1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Saulin A, Horn U, Lotze M, Kaiser J, Hein G. The neural computation of human prosocial choices in complex motivational states. Neuroimage 2021; 247:118827. [PMID: 34923133 DOI: 10.1016/j.neuroimage.2021.118827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Motives motivate human behavior. Most behaviors are driven by more than one motive, yet it is unclear how different motives interact and how such motive combinations affect the neural computation of the behaviors they drive. To answer this question, we induced two prosocial motives simultaneously (multi-motive condition) and separately (single motive conditions). After the different motive inductions, participants performed the same choice task in which they allocated points in favor of the other person (prosocial choice) or in favor of themselves (egoistic choice). We used fMRI to assess prosocial choice-related brain responses and drift diffusion modeling to specify how motive combinations affect individual components of the choice process. Our results showed that the combination of the two motives in the multi-motive condition increased participants' choice biases prior to the behavior itself. On the neural level, these changes in initial prosocial bias were associated with neural responses in the bilateral dorsal striatum. In contrast, the efficiency of the prosocial decision process was comparable between the multi-motive and the single-motive conditions. These findings provide insights into the computation of prosocial choices in complex motivational states, the motivational setting that drives most human behaviors.
Collapse
Affiliation(s)
- Anne Saulin
- Translational Social Neuroscience Unit, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Würzburg 97074, Germany; Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main 60528, Germany.
| | - Ulrike Horn
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald 17489, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main 60528, Germany
| | - Grit Hein
- Translational Social Neuroscience Unit, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Würzburg 97074, Germany; Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main 60528, Germany.
| |
Collapse
|
3
|
Retrograde Labeling Illuminates Distinct Topographical Organization of D1 and D2 Receptor-Positive Pyramidal Neurons in the Prefrontal Cortex of Mice. eNeuro 2020; 7:ENEURO.0194-20.2020. [PMID: 33037031 PMCID: PMC7665905 DOI: 10.1523/eneuro.0194-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 02/04/2023] Open
Abstract
The cortex plays an important role in regulating motivation and cognition, and does so by regulating multiple subcortical brain circuits. Glutamatergic pyramidal neurons in the prefrontal cortex (PFC) are topographically organized in different subregions such as the prelimbic, infralimbic (IL), and orbitofrontal and project to topographically-organized subcortical target regions. Dopamine D1 and D2 receptors are expressed on glutamatergic pyramidal neurons in the PFC. However, it is unclear whether D1 and D2 receptor-expressing pyramidal neurons in the PFC are also topographically organized. We used a retrograde adeno-associated virus (AAVRG)-based approach to illuminate the topographical organization of D1 and D2 receptor-expressing neurons, projecting to distinct striatal and midbrain subregions. Our experiments reveal that AAVRG injection in the nucleus accumbens (NAcc) or dorsal striatum (dSTR) of D1Cre mice labeled distinct neuronal subpopulations in medial orbitofrontal or prelimbic PFC, respectively. However, AAVRG injection in NAcc or dSTR of D2Cre mice labeled medial orbitofrontal, but not medial prelimbic PFC, respectively. Additionally, D2R+ but not D1R+ PFC neurons were labeled on injection of AAVRG in substantia nigra pars compacta (SNpc). Thus, our data are the first to highlight a unique dopamine receptor-specific topographical pattern in the PFC, which could have profound implications for corticostriatal signaling in the basal ganglia.
Collapse
|
4
|
Abstract
Feeding schedules entrain circadian clocks in multiple brain regions and most peripheral organs and tissues, thereby synchronizing daily rhythms of foraging behavior and physiology with times of day when food is most likely to be found. Entrainment of peripheral clocks to mealtime is accomplished by multiple feeding-related signals, including absorbed nutrients and metabolic hormones, acting in parallel or in series in a tissue-specific fashion. Less is known about the signals that synchronize circadian clocks in the brain with feeding time, some of which are presumed to generate the circadian rhythms of food-anticipatory activity that emerge when food is restricted to a fixed daily mealtime. In this commentary, I consider the possibility that food-anticipatory activity rhythms are driven or entrained by circulating ghrelin, ketone bodies or insulin. While evidence supports the potential of these signals to participate in the induction or amount of food-anticipatory behavior, it falls short of establishing either a necessary or sufficient role or accounting for circadian properties of anticipatory rhythms. The availability of multiple, circulating signals by which circadian oscillators in many brain regions might entrain to mealtime has supported a view that food-anticipatory rhythms of behavior are mediated by a broadly distributed system of clocks. The evidence, however, does not rule out the possibility that multiple peripheral and central food-entrained oscillators and feeding-related signals converge on circadian oscillators in a defined location which ultimately set the phase and gate the expression of anticipatory activity rhythms. A candidate location is the dorsal striatum, a core component of the neural system which mediates reward, motivation and action and which contains circadian oscillators entrainable by food and dopaminergic drugs. Systemic metabolic signals, such as ghrelin, ketones and insulin, may participate in circadian food anticipation to the extent that they modulate dopamine afferents to circadian clocks in this area.
Collapse
Affiliation(s)
- Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A2S6, Canada
| |
Collapse
|
5
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ventorp F, Bay-Richter C, Nagendra AS, Janelidze S, Matsson VS, Lipton J, Nordström U, Westrin Å, Brundin P, Brundin L. Exendin-4 Treatment Improves LPS-Induced Depressive-Like Behavior Without Affecting Pro-Inflammatory Cytokines. JOURNAL OF PARKINSONS DISEASE 2018; 7:263-273. [PMID: 28387682 PMCID: PMC5438473 DOI: 10.3233/jpd-171068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Exendin-4 is a peptide agonist of the glucagon-like peptide-1 (GLP-1) receptor, currently in clinical trials as a potential disease-modifying therapy for Parkinson’s disease. In light of this, it is important to understand potential modes of action of exendin-4 in the brain. Exendin-4 is neuroprotective and has been proposed to be directly anti-inflammatory, and that this is one way it reduces neurodegeneration. However, prior studies have focused on animal models involving both neurodegeneration and inflammation, therefore, it is also possible that the observed decreased inflammation is secondary to reduced neurodegeneration. Objective: To investigate whether exendin-4 directly reduces inflammation in the brain following an insult that involves neuroinflammation but not neurodegeneration, namely systemic administration of lipopolysaccharide (LPS). Methods: Rats were administered LPS systemically and were treated with either 0.5 μg/kg exendin-4 or saline vehicle injections over 5 days. Behavior was evaluated with forced swim test. We assayed TNF-α and IL-1β levels in cerebrospinal fluid and cytokine mRNA expression in striatal, hippocampal and cortical tissues using qPCR. We determined brain monoamines using high-performance liquid chromatography. Finally, we isolated primary brain microglia from rats and measured cytokine production after exendin-4 treatment and LPS stimulation. Results: Exendin-4 treatment did not affect cytokine mRNA expression in brain, cytokine levels in cerebrospinal fluid or cytokine production from cultured microglia, although there was a trend towards increased striatal dopamine. Importantly, exendin-4 significantly prevented depressive-like behavior at 24 hours after LPS injection, indicating that the drug engaged a target in the brain. Depressive-like behavior was associated with altered dopamine turnover in the striatum. Conclusion: We did not detect any anti-inflammatory effects of exendin-4. In previous studies exploring the effects of exendin-4 on brain insults involving neurodegeneration, observations of reduced inflammation might have been secondary to mitigation of neuronal death. Our results indicate that the effects of exendin-4 on behavior may be due to effects on dopamine synthesis or metabolism.
Collapse
Affiliation(s)
- Filip Ventorp
- Division of Psychiatry, Lund University, Lund, Sweden
| | | | - Analise Sauro Nagendra
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Jack Lipton
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Åsa Westrin
- Division of Psychiatry, Lund University, Lund, Sweden
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
7
|
Mazzulli JR, Burbulla LF, Krainc D, Ischiropoulos H. Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence. Anal Chem 2016; 88:2399-405. [PMID: 26813311 DOI: 10.1021/acs.analchem.5b04420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.
Collapse
Affiliation(s)
- Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Lena F Burbulla
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Harry Ischiropoulos
- Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, United States.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex 2014; 51:82-91. [DOI: 10.1016/j.cortex.2013.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022]
|
9
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
10
|
Abstract
Novelty and surprise play significant roles in animal behavior and in attempts to understand the neural mechanisms underlying it. They also play important roles in technology, where detecting observations that are novel or surprising is central to many applications, such as medical diagnosis, text processing, surveillance, and security. Theories of motivation, particularly of intrinsic motivation, place novelty and surprise among the primary factors that arouse interest, motivate exploratory or avoidance behavior, and drive learning. In many of these studies, novelty and surprise are not distinguished from one another: the words are used more-or-less interchangeably. However, while undeniably closely related, novelty and surprise are very different. The purpose of this article is first to highlight the differences between novelty and surprise and to discuss how they are related by presenting an extensive review of mathematical and computational proposals related to them, and then to explore the implications of this for understanding behavioral and neuroscience data. We argue that opportunities for improved understanding of behavior and its neural basis are likely being missed by failing to distinguish between novelty and surprise.
Collapse
Affiliation(s)
- Andrew Barto
- School of Computer Science, University of Massachusetts Amherst Amherst, MA, USA
| | - Marco Mirolli
- Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche Rome, Italy
| | - Gianluca Baldassarre
- Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche Rome, Italy
| |
Collapse
|
11
|
Skibicka KP. The central GLP-1: implications for food and drug reward. Front Neurosci 2013; 7:181. [PMID: 24133407 PMCID: PMC3796262 DOI: 10.3389/fnins.2013.00181] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like-peptide-1 (GLP-1) and its long acting analogs comprise a novel class of type 2 diabetes (T2D) treatment. What makes them unique among other T2D drugs is their concurrent ability to reduce food intake, a great benefit considering the frequent comorbidity of T2D and obesity. The precise neural site of action underlying this beneficial effect is vigorously researched. In accordance with the classical model of food intake control GLP-1 action on feeding has been primarily ascribed to receptor populations in the hypothalamus and the hindbrain. In contrast to this common view, relevant GLP-1 receptor populations are distributed more widely, with a prominent mesolimbic complement emerging. The physiological relevance of the mesolimbic GLP-1 is suggested by the demonstration that similar anorexic effects can be obtained by independent stimulation of the mesolimbic and hypothalamic GLP-1 receptors (GLP-1R). Results reviewed here support the idea that mesolimbic GLP-1R are sufficient to reduce hunger-driven feeding, the hedonic value of food and food-motivation. In parallel, emerging evidence suggests that the range of action of GLP-1 on reward behavior is not limited to food-derived reward but extends to cocaine, amphetamine, and alcohol reward. The new discoveries concerning GLP-1 action on the mesolimbic reward system significantly extend the potential therapeutic range of this drug target.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
12
|
Robinson MD, Boyd RL, Liu T. Understanding Personality and Predicting Outcomes: The Utility of Cognitive-Behavioral Probes of Approach and Avoidance Motivation. EMOTION REVIEW 2013; 5. [PMID: 24223624 DOI: 10.1177/1754073913477504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approach and avoidance motivation may represent important explanatory constructs in understanding how individuals differ. Such constructs have primarily been assessed in self-reported terms, but there are limitations to self-reports of motivation. Accordingly, the present review concentrates on the potential utility of implicit cognitive-behavioral probes of approach and avoidance motivation in modeling and understanding individual differences. The review summarizes multiple lines of research that have documented the utility of such probes to the personality-processing interface. Although multiple gaps to our knowledge exist, and are acknowledged, the value of such implicit cognitive-behavioral assessments is emphasized both in modeling multiple sub-components of approach and avoidance motivation and in showing that such tendencies matter in ways that transcend momentary experiences or manipulations.
Collapse
|
13
|
Tellez LA, Ferreira JG, Medina S, Land BB, DiLeone RJ, de Araujo IE. Flavor-independent maintenance, extinction, and reinstatement of fat self-administration in mice. Biol Psychiatry 2013; 73:851-9. [PMID: 23587200 PMCID: PMC3646714 DOI: 10.1016/j.biopsych.2013.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mounting evidence suggests that overeating may be conceptualized within the same behavioral and neurobiological framework as drug addiction. One potentially important difference between overeating versus drug abuse refers to the sensory stimulation of oral receptors by palatable foods, a feature that may be required for reinforcement during intake. Likewise, postingestive effects and caloric content of food also contribute to reinforcing behavior and might influence the development of compulsive eating behavior. The purpose of the current study was to establish whether intragastric self-administration of fat emulsions, that is, bypassing the oral cavity, recapitulates some of the behavioral and neurobiological hallmarks of psychostimulant self-administration. METHODS We used behavioral assays in mice to assess acquisition, maintenance, extinction, and reinstatement of intragastric self-administration of lipid emulsions to determine the extent to which postoral fat self-administration recapitulates psychostimulant self-administration. Striatal dopamine efflux during behavioral tasks was determined by brain microdialysis coupled to chromatographic-electrochemical analyses. RESULTS We show that in direct analogy to drug self-administration, 1) decreases in fat dose concentration were met with compensatory increases in response rates aimed at maintaining constant hourly caloric intake; 2) rates of responding markedly increased during both extinction and progressive ratio schedules of reinforcement; and 3) elevations in striatal dopamine levels observed during maintenance were markedly attenuated during extinction sessions, only to be restored on reinstatement. CONCLUSIONS Our data thus support the contention that stimulation of oral receptors by caloric foods may not be required for the expression of certain addiction-related neurobehavioral markers.
Collapse
Affiliation(s)
- Luis A. Tellez
- The John B Pierce Laboratory, New Haven CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Jozelia G. Ferreira
- The John B Pierce Laboratory, New Haven CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Sara Medina
- The John B Pierce Laboratory, New Haven CT, USA
| | - Benjamin B. Land
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Ralph J. DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA,Department of Neurobiology, Yale University School of Medicine, New Haven CT, USA
| | - Ivan E. de Araujo
- The John B Pierce Laboratory, New Haven CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA,Corresponding Author: Ivan E de Araujo, DPhil, The John B. Pierce Laboratory & Yale University School of Medicine, 290 Congress Avenue, New Haven CT 06519, USA, Phone: +1 (203) 5629901 x204, Fax: +1 (203) 6244950,
| |
Collapse
|
14
|
Mirolli M, Santucci VG, Baldassarre G. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study. Neural Netw 2013; 39:40-51. [PMID: 23353115 DOI: 10.1016/j.neunet.2012.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 11/14/2012] [Accepted: 12/30/2012] [Indexed: 11/16/2022]
Abstract
An important issue of recent neuroscientific research is to understand the functional role of the phasic release of dopamine in the striatum, and in particular its relation to reinforcement learning. The literature is split between two alternative hypotheses: one considers phasic dopamine as a reward prediction error similar to the computational TD-error, whose function is to guide an animal to maximize future rewards; the other holds that phasic dopamine is a sensory prediction error signal that lets the animal discover and acquire novel actions. In this paper we propose an original hypothesis that integrates these two contrasting positions: according to our view phasic dopamine represents a TD-like reinforcement prediction error learning signal determined by both unexpected changes in the environment (temporary, intrinsic reinforcements) and biological rewards (permanent, extrinsic reinforcements). Accordingly, dopamine plays the functional role of driving both the discovery and acquisition of novel actions and the maximization of future rewards. To validate our hypothesis we perform a series of experiments with a simulated robotic system that has to learn different skills in order to get rewards. We compare different versions of the system in which we vary the composition of the learning signal. The results show that only the system reinforced by both extrinsic and intrinsic reinforcements is able to reach high performance in sufficiently complex conditions.
Collapse
Affiliation(s)
- Marco Mirolli
- Istituto di Scienze e Tecnologie della Cognizione (ISTC), CNR, Via San Martino della Battaglia 44, 00185, Roma, Italy.
| | | | | |
Collapse
|
15
|
Social-cooperation differs from individual behavior in hypothalamic and striatal monoamine function: Evidence from a laboratory rat model. Behav Brain Res 2012; 232:252-63. [DOI: 10.1016/j.bbr.2012.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 01/10/2023]
|
16
|
Robinson MD, Ode S, Palder SL, Fetterman AK. Explicit and implicit approach motivation interact to predict interpersonal arrogance. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2012; 38:858-69. [PMID: 22399360 DOI: 10.1177/0146167212437792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Self-reports of approach motivation are unlikely to be sufficient in understanding the extent to which the individual reacts to appetitive cues in an approach-related manner. A novel implicit probe of approach tendencies was thus developed, one that assessed the extent to which positive affective (versus neutral) stimuli primed larger size estimates, as larger perceptual sizes co-occur with locomotion toward objects in the environment. In two studies (total N = 150), self-reports of approach motivation interacted with this implicit probe of approach motivation to predict individual differences in arrogance, a broad interpersonal dimension previously linked to narcissism, antisocial personality tendencies, and aggression. The results of the two studies were highly parallel in that self-reported levels of approach motivation predicted interpersonal arrogance in the particular context of high, but not low, levels of implicit approach motivation. Implications for understanding approach motivation, implicit probes of it, and problematic approach-related outcomes are discussed.
Collapse
|
17
|
Ode S, Winters PL, Robinson MD. Approach motivation as incentive salience: perceptual sources of evidence in relation to positive word primes. Emotion 2012; 12:91-101. [PMID: 21875189 PMCID: PMC3292867 DOI: 10.1037/a0025186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Four experiments (total N = 391) examined predictions derived from a biologically based incentive salience theory of approach motivation. In all experiments, judgments indicative of enhanced perceptual salience were exaggerated in the context of positive, relative to neutral or negative, stimuli. In Experiments 1 and 2, positive words were judged to be of a larger size (Experiment 1) and led individuals to judge subsequently presented neutral objects as larger in size (Experiment 2). In Experiment 3, similar effects were observed in a mock subliminal presentation paradigm. In Experiment 4, positive word primes were perceived to have been presented for a longer duration of time, again relative to both neutral and negative word primes. Results are discussed in relation to theories of approach motivation, affective priming, and the motivation-perception interface.
Collapse
Affiliation(s)
- Scott Ode
- Department of Psychology, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | |
Collapse
|
18
|
Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 2012; 62:2068-77. [PMID: 22261384 DOI: 10.1016/j.neuropharm.2011.12.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/30/2011] [Accepted: 12/27/2011] [Indexed: 11/17/2022]
Abstract
Brain dopamine (DA) and adenosine interact in the regulation of behavioral activation and effort-related processes. In the present studies, a T-maze task was developed in mice for the assessment of effort-related decision making. With this task, the two arms of the maze have different reinforcement densities, and a vertical barrier is positioned in the arm with the higher density (HD), presenting the animal with an effort-related challenge. Under control conditions mice prefer the HD arm, and climb the barrier to obtain the larger amount of food. The DA D(2) receptor antagonist haloperidol decreased selection of the HD arm and increased selection of the arm with the low density of reinforcement. However, the HD arm was still the preferred choice in haloperidol-treated mice trained with barriers in both arms. Pre-feeding the mice to reduce food motivation dramatically increased omissions, an effect that was distinct from the actions of haloperidol. Co-administration of theophylline, a nonselective adenosine receptor antagonist, partially reversed the effects of haloperidol. This effect seems to be mediated by the A(2A) receptor but not the A(1) receptor, since the A(2A) antagonist MSX-3, but not the A(1) antagonist CPT, dose dependently reversed the effects of haloperidol on effort-related choice and on c-Fos expression in the dorsal striatum and nucleus accumbens. In addition, adenosine A(2A) receptor knockout mice were resistant to the effects of haloperidol on effort-related choice in the maze. These results indicate that DA D(2) and adenosine A(2A) receptors interact to regulate effort-related decision making and effort expenditure in mice.
Collapse
Affiliation(s)
- M Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Redgrave P, Vautrelle N, Reynolds J. Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement. Neuroscience 2011; 198:138-51. [DOI: 10.1016/j.neuroscience.2011.07.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 12/31/2022]
|
20
|
Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011; 32:2265-73. [PMID: 21621573 DOI: 10.1016/j.peptides.2011.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-405 30 Gothenburg, Sweden.
| | | |
Collapse
|
21
|
Shiflett MW, Balleine BW. Molecular substrates of action control in cortico-striatal circuits. Prog Neurobiol 2011; 95:1-13. [PMID: 21704115 PMCID: PMC3175490 DOI: 10.1016/j.pneurobio.2011.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 11/24/2022]
Abstract
The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction.
Collapse
|
22
|
Li YC, Gao WJ. GSK-3β activity and hyperdopamine-dependent behaviors. Neurosci Biobehav Rev 2010; 35:645-54. [PMID: 20727368 DOI: 10.1016/j.neubiorev.2010.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/28/2010] [Accepted: 08/11/2010] [Indexed: 01/28/2023]
Abstract
Dopamine plays important roles in normal brain function and many neuropsychiatric disorders. Classically, dopamine receptors are positively coupled to G protein-mediated signaling to regulate cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and Ca(2+) pathways. However, emerging evidence indicates that under hyperdopaminergic conditions, the protein kinase B (Akt)-glycogen synthase kinase 3β (GSK-3β) signaling cascade may mediate dopamine actions via D(2)-like receptors. This cAMP-independent signaling pathway involves the regulation of downstream synaptic targets, e.g., AMPA receptor, NMDA receptors, and thus synaptic plasticity. Here we provide an overview of how this novel signaling pathway relays dopamine receptor-mediated responses, particularly hyperdopamine-dependent behaviors. We discuss the relevance of the Akt/GSK-3β signaling cascade for the expression of dopamine-dependent behaviors and the drug actions associated with dopaminergic systems.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
23
|
Beeler JA, Cao ZFH, Kheirbek MA, Zhuang X. Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology 2009; 34:1149-61. [PMID: 18704092 PMCID: PMC2752723 DOI: 10.1038/npp.2008.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both the dorsal and ventral striatum have been demonstrated to have a critical role in reinforcement learning and addiction. Dissecting the specific function of these striatal compartments and their associated nigrostriatal and mesoaccumbens dopamine pathways, however, has proved difficult. Previous studies using lesions to isolate the contribution of nigrostriatal and mesoaccumbens dopamine in mediating the locomotor and reinforcing effects of psychostimulant drugs have yielded inconsistent and inconclusive results. Using a naturally occurring mutant mouse line, aphakia, that lacks a nigrostriatal dopamine pathway but retains an intact mesoaccumbens pathway, we show that the locomotor activating effects of cocaine, including locomotor sensitization, are dependent on an intact nigrostriatal dopamine projection. In contrast, cocaine reinforcement, as measured by conditioned place preference and cocaine sensitization of sucrose preference, is intact in these mice. In light of the well-established role of the nucleus accumbens in mediating the effects of psychostimulants, these data suggest that the nigrostriatal pathway can act as a critical effector mechanism for the nucleus accumbens highlighting the importance of intrastriatal connectivity and providing insight into the functional architecture of the striatum.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| | | | - Mazen A Kheirbek
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 2008; 1129:35-46. [PMID: 18591467 PMCID: PMC2720267 DOI: 10.1196/annals.1417.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetically engineered mice that lack tyrosine hydroxylase in all dopaminergic neurons become hypoactive and aphagic, and they starve by 4 weeks of age. However, they can be rescued by daily treatment with l-dopa, which restores activity and feeding for about 10 hours. Thus, these mice can be examined in both dopamine-depleted and dopamine-replete states. A series of behavioral experiments lead to the primary conclusion that in the dopamine-depleted state these mice are not motivated to engage in goal-directed behaviors. Nevertheless, they still have a preference for sucrose, they can learn the location of food rewards, and they can form a conditioned-place preference for drugs. Dopamine signaling can be restored to the striatum by several different viral gene-therapy procedures. Restoring dopamine signaling selectively to the dorsal striatum is sufficient to allow feeding, locomotion, and reward-based learning. The rescued mice appear to have normal motivation to engage in all goal-directed behaviors that have been tested. The results suggest that dopamine facilitates the output from dorsal striatum, which provides a permissive signal allowing feeding and other goal-directed behaviors.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND. Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol 2007; 77:98-101. [PMID: 17868972 PMCID: PMC2413324 DOI: 10.1016/j.biopsycho.2007.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 08/10/2007] [Accepted: 08/10/2007] [Indexed: 11/29/2022]
Abstract
Dopamine plays an important role in modulating incentive motivation, expressed behaviorally as approach behavior. EEG studies report association between approach behavior and asymmetric pattern of activation in anterior cortical regions (as measured by the inverse of EEG alpha power). Therefore, individual differences in incentive motivation may reflect asymmetries in dopaminergic systems. We examined this hypothesis by studying the relationship between self-reported degree of incentive motivation, and asymmetry of D2 receptor availability in healthy volunteers. Nineteen healthy participants were studied with positron emission tomography (PET) and [11C]raclopride to assess the availability of dopamine D2 receptors in left and right striatum. Incentive motivation was assessed by the Achievement scale of the Multidimensional Personality Questionnaire. The Achievement score was negatively correlated with the Asymmetry Index ([R-L]/[R+L]) of D2 receptor availability (r=-.721, p=.001), suggesting that greater positive incentive motivation is associated with higher receptor availability in the left relative to the right hemisphere.
Collapse
Affiliation(s)
- Rachel Tomer
- Department of Psychology & Brain and Behavior Center, University of Haifa, Mount Carmel 31905, Israel.
| | | | | | | | | |
Collapse
|
26
|
Robinson S, Rainwater AJ, Hnasko TS, Palmiter RD. Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl) 2007; 191:567-78. [PMID: 17093978 DOI: 10.1007/s00213-006-0579-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/23/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Instrumental responding was evaluated to determine whether mice lacking dopamine [dopamine-deficient mice (DD mice)] could learn to preferentially press a visually cued, active lever for food reward over an inactive lever. RESULTS When DD mice were treated with 3,4-L: -dihydroxyphenalanine (L-dopa) to restore dopamine signaling systemically, they were able to learn to press the active lever as well as control mice, whereas mice lacking dopamine would not perform the task. Importantly, DD mice treated with caffeine (to stimulate locomotor and feeding behaviors) also failed to show preference for the active lever and were slower to retrieve rewards after making a reinforced operant response. Selective restoration of dopamine signaling to the nigrostriatal pathway of DD mice via viral-mediated gene transfer completely restored learning and performance of this simple instrumental task. Furthermore, the virally treated DD mice were willing to lever press as much as control mice for reward in progressive-ratio and high fixed-ratio schedules of reinforcement. CONCLUSION These results suggest that the deficit in goal-directed behavior observed in mice without dopamine signaling is the result of decreased motivation to obtain reward, and that dopamine signaling in the dorsal striatum is sufficient to restore normal goal-directed behavior on a variety of operant responding tasks.
Collapse
Affiliation(s)
- Siobhan Robinson
- Graduate program in Neurobiology & Behavior, Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | | | | | | |
Collapse
|
27
|
Costa RM, Gutierrez R, de Araujo IE, Coelho MRP, Kloth AD, Gainetdinov RR, Caron MG, Nicolelis MAL, Simon SA. Dopamine levels modulate the updating of tastant values. GENES BRAIN AND BEHAVIOR 2006; 6:314-20. [PMID: 16848782 DOI: 10.1111/j.1601-183x.2006.00257.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To survive, animals must constantly update the internal value of stimuli they encounter; a process referred to as incentive learning. Although there have been many studies investigating whether dopamine is necessary for reward, or for the association between stimuli and actions with rewards, less is known about the role of dopamine in the updating of the internal value of stimuli per se. We used a single-bottle forced-choice task to investigate the role of dopamine in learning the value of tastants. We show that dopamine transporter knock-out mice (DAT-KO), which have constitutively elevated dopamine levels, develop a more positive bias towards a hedonically positive tastant (sucrose 400 mM) than their wild-type littermates. Furthermore, when compared to wild-type littermates, DAT-KO mice develop a less negative bias towards a hedonically negative tastant (quinine HCl 10 mM). Importantly, these effects develop with training, because at the onset of training DAT-KO and wild-type mice display similar biases towards sucrose and quinine. These data suggest that dopamine levels can modulate the updating of tastant values, a finding with implications for understanding sensory-specific motivation and reward seeking.
Collapse
Affiliation(s)
- R M Costa
- Department of Neurobiology and Center of Neuroengineering, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|