1
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
2
|
Jafari-Sabet M, Amiri S, Sheibani M, Fatahi N, Aghamiri H. Cross state-dependent memory retrieval between tramadol and ethanol: involvement of dorsal hippocampal GABAA receptors. Psychopharmacology (Berl) 2024; 241:139-152. [PMID: 37758936 DOI: 10.1007/s00213-023-06469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
RATIONALE Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 μg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jafari-Sabet M, Amiri S, Aghamiri H, Fatahi N. Cross state-dependent memory retrieval between cannabinoid CB1 and serotonergic 5-HT1A receptor agonists in the mouse dorsal hippocampus. Neurobiol Learn Mem 2022; 192:107638. [PMID: 35595026 DOI: 10.1016/j.nlm.2022.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Understanding the neurobiological mechanisms of drug-related learning and memory formation may help the treatment of cognitive disorders. Dysfunction of the cannabinoid and serotonergic systems has been demonstrated in learning and memory disorders. The present paper investigates the phenomenon called state-dependent memory (SDM) induced by ACPA (a selective cannabinoid CB1 receptor agonist) and 8-OH-DPAT (a nonselective 5-HT1A receptor agonist) with special focus on the role of the 5-HT1A receptor in the effects of both ACPA and 8-OH-DPAT SDM and cross state-dependent memory retrieval between ACPA and 8-OH-DPAT in a step-down inhibitory avoidance task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended injection sites. A single-trial step-down inhibitory avoidance task was used to assess memory retrieval and state-dependence. Post-training and/or pre-test microinjections of ACPA (1 and 2 ng/mouse) and 8-OH-DPAT (0.5 and 1 μg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of ACPA and 8-OH-DPAT reversed the post-training ACPA- and 8-OH-DPAT-induced amnesia, respectively. This phenomenon has been named SDM. 8-OH-DPAT (1 μg/mouse) reversed the amnesia induced by ACPA (0.5, 1, and 2 ng/mouse) and induced ACPA SDM. ACPA (2 ng/mouse) reversed the amnesia induced by 8-OH-DPAT (0.25, 0.5, and 1 μg/mouse) and induced 8-OH-DPAT SDM. Pre-test administration of a 5-HT1A receptor antagonist, (S)-WAY 100135 (0.25 and 0.5 μg/mouse), 5 min before ACPA and 8-OH-DPAT dose-dependently inhibited ACPA- and 8-OH-DPAT-induced SDM, respectively. The present study results demonstrated ACPA- and 8-OH-DPAT- induced SDM. Overall, the data revealed that dorsal hippocampal 5-HT1A receptor mechanisms play a pivotal role in modulating cross state-dependent memory retrieval between ACPA and 8-OH-DPAT.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Retrograde Amnesia Associated With Intraoperative Neuromonitoring. J Neurosurg Anesthesiol 2021; 33:363-364. [PMID: 32028375 DOI: 10.1097/ana.0000000000000681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022]
|
5
|
Jafari-Sabet M, Nemati S, Torab M. Cross state-dependency of learning between 5-HT1A and/or 5-HT7 receptor agonists and muscimol in the mouse dorsal hippocampus. J Psychopharmacol 2019; 33:722-736. [PMID: 30789290 DOI: 10.1177/0269881119826608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysfunction of the serotonergic and GABAergic systems in cognitive disorders has been revealed. Understanding the neurobiological mechanisms of drug-associated learning and memory formation may help treatment of cognitive disorders. AIMS The aim of the present study was to investigate: 1) 8-OH-DPAT (5-HT1A agonist), AS19 (5-HT7 agonist) and muscimol (GABA-A agonist) on memory retrieval and state of memory, 2) cross state-dependent learning between 8-OH-DPAT and/or AS19 and muscimol. METHODS The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended sites of injection. A single-trial step-down inhibitory avoidance task was used for the evaluation of memory retrieval and state of memory. RESULTS Post-training and/or pre-test 8-OH-DPAT, AS19 and muscimol induced amnesia. Pre-test microinjection of the same doses of 8-OH-DPAT, AS19 and muscimol reversed the post-training 8-OH-DPAT-, AS19- and muscimol-induced amnesia, respectively. This event has been named state-dependent learning (SDL). The amnesia induced by 8-OH-DPAT was reversed by muscimol and induced 8-OH-DPAT SDL. The amnesia induced by muscimol was reversed by 8-OH-DPAT and induced muscimol SDL. The amnesia induced by AS19 was reversed by muscimol and induced AS19 SDL. The amnesia induced by muscimol was reversed by AS19 and induced muscimol SDL. Pre-test administration of a selective GABA-A receptor antagonist, bicuculline, 5 min before muscimol, 8-OH-DPAT and AS19 dose-dependently inhibited muscimol-, 8-OH-DPAT- and AS19-induced SDL, respectively. CONCLUSIONS The results strongly revealed a cross SDL among 8-OH-DPAT and/or AS19 and muscimol in the dorsal hippocampal CA1 regions.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- 1 Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepehr Nemati
- 2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Torab
- 2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Veselis RA. Complexities of human memory: relevance to anaesthetic practice. Br J Anaesth 2019; 121:210-218. [PMID: 29935575 DOI: 10.1016/j.bja.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/09/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023] Open
Abstract
Mechanisms of anaesthetic actions on memory have largely focused on easily definable aspects of episodic memory, with emphasis on particular drug interactions on specific memory processes. However, the memory landscape of the perioperative experience includes many facets that lie outside these conceptualisations. These include patient recall of preoperative conversations, patient beliefs regarding allergies and unusual/uncommon anaesthetic events, memories of awareness, and particularly vivid dreams during anaesthesia. In no small part, memories are influenced by a patient's interpretations of events in light of their own belief systems. From the practitioner's point of view, relating fully to the patient's experience requires some framework of understanding. The purpose of this review is to highlight research over the previous decades on belief systems and their interactions with autobiographical memory, which organises episodic memories into a personally relevant narrative. As a result, memory is a set of continuously malleable processes, and is best described as a (re)constructive rather than photographic instantiation. Belief systems are separate but closely interacting processes with autobiographical memory. The interaction of a constantly evolving set of memories with belief systems can explain phenomena such as illusions, distortions, and (re)constructions of factitious events. How anaesthetics and our patient interactions influence these behaviours, and vice versa, will be important questions to explore and define with future research.
Collapse
Affiliation(s)
- R A Veselis
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
7
|
Wang GW, Liu J, Wang XQ. Post-training reversible disconnection of the ventral hippocampal-basolateral amygdaloid circuits impairs consolidation of inhibitory avoidance memory in rats. ACTA ACUST UNITED AC 2017; 24:602-606. [PMID: 29038222 PMCID: PMC5647932 DOI: 10.1101/lm.044701.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH–BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH–BLA circuit in IA memory consolidation. Male Wistar rats with implanted guide cannulae were trained with a one-trial IA task, then received immediate intracerebral injections of muscimol or saline, and were tested 24 h later. Muscimol injection into the bilateral BLA, or the unilateral VH and contralateral BLA, but not the unilateral VH and ipsilateral BLA, significantly decreased the retention latencies (versus saline treatment). The results suggest that the VH–BLA circuit could be an important circuit to modulate consolidation of IA memory in rats.
Collapse
Affiliation(s)
- Gong-Wu Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, MOE, and Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Jian Liu
- National Altitude Training Experimental Demonstrational Center, School of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Xiao-Qin Wang
- National Altitude Training Experimental Demonstrational Center, School of Physical Education, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
8
|
Jafari-Sabet M, Karimi AM. Cross state-dependency of learning between arachidonylcyclopropylamide (ACPA) and muscimol in the mouse dorsal hippocampus. Pharmacol Biochem Behav 2017; 163:66-73. [PMID: 29032058 DOI: 10.1016/j.pbb.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to examine cross state-dependent learning between ACPA (a selective cannabinoid CB1 receptor agonist) and muscimol (a selective GABAA receptor agonist) in the step-down inhibitory avoidance learning task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended sites of injection. Post-training and/or pre-test administration of ACPA (1 and 2ng/mouse) dose-dependently induced amnesia. Pre-test microinjection of the same doses of ACPA reversed the post-training ACPA-induced amnesia. This event has been named ACPA state-dependent learning (SDL). Post-training and/or pre-test microinjection of muscimol (0.05 and 0.1μg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of muscimol reversed the post-training muscimol-induced amnesia, suggesting muscimol SDL. The amnesia induced by post-training administration of ACPA was reversed by pre-test administration of muscimol (0.05 and 0.1μg/mouse). Furthermore, the pre-test microinjection of muscimol (0.025 and 0.05μg/mouse) with an ineffective dose of ACPA (0.5ng/mouse) significantly restored memory retrieval and induced ACPA SDL. In another series of experiments, the amnesia induced by post-training administration of muscimol was reversed by pre-test administration of ACPA (1 and 2ng/mouse). Moreover, pre-test microinjection of ACPA (0.5 and 1ng/mouse) with an ineffective dose of muscimol (0.025μg/mouse) significantly restored memory retrieval and induced muscimol SDL. It is important to note that pre-test intra-CA1 injection of a selective GABAA receptor antagonist, bicuculline (0.125 and 0.25μg/mouse), 5min before the administration of muscimol (0.1μg/mouse) or ACPA (2ng/mouse) dose-dependently inhibited muscimol- and ACPA-induced SDL, respectively. Pre-test intra-CA1 administration of bicuculline (0.0625, 0.125 and 0.25μg/mouse) by itself did not affect memory retention. In conclusion, the data strongly revealed a cross SDL among ACPA and muscimol in the dorsal hippocampal CA1 regions.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir-Mohammad Karimi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors. Behav Pharmacol 2016; 27:470-8. [DOI: 10.1097/fbp.0000000000000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Klenowski P, Morgan M, Bartlett SE. The role of δ-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 2014; 172:297-310. [PMID: 24641428 DOI: 10.1111/bph.12618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Paul Klenowski
- Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | |
Collapse
|
12
|
Jafari-Sabet M, Khodadadnejad MA, Ghoraba S, Ataee R. Nitric oxide in the dorsal hippocampal area is involved on muscimol state-dependent memory in the step-down passive avoidance test. Pharmacol Biochem Behav 2014; 117:137-43. [DOI: 10.1016/j.pbb.2013.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/06/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
13
|
Almada RC, Albrechet-Souza L, Brandão ML. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats. J Psychopharmacol 2013; 27:1160-8. [PMID: 23535348 DOI: 10.1177/0269881113482840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.
Collapse
Affiliation(s)
- Rafael C Almada
- 1Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
14
|
Raccuglia D, Mueller U. Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees. Learn Mem 2013; 20:410-6. [PMID: 23860600 DOI: 10.1101/lm.030205.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout the animal kingdom, the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two different approaches to activate GABA receptors during appetitive olfactory conditioning in the honeybee. Injection of GABA-A receptor agonist muscimol 20 min before but not 20 min after associative conditioning affects memory performance. These memory deficits were attenuated by additional training sessions. Muscimol has no effect on sensory perception, odor generalization, and nonassociative learning, indicating a specific role of GABA during associative conditioning. We used photolytic uncaging of GABA to identify the GABA-sensitive time window during the short pairing of the conditioned stimulus (CS) and the unconditioned stimulus (US) that lasts only seconds. Either uncaging of GABA in the antennal lobes or the mushroom bodies during the CS presentation of the CS-US pairing impairs memory formation, while uncaging GABA during the US phase has no effect on memory. Uncaging GABA during the CS presentation in memory retrieval also has no effect. Thus, in honeybee appetitive olfactory learning GABA specifically interferes with the integration of CS and US during associative conditioning and exerts a modulatory role in memory formation depending on the training strength.
Collapse
Affiliation(s)
- Davide Raccuglia
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB Center of Human and Molecular Biology, Faculty 8-Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | | |
Collapse
|
15
|
Leke R, Oliveira DL, Forgiarini LF, Escobar TDC, Hammes TO, Meyer FS, Keiding S, Silveira TR, Schousboe A. Impairment of short term memory in rats with hepatic encephalopathy due to bile duct ligation. Metab Brain Dis 2013; 28:187-92. [PMID: 23111918 DOI: 10.1007/s11011-012-9347-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to cognitive deficits. Different animal models for the study of HE have demonstrated learning and memory impairment and a number of neurotransmitter systems have been proposed to be involved in this. Recently, it was described that bile duct-ligated (BDL) rats exhibited altered spatio-temporal locomotor and exploratory activities and biosynthesis of neurotransmitter GABA in brain cortices. Therefore, the aim of this study was to evaluate cognition in the same animal model. Male adult Wistar rats underwent common bile duct ligation (BDL rats) or manipulation of common bile duct without ligation (control rats). Six weeks after surgery, control and BDL rats underwent object recognition behavioral task. The BDL rats developed chronic liver failure and exhibited a decreased discrimination index for short term memory (STM) when compared to the control group. There was no difference in long term memory (LTM) as well as in total time of exploration in the training, STM and LTM sessions between the BDL and control rats. Therefore, the BDL rats demonstrated impaired STM for recognition memory, which was not due to decreased exploration.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Avenida Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jafari-Sabet M, Banafshe HR, Khodadadnejad MA. Modulation of muscimol state-dependent memory by α2-adrenoceptors of the dorsal hippocampal area. Eur J Pharmacol 2013; 710:92-9. [PMID: 23603244 DOI: 10.1016/j.ejphar.2013.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/30/2022]
Abstract
In the present study, the effects of bilateral intra-dorsal hippocampal (intra-CA1) injections of α2-adrenoceptor agonist and antagonist, on muscimol state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Administration of muscimol (0.1 μg/mouse, intra-CA1) 15 min before training or testing induced impairment of memory retention. Injection of the same dose of the drug 15 min before testing restored memory retention impaired under pre-training muscimol influence. Pre-test intra-CA1 administration of the α2-adrenoceptor agonist clonidine (0.5 and 1 μg/mouse) impaired memory retention, although the low dose of the drug (0.25 μg/mouse) did not affect memory retention. Pre-test intra-CA1 administration of the α2-adrenoceptor antagonist yohimbine (1 and 2 μg/mouse) improved memory retention, although the low dose of the drug (0.5 μg/mouse) did not affect memory retention. In other series of experiments, pre-test co-administration of certain doses of clonidine (0.125 and 0.25 μg/mouse, intra-CA1), doses which were ineffective when given alone, and muscimol (0.1 μg/mouse, intra-CA1) significantly inhibited muscimol state-dependent memory. Pre-test intra-CA1 administration of certain doses of yohimbine (0.25 and 0.5 μg/mouse), doses which were ineffective when given alone, improved pre-training muscimol (0.1 μg/mouse)-induced retrieval impairment. Moreover, pre-test co-administration of yohimbine (0.25 and 0.5 μg/mouse, intra-CA1) and muscimol (0.025 μg/mouse, intra-CA1), an ineffective dose, significantly restored the retrieval and induced muscimol state-dependent memory. It may be concluded that the α2-adrenoceptors of the dorsal hippocampal area play an important role in muscimol state-dependent memory.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
17
|
Morris KA, Gold PE. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments. Exp Gerontol 2013; 48:115-27. [PMID: 23201424 PMCID: PMC3557608 DOI: 10.1016/j.exger.2012.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanisms needed to upregulate memory processes. In the first experiment, young adult and old rats were trained on an inhibitory avoidance task with immediate post-training injections of aCSF or glucose into the dorsal hippocampus. Old rats had significant memory impairments compared to young rats 7 days after training. Intrahippocampal injections of glucose reversed age-related deficits, improving memory scores in old rats to values seen in young rats. A second experiment examined age-related changes in activation of the transcription factor CREB, which is widely implicated in memory formation and may act downstream of hormonal and metabolic signals. Activation was assessed in response to training with systemic injections of epinephrine and glucose at doses known to enhance memory. Young adult and old rats were trained on inhibitory avoidance with immediate post-training systemic injections of saline, epinephrine, or glucose. After training, old rats had significant impairments in CREB phosphorylation in area CA1 and the dentate gyrus region of the hippocampus, and in the basolateral and lateral amygdala. Epinephrine and glucose attenuated age-related deficits in CREB phosphorylation, but were more effective in the amygdala and hippocampus, respectively. Together, these results support the view that age-related changes in blood glucose responses to epinephrine contribute to memory impairments, which may be related to alterations in regional patterns of CREB phosphorylation.
Collapse
Affiliation(s)
- Ken A. Morris
- Neuroscience Program and College of Medicine, University of Illinois at Urbana-Champaign IL 61801
| | - Paul E. Gold
- Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
18
|
Myskiw JC, Izquierdo I. Posterior parietal cortex and long-term memory: some data from laboratory animals. Front Integr Neurosci 2012; 6:8. [PMID: 22375107 PMCID: PMC3287050 DOI: 10.3389/fnint.2012.00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determine the extent to which these findings can be extrapolated to primates, including humans. In these there appears to be a paradox: imaging studies strongly suggest an important participation of the PPC in episodic memory, whereas lesion studies are much less suggestive, let alone conclusive. The data on the participation of the PPC in episodic memory so far do not permit any conclusion as to what aspect of consolidation and retrieval it handles in addition to those dealt with by the hippocampus and basolateral amygdala, if any.
Collapse
Affiliation(s)
- Jociane C Myskiw
- Instituto Nacional de Neurociência Translacional, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre RS, Brazil
| | | |
Collapse
|
19
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
20
|
Bado P, Madeira C, Vargas-Lopes C, Moulin TC, Wasilewska-Sampaio AP, Maretti L, de Oliveira RV, Amaral OB, Panizzutti R. Effects of low-dose D-serine on recognition and working memory in mice. Psychopharmacology (Berl) 2011; 218:461-70. [PMID: 21556803 DOI: 10.1007/s00213-011-2330-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/24/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE D -Serine is an endogenous co-agonist of the N-methyl-D: -aspartate (NMDA) receptor and has been suggested to improve cognitive deficits in schizophrenia. OBJECTIVES The present study investigates the effects of treatment with D -serine in mice on tasks that require recognition learning and working memory, two cognitive domains that are impaired in schizophrenia. METHODS We studied the effects of various regimens of systemic administration of D -serine (50 mg/kg/day) on BALB/c mice performing object recognition, T-maze alternation, and open-field exploration tasks. For the object recognition task, we also contrasted the effects of D -serine and D -cycloserine and investigated whether D -serine could reverse alterations induced by subchronic injections of the NMDA antagonist MK-801. D -Serine levels after injections were measured by high-performance liquid chromatography. RESULTS In the object recognition task, pre-training treatment with D -serine or D -cycloserine significantly enhanced recognition memory 24 h after training. A single administration of D -serine 30 min (but not 6 h) after training produced similar enhancement, suggesting an effect on memory consolidation. Daily treatment with D: -serine enhanced both object recognition and T-maze performance over multiple days and improved short-term memory in MK-801-treated mice. D -Serine treatment did not alter open-field exploration. Behavioral effects were accompanied by increased levels of D -serine in the hippocampus of treated animals. CONCLUSIONS Our results show that treatment with D -serine can improve performance in tasks related to recognition learning and working memory, suggesting that this agent can be useful for the treatment of disorders involving declines in these cognitive domains.
Collapse
Affiliation(s)
- Patricia Bado
- Instituto de Ciências Biomédicas, CCS, sala F1-03, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Picada JN, Dos Santos BDJN, Celso F, Monteiro JD, Da Rosa KM, Camacho LR, Vieira LR, Freitas TM, Da Silva TG, Pontes VM, Pereira P. Neurobehavioral and genotoxic parameters of antipsychotic agent aripiprazole in mice. Acta Pharmacol Sin 2011; 32:1225-32. [PMID: 21841809 DOI: 10.1038/aps.2011.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Aripiprazole is an antipsychotic agent to treat schizophrenia, which acts through dopamine D(2) partial agonism, serotonin 5-HT(1A) partial agonism and 5-HT(2A) antagonism. This study was designed to evaluate the neurobehavioral effects and genotoxic/mutagenic activities of the agent, as well as its effects on lipoperoxidation. METHODS Open field and inhibitory avoidance tasks were used. Thirty min before performing the behavioral tasks, adult male CF-1 mice were administered aripiprazole (1, 3 or 10 mg/kg, ip) once for the acute treatment, or the same doses for 5 d for the subchronic treatment. Genotoxic effects were assessed using comet assay in the blood and brain tissues. Mutagenic effects were evaluated using bone marrow micronucleus test. Lipoperoxidation was assessed with thiobarbituric acid reactive substances (TBARS). RESULTS Acute and subchronic treatments significantly decreased the number of crossing and rearing in the open field task. Acute treatment significantly increased the step-down latency for both the short- and long-term memory in the inhibitory avoidance task. Subchronic treatments with aripiprazole (3 and 10 mg/kg) caused significant DNA strain-break damage in peripheral blood but not in the brain. Mutagenic effect was not detected in the acute and subchronic treatments. Nor TBARS levels in the liver were affected. CONCLUSION Aripiprazole improved memory, but could impair motor activities in mice. The drug increased DNA damage in blood, but did not show mutagenic effects, suggesting that it might affect long-term genomic stability.
Collapse
|
22
|
Jafari-Sabet M. Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-dependent memory of passive avoidance in mice. Life Sci 2011; 88:1136-41. [DOI: 10.1016/j.lfs.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/24/2011] [Accepted: 04/07/2011] [Indexed: 11/27/2022]
|
23
|
Grissom NM, Bhatnagar S. The basolateral amygdala regulates adaptation to stress via β-adrenergic receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience 2011; 178:108-22. [PMID: 21256934 PMCID: PMC3049959 DOI: 10.1016/j.neuroscience.2010.12.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/13/2010] [Accepted: 12/24/2010] [Indexed: 12/28/2022]
Abstract
The reactivity of physiological systems and behavior to psychological stress is reduced with increasing familiarity with a repeated stressor. This reduced reactivity, termed habituation, is a crucial adaptation limiting negative health consequences of stress and can be disrupted in psychopathology. We hypothesized that the ability to habituate physiologically and behaviorally to previously experienced stressors depends on β-adrenergic receptor activation (β-AR) in the basolateral amygdala (BLA), a specific neural substrate important for the consolidation of multiple types of memories. We observed that administration of the β-AR antagonist propranolol into the BLA after each of four daily exposures to restraint stress prevented the normal development of neuroendocrine and behavioral habituation measured during the fifth restraint in adult male rats. In contrast, the β-AR agonist clenbuterol administered into the BLA after each restraint on days 1-4 enhanced neuroendocrine habituation at the lowest dose but attenuated behavioral habituation at high doses. We then explored intracellular signaling mechanisms in the BLA that might be a target of β-AR activation during stress. β-AR activation post restraint is necessary for the alteration in basal phosphorylated ERK (pERK) levels, as daily post-stress β-AR blockade on days 1-4 prevented repeated stress from leading to decreased pERK in the BLA on day 5. Finally, we examined the effect of blocking ERK phosphorylation in the BLA after each restraint on days 1-4 with the MEK (MAPK/ERK kinase) inhibitor U0126, and found that this was sufficient to both mimic neuroendocrine habituation in stress-naive animals and to enhance it in repeatedly stressed animals during restraint on day 5. Together, the results suggest that an individual's ability to habituate to repeated stress is regulated by activation of BLA β-AR, which may have these effects by transducing subsequent reductions in pERK. Individual variations in β-AR activation and intracellular signaling in the BLA may contribute significantly to adaptation to psychological stress and consequent resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Nicola M. Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48104
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
24
|
Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 2010; 35:1625-52. [PMID: 20410874 PMCID: PMC3055480 DOI: 10.1038/npp.2010.53] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/09/2022]
Abstract
The current review systematically documents the role of gamma-amino-butyric acid (GABA) in different aspects of fear memory-acquisition and consolidation, reconsolidation, and extinction, and attempts to resolve apparent contradictions in the data in order to identify the function of GABA(A) receptors in fear memory. First, numerous studies have shown that pre- and post-training administration of drugs that facilitate GABAergic transmission disrupt the initial formation of fear memories, indicating a role for GABA(A) receptors, possibly within the amygdala and hippocampus, in the acquisition and consolidation of fear memories. Similarly, recent evidence indicates that these drugs are also detrimental to the restorage of fear memories after their reactivation. This suggests a role for GABA(A) receptors in the reconsolidation of fear memories, although the precise neural circuits are yet to be identified. Finally, research regarding the role of GABA in extinction has shown that GABAergic transmission is also disruptive to the formation of newly acquired extinction memories. We argue that contradictions to these patterns are the result of variations in (a) the location of drug infusion, (b) the dosage of the drug and/or (c) the time point of drug administration. The question of whether these GABA-induced memory deficits reflect deficits in retrieval is discussed. Overall, the evidence implies that the processes mediating memory stability consequent to initial fear learning, memory reactivation, and extinction training are dependent on a common mechanism of reduced GABAergic neurotransmission.
Collapse
Affiliation(s)
- Steve R Makkar
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Shirley Q Zhang
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Jacquelyn Cranney
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Miwa M, Uchida S, Horiba F, Takeshima H, Nabeshima T, Hiramatsu M. Nociceptin and its metabolite attenuate U0126-induced memory impairment through a nociceptin opioid peptide (NOP) receptor-independent mechanism. Neurobiol Learn Mem 2010; 93:396-405. [PMID: 20026233 DOI: 10.1016/j.nlm.2009.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022]
Abstract
Nociceptin binds to nociceptin opioid peptide (NOP) receptors. We reported that although high doses of nociceptin impaired memory function and that these effects were mediated via NOP receptors, low doses of nociceptin attenuated the memory impairment, and these attenuating effects were not mediated via NOP receptors. Even very low doses of nociceptin were biologically active and suggested a certain binding site for this peptide, but the mechanism underlying this attenuating effect has not yet been elucidated. In the present study, we investigated the effect of an intrahippocampal injection (i.h.) of nociceptin on memory impairment induced by U0126, a MEK inhibitor, and Rp-cAMPS, a PKA inhibitor in a step-down type passive avoidance test. U0126 (2.63 nmol/mouse, i.h.) impaired memory formation and training-dependent phosphorylation of ERK2 in the hippocampus. Co-administration of nociceptin (10 fmol/mouse) significantly attenuated memory impairment, while it did not attenuate the inhibition of training-dependent phosphorylation of ERK2 induced by U0126. On the other hand, nociceptin did not attenuate memory impairment induced by Rp-cAMPS (0.448 nmol/mouse, i.h.). Nociceptin (1 fmol/mouse) also attenuated U0126 (5.26 nmol/mouse)-induced memory impairment in NOP receptor knockout mice. Nociceptin was reported to metabolize into fragments (1-13) and (14-17) in vivo, which showed pharmacological activities without affecting NOP receptors. Our findings showed that nociceptin (14-17) (1 fmol/mouse) also attenuated U0126-induced memory impairment, while nociceptin (1-13) (0.1-10 fmol/mouse) did not attenuate memory impairment. These results suggest a novel action site or mechanism for the attenuating effects of nociceptin and its metabolite, and the sequence of nociceptin (14-17) is a critical structure.
Collapse
Affiliation(s)
- Masaya Miwa
- Laboratory of Neuropsychopharmacology, Graduate School of Environmental and Human Sciences, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Wang CC, Chai SC, Holahan MR. Effect of stimulus pre-exposure on inhibitory avoidance retrieval-associated changes in the phosphorylated form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2). Neurobiol Learn Mem 2009; 93:66-76. [PMID: 19698796 DOI: 10.1016/j.nlm.2009.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
One goal of the present study was to determine how pre-exposure to a set of contextual cues affected subsequent reinforced inhibitory avoidance task performance using those cues (latent inhibition model). In addition, immunohistochemical assessment of the phosphorylated (activated) form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2) was examined. Adult, male Long Evans rats were randomly assigned into either pre-exposure (PE) or different pre-exposure (DPE) groups. All rats received 3days of contextual pre-exposure (same or different context as that used for reinforced training) and were trained, 24h later, on an inhibitory avoidance task (with or without shock). Rats were euthanized 24h after training; half with a retention test and half without. Behaviorally, the PE group showed reduced latencies to enter the dark/shock compartment during the retention test compared to the DPE group showing the latent inhibition phenomenon. Compared to the shocked and tested DPE group, the shocked and tested PE group showed fewer pERK1/2-ir neurons in the secondary motor cortex, the anterior cingulate, the pre- and infra-limbic cortices, and the central nucleus of the amygdala. These regions showed similar numbers of pERK1/2-labeled neurons when comparing the shocked and tested PE group with the nonshocked and tested PE group. This suggests the possibility that brain regions showing decreased pERK1/2 levels in association with attenuated inhibitory avoidance performance may be involved in different aspects of the memory retrieval process.
Collapse
Affiliation(s)
- Chia-Chuan Wang
- School of Medicine, Fu-Jen Catholic University, Taipei Hsien 242, Taiwan
| | | | | |
Collapse
|
27
|
Disorbo A, Wilson GN, Bacik S, Hoxha Z, Biada JM, Mickley GA. Time-dependent retrograde amnesic effects of muscimol on conditioned taste aversion extinction. Pharmacol Biochem Behav 2009; 92:319-26. [PMID: 19171164 DOI: 10.1016/j.pbb.2008.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 12/20/2008] [Accepted: 12/30/2008] [Indexed: 11/29/2022]
Abstract
We explored how stimulation of GABA(A) receptors at different times during conditioned taste aversion (CTA) acquisition or extinction influenced extinction. In Experiment 1, rats acquired a CTA to 0.3% saccharin-flavored water (SAC) when it followed an injection of lithium chloride (LiCl; 81.0 mg/kg, i.p.). Following conditioning, rats received extinction training in which the GABA(A) agonist muscimol (1.0 mg/kg, i.p.), or control (saline) injections, were administered either before or after each extinction trial. Muscimol hindered extinction when administered after extinction trials. Muscimol's inhibitory effects may have impeded extinction learning by disrupting synaptic mechanisms required to consolidate information experienced during extinction training. In Experiment 2, we studied the effects of muscimol on CTA acquisition and subsequent extinction. Rats received muscimol (1.0 mg/kg, i.p.) either before or after CTA conditioning trials. Following CTA acquisition, all rats were given CTA extinction training without muscimol administration. All groups developed CTA, but the group that received muscimol before CTA conditioning trials extinguished rapidly in comparison to other treatment groups. Differences between muscimol's effects on CTA conditioning and CTA extinction indicate that fear conditioning and extinction involve, to some degree, different neuronal mechanisms.
Collapse
Affiliation(s)
- Anthony Disorbo
- Department of Psychology, Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH 44017-2088, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proc Natl Acad Sci U S A 2008; 105:10279-84. [PMID: 18647831 DOI: 10.1073/pnas.0805284105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There is abundant literature on the role of the basolateral amygdala (BLA) and the CA1 region of the hippocampus in memory formation of inhibitory avoidance (IA) and other behaviorally arousing tasks. Here, we investigate molecular correlates of IA consolidation in the two structures and their relation to NMDA receptors (NMDArs) and beta-adrenergic receptors (beta-ADrs). The separate posttraining administration of antagonists of NMDAr and beta-ADr to BLA and CA1 is amnesic. IA training is followed by an increase of the phosphorylation of calcium and calmodulin-dependent protein kinase II (CaMKII) and ERK2 in CA1 but only an increase of the phosphorylation of ERK2 in BLA. The changes are blocked by NMDAr antagonists but not beta-ADr antagonists in CA1, and they are blocked by beta-ADr but not NMDAr antagonists in BLA. In addition, the changes are accompanied by increased phosphorylation of tyrosine hydroxylase in BLA but not in CA1, suggesting that beta-AD modulation results from local catecholamine synthesis in the former but not in the latter structure. NMDAr blockers in CA1 do not alter the learning-induced neurochemical changes in BLA, and beta-ADr blockade in BLA does not hinder those in CA1. When put together with other data from the literature, the present findings suggest that CA1 and BLA play a role in consolidation, but they operate to an extent in parallel, suggesting that each is probably involved with different aspects of the task studied.
Collapse
|
29
|
The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotox Res 2008; 14:273-94. [DOI: 10.1007/bf03033816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Izquierdo I, Cammarota M, Silva WCD, Bevilaqua LR, Rossato JI, Bonini JS, Mello P, Benetti F, Costa JC, Medina JH. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. AN ACAD BRAS CIENC 2008; 80:115-27. [DOI: 10.1590/s0001-37652008000100007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 01/06/2023] Open
Abstract
Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.
Collapse
Affiliation(s)
- Iván Izquierdo
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | | | | | | - Pamela Mello
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
31
|
Cammarota M, Bevilaqua LR, Medina JH, Izquierdo I. ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav Brain Res 2007; 195:120-8. [PMID: 18242725 DOI: 10.1016/j.bbr.2007.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/13/2023]
Abstract
Activity-dependent changes in neuronal efficacy underlie the formation and storage of new memories. Several studies indicate that modification of the phosphorylation/activation state of different protein kinases localized in the synapses or the nucleus plays a critical role in the induction and maintenance of plastic mechanisms and in the consolidation of long-lasting memories. Here we review some of the more recent findings concerning the regulation of two of the main protein kinase groups involved in memory processes and in neuronal plasticity: Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the mitogen-activated protein kinase (MAPK) family. Since this issue of the journal is dedicated to serotonin (5HT) regulation of behavior, we will comment on the so far scanty, but significant, evidence for a role of 5HT in the regulation of CaMKII and MAPK.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Andar 2, Porto Alegre, RS90610-000, Brasil
| | | | | | | |
Collapse
|
32
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
33
|
Rossato JI, Zinn CG, Furini C, Bevilaqua LRM, Medina JH, Cammarota M, Izquierdo I. A link between the hippocampal and the striatal memory systems of the brain. AN ACAD BRAS CIENC 2007; 78:515-23. [PMID: 16936940 DOI: 10.1590/s0001-37652006000300011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/03/2006] [Indexed: 11/22/2022] Open
Abstract
Two major memory systems have been recognized over the years (Squire 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections. Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement; this, if learned well, may be viewed as having become a habit. It is agreed that memory rules change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim to safety) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- Janine I Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
34
|
Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 2007; 32:17-34. [PMID: 16936709 DOI: 10.1038/sj.npp.1301188] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective alpha7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the alpha7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1-3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective alpha7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Cognition Disorders/drug therapy
- Cognition Disorders/etiology
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Exploratory Behavior/drug effects
- Female
- Male
- Maze Learning/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nicotinic Agonists/therapeutic use
- Phencyclidine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/physiology
- Recognition, Psychology/drug effects
- Schizophrenia/complications
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Philippe Pichat
- Central Nervous System Research Department, Sanofi-Aventis, Bagneux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Coitinho AS, Freitas ARO, Lopes MH, Hajj GNM, Roesler R, Walz R, Rossato JI, Cammarota M, Izquierdo I, Martins VR, Brentani RR. The interaction between prion protein and laminin modulates memory consolidation. Eur J Neurosci 2006; 24:3255-64. [PMID: 17156386 DOI: 10.1111/j.1460-9568.2006.05156.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular prion protein (PrPc) has a pivotal role in prion diseases. PrPc is a specific receptor for laminin (LN) gamma1 peptide and several lines of evidence indicate that it is also involved in neural plasticity. Here we investigated whether the interaction between PrPc and LN plays a role in rat memory formation. We found that post-training intrahippocampal infusion of PrPc-derived peptides that contain the LN binding site (PrPc163-182 and PrPc173-192) or of anti-PrPc or anti-LN antibodies that inhibit PrPc-LN interaction impaired inhibitory avoidance memory retention. The amnesic effect of anti-PrPc antibodies and PrPc173-192 peptide was reversed by co-infusion of a LN gamma1 chain-derived peptide containing the PrPc-binding site, suggesting that PrPc-LN interaction is indeed crucial for memory consolidation. In addition, PrPc173-192 peptide and anti-PrPc or anti-LN antibodies also inhibited the activation of hippocampal cAMP-dependent protein kinase A (PKA) and extracellular regulated kinase (ERK1/2), two kinases that mediate the up-regulation of signaling pathways needed for consolidation of inhibitory avoidance memory. Our findings show that, through its interaction with LN, hippocampal PrPc plays a critical role in memory processing and suggest that this role is mediated by activation of both PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Adriana S Coitinho
- Centro Universitário Feevale, Instituto de Ciências da Saúde, RS 239, 2755, 93352-000, Novo Hamburgo, RS, and Centro de Cirurgia de Epilepsia do Estado de Santa Catarina, Hospital Governador Celso Ramos, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cammarota M, Bevilaqua LRM, Vianna MRM, Medina JH, Izquierdo I. The extinction of conditioned fear: structural and molecular basis and therapeutic use. REVISTA BRASILEIRA DE PSIQUIATRIA 2006. [DOI: 10.1590/s1516-44462006005000022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: Through association, a large variety of stimuli acquire the property of signaling pleasant or aversive events. Pictures of a wedding or of a plane disaster may serve as cues to recall these events and/or others of a similar nature or emotional tone. Presentation of the cues unassociated with the events, particularly if repeated, reduces the tendency to retrieve the original learning based on that association. This attenuation of the expression of a learned response was discovered by Pavlov 100 years ago, who called it extinction. In this article we review some of the most recent findings about the behavioral and biochemical properties of extinction. RESULTS AND DISCUSSION: It has been shown that extinction is a new learning based on a new link formed by the cues and the absence of the original event(s) which originated the first association. Extinction does not consist of the erasure of the original memory, but of an inhibition of its retrieval: the original response reappears readily if the former association is reiterated, or if enough time is allowed to pass (spontaneous recovery). Extinction requires neural activity, signaling pathways, gene expression and protein synthesis in the ventromedial prefrontal cortex and/or basolateral amygdala, hippocampus, entorhinal cortex and eventually other areas. The site or sites of extinction vary with the task. CONCLUSIONS: Extinction was advocated by Freud in the 1920's for the treatment of phobias, and is used in cognitive therapy to treat diseases that rely on conditioned fear (phobias, panic, and particularly posttraumatic stress disorder). The treatment of learned fear disorders with medications is still unsatisfactory although some have been shown useful when used as adjuncts to behavioral therapy.
Collapse
Affiliation(s)
- Martín Cammarota
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil; Medical School, Argentina
| | | | | | | | - Iván Izquierdo
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| |
Collapse
|
37
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 2006; 29:496-505. [PMID: 16872686 DOI: 10.1016/j.tins.2006.07.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 07/14/2006] [Indexed: 11/25/2022]
Abstract
To understand cognition, it is important to understand how a learned response becomes a long-lasting memory. This process of memory consolidation has been modeled extensively using one-trial avoidance learning, in which animals (or humans) establish a conditioned response by learning to avoid danger in just one trial. This relies on molecular events in the CA1 region of the hippocampus that resemble those involved in CA1 long-term potentiation (LTP), and it also requires equivalent events to occur with different timings in the basolateral amygdala and the entorhinal, parietal and cingulate cortex. Many of these steps are modulated by monoaminergic pathways related to the perception of and reaction to emotion, which at least partly explains why strong and resistant consolidation is typical of emotion-laden memories. Thus memory consolidation involves a complex network of brain systems and serial and parallel molecular events, even for a task as deceptively simple as one-trial avoidance. We propose that these molecular events might also be involved in many other memory types in animals and humans.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Hospital Sao Lucas, Av. Ipiranga 6690, 2 Andar, (90610-000) Porto Alegre, RS, Brasil.
| | | | | | | | | | | |
Collapse
|
38
|
PARSONS RG, RIEDNER BA, GAFFORD GM, HELMSTETTER FJ. The formation of auditory fear memory requires the synthesis of protein and mRNA in the auditory thalamus. Neuroscience 2006; 141:1163-70. [PMID: 16766126 PMCID: PMC1698266 DOI: 10.1016/j.neuroscience.2006.04.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/17/2006] [Accepted: 04/14/2006] [Indexed: 11/21/2022]
Abstract
The medial geniculate nucleus of the thalamus responds to auditory information and is a critical part of the neural circuitry underlying aversive conditioning with auditory signals for shock. Prior work has shown that lesions of this brain area selectively disrupt conditioning with auditory stimuli and that neurons in the medial geniculate demonstrate plastic changes during fear conditioning. However, recent evidence is less clear as to whether or not this area plays a role in the storage of auditory fear memories. In the current set of experiments rats were given infusions of protein or messenger RNA (mRNA) synthesis inhibitors into the medial geniculate nucleus of the thalamus 30 min prior to auditory fear conditioning. The next day animals were tested to the auditory cue and conditioning context. Results showed that rats infused with either inhibitor demonstrated less freezing to the auditory cue 24 h after training, while freezing to the context was normal. Autoradiography confirmed that the doses used were effective in disrupting synthesis. Taken together with prior work, these data suggest that the formation of fear memory requires the synthesis of new protein and mRNA at multiple brain sites across the neural circuit that supports fear conditioning.
Collapse
Key Words
- pavlovian fear conditioning
- anisomycin
- medial geniculate nucleus
- rat
- distributed plasticity
- consolidation
- acsf, artificial cerebrospinal fluid
- ani, anisomycin
- dmso, dimethyl sulfoxide
- drb, 5,6-dichlorobenzimidazole 1-β-d-ribofuranoside
- erk/mapk, extracellular-signal-related/mitogen-activated protein kinase
- ieg, immediate early gene
- ltp, long-term potentiation
- mgm, medial division of medial geniculate thalamic nucleus
- mrna, messenger rna
- tia, training-induced neuronal activity
Collapse
Affiliation(s)
- R. G. PARSONS
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | | - G. M. GAFFORD
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - F. J. HELMSTETTER
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| |
Collapse
|
39
|
Meyers RA, Zavala AR, Speer CM, Neisewander JL. Dorsal hippocampus inhibition disrupts acquisition and expression, but not consolidation, of cocaine conditioned place preference. Behav Neurosci 2006; 120:401-12. [PMID: 16719704 DOI: 10.1037/0735-7044.120.2.401] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cocaine abusers may experience drug craving upon exposure to environmental contexts where cocaine was experienced. The dorsal hippocampus (DHC) is important for contextual conditioning, therefore the authors examined the specific role of the DHC in cocaine conditioned place preference (CPP). Muscimol was used to temporarily inhibit the DHC and was infused before conditioning sessions or tests for CPP to investigate acquisition and expression of cocaine CPP, respectively. To investigate consolidation, rats received intra-DHC muscimol either immediately or 6 hr after conditioning sessions. Inhibition of DHC, but not the overlying cortex, disrupted acquisition and expression of cocaine CPP. It is interesting to note that there was no effect of post-conditioning DHC inhibition. The findings suggest that the DHC is important for both acquisition and recall, but not consolidation, of context-cocaine associations.
Collapse
Affiliation(s)
- Ryan A Meyers
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA
| | | | | | | |
Collapse
|
40
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M. The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotox Res 2006; 10:113-21. [PMID: 17062373 DOI: 10.1007/bf03033240] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two major memory systems have been recognized over the years (Squire, in Memory and Brain, 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections (Mishkin et al., in Neurobiology of Learning by G Lynch et al., 1984; Knowlton et al., Science 273:1399, 1996). Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement. Animals acquire connections between environmental or discrete sensory cues (conditioned stimuli, CSs) and emotionally or otherwise significant stimuli (unconditioned stimuli, USs). As a result, they learn to perform or to inhibit the performance of certain motor responses to the CS which, when learned well, become what can only be called habits (Mishkin et al., 1984): to regularly walk or swim to a place or away from a place, or to inhibit one or several forms of movement. These responses can be viewed as conditioned responses (CRs) and may sometimes be very complex. This is of course also seen in humans: people learn how to play on a keyboard in response to a mental or written script and perform the piano or write a text; with practice, the performance improves and eventually reaches a high criterion and becomes a habit, performed almost if not completely without awareness. Commuting to school in a big city in the shortest possible time and eschewing the dangers is a complex learning that children acquire to the point of near-perfection. It is agreed that the rules that connect the perception of the CS and the expression of the CR change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Are different brain systems used the first time one plays a sonata or goes to school as compared with the 100th time? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- I Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Andar (90610-000) Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
41
|
Bast T, da Silva BM, Morris RGM. Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J Neurosci 2006; 25:5845-56. [PMID: 15976073 PMCID: PMC6724786 DOI: 10.1523/jneurosci.0698-05.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allocentric place memory may serve to specify the context of events stored in human episodic memory. Recently, our laboratory demonstrated that, analogous to event-place associations in episodic memory, rats could associate, within one trial, a specific food flavor with an allocentrically defined place in an open arena. Encoding, but not retrieval, of such flavor-place associations required hippocampal NMDA receptors; retrieval depended on hippocampal AMPA receptors. This might have partly reflected the contributions of these receptors to encoding and retrieval of one-trial place, rather than flavor-place, memory. Therefore, the present study developed a food-reinforced arena paradigm to study encoding and retrieval of one-trial allocentric place memory in rats; memory relied on visuospatial information and declined with increasing retention delay, still being significant after 6 h, the longest delay tested (experiments 1 and 2). Hippocampal infusion of the NMDA receptor antagonist d-AP-5 blocked encoding without affecting retrieval; hippocampal infusion of the AMPA receptor antagonist CNQX impaired retrieval (experiment 3). Finally, we confirmed that the d-AP-5 infusions selectively blocked induction of long-term potentiation, a form of synaptic plasticity, whereas CNQX impaired fast excitatory transmission, at perforant-path dentate gyrus synapses in the dorsal hippocampus in vivo (experiment 4). Our results support that encoding, but not retrieval, of one-trial allocentric place memory requires the NMDA receptor-dependent induction of hippocampal synaptic plasticity, whereas retrieval depends on AMPA receptor-mediated fast excitatory hippocampal transmission. The contributions of hippocampal NMDA and AMPA receptors to one-trial allocentric place memory may be central to episodic memory and related episodic-like forms of memory in rats.
Collapse
Affiliation(s)
- Tobias Bast
- Laboratory for Cognitive Neuroscience, Division of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom.
| | | | | |
Collapse
|
42
|
Gafford GM, Parsons RG, Helmstetter FJ. Effects of post-training hippocampal injections of midazolam on fear conditioning. Learn Mem 2006; 12:573-8. [PMID: 16322359 PMCID: PMC1356174 DOI: 10.1101/lm.51305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA(A)/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained with a series of white noise-shock pairings. In the first experiment, animals received intrahippocampal infusion of midazolam or vehicle immediately or 3 h after training. Then, 24 h later, freezing to the training context and the white noise were measured independently. Results show infusion of midazolam immediately, but not 3 h, after training selectively attenuates contextual fear conditioning. In the second experiment, animals received intrahippocampal infusions of an antisense oligodeoxynucleotide (ODN) targeting the alpha5 subunit of the GABA(A) receptor or a missense control for several days prior to training and testing. Immediately after training, animals received an infusion of either midazolam or vehicle. Western blots conducted after testing showed a significant decrease in alpha5-containing GABA(A) receptor protein. This reduction did not alter the effectiveness of midazolam immediately after training at impairing context fear memory. Therefore, alpha5-containing GABA(A) receptors may not contribute to the effects of midazolam on context fear conditioning when given immediately post-training.
Collapse
Affiliation(s)
- Georgette M Gafford
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
43
|
Alonso M, Bekinschtein P, Cammarota M, Vianna MRM, Izquierdo I, Medina JH. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 2006; 12:504-10. [PMID: 16204202 PMCID: PMC1240062 DOI: 10.1101/lm.27305] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.
Collapse
Affiliation(s)
- Mariana Alonso
- Department of Neuroscience, Perception and Memory Laboratory, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Parwani A, Weiler MA, Blaxton TA, Warfel D, Hardin M, Frey K, Lahti AC. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers. Psychopharmacology (Berl) 2005; 183:265-74. [PMID: 16220331 DOI: 10.1007/s00213-005-0177-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 08/15/2005] [Indexed: 12/27/2022]
Abstract
RATIONALE N-methyl-D: -aspartate (NMDA) glutamate receptor antagonists have been reported to induce schizophrenia-like symptoms in humans, including memory impairments. Although the NMDA receptor has been shown to impair memory acquisition by disrupting long-term potentiation (LTP), limited research has been done on studying the effects of NMDA antagonists on the post-LTP cascade of events implicated in consolidation as measured by administering the drug after the initial learning experience. OBJECTIVE The purpose of this experiment was to examine the effect of ketamine on mental status and to identify NMDA antagonist-induced memory deficits by comparing the recall performance of items presented both immediately before and during ketamine infusion. METHODS Thirteen normal controls received a 60-min infusion of ketamine in a randomized double-blind, cross-over design. Mental status was evaluated with the Brief Psychiatric Rating Scale and the Clinician-Administered Dissociative States Scale. The first 12-item word list was presented immediately before infusion, and two lists were subsequently presented during the infusion. Verbal memory performance was assessed by measuring the delayed cued recall of each list 30 min after its presentation. RESULTS At the beginning, subjects experienced perceptual and reality distortion symptoms, followed later by mild subjective effects. Ketamine significantly reduced the delayed recall of words presented immediately before, but not during, drug infusion. Ketamine-induced decrements in verbal recall correlated significantly with plasma ketamine levels. CONCLUSION This study characterizes the behavioral effects associated with ketamine and suggests that ketamine decreases verbal memory performance by interfering with early consolidation processes.
Collapse
Affiliation(s)
- Arti Parwani
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
McElroy MW, Korol DL. Intrahippocampal muscimol shifts learning strategy in gonadally intact young adult female rats. Learn Mem 2005; 12:150-8. [PMID: 15805313 PMCID: PMC1074333 DOI: 10.1101/lm.86205] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Learning strategy preferences depend upon circulating estrogen levels, with enhanced hippocampus-sensitive place learning coinciding with elevated estrogen levels. The effects of estrogen on strategy may be mediated by fluctuations in GABAergic function, given that inhibitory tone in the hippocampus is low when estrogen is high. We investigated the effects on learning strategy of intrahippocampal injections of a GABA(A) agonist in gonadally intact female rats. On the day of training, rats received 0.3 microL intrahippocampal infusions of muscimol (0.26 nmol or 2.6 nmol) or saline 20 min prior to training on a T-maze in which place (hippocampus-sensitive) or response (striatum-sensitive) strategies offer effective solutions. Muscimol treatment increased the use of the response strategy in a dose-dependent manner without influencing learning speed, indicating that muscimol modulated strategy and not learning ability. Furthermore, the muscimol-related shift to response strategies varied across the estrous cycle. The results indicate that increasing inhibition in the hippocampus biases rats away from hippocampus-sensitive place learning strategies and toward hippocampus-insensitive response learning strategies without a learning deficit. Furthermore, rats at proestrus demonstrated the most dramatic shift in learning strategy following muscimol treatment compared with control conditions, while rats at estrus demonstrated the most complete bias toward response strategies. The enhanced use of hippocampus-sensitive strategies at proestrus likely results from reduced hippocampal inhibition.
Collapse
Affiliation(s)
- Molly W McElroy
- Neuroscience Program and Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, Illinois 61820, USA
| | | |
Collapse
|
46
|
LaPorte DJ, Blaxton TA, Michaelidis T, Robertson DU, Weiler MA, Tamminga CA, Lahti AC. Subtle effects of ketamine on memory when administered following stimulus presentation. Psychopharmacology (Berl) 2005; 180:385-90. [PMID: 15719220 DOI: 10.1007/s00213-005-2179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 01/06/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE N-methyl-D-aspartate (NMDA) receptor antagonists (e.g., PCP, ketamine) have been shown to impair learning/memory. Well documented in animal models, only limited research in humans has been reported. Findings to date are similar to results of animal studies; however, antagonists are typically administered before the learning experience. This may be problematic as memory failure could be secondary to inattention induced by the psychotomimetic effects of these drugs and/or alterations in sensory processing which can degrade the quality of the stimulus, thereby affecting the accuracy of recall. OBJECTIVE The objective of the study is to compare the effects of ketamine vs placebo on recall for words when administered after stimulus presentation. METHODS In this double-blind crossover study, 24 normal controls were given bolus injections of ketamine (0.3 mg/kg) or placebo. Immediately prior to infusion, subjects were administered a verbal memory test. Delayed recall was measured 45 min postinfusion. Mental status changes were assessed using the Brief Psychiatric Rating Scale. RESULTS Subjects experienced a significant increase in psychiatric symptoms that peaked at 20 min. Results indicate no differences between the drug and placebo conditions for the memory task. However, reminiscence (i.e., recall of previously unrecalled items with repeated testing) was significantly reduced following ketamine administration compared to placebo. CONCLUSIONS Findings suggest that aspects of memory consolidation are affected by drugs that interfere with NMDA receptor function.
Collapse
Affiliation(s)
- David J LaPorte
- Department of Psychology, Indiana University of Pennsylvania, Uhler Hall, Indiana, PA 15705-1068, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cammarota M, Bevilaqua LRM, Medina JH, Izquierdo I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem 2005; 11:572-8. [PMID: 15466311 PMCID: PMC523075 DOI: 10.1101/lm.76804] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.
Collapse
Affiliation(s)
- Martín Cammarota
- Memory Research Laboratory, Institute for Cell Biology and Neuroscience Prof. Dr. Eduardo de Robertis, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | | | | | | |
Collapse
|
48
|
Cammarota M, Bevilaqua LRM, Köhler C, Medina JH, Izquierdo I. Learning twice is different from learning once and from learning more. Neuroscience 2005; 132:273-9. [PMID: 15802182 DOI: 10.1016/j.neuroscience.2005.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2005] [Indexed: 11/29/2022]
Abstract
The rat hippocampus plays a crucial role in the consolidation of a variety of memories, including that for a one trial inhibitory avoidance learning task in which stepping down from a platform is associated with a footshock. Here we show that this is the case regardless of the intensity of the footshock used and hence, of the strength of the learned response. However, additional learning produced by a second training session in this task does not involve the hippocampus but, instead, the striatum. Memory consolidation of the second trial requires glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, N-methyl-D-aspartate and metabotropic receptors, activation of signaling pathways, gene expression and protein synthesis in the striatum, as are required in the hippocampus during memory consolidation of the first trial.
Collapse
Affiliation(s)
- M Cammarota
- Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias Prof. Dr. Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Ciudad Autónoma de Buenos Aires CP 1121, Argentina
| | | | | | | | | |
Collapse
|