hospital admissions for cardio-respiratory diseases occurred in San Diego County while 37 hospital admissions were reported in the Municipality of Tijuana. The number of cases in Tijuana was much lower than San Diego, and a precise effect of wildfire smoke was detected in San Diego but not in Tijuana. However, social drivers can increase susceptibility to environmental hazards; the poverty rate in Tijuana is more than three times that of San Diego. Socio-demographics are important in modulating the effects of wildfire smoke and can be potentially useful in developing a concerted regional effort to protect populations on both sides of the border from the adverse health effects of wildfire smoke.
Collapse
Affiliation(s)
- Lara Schwarz
- School of Public Health, San Diego State University, San Diego, CA, United States of America
- Herbert Wertheim School of Public Health and Longevity Science, University of California, San Diego, La Jolla, CA, United States of America
| | - Rosana Aguilera
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States of America
| | - L C Aguilar-Dodier
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | | | | | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
22
|
Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M. Effect modification of the association between fine particulate air pollution during a wildfire event and respiratory health by area-level measures of socio-economic status, race/ethnicity, and smoking prevalence. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025005. [PMID: 38332844 PMCID: PMC10852067 DOI: 10.1088/2752-5309/acc4e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fine particulate air pollution (PM2.5) is decreasing in most areas of the United States, except for areas most affected by wildfires, where increasing trends in PM2.5 can be attributed to wildfire smoke. The frequency and duration of large wildfires and the length of the wildfire season have all increased in recent decades, partially due to climate change, and wildfire risk is projected to increase further in many regions including the western United States. Increasingly, empirical evidence suggests differential health effects from air pollution by class and race; however, few studies have investigated such differential health impacts from air pollution during a wildfire event. We investigated differential risk of respiratory health impacts during the 2008 northern California wildfires by a comprehensive list of socio-economic status (SES), race/ethnicity, and smoking prevalence variables. Regardless of SES level across nine measures of SES, we found significant associations between PM2.5 and asthma hospitalizations and emergency department (ED) visits during these wildfires. Differential respiratory health risk was found by SES for ED visits for chronic obstructive pulmonary disease where the highest risks were in ZIP codes with the lowest SES levels. Findings for differential effects by race/ethnicity were less consistent across health outcomes. We found that ZIP codes with higher prevalence of smokers had greater risk of ED visits for asthma and pneumonia. Our study suggests that public health efforts to decrease exposures to high levels of air pollution during wildfires should focus on lower SES communities.
Collapse
Affiliation(s)
- C E Reid
- Department of Geography, University of Colorado Boulder, Boulder, CO, United States of America
| | - E M Considine
- Department of Applied Math, University of Colorado Boulder, Boulder, CO, United States of America
- Current address: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University., Boston, MA, United States of America
| | - G L Watson
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| | - D Telesca
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| | - G G Pfister
- National Center for Atmospheric Research, Boulder, CO, United States of America
| | - M Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
23
|
Palinkas LA, De Leon J, Yu K, Salinas E, Fernandez C, Johnston J, Rahman MM, Silva SJ, Hurlburt M, McConnell RS, Garcia E. Adaptation Resources and Responses to Wildfire Smoke and Other Forms of Air Pollution in Low-Income Urban Settings: A Mixed-Methods Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5393. [PMID: 37048007 PMCID: PMC10094253 DOI: 10.3390/ijerph20075393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Little is known about how low-income residents of urban communities engage their knowledge, attitudes, behaviors, and resources to mitigate the health impacts of wildfire smoke and other forms of air pollution. We interviewed 40 adults in Los Angeles, California, to explore their threat assessments of days of poor air quality, adaptation resources and behaviors, and the impacts of air pollution and wildfire smoke on physical and mental health. Participants resided in census tracts that were disproportionately burdened by air pollution and socioeconomic vulnerability. All participants reported experiencing days of poor air quality due primarily to wildfire smoke. Sixty percent received advanced warnings of days of poor air quality or routinely monitored air quality via cell phone apps or news broadcasts. Adaptation behaviors included remaining indoors, circulating indoor air, and wearing face masks when outdoors. Most (82.5%) of the participants reported some physical or mental health problem or symptom during days of poor air quality, but several indicated that symptom severity was mitigated by their adaptive behaviors. Although low-income residents perceive themselves to be at risk for the physical and mental health impacts of air pollution, they have also adapted to that risk with limited resources.
Collapse
Affiliation(s)
- Lawrence A. Palinkas
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jessenia De Leon
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Kexin Yu
- Department of Neurology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Erika Salinas
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Cecilia Fernandez
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Sam J. Silva
- Department of Earth Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Hurlburt
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob S. McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Thilakaratne R, Hoshiko S, Rosenberg A, Hayashi T, Buckman JR, Rappold AG. Wildfires and the Changing Landscape of Air Pollution-related Health Burden in California. Am J Respir Crit Care Med 2023; 207:887-898. [PMID: 36520960 DOI: 10.1164/rccm.202207-1324oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Wildfires are a growing source of pollution including particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5), but associated trends in health burden are not well characterized. Objectives: We investigated trends and disparities in PM2.5-related cardiorespiratory health burden (asthma, chronic obstructive pulmonary disease, and all-cause respiratory and cardiovascular emergency department [ED] visits and hospital admissions) for all days and wildfire smoke-affected days across California from 2008 to 2016. Methods: Using residential Zone Improvement Plan code and daily PM2.5 exposures, we estimated overall and subgroup-specific (age, gender, race and ethnicity) associations with cardiorespiratory outcomes. Health burden trends and disparities were evaluated on the basis of relative risk, attributable number, and attributable fraction by demographic and geographic factors and over time. Measurements and Main Results: PM2.5-attributed burden steadily decreased, whereas the fraction attributed to wildfire smoke varied by fire season intensity, constituting up to 15% of the annual PM2.5-burden. The highest relative risk and PM2.5-attributed burden (92 per 100,000 people) was observed for respiratory ED visits, accounting for 2.2% of the respiratory annual burden. Disparities in overall morbidity in the oldest age, Black, and "other" race groups were also reflected in PM2.5-attributed burden, whereas Asian populations had the highest risk rate in respiratory outcomes and thus the largest fraction of the total burden attributed to the exposure. In contrast, high wildfire PM2.5-attributed burden rates in rural, central, and northern California populations occurred because of differential exposure. Conclusions: In California, wildfires' impact on air quality offset the public health gains achieved through reductions in nonsmoke PM2.5. Disproportionate effects could be attributed to differences in subpopulation susceptibility, relative risk, and differential exposure.
Collapse
Affiliation(s)
- Ruwan Thilakaratne
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California
- California Department of Public Health/Cal EIS Program, Richmond, California
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California
| | - Andrew Rosenberg
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California
| | | | - Joseph Ryan Buckman
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California
- California Department of Public Health/Cal EIS Program, Richmond, California
| | - Ana G Rappold
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina
| |
Collapse
|
25
|
Long RW, Urbanski SP, Lincoln E, Colón M, Kaushik S, Krug JD, Vanderpool RW, Landis MS. Summary of PM 2.5 measurement artifacts associated with the Teledyne T640 PM Mass Monitor under controlled chamber experimental conditions using polydisperse ammonium sulfate aerosols and biomass smoke. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:295-312. [PMID: 36716322 PMCID: PMC10112149 DOI: 10.1080/10962247.2023.2171156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 05/18/2023]
Abstract
Particulate matter (PM) is a major primary pollutant emitted during wildland fires that has the potential to pose significant health risks to individuals/communities who live and work in areas impacted by smoke events. Limiting exposure is the principle measure available to mitigate health impacts of smoke and therefore the accurate determination of ambient PM concentrations during wildland fire events is critical to protecting public health. However, monitoring air pollutants in smoke impacted environments has proven challenging in that measurement interferences or sampling conditions can result in both positive and negative artifacts. The EPA has performed research on methods for the measurement of PM2.5 in a series of laboratory-based studies including evaluation in smoke. This manuscript will summarize the results of the laboratory-based evaluation of federal equivalent method (FEM) monitors for PM2.5 with particular attention being given to the Teledyne-API Model T640 PM Mass monitor, as compared to the filter-based federal reference method (FRM). The T640 is an optical-based PM monitor and has been gaining wide use by state and local agencies in monitoring for PM2.5 U.S. National Ambient Air Quality Standards (NAAQS) attainment. At present, the T640 (includes both T640 and T640×) comprises ~44% of the PM2.5 FEM monitors in U.S. regulatory monitoring networks. In addition, the T640 has increasingly been employed for the higher time resolution comparison/evaluation of low-cost PM sensors including during smoke impacted events. Results from controlled non-smoke laboratory studies using generated ammonium sulfate aerosols demonstrated a generally negative T640 measurement artifact that was significantly related to the PM2.5 concentration and particle size distribution. Results from biomass burning chamber studies demonstrated positive and negative artifacts significantly associated with PM2.5 concentration and optical wavelength-dependent absorption properties of the smoke aerosol.Implications: The results detailed in this paper will provide state and local air monitoring agencies with the tools and knowledge to address PM2.5 measurement challenges in areas frequently impacted by wildland fire smoke. The observed large positive and negative artifacts in the T640 PM mass determination have the potential to result in false exceedances of the PM2.5 NAAQS or in the disqualification of monitoring data through an exceptional event designation. In addition, the observed artifacts in smoke impacted air will have a detrimental effect on providing reliable public information when wildfires occur and also in identifying reference measurements for small sensor evaluation studies. Other PM2.5 FEMs such as the BAM-1022 perform better in smoke and are comparable to the filter-based FRM. Care must be taken in choosing high time resolution FEM monitors that will be operated at smoke impacted sites. Accurate methods, such as the FRM and BAM-1022 will reduce the burden of developing and reviewing exceptional event request packages, data loss/disqualification, and provide states with tools to adequately evaluate public exposure risks and provide accurate public health messaging during wildfire/smoke events.
Collapse
Affiliation(s)
- Russell W. Long
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Shawn P. Urbanski
- United States Forest Service, Rocky Mountain Research Station, Missoula, Montana, United States of America
| | - Emily Lincoln
- United States Forest Service, Rocky Mountain Research Station, Missoula, Montana, United States of America
| | - Maribel Colón
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Surender Kaushik
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Jonathan D. Krug
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Robert W. Vanderpool
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Matthew S. Landis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|