1
|
Lerch BA, Servedio MR. The Evolution of Mate Attachment. Am Nat 2024; 204:E70-E84. [PMID: 39326056 DOI: 10.1086/731671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractWhether natural selection leads to attachment in monogamous pair bonds has seldom been addressed. Operationally defining attachment as a behavioral modifier that decreases divorce probability with pair duration, we develop a model for the evolution of attachment. If divorce (the ending of a pair bond when both individuals survive to the next breeding season) is more likely to occur out of poor-quality reproductive opportunities (i.e., poor territory or low-quality mate), individuals in experienced pairs are more likely to be found in high-quality opportunities. Consequently, when divorce decisions occur using imperfect information from reproductive success, pair duration provides individuals with information about the quality of their reproductive opportunity and attachment can evolve. We show that high survival rates, divorce propensities, and probabilities of nest failure favor the evolution of attachment. Attachment is also more likely to evolve when individuals can directly assess the quality of their reproductive opportunity (as opposed to relying on imperfect information from reproductive success), when the quality of the reproductive opportunity has adult survival ramifications, and when divorce coevolves with attachment. We show that our core conclusions are robust to a variety of assumptions using individual-based simulations. Our results clarify how attachment can be adaptive and suggest that studying pair bonds as dynamic entities is a promising avenue for future work.
Collapse
|
2
|
Kaplan G. The evolution of social play in songbirds, parrots and cockatoos - emotional or highly complex cognitive behaviour or both? Neurosci Biobehav Rev 2024; 161:105621. [PMID: 38479604 DOI: 10.1016/j.neubiorev.2024.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 04/20/2024]
Abstract
Social play has been described in many animals. However, much of this social behaviour among birds, particularly in adults, is still relatively unexplored in terms of the environmental, psychological, and social dynamics of play. This paper provides an overview of what we know about adult social play in birds and addresses areas in which subtleties and distinctions, such as in play initiation and social organisation and its relationship to expressions of play, are considered in detail. The paper considers emotional, social, innovative, and cognitive aspects of play, then the environmental conditions and affiliative bonds, suggesting a surprisingly complex framework of criteria awaiting further research. Adult social play has so far been studied in only a small number of avian species, exclusively in those with a particularly large brain relative to body size without necessarily addressing brain functions and lateralization. When lateralization of brain function is considered, it can further illuminate a possibly significant relevance of play behaviour to the evolution of cognition, to management of emotions, and the development of sociality.
Collapse
Affiliation(s)
- Gisela Kaplan
- University of New England, Armidale, NSW, Australia.
| |
Collapse
|
3
|
Barradas-Moctezuma M, Herrera-Covarrubias D, García LI, Carrillo P, Pérez-Estudillo CA, Manzo J, Pfaus JG, Coria-Avila GA. Cohabitation with receptive females under D2-type agonism in adulthood restores partner preference and brain dimorphism in the SDN-POA following neonatal gonadectomy in male rats. Psychoneuroendocrinology 2024; 163:106988. [PMID: 38342055 DOI: 10.1016/j.psyneuen.2024.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats. In the present experiment, three groups of neonatal PD1 males (N = 12/group) were either gonadectomized (GDX), sham-GDX, or left intact and evaluated for social preferences and sexual behaviors as adults. We then examined whether the effects of GDX could be reversed by conditioning the males via cohabitation with receptive females under the effects of the D2 agonist quinpirole (QNP) or saline, along with the size of some brain regions, such as the sexually dimorphic nucleus of the preoptic area (SDN-POA), suprachiasmatic nucleus (SCN), posterior dorsal medial amygdala (MeApd) and ventromedial hypothalamus (VMH). Results indicated that neonatal GDX resulted in the elimination of male-typical sexual behavior, an increase in same-sex social preference, and a reduction of the area of the SDN-POA. However, GDX-QNP males that underwent exposure to receptive females in adulthood increased their social preference for females and recovered the size in the SDN-POA. Although neonatal GDX impairs sexual behavior and disrupts partner preference and brain dimorphism in adult male rats, Pavlovian conditioning under enhanced D2 agonism ameliorates the effects on social preference and restores brain dimorphism in the SDN-POA without testosterone.
Collapse
Affiliation(s)
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico.
| |
Collapse
|
4
|
Pierce AF, Protter DSW, Watanabe YL, Chapel GD, Cameron RT, Donaldson ZR. Nucleus accumbens dopamine release reflects the selective nature of pair bonds. Curr Biol 2024; 34:519-530.e5. [PMID: 38218185 PMCID: PMC10978070 DOI: 10.1016/j.cub.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
In monogamous species, prosocial behaviors directed toward partners are dramatically different from those directed toward unknown individuals and potential threats. Dopamine release in the nucleus accumbens has a well-established role in social reward and motivation, but how this mechanism may be engaged to drive the highly divergent social behaviors directed at a partner or unfamiliar conspecific remains unknown. Using monogamous prairie voles, we first employed receptor pharmacology in partner preference and social operant tasks to show that dopamine is critical for the appetitive drive for social interaction but not for low-effort, unconditioned consummatory behaviors. We then leveraged the subsecond temporal resolution of the fluorescent biosensor, GRABDA, to ask whether differential dopamine release might distinguish between partner and novel social access and interaction. We found that partner seeking, anticipation, and interaction resulted in more accumbal dopamine release than the same events directed toward a novel vole. Further, partner-associated dopamine release decreased after prolonged partner separation. Our results are consistent with a model in which dopamine signaling plays a prominent role in the appetitive aspects of social interactions. Within this framework, differences in partner- and novel-associated dopamine release reflect the selective nature of pair bonds and may drive the partner- and novel-directed social behaviors that reinforce and cement bonds over time. This provides a potential mechanism by which highly conserved reward systems can enable selective, species-appropriate social behaviors.
Collapse
Affiliation(s)
- Anne F Pierce
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| | - David S W Protter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Yurika L Watanabe
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Gabriel D Chapel
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Ryan T Cameron
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Zoe R Donaldson
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| |
Collapse
|
5
|
Savidge LE, Bales KL. Possible effects of pair bonds on general cognition: Evidence from shared roles of dopamine. Neurosci Biobehav Rev 2023; 152:105317. [PMID: 37442497 DOI: 10.1016/j.neubiorev.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Pair bonding builds on preexisting dopamine connectivity to help form and maintain the bond. The involvement of dopaminergic pathways in pair bonding has stimulated research linking pair bonds to other dopamine-dependent processes, like addiction and social cognition (Burkett & Young, 2012; Yetnikoff, Lavezzi, Reichard, & Zahm, 2014). Less studied is the relationship of pair bonding to non-social cognitive processes. The first half of this review will provide an overview of pair bonding and the role of dopamine within social processes. With a thorough review of the literature, the current study will identify the ways the dopaminergic pathways critical for pair bonding also overlap with cognitive processes. Highlighting dopamine as a key player in pair bonds and non-social cognition will provide evidence that pair bonding can alter general cognitive processes like attention, working memory, cognitive flexibility, and impulse control.
Collapse
Affiliation(s)
- Logan E Savidge
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States.
| | - Karen L Bales
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| |
Collapse
|
6
|
Freiler MK, Smith GT. Neuroendocrine mechanisms contributing to the coevolution of sociality and communication. Front Neuroendocrinol 2023; 70:101077. [PMID: 37217079 PMCID: PMC10527162 DOI: 10.1016/j.yfrne.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Communication is inherently social, so signaling systems should evolve with social systems. The 'social complexity hypothesis' posits that social complexity necessitates communicative complexity and is generally supported in vocalizing mammals. This hypothesis, however, has seldom been tested outside the acoustic modality, and comparisons across studies are confounded by varying definitions of complexity. Moreover, proximate mechanisms underlying coevolution of sociality and communication remain largely unexamined. In this review, we argue that to uncover how sociality and communication coevolve, we need to examine variation in the neuroendocrine mechanisms that coregulate social behavior and signal production and perception. Specifically, we focus on steroid hormones, monoamines, and nonapeptides, which modulate both social behavior and sensorimotor circuits and are likely targets of selection during social evolution. Lastly, we highlight weakly electric fishes as an ideal system in which to comparatively address the proximate mechanisms underlying relationships between social and signal diversity in a novel modality.
Collapse
Affiliation(s)
- Megan K Freiler
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.
| | - G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
7
|
Lee NS, Kim CY, Beery AK. Peer Social Environment Impacts Behavior and Dopamine D1 Receptor Density in Prairie Voles (Microtus ochrogaster). Neuroscience 2023; 515:62-70. [PMID: 36796749 PMCID: PMC11670890 DOI: 10.1016/j.neuroscience.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form selective, long-lasting relationships with mates and with same-sex peers. It is unknown to what extent mechanisms supporting 'peer relationships' are similar to those involved in mate relationships. The formation of pair bonds is dependent on dopamine neurotransmission, whereas the formation of peer relationships is not, providing evidence of relationship type-specificity. The current study assessed endogenous structural changes in dopamine D1 receptor density in male and female voles across different social environments, including long-term same-sex partnerships, new same-sex partnerships, social isolation, and group housing. We also related dopamine D1 receptor density and social environment to behavior in social interaction and partner preference tests. Unlike prior findings in mate pairs, voles paired with new same-sex partners did not exhibit upregulated D1 binding in the nucleus accumbens (NAcc) relative to controls paired from weaning. This is consistent with differences in relationship type: D1 upregulation in pair bonds aids in maintaining exclusive relationships through selective aggression, and we found that formation of new peer relationships did not enhance aggression. Isolation led to increases in NAcc D1 binding, and even across socially housed voles, individuals with higher D1 binding exhibited increased social avoidance. These findings suggest that elevated D1 binding may be both a cause and a consequence of reduced prosociality. These results highlight the neural and behavioral consequences of different non-reproductive social environments and contribute to growing evidence that the mechanisms underlying reproductive and non-reproductive relationship formation are distinct. Elucidation of the latter is necessary to understand mechanisms underlying social behavior beyond a mating context.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Claire Y Kim
- Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Zeevi L, Irani M, Catana C, Feldman Barrett L, Atzil S. Maternal dopamine encodes affective signals of human infants. Soc Cogn Affect Neurosci 2022; 17:503-509. [PMID: 34750627 PMCID: PMC9071406 DOI: 10.1093/scan/nsab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Mothers are highly responsive to their offspring. In non-human mammals, mothers secrete dopamine in the nucleus accumbens (NAcc) in response to their pups. Yet, it is still unknown which aspect of the offspring behavior elicits dopaminergic responses in mothers. Here, we tested whether infants' affective signals elicit dopaminergic responses in the NAcc of human mothers. First, we conducted a behavioral analysis on videos of infants' free play and quantified the affective signals infants spontaneously communicated. Then, we presented the same videos to mothers during a magnetic resonance-positron emission tomography scan. We traced the binding of [11C]raclopride to free D2/3-type receptors to assess maternal dopaminergic responses during the infant videos. When mothers observed videos with many infant signals during the scan, they had less [11C]raclopride binding in the right NAcc. Less [11C]raclopride binding indicates that less D2/3 receptors were free, possibly due to increased endogenous dopamine responses to infants' affective signals. We conclude that NAcc D2/3 receptors are involved in maternal responsiveness to affective signals of human infants. D2/3 receptors have been associated with maternal responsiveness in nonhuman animals. This evidence supports a similar mechanism in humans and specifies infant-behaviors that activate the maternal dopaminergic system, with implications for social neuroscience, development and psychopathology.
Collapse
Affiliation(s)
- Lior Zeevi
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Merav Irani
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lisa Feldman Barrett
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Shir Atzil
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
9
|
Herschberger MR, Perkeybile AM. Effects of a D2 receptor antagonist on repeated pair bond formation in the male prairie vole. Horm Behav 2022; 141:105149. [PMID: 35248868 PMCID: PMC9081227 DOI: 10.1016/j.yhbeh.2022.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Repeated formation and subsequent dissolution of romantic relationships is common in humans across a lifetime. The socially monogamous prairie vole (Microtus ochrogaster) is used to study mechanisms of these bonds. At least in the laboratory, male prairie voles form bonds with a new female partner after loss of a previous partner. Initial bond formation depends on activation of dopamine D2-like receptors in the nucleus accumbens. Blocking activity of this receptor subtype disrupts formation of an animal's first pair bond. It is not known if these same D2-like receptors facilitate pair bonding with a subsequent partner after previous partner loss. This study examined the effects of D2-like receptor blockade on repeated pair bonding in male prairie voles. Males were paired with an initial female and allowed to mate before being separated. After a 5-day separation, males were then treated with either saline or eticlopride, a selective D2-receptor antagonist, prior to being paired with a second female and being allowed to mate. After a second separation, males were tested to determine if they developed a preference for spending time with their first or second mate. Eticlopride-treated males spent more time in a cage containing one of their previous partners compared to time in an empty cage but did not form a selective preference for either partner. Saline-treated males preferred their second, more recent partner. D2 receptor antagonism, then, disrupts bond formation in a second pairing but does not help to maintain a bond with the initial partner.
Collapse
Affiliation(s)
- Madison R Herschberger
- Department of Biology, Indiana University, Biology Building, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Lindley Hall, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA; Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA.
| |
Collapse
|
10
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
11
|
Ramírez-Rodríguez R, León-Sequeda I, Salomón-Lara L, Perusquia-Cabrera D, Herrera-Covarrubias D, Fernández-Cañedo L, García LI, Manzo J, Pfaus JG, López-Meraz ML, Coria-Avila GA. Enhanced D2 Agonism Induces Conditioned Appetitive Sexual Responses Toward Non-reproductive Conspecifics. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3901-3912. [PMID: 34665381 DOI: 10.1007/s10508-021-02023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Brain mechanisms of sexual attraction toward reproductive partners develop from a systematic interrelationship between biology (nature) and learning (nurture). However, the causes of attraction toward non-reproductive partners are poorly understood. Here, we explored the role of Pavlovian learning under dopaminergic agonism on the development of sexual preference and brain activation for young male rats. During conditioning, adult sexually naïve males received either Saline (Saline-Paired) or the D2-receptor agonist quinpirole (QNP-Paired) and cohabited in contingency, or out of contingency (QNP-Unpaired) during 24 h with an almond-scented prepubertal juvenile male (PD25). Conditioning occurred every 4 days for three trials. Social and sexual responses were assessed four days after the last conditioning trial in a drug-free test, and males chose freely between a scented young male (PD37) and a novel receptive female. Four days later, males were exposed to the conditioned odor only and brain Fos-IR and serum testosterone were analyzed. Saline-Paired and QNP-Unpaired males displayed more non-contact erections (NCEs) and genital investigations for females, whereas QNP-Paired males expressed more NCEs and genital investigations for young males. In the QNP-Paired group, exposure to the young male-paired odor evoked more Fos-IR in limbic, hypothalamic and cortical areas, but no differences in serum testosterone were observed. Cohabitation with juvenile males during enhanced D2 agonism results in atypical appetitive sexual responses and a higher pattern of brain response for the young male-paired odor, with no changes in serum testosterone. We discuss the potential implications for the development of pedophilic disorder and perhaps other paraphilias.
Collapse
Affiliation(s)
- Rodrigo Ramírez-Rodríguez
- Maestría en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Isabel León-Sequeda
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Lázaro Salomón-Lara
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
12
|
Lambert CT, Lichter JB, Perry AN, Castillo SA, Keane B, Cushing BS, Solomon NG. Medial amygdala ERα expression influences monogamous behaviour of male prairie voles in the field. Proc Biol Sci 2021; 288:20210318. [PMID: 34344176 PMCID: PMC8334872 DOI: 10.1098/rspb.2021.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.
Collapse
Affiliation(s)
| | | | - Adam N. Perry
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel A. Castillo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian Keane
- Department of Biological Sciences, Miami University—Regionals, Hamilton, OH 45011, USA
| | - Bruce S. Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
13
|
Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021; 162:6046188. [PMID: 33367612 PMCID: PMC7787427 DOI: 10.1210/endocr/bqaa223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Pair bonds represent some of the strongest attachments we form as humans. These relationships positively modulate health and well-being. Conversely, the loss of a spouse is an emotionally painful event that leads to numerous deleterious physiological effects, including increased risk for cardiac dysfunction and mental illness. Much of our understanding of the neuroendocrine basis of pair bonding has come from studies of monogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie voles has delineated a role for multiple neuromodulatory and neuroendocrine systems in the formation and maintenance of pair bonds, including the oxytocinergic, dopaminergic, and opioidergic systems. However, while these studies have contributed to our understanding of selective attachment, few studies have examined how interactions among these 3 systems may be essential for expression of complex social behaviors, such as pair bonding. Therefore, in this review, we focus on how the social neuropeptide, oxytocin, interacts with classical reward system modulators, including dopamine and endogenous opioids, during bond formation and maintenance. We argue that an understanding of these interactions has important clinical implications and is required to understand the evolution and encoding of complex social behaviors more generally. Finally, we provide a brief consideration of future directions, including a discussion of the possible roles that glia, specifically microglia, may have in modulating social behavior by acting as a functional regulator of these 3 neuromodulatory systems.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Correspondence: Zoe R. Donaldson, PhD, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
14
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Lee NS, Beery AK. The role of dopamine signaling in prairie vole peer relationships. Horm Behav 2021; 127:104876. [PMID: 33152338 PMCID: PMC7855828 DOI: 10.1016/j.yhbeh.2020.104876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
Dopamine signaling mediates the formation of some types of social relationships, including reproductive pair bonds in the socially monogamous prairie vole (Microtus ochrogaster). In addition to these pair bonds with mates, prairie voles demonstrate selective preferences for familiar same-sex peers. The dependence of peer relationships on dopamine signaling has not been tested, and the mechanisms supporting these relationships may differ from those underlying pair bonds. We examined the effects of pharmacological manipulations of dopamine signaling on peer partner preference and socially conditioned place preference in female prairie voles. Haloperidol blockade of dopamine receptors at multiple doses did not alter selective preferences for familiar same-sex partners, suggesting that dopamine neurotransmission is not necessary for the formation of prairie vole peer relationships, unlike mate relationships. Dopamine receptor agonist apomorphine facilitated peer partner preferences under conditions normally insufficient for partner preference formation; however, in the absence of effects from blockade, it is difficult to distinguish between a role for dopamine in partner preference formation and the generally rewarding properties of a dopamine agonist. Prairie voles exhibited socially conditioned place preferences for new but not long-term same-sex peers, and these preferences were not blocked by haloperidol. These results suggest that prairie vole peer relationships are less dependent on dopamine signaling than pair bonds, while still being rewarding. The data support distinct roles of dopamine and motivation in prairie vole peer relationships relative to mate relationships, suggesting that reproductive bonds are mediated differently from non-reproductive ones.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America; Neuroscience Program, Department of Psychology, Department of Biology, Smith College, Northampton, MA 01063, United States of America; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
16
|
Ortiz R, Yee JR, Kulkarni PP, Solomon NG, Keane B, Cai X, Ferris CF, Cushing BS. Differences in Diffusion-Weighted Imaging and Resting-State Functional Connectivity Between Two Culturally Distinct Populations of Prairie Vole. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:588-597. [PMID: 33239258 DOI: 10.1016/j.bpsc.2020.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND We used the highly prosocial prairie vole to test the hypothesis that higher-order brain structure-microarchitecture and functional connectivity (FC)-would differ between males from populations with distinctly different levels of prosocial behavior. Specifically, we studied males from Illinois (IL), which display high levels of prosocial behavior, and first generation males from Kansas dams and IL males (KI), which display the lowest level of prosocial behavior and higher aggression. Behavioral differences between these males are associated with overexpression of estrogen receptor alpha in the medial amygdala and bed nucleus of the stria terminalis and neuropeptide expression in the paraventricular nucleus. METHODS We compared apparent diffusion coefficient, fractional anisotropy, and blood oxygen level-dependent resting-state FC between males. RESULTS IL males displayed higher apparent diffusion coefficient in regions associated with prosocial behavior, including the bed nucleus of the stria terminalis, paraventricular nucleus, and anterior thalamic nuclei, while KI males showed higher apparent diffusion coefficient in the brainstem. KI males showed significantly higher fractional anisotropy than IL males in 26 brain regions, with the majority being in the brainstem reticular activating system. IL males showed more blood oxygen level-dependent resting-state FC between the bed nucleus of the stria terminalis, paraventricular nucleus, and medial amygdala along with other brain regions, including the hippocampus and areas associated with social and reward networks. CONCLUSIONS Our results suggest that gray matter microarchitecture and FC may play a role the expression of prosocial behavior and that differences in other brain regions, especially the brainstem, could be involved. The differences between males suggests that this system represents a potentially valuable model system for studying emotional differences and vulnerability to stress and addiction.
Collapse
Affiliation(s)
- Richard Ortiz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas
| | - Jason R Yee
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Praveen P Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | | | - Brian Keane
- Department of Biological Sciences, Miami University, Hamilton, Ohio
| | - Xuezhu Cai
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
17
|
Potretzke S, Robins MT, Ryabinin AE. Differential sensitivity of alcohol drinking and partner preference to a CRFR1 antagonist in prairie voles and mice. Horm Behav 2020; 120:104676. [PMID: 31927017 PMCID: PMC7117978 DOI: 10.1016/j.yhbeh.2020.104676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Available pharmacotherapies to treat alcohol use disorder (AUD) show limited efficacy. Preclinical studies in mice and rats suggested that antagonists of the corticotropin releasing factor receptor 1 (CRFR1) could be more efficacious for such treatment. However, clinical trials with CRFR1 antagonists were not successful. While a number of potential explanations for this translational failure have been suggested, we hypothesized that the lack of success in clinical trials could be in part due to different neuroanatomical organization of the CRFR1 system in mice and rats versus humans. The CRF system in prairie voles (Microtus ochrogaster), a socially monogamous rodent species, also shows differences in organization from mice and rats. To test our hypothesis, we compared the efficacy of a potent CRFR1 antagonist, CP-376,395, to modulate alcohol drinking in male and female prairie voles versus male and female C57BL/6J mice using an almost identical 2-bottle choice drinking procedure. CP-376,375 (10 and 20 mg/kg, i.p.) significantly decreased alcohol intake (but not alcohol preference) in mice, but not prairie voles. Furthermore, administration of this antagonist (20 mg/kg, i.p.) prior to the partner preference test (PPT) decreased partner preference (PP) in male prairie voles. These findings support our hypothesis that the greater efficacy of CRFR1 antagonists to suppress alcohol consumption in mice and rats versus other mammalian species could be due to the differences in organization of the CRFR1 system between species. They further indicate that activity of the CRFR1 system is necessary for the formation of pair-bonds, but not consumption of high doses of alcohol. Overall, we suggest that testing potential pharmacotherapies should not rely only on studies in mice and rats.
Collapse
Affiliation(s)
- Sheena Potretzke
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Meridith T Robins
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Yu P, Zhang M, Nan X, Zhao H, Gong D. Differences in the number of oxytocin, vasopressin, and tyrosine hydroxylase cells in brain regions associated with mating among great, midday, and Mongolian gerbils. Brain Res 2020; 1733:146677. [PMID: 32001244 DOI: 10.1016/j.brainres.2020.146677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Neurotransmitters, such as oxytocin (OT), vasopressin (AVP), and dopamine (DA), within the mesolimbic system have deeply conserved roles in regulating mating-related behaviors. However, comparative studies among monogamous and polygamous animals focus mainly on Microtus; very little research has been done in gerbils. Here, we measured body weight, body length, tail length, serum hormone concentrations, and the immunoreactive (ir)-cells of OT, AVP, and tyrosine hydroxylase (TH) in the brain of the polygamous great gerbil (Rhombomys opimus), midday gerbil (Meriones meridianus), and monogamous Mongolian gerbil (Meriones unguiculatus). Body weight, body length, tail length, and serum AVP concentrations were greater in the great gerbil than in the midday gerbil and Mongolian gerbil. The number of OT and AVP cells in the para ventricular nucleus (PVN) and supra optic nucleus (SON) of the hypothalamus were greater in the Mongolian gerbil than in the great gerbil and midday gerbil. Similarly, the number of TH cells in the PVN, medial preoptic area (MPOA), and ventral tegmental area (VTA) was greater in the Mongolian gerbil than in the great gerbil and midday gerbil. To summarize, the number of OT and AVP cells in the PVN and SON and TH cells in the PVN, MPOA, and VTA in the monogamous Mongolian gerbil are greater than those in the great gerbil and midday gerbil.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Mingyu Zhang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xumei Nan
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Haochi Zhao
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Dajie Gong
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
19
|
Yuan W, Li L, Hou W, He Z, Wang L, Zhang J, Yang Y, Cai W, Guo Q, Zhang X, Jia R, Lian Z, Tai F. Preweaning Paternal Deprivation Impacts Parental Responses to Pups and Alters the Serum Oxytocin and Corticosterone Levels and Oxytocin Receptor, Vasopressin 1A Receptor, Oestrogen Receptor, Dopamine Type I Receptor, Dopamine Type II Receptor Levels in Relevant Brain Regions in Adult Mandarin Voles. Neuroendocrinology 2020; 110:292-306. [PMID: 31256151 DOI: 10.1159/000501798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Although maternal separation and neonatal paternal deprivation (PD) have been found to exert a profound and persistent effects on the physiological and behavioural development of offspring, whether preweaning PD (PPD; from PND 10 to 21) affects maternal and parental responses to pups and the underlying neuroendocrine mechanism are under-investigated. Using monogamous mandarin voles (Microtus mandarinus), the present study found that PPD increased the latency to approach a pup-containing ball, decreased the total durations of sniffing and contacting a pup-containing ball and walking and increased the total duration of inactivity in both sexes. Moreover, PPD decreased serum oxytocin levels and increased corticosterone levels, but only in females. Furthermore, in both males and females, PPD decreased the expression of oxytocin receptor mRNA and protein in the medial preoptic area (MPOA), nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), but increased it in the medial amygdala (MeA) and decreased the expression of oestrogen receptor mRNA and protein in the MPOA. PPD increased the expression of dopamine type I receptor in the NAcc, but decreased it in the mPFC. PPD decreased dopamine type II receptor (D2R) in the NAcc both in males and females, but increased D2R in the mPFC in females and decreased D2R protein expression in males. Moreover, PPD decreased vasopressin 1A receptor (V1AR) in the MPOA, MeA and mPFC, but only in males. Our results suggest that the reduction of parental responses to pups induced by PPD may be associated with the sex-specific alteration of several neuroendocrine parameters in relevant brain regions.
Collapse
Affiliation(s)
- Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China,
- Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China,
| |
Collapse
|
20
|
Lang DLY, Bamshad M, Dorcely R. Pattern of fos activation in the ventral tegmental area (VTA) of male prairie vole's (Microtus ochrogaster) in response to infant-related stimuli. Brain Res 2019; 1714:119-125. [PMID: 30822390 DOI: 10.1016/j.brainres.2019.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/30/2018] [Accepted: 02/18/2019] [Indexed: 12/01/2022]
Abstract
Prairie voles are socially monogamous mammals that form pair bonds and display paternal care. This study was focused on the male prairie vole's neuronal responses to infant-related odors. Using the fos protein as a measure of neuronal activation, we examined the brain responses of males to infant-related odors. Prior to testing, the subjects had cohabited for two weeks with either a male sibling (Male-Cohabited) or an unrelated female (Female-Cohabited). Given that paternal behavior of male prairie voles is enhanced after two-weeks of cohabitation with a mate, we hypothesized that fos activation in brain regions involved in caring must be increased in response to infants or their odors but not in response to water or sub-adult odors. To test this hypothesis, we analyzed the pattern of fos expression in the ventral tegmental area (VTA) and the bed nucleus of the stria terminals (BNST) two hours after Male-Cohabited and Female-Cohabited males were exposed to either two live infants or to odors of infants, sub-adults or water. Results showed differences in fos expression within the VTA between Male-Cohabited and Female-Cohabited subjects that were exposed to infants and infant odors. The type of cohabitation had no effect on fos expression within the BNST, but the pattern of fos activation in this region differed by the type of odor to which the subjects were exposed. Together, the data indicate that female sensory cues during post-mating cohabitation may be processed within the VTA to direct the male prairie vole's responses towards infants.
Collapse
Affiliation(s)
- Damaris-Lois Yamoah Lang
- Department of Natural Sciences, The City University Of New York - Hostos CC, Grand Concourse, Bronx, NY 10451, United States.
| | - Maryam Bamshad
- Department of Biological Sciences, The City University Of New York - Lehman College, 250 Bedford Park Blvd, Bronx, NY 10468, United States.
| | - Reginald Dorcely
- Department of Mathematics, The City University Of New York - Hostos CC, Grand Concourse, Bronx, NY 10451, United States.
| |
Collapse
|
21
|
Carp SB, Taylor JH, French JA. Dopamine receptor manipulation does not alter patterns of partner preference in long-term marmoset pairs. Physiol Behav 2019; 204:290-296. [PMID: 30853621 DOI: 10.1016/j.physbeh.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
The relationship between socially monogamous mates is dynamic and regulated by neurobiological influences. Research in rodent models has indicated a key role for the neurotransmitter dopamine (DA) and its receptors (DAR) in mediating the formation and maintenance of monogamous bonds. DAR activation was pharmacologically manipulated in marmosets housed in long-term pairs. Marmosets exposed to DAR manipulation were tested in a partner preference test under two social conditions: one in which their mate could visually observe their interactions with an opposite-sex individual, and one in which their pair mate could not visually observe these interactions. Marmosets displayed a spatial preference for the mate compared to an unfamiliar conspecific, however, they displayed a sexual preference for an unfamiliar conspecific over their mate. D1R manipulation had no impact on marmoset partner preference. However, activation of D2Rs reduced the time marmosets spent in contact with either stimulus animal, indicating a decrease in social interest, but did not reduce time spent in proximity to the stimulus animals nor number of sexual solicitations. Additionally, social context (visibility of the mate) did not influence marmoset behavior. These findings suggest that D2Rs may be involved in regulating generalized, but not partner-specific, social interest in marmoset monkeys.
Collapse
Affiliation(s)
- Sarah B Carp
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE 68182, United States.
| | - Jack H Taylor
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE 68182, United States
| | - Jeffrey A French
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE 68182, United States
| |
Collapse
|
22
|
Goodwin NL, Lopez SA, Lee NS, Beery AK. Comparative role of reward in long-term peer and mate relationships in voles. Horm Behav 2019; 111:70-77. [PMID: 30528833 PMCID: PMC6527457 DOI: 10.1016/j.yhbeh.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
This is a contribution to SI: SBN/ICN meeting. In social species, relationships may form between mates, parents and their offspring, and/or social peers. Prairie voles and meadow voles both form selective relationships for familiar same-sex peers, but differ in mating system, allowing comparison of the properties of peer and mate relationships. Prairie vole mate bonds are dopamine-dependent, unlike meadow vole peer relationships, indicating potential differences in the mechanisms and motivation supporting these relationships within and/or across species. We review the role of dopamine signaling in affiliative behavior, and assess the role of behavioral reward across relationship types. We compared the reinforcing properties of mate versus peer relationships within a species (prairie voles), and peer relationships across species (meadow and prairie voles). Social reinforcement was assessed using the socially conditioned place preference test. Animals were conditioned using randomly assigned, equally preferred beddings associated with social (CS+) and solitary (CS-) housing. Prairie vole mates, but not prairie or meadow vole peers, conditioned toward the social cue. A second study in peers used counter-conditioning to enhance the capacity to detect low-level conditioning. Time spent on CS+ bedding significantly decreased in meadow voles, and showed a non-significant increase in prairie voles. These data support the conclusion that mate relationships are rewarding for prairie voles. Despite selectivity of preferences for familiar individuals in partner preference tests, peer relationships in both species appear only weakly reinforcing or non-reinforcing. This suggests important differences in the pathways underlying these relationship types, even within species.
Collapse
Affiliation(s)
- Nastacia L Goodwin
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America
| | - Sarah A Lopez
- Neuroscience Program, Smith College, Northampton, MA 01063, United States of America
| | - Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Annaliese K Beery
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America; Neuroscience Program, Smith College, Northampton, MA 01063, United States of America; Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America.
| |
Collapse
|
23
|
Day NF, Saxon D, Robbins A, Harris L, Nee E, Shroff-Mehta N, Stout K, Sun J, Lillie N, Burns M, Korn C, Coleman MJ. D2 dopamine receptor activation induces female preference for male song in the monogamous zebra finch. ACTA ACUST UNITED AC 2019; 222:222/5/jeb191510. [PMID: 30850509 DOI: 10.1242/jeb.191510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
The evolutionary conservation of neural mechanisms for forming and maintaining pair bonds is unclear. Oxytocin, vasopressin and dopamine (DA) transmitter systems have been shown to be important in pair-bond formation and maintenance in several vertebrate species. We examined the role of dopamine in formation of song preference in zebra finches, a monogamous bird. Male courtship song is an honest signal of sexual fitness; thus, we measured female song preference to evaluate the role of DA in mate selection and pair-bond formation, using an operant conditioning paradigm. We found that DA acting through the D2 receptor, but not the D1 receptor, can induce a song preference in unpaired female finches and that blocking the D2 receptor abolished song preference in paired females. These results suggest that similar neural mechanisms for pair-bond formation are evolutionarily conserved in rodents and birds.
Collapse
Affiliation(s)
- Nancy F Day
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7246, USA
| | - David Saxon
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Anastasia Robbins
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Lily Harris
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Emily Nee
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Naomi Shroff-Mehta
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Kaeley Stout
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Julia Sun
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Natalie Lillie
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Mara Burns
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Clio Korn
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Melissa J Coleman
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| |
Collapse
|
24
|
Lee NS, Beery AK. Neural Circuits Underlying Rodent Sociality: A Comparative Approach. Curr Top Behav Neurosci 2019; 43:211-238. [PMID: 30710222 DOI: 10.1007/7854_2018_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual's life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA.
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA. .,Department of Psychology, Smith College, Northampton, MA, USA. .,Neuroscience Program, Smith College, Northampton, MA, USA.
| |
Collapse
|
25
|
Walcott AT, Smith ML, Loftis JM, Ryabinin AE. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles. Soc Neurosci 2018; 13:710-717. [PMID: 29564972 PMCID: PMC6298945 DOI: 10.1080/17470919.2018.1456957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Indexed: 12/30/2022]
Abstract
The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.
Collapse
Affiliation(s)
- Andre T. Walcott
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Monique L. Smith
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jennifer M. Loftis
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
- Research & Development Service, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
Hewlett SE, Delahunt Smoleniec JD, Wareham DM, Pyne TM, Barron AB. Biogenic amine modulation of honey bee sociability and nestmate affiliation. PLoS One 2018; 13:e0205686. [PMID: 30359390 PMCID: PMC6201892 DOI: 10.1371/journal.pone.0205686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee’s approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment reduced social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution.
Collapse
Affiliation(s)
- Susie E. Hewlett
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| | | | - Deborah M. Wareham
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas M. Pyne
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| |
Collapse
|
27
|
Abstract
In this chapter, we introduce a new area of social pharmacology that encompasses the study of the role of neuromodulators in modulating a wide range of social behaviors and brain function, with the interplay of genetic and epigenetic factors. There are increasing evidences for the role of the neuropeptide oxytocin in modulating a wide range of social behaviors, in reducing anxiety, and in impacting the social brain network. Oxytocin also promotes social functions in patients with neuropsychiatric disorders, such as autism and reduces anxiety and fear in anxiety disorders. In this chapter, we will emphasize the importance of integrating basic research and clinical human research in determining optimal strategies for drug discoveries for social dysfunctions and anxiety disorders. We will highlight the significance of adopting a precision medicine approach to optimize targeted treatments with oxytocin in neuropsychiatry. Oxytocin effects on social behavior and brain function can vary from one individual to another based on external factors, such as heterogeneity in autism phenotype, childhood experiences, personality, attachment style, and oxytocin receptor polymorphisms. Hence, targeted therapies for subgroups of patients can help alleviating some of the core symptoms and lead to a better future for these patients and their families.
Collapse
Affiliation(s)
- Elissar Andari
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA.
| | - Rene Hurlemann
- Department of Psychiatry, Medical Psychology Division, NEMO (Neuromodulation of Emotion) Research Group, University of Bonn, Bonn, Germany
| | - Larry J Young
- Department of Psychiatry, Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Understanding Sexual Partner Preference: from Biological Diversity to Psychiatric Disorders. CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Me, My Bot and His Other (Robot) Woman? Keeping Your Robot Satisfied in the Age of Artificial Emotion. ROBOTICS 2018. [DOI: 10.3390/robotics7030044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With a backdrop of action and science fiction movie horrors of the dystopian relationship between humans and robots, surprisingly to date-with the exception of ethical discussions-the relationship aspect of humans and sex robots has seemed relatively unproblematic. The attraction to sex robots perhaps is the promise of unproblematic affectionate and sexual interactions, without the need to consider the other’s (the robot’s) emotions and indeed preference of sexual partners. Yet, with rapid advancements in information technology and robotics, particularly in relation to artificial intelligence and indeed, artificial emotions, there almost seems the likelihood, that sometime in the future, robots too, may love others in return. Who those others are-whether human or robot-is to be speculated. As with the laws of emotion, and particularly that of the cognitive-emotional theory on Appraisal, a reality in which robots experience their own emotions, may not be as rosy as would be expected.
Collapse
|
30
|
Beny-Shefer Y, Zilkha N, Lavi-Avnon Y, Bezalel N, Rogachev I, Brandis A, Dayan M, Kimchi T. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice. Cell Rep 2018; 21:3079-3088. [PMID: 29241537 DOI: 10.1016/j.celrep.2017.11.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/02/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc) in governing chemosensory-mediated preference for females in TrpC2-/- and wild-type male mice. TrpC2-/- males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2-/- males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2-/- males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice.
Collapse
Affiliation(s)
- Yamit Beny-Shefer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Lavi-Avnon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Bezalel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Biological Services Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Biological Services Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Molly Dayan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Carp SB, Taylor JH, Womack SL, French JA. Dopamine Modulation of Reunion Behavior in Short and Long Term Marmoset Pairs. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Coria-Avila GA, Cibrian-Llanderal T, Díaz-Estrada VX, García LI, Toledo-Cárdenas R, Pfaus JG, Manzo J. Brain activation associated to olfactory conditioned same-sex partner preference in male rats. Horm Behav 2018; 99:50-56. [PMID: 29458055 DOI: 10.1016/j.yhbeh.2018.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 11/20/2022]
Abstract
Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination.
Collapse
Affiliation(s)
| | | | | | - Luis I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | | - James G Pfaus
- CSBN/Psychology, Concordia University, Montreal, QC, Canada
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| |
Collapse
|
33
|
Kiyokawa Y, Hennessy MB. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls. Neurosci Biobehav Rev 2018; 86:131-141. [PMID: 29223771 PMCID: PMC5801062 DOI: 10.1016/j.neubiorev.2017.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023]
Abstract
KIYOKAWA, Y. and HENNESSY, M.B. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls…NEUROSCI BIOBEHAV REV XXX-XXX, .- Over the past decades, there has been an increasing number of investigations of the impact of social variables on neural, endocrine, and immune outcomes. Among these are studies of "social buffering"-or the phenomenon by which affiliative social partners mitigate the response to stressors. Yet, as social buffering studies have become more commonplace, the variety of approaches taken, definitions employed, and divergent results obtained in different species can lead to confusion and miscommunication. The aim of the present paper, therefore, is to address terminology and approaches and to highlight potential pitfalls to the study of social buffering across nonhuman species. We review and categorize variables currently being employed in social buffering studies and provide an overview of responses measured, mediating sensory modalities and underlying mechanisms. It is our hope that the paper will be useful to those contemplating examination of social buffering in the context of their own research.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Michael B Hennessy
- Department of Psychology, Wright State University, 335 Fawcett Hall, Dayton, OH, 45435, United States.
| |
Collapse
|
34
|
Ulloa M, Portillo W, Díaz NF, Young LJ, Camacho FJ, Rodríguez VM, Paredes RG. Mating and social exposure induces an opioid-dependent conditioned place preference in male but not in female prairie voles (Microtus ochrogaster). Horm Behav 2018; 97:47-55. [PMID: 29111331 PMCID: PMC5803795 DOI: 10.1016/j.yhbeh.2017.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 01/11/2023]
Abstract
In rodents, sexual stimulation induces a positive affective state that is evaluated by the conditioned place preference (CPP) test. Opioids are released during sexual behavior and modulate the rewarding properties of this behavior. Prairie voles (Microtus ochrogaster) are a socially monogamous species, in which copulation with cohabitation for 6h induces a pair bond. However, the mating-induced reward state that could contribute to the establishment of the long-term pair bond has not been evaluated in this species. The present study aimed to determine whether one ejaculation or cohabitation with mating for 6h is rewarding for voles. We also evaluated whether this state is opioid dependent. Our results demonstrate that mating with one ejaculation and social cohabitation with mating for 6h induce a CPP in males, while exposure to a sexually receptive female without mating did not induce CPP. In the female vole, mating until one ejaculation, social cohabitation with mating, or exposure to a male without physical interaction for 6h did not induce CPP. To evaluate whether the rewarding state in males is opioid dependent, the antagonist naloxone was injected i.p. The administration of naloxone blocked the rewarding state induced by one ejaculation and by social cohabitation with mating. Our results demonstrate that in the prairie vole, on the basis of the CPP in the testing conditions used here, the stimulation received with one ejaculation and the mating conditions that lead to pair bonding formation may be rewarding for males, and this reward state is opioid dependent.
Collapse
Affiliation(s)
- M Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - N F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Col. Lomas Virreyes, Del. Miguel Hidalgo, Ciudad de México 11000, Mexico.
| | - L J Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, Atlanta, GA 30329, United States
| | - F J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - V M Rodríguez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| |
Collapse
|
35
|
Karkaba A, Soualeh N, Soulimani R, Bouayed J. Perinatal effects of exposure to PCBs on social preferences in young adult and middle-aged offspring mice. Horm Behav 2017; 96:137-146. [PMID: 28935448 DOI: 10.1016/j.yhbeh.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
In social species, social interactions between conspecifics constitute a fundamental component to establish relations, provide best chances to reproduce, and even improve survival rates. In this study, a three-chambered social approach test was used to estimate the level of sociability and level of preference for social novelty in both male and female young adult (postnatal day (PND) 50) and middle-aged (PND 330) offspring mice (n=10 per group) that were perinatally exposed to a mixture of six polychlorinated biphenyls (PCBs), 28, 52, 101, 138, 153, and 180, at environmentally low doses (10 and 1000ng/kg b.w. for dams during gestation and lactation), a profile that closely mimics human exposure to contaminated fish. Our results showed that PCBs bidirectionally modulated social preferences in offspring mice, and the effects were sex and age dependent. However, increased levels of social interactions were rather frequently detected in both assays of the three-chambered test. Reduced social interaction was only induced in 1000ng/kg PCB-exposed middle-aged males, which exhibited similar preferences to social and non-social stimuli when compared to middle-aged controls. Furthermore, results showed that plasma levels of both corticosterone and acetylcholinesterase activity were higher in all PCB-exposed middle-aged males and females than in their control counterparts. In summary, although the effects of PCBs were only of moderate magnitude, our results suggest that a PCB mixture can act as an endocrine disruptor in offspring mice, disturbing the formation of normal social habits.
Collapse
Affiliation(s)
- Alaa Karkaba
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France.
| |
Collapse
|
36
|
Tecamachaltzi-Silvaran MB, Barradas-Moctezuma M, Herrera-Covarrubias D, Carrillo P, Corona-Morales AA, Perez CA, García LI, Manzo J, Coria-Avila GA. Olfactory conditioned same-sex partner preference in female rats: Role of ovarian hormones. Horm Behav 2017; 96:13-20. [PMID: 28867385 DOI: 10.1016/j.yhbeh.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/09/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022]
Abstract
The dopamine D2-type receptor agonist quinpirole (QNP) facilitates the development of conditioned same-sex partner preference in males during cohabitation, but not in ovariectomized (OVX) females, primed with estradiol benzoate (EB) and progesterone (P). Herein we tested the effects of QNP on OVX, EB-only primed females. Females received a systemic injection (every four days) of either saline (Saline-conditioned) or QNP (QNP-conditioned) and then cohabited for 24h with lemon-scented stimulus females (CS+), during three trials. In test 1 (female-female) preference was QNP-free, and females chose between the CS+ female and a novel female. In test 2 (male-female) they chose between the CS+ female and a sexually experienced male. In test 1 Saline-conditioned females displayed more hops & darts towards the novel female, but QNP-conditioned females displayed more sexual solicitations towards the CS+ female. In test 2 Saline-conditioned females displayed a clear preference for the male, whereas QNP-conditioned females displayed what we considered a bisexual preference. We discuss the effect of dopamine and ovarian hormones on the development of olfactory conditioned same-sex preference in females.
Collapse
Affiliation(s)
| | | | | | - P Carrillo
- Instituto de Neuroetología, Universidad Veracruzana, Mexico
| | | | - C A Perez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - L I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - J Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | |
Collapse
|
37
|
Ramírez-Rodríguez R, Tecamachaltzi-Silvaran MB, Díaz-Estrada VX, Chena-Becerra F, Herrera-Covarrubias D, Paredes-Ramos P, Manzo J, Garcia LI, Coria-Avila GA. Heterosexual experience prevents the development of conditioned same-sex partner preference in male rats. Behav Processes 2017; 136:43-49. [DOI: 10.1016/j.beproc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
38
|
Walcott AT, Ryabinin AE. Alcohol's Effects on Pair-Bond Maintenance in Male Prairie Voles. Front Psychiatry 2017; 8:226. [PMID: 29204125 PMCID: PMC5698799 DOI: 10.3389/fpsyt.2017.00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol's effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP). Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.
Collapse
Affiliation(s)
- Andre T Walcott
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
39
|
Perkeybile AM, Bales KL. Intergenerational transmission of sociality: the role of parents in shaping social behavior in monogamous and non-monogamous species. J Exp Biol 2017; 220:114-123. [PMID: 28057834 PMCID: PMC5278619 DOI: 10.1242/jeb.142182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Social bonds are necessary for many mammals to survive and reproduce successfully. These bonds (i.e. pair-bonds, friendships, filial bonds) are characterized by different periods of development, longevity and strength. Socially monogamous species display certain behaviors not seen in many other mammals, such as adult pair-bonding and male parenting. In our studies of prairie voles (Microtus ochrogaster) and titi monkeys (Callicebus cupreus), we have examined the neurohormonal basis of these bonds. Here, we discuss the evidence from voles that aspects of adolescent and adult social behavior are shaped by early experience, including changes to sensory systems and connections, neuropeptide systems such as oxytocin and vasopressin, and alterations in stress responses. We will compare this with what is known about these processes during development and adulthood in other mammalian species, both monogamous and non-monogamous, and how our current knowledge in voles can be used to understand the development of and variation in social bonds. Humans are endlessly fascinated by the variety of social relationships and family types displayed by animal species, including our own. Social relationships can be characterized by directionality (either uni- or bi-directional), longevity, developmental epoch (infant, juvenile or adult) and strength. Research on the neurobiology of social bonds in animals has focused primarily on 'socially monogamous' species, because of their long-term, strong adult affiliative bonds. In this Review, we attempt to understand how the ability and propensity to form these bonds (or lack thereof), as well as the display of social behaviors more generally, are transmitted both genomically and non-genomically via variation in parenting in monogamous and non-monogamous species.
Collapse
Affiliation(s)
- Allison M Perkeybile
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
40
|
Coria-Avila GA, Herrera-Covarrubias D, Ismail N, Pfaus JG. The role of orgasm in the development and shaping of partner preferences. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2016; 6:31815. [PMID: 27799080 PMCID: PMC5087697 DOI: 10.3402/snp.v6.31815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/03/2022]
Abstract
BACKGROUND The effect of orgasm on the development and shaping of partner preferences may involve a catalysis of the neurochemical mechanisms of bonding. Therefore, understanding such process is relevant for neuroscience and psychology. METHODS A systematic review was carried out using the terms Orgasm, Sexual Reward, Partner Preference, Pair Bonding, Brain, Learning, Sex, Copulation. RESULTS In humans, concentrations of arousing neurotransmitters and potential bonding neurotransmitters increase during orgasm in the cerebrospinal fluid and the bloodstream. Similarly, studies in animals indicate that those neurotransmitters (noradrenaline, oxytocin, prolactin) and others (e.g. dopamine, opioids, serotonin) modulate the appetitive and consummatory phases of sexual behavior and reward. This suggests a link between the experience of orgasm/sexual reward and the neurochemical mechanisms of pair bonding. Orgasm/reward functions as an unconditioned stimulus (UCS). Some areas in the nervous system function as UCS-detection centers, which become activated during orgasm. Partner-related cues function as conditioned stimuli (CS) and are processed in CS-detector centers. CONCLUSIONS Throughout the article, we discuss how UCS- and CS-detection centers must interact to facilitate memory consolidation and produce recognition and motivation during future social encounters.
Collapse
Affiliation(s)
| | - Deissy Herrera-Covarrubias
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - Nafissa Ismail
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Canada
| |
Collapse
|
41
|
Hostetler CM, Hinde K, Maninger N, Mendoza SP, Mason WA, Rowland DJ, Wang GB, Kukis D, Cherry SR, Bales KL. Effects of pair bonding on dopamine D1 receptors in monogamous male titi monkeys (Callicebus cupreus). Am J Primatol 2016; 79:1-9. [PMID: 27757971 DOI: 10.1002/ajp.22612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
Pair bonding leads to increases in dopamine D1 receptor (D1R) binding in the nucleus accumbens of monogamous prairie voles. In the current study, we hypothesized that there is similar up-regulation of D1R in a monogamous primate, the titi monkey (Callicebus cupreus). Receptor binding of the D1R antagonist [11 C]-SCH23390 was measured in male titi monkeys using PET scans before and after pairing with a female. We found that within-subject analyses of pairing show significant increases in D1R binding in the lateral septum, but not the nucleus accumbens, caudate, putamen, or ventral pallidum. The lateral septum is involved in a number of processes that may contribute to social behavior, including motivation, affect, reward, and reinforcement. This region also plays a role in pair bonding and paternal behavior in voles. Our observations of changes in D1R in the lateral septum, but not the nucleus accumbens, suggest that there may be broadly similar dopaminergic mechanisms underlying pair bonding across mammalian species, but that the specific changes to neural circuitry differ. This study is the first research to demonstrate neuroplasticity of the dopamine system following pair bonding in a non-human primate; however, substantial variability in the response to pairing suggests the utility of further research on the topic.
Collapse
Affiliation(s)
- Caroline M Hostetler
- Oregon Health and Science University, Portland, Oregon.,California National Primate Research Center, Davis, California.,Department of Psychology, University of California, Davis, California
| | - Katherine Hinde
- California National Primate Research Center, Davis, California.,School of Human Evolution and Social Change, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Nicole Maninger
- California National Primate Research Center, Davis, California
| | - Sally P Mendoza
- California National Primate Research Center, Davis, California.,Department of Psychology, University of California, Davis, California
| | - William A Mason
- California National Primate Research Center, Davis, California.,Department of Psychology, University of California, Davis, California
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, California
| | - Guobao B Wang
- Department of Radiology, University of California, Davis, California
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, California
| | - Simon R Cherry
- Center for Molecular and Genomic Imaging, University of California, Davis, California.,Department of Biomedical Engineering, University of California, Davis, California
| | - Karen L Bales
- California National Primate Research Center, Davis, California.,Department of Psychology, University of California, Davis, California
| |
Collapse
|
42
|
Messias JPM, Santos TP, Pinto M, Soares MC. Stimulation of dopamine D₁ receptor improves learning capacity in cooperating cleaner fish. Proc Biol Sci 2016; 283:rspb.2015.2272. [PMID: 26791613 DOI: 10.1098/rspb.2015.2272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accurate contextual decision-making strategies are important in social environments. Specific areas in the brain are tasked to process these complex interactions and generate correct follow-up responses. The dorsolateral and dorsomedial parts of the telencephalon in the teleost fish brain are neural substrates modulated by the neurotransmitter dopamine (DA), and are part of an important neural circuitry that drives animal behaviour from the most basic actions such as learning to search for food, to properly choosing partners and managing decisions based on context. The Indo-Pacific cleaner wrasse Labroides dimidiatus is a highly social teleost fish species with a complex network of interactions with its 'client' reef fish. We asked if changes in DA signalling would affect individual learning ability by presenting cleaner fish two ecologically different tasks that simulated a natural situation requiring accurate decision-making. We demonstrate that there is an involvement of the DA system and D1 receptor pathways on cleaners' natural abilities to learn both tasks. Our results add significantly to the growing literature on the physiological mechanisms that underlie and facilitate the expression of cooperative abilities.
Collapse
Affiliation(s)
- João P M Messias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Teresa P Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Maria Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
43
|
Lieberwirth C, Wang Z. The neurobiology of pair bond formation, bond disruption, and social buffering. Curr Opin Neurobiol 2016; 40:8-13. [PMID: 27290660 PMCID: PMC5072360 DOI: 10.1016/j.conb.2016.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Enduring social bonds play an essential role in human society. These bonds positively affect psychological, physiological, and behavioral functions. Here, we review the recent literature on the neurobiology, particularly the role of oxytocin and dopamine, of pair bond formation, bond disruption, and social buffering effects on stress responses, from studies utilizing the socially monogamous prairie vole (Microtus ochrogaster).
Collapse
Affiliation(s)
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
44
|
Abstract
The formation and maintenance of social attachments are fundamental to human biology. Because deficits in the ability to form such attachments are associated with a variety of psychological disorders, an understanding of the neural basis of social attachment may provide insights into the causes of such disorders. Comparative studies using several closely related species of voles that display different social organizations and behaviors have begun to provide important insights into the neurochemical events underlying social attachment. Here we review recent developments in the study of social attachment, focusing on the roles of specific neurochemical systems in pair-bond formation.
Collapse
Affiliation(s)
- J. Thomas Curtis
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
45
|
Fisher HE, Xu X, Aron A, Brown LL. Intense, Passionate, Romantic Love: A Natural Addiction? How the Fields That Investigate Romance and Substance Abuse Can Inform Each Other. Front Psychol 2016; 7:687. [PMID: 27242601 PMCID: PMC4861725 DOI: 10.3389/fpsyg.2016.00687] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 01/07/2023] Open
Abstract
Individuals in the early stage of intense romantic love show many symptoms of substance and non-substance or behavioral addictions, including euphoria, craving, tolerance, emotional and physical dependence, withdrawal and relapse. We have proposed that romantic love is a natural (and often positive) addiction that evolved from mammalian antecedents by 4 million years ago as a survival mechanism to encourage hominin pair-bonding and reproduction, seen cross-culturally today in Homo sapiens. Brain scanning studies using functional magnetic resonance imaging support this view: feelings of intense romantic love engage regions of the brain’s “reward system,” specifically dopamine-rich regions, including the ventral tegmental area, also activated during drug and/or behavioral addiction. Thus, because the experience of romantic love shares reward pathways with a range of substance and behavioral addictions, it may influence the drug and/or behavioral addiction response. Indeed, a study of overnight abstinent smokers has shown that feelings of intense romantic love attenuate brain activity associated with cigarette cue-reactivity. Could socially rewarding experiences be therapeutic for drug and/or behavioral addictions? We suggest that “self expanding” experiences like romance and expanding one’s knowledge, experience and self-perception, may also affect drug and/or behavioral addiction behaviors. Further, because feelings of romantic love can progress into feelings of calm attachment, and because attachment engages more plastic forebrain regions, there is a rationale for therapies that may help substance and/or behavioral addiction by promoting activation of these forebrain systems through long-term, calm, positive attachments to others, including group therapies. Addiction is considered a negative (harmful) disorder that appears in a population subset; while romantic love is often a positive (as well as negative) state experienced by almost all humans. Thus, researchers have not categorized romantic love as a chemical or behavioral addiction. But by embracing data on romantic love, it’s classification as an evolved, natural, often positive but also powerfully negative addiction, and its neural similarity to many substance and non-substance addictive states, clinicians may develop more effective therapeutic approaches to alleviate a range of the addictions, including heartbreak–an almost universal human experience that can trigger stalking, clinical depression, suicide, homicide, and other crimes of passion.
Collapse
Affiliation(s)
- Helen E Fisher
- The Kinsey Institute, Indiana University, Bloomington IN, USA
| | - Xiaomeng Xu
- Department of Psychology, Idaho State University, Pocatello ID, USA
| | - Arthur Aron
- Department of Psychology, The State University of New York Stony Brook, Stony Brook NY, USA
| | - Lucy L Brown
- Department of Neurology, Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
46
|
The ties that bond: neurochemistry of attachment in voles. Curr Opin Neurobiol 2016; 38:80-8. [PMID: 27131991 DOI: 10.1016/j.conb.2016.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Abstract
In socially monogamous prairie voles (Microtus ochrogaster), mating induces three primary types of behavior; namely, partner preference, selective aggression toward conspecific strangers, and bi-parental care, making this rodent an ideal model system to study sociality and underlying neurochemical mechanisms associated with monogamous mating strategies. Here, we highlight species differences in neurochemical receptor distributions associated with mating experience leading to the establishment of stable pair-bonds. Specifically, we illustrate the role of nucleus accumbens dopamine in programming the formation and maintenance of monogamous bonds and describe the role of anterior hypothalamic vasopressin in the regulation of selective aggression. We conclude by discussing recent molecular work in voles and emphasize the importance of this rodent for future research in the behavioral neurobiology field.
Collapse
|
47
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
48
|
Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Horm Behav 2016; 77:98-112. [PMID: 26062432 PMCID: PMC4671834 DOI: 10.1016/j.yhbeh.2015.05.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue "Parental Care". Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans.
Collapse
Affiliation(s)
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
49
|
Smith CJW, Wilkins KB, Mogavero JN, Veenema AH. Social Novelty Investigation in the Juvenile Rat: Modulation by the μ-Opioid System. J Neuroendocrinol 2015. [PMID: 26212131 DOI: 10.1111/jne.12301] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drive to approach and explore novel conspecifics is inherent to social animals and may promote optimal social functioning. Juvenile animals seek out interactions with novel peers more frequently and find these interactions to be more rewarding than their adult counterparts. In the present study, we aimed to establish a behavioural paradigm to measure social novelty-seeking in juvenile rats and to determine the involvement of the opioid, dopamine, oxytocin and vasopressin systems in this behaviour. To this end, we developed the social novelty preference test to assess the preference of a juvenile rat to investigate a novel over a familiar (cage mate) conspecific. We show that across the juvenile period both male and female rats spend more time investigating a novel conspecific than a cage mate, independent of subject sex or repeated exposure to the test. We hypothesised that brain systems subserving social information processing and social motivation/reward (i.e. the opioid, dopamine, oxytocin, vasopressin systems) might support social novelty preference. To test this, receptor antagonists of each of these systems were administered i.c.v. prior to exposure to the social novelty preference test and, subsequently, to the social preference test, to examine the specificity of these effects. We find that μ-opioid receptor antagonism reduces novel social investigation in both the social novelty preference and social preference tests while leaving the investigation of a cage mate (social novelty preference test) or an object (social preference test) unaffected. In contrast, central blockade of dopamine D2 receptors (with eticlopride), oxytocin receptors (with des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) or vasopressin V1a receptors [with (CH2)5Tyr(Me2)AVP] failed to alter social novelty preference or social preference. Overall, we have established a new behavioural test to study social novelty-seeking behaviour in the juvenile rat and show that the μ-opioid system facilitates this behaviour, possibly by reducing risk avoidance and enhancing the hedonic and/or motivational value of social novelty.
Collapse
Affiliation(s)
- C J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - K B Wilkins
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - J N Mogavero
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - A H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
50
|
Baribeau DA, Anagnostou E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci 2015; 9:335. [PMID: 26441508 PMCID: PMC4585313 DOI: 10.3389/fnins.2015.00335] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital Toronto, ON, Canada
| |
Collapse
|