1
|
Amir CM, Ghahremani DG, Chang SE, Cooper ZD, Bearden CE. Altered neurobehavioral reward response predicts psychotic-like experiences in youth exposed to cannabis prenatally. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.23.24312453. [PMID: 39228696 PMCID: PMC11370518 DOI: 10.1101/2024.08.23.24312453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Importance Rates of prenatal cannabis exposure (PCE) are rising with increasingly permissive legislation regarding cannabis use, which may be a risk factor for psychosis. Disrupted reward-related neural circuitry may underlie this relationship. Objective To elucidate neural mechanisms involved in the association between PCE and youth-onset psychotic-like experiences by probing correlates of reward anticipation, a neurobehavioral marker of endocannabinoid-mediated dopaminergic function. Design setting and participants This longitudinal, prospective study analyzed task-related functional neuroimaging data from baseline (n=11,368), 2-year follow-up (n=7,928), and 4-year follow-up (n=2,982) of the ongoing Adolescent Brain and Cognitive Development (ABCD) Study, which recruited children aged 9 to 10 years old at baseline from 22 sites across the United States. Results PCE (n=652 exposed youth) is longitudinally associated with psychotic-like experiences. Blunted neural response to reward anticipation is associated with psychotic-like experiences, with stronger effects observed in PCE youth (all |β| > 0.5; false discovery rate [FDR]-corrected P < .05). This hypoactivation at baseline predicts psychosis symptomatology in middle adolescence (4-year follow-up visit; β=-.004; FDR-corrected P < .05). Dampened behavioral reward sensitivity is associated with psychotic-like experiences across baseline, 2-year follow-up visit, and 4-year follow-up visit (|β| = .21; FDR-corrected P < .001). Psychotic-like experiences are positively associated with trait-level measures of reward motivation and impulsivity, with stronger effects for PCE youth (all |β| > 0.1; all FDR-corrected P < .05). Conclusions and Relevance Blunted activation in reward-related brain regions may serve as a biomarker for disrupted reward processing and increased psychosis risk during development. PCE may affect childhood behaviors and traits related to altered reward sensitivity.
Collapse
Affiliation(s)
- Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Center for Cannabis and Cannabinoids, University of California, Los Angeles
| | - Sarah E Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ziva D Cooper
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Center for Cannabis and Cannabinoids, University of California, Los Angeles
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Spilka MJ, Raugh IM, Berglund AM, Visser KF, Strauss GP. Reinforcement learning profiles and negative symptoms across chronic and clinical high-risk phases of psychotic illness. Eur Arch Psychiatry Clin Neurosci 2023; 273:1747-1760. [PMID: 36477406 DOI: 10.1007/s00406-022-01528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Negative symptoms are prominent in individuals with schizophrenia (SZ) and youth at clinical high-risk for psychosis (CHR). In SZ, negative symptoms are linked to reinforcement learning (RL) dysfunction; however, previous research suggests implicit RL remains intact. It is unknown whether implicit RL is preserved in the CHR phase where negative symptom mechanisms are unclear, knowledge of which may assist in developing early identification and prevention methods. Participants from two studies completed an implicit RL task: Study 1 included 53 SZ individuals and 54 healthy controls (HC); Study 2 included 26 CHR youth and 23 HCs. Bias trajectories reflecting implicit RL were compared between groups and correlations with negative symptoms were examined. Cluster analysis investigated RL profiles across the combined samples. Implicit RL was comparable between HC and their corresponding SZ and CHR groups. However, cluster analysis was able to parse performance heterogeneity across diagnostic boundaries into two distinct RL profiles: a Positive/Early Learning cluster (65% of participants) with positive bias scores increasing from the first to second task block, and a Negative/Late Learning cluster (35% of participants) with negative bias scores increasing from the second to third block. Clusters did not differ in the proportion of CHR vs. SZ cases; however, the Negative/Late Learning cluster had more severe negative symptoms. Although implicit RL is intact in CHR similar to SZ, distinct implicit RL phenotypic profiles with elevated negative symptoms were identified trans-phasically, suggesting distinct reward-processing mechanisms can contribute to negative symptoms independent of phases of illness.
Collapse
Affiliation(s)
- Michael J Spilka
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Ian M Raugh
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Alysia M Berglund
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Katherine F Visser
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Gregory P Strauss
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Amir CM, Kapler S, Hoftman GD, Kushan L, Zinberg J, Cadenhead KS, Kennedy L, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone W, Tsuang MT, Walker EF, Woods SW, Cannon TD, Addington J, Bearden CE. Neurobehavioral risk factors influence prevalence and severity of hazardous substance use in youth at genetic and clinical high risk for psychosis. Front Psychiatry 2023; 14:1143315. [PMID: 37151981 PMCID: PMC10157227 DOI: 10.3389/fpsyt.2023.1143315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Elevated rates of alcohol, tobacco, and cannabis use are observed in both patients with psychotic disorders and individuals at clinical high risk for psychosis (CHR-P), and strong genetic associations exist between substance use disorders and schizophrenia. While individuals with 22q11.2 deletion syndrome (22qDel) are at increased genetic risk for psychosis, initial evidence suggests that they have strikingly low rates of substance use. In the current study, we aimed to directly compare substance use patterns and their neurobehavioral correlates in genetic and clinical high-risk cohorts. Methods Data on substance use frequency and severity, clinical symptoms, and neurobehavioral measures were collected at baseline and at 12-month follow-up visits in two prospective longitudinal cohorts: participants included 89 22qDel carriers and 65 age and sex-matched typically developing (TD) controls (40.67% male, Mage = 19.26 ± 7.84 years) and 1,288 CHR-P youth and 371 matched TD controls from the North American Prodrome Longitudinal Study-2 and 3 (55.74% male; Mage = 18.71 ± 4.27 years). Data were analyzed both cross-sectionally and longitudinally using linear mixed effects models. Results Controlling for age, sex, and site, CHR-P individuals had significantly elevated rates of tobacco, alcohol, and cannabis use relative to TD controls, whereas 22qDel had significantly lower rates. Increased substance use in CHR-P individuals was associated with increased psychosis symptom severity, dysphoric mood, social functioning, and IQ, while higher social anhedonia was associated with lower substance use across all domains at baseline. These patterns persisted when we investigated these relationships longitudinally over one-year. CHR-P youth exhibited significantly increased positive psychosis symptoms, dysphoric mood, social functioning, social anhedonia, and IQ compared to 22qDel carriers, and lower rates of autism spectrum disorder (ASD) compared to 22qDel carriers, both at baseline and at 1 year follow-up. Conclusion Individuals at genetic and CHR-P have strikingly different patterns of substance use. Factors such as increased neurodevelopmental symptoms (lower IQ, higher rates of ASD) and poorer social functioning in 22qDel may help explain this distinction from substance use patterns observed in CHR-P individuals.
Collapse
Affiliation(s)
- Carolyn M. Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Simon Kapler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jamie Zinberg
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
| | - Leda Kennedy
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
| | - Barbara A. Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Daniel H. Mathalon
- Department of Psychiatry, San Francisco Veterans Affairs (SFVA) Medical Center, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elaine F. Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States
| | - Scott W. Woods
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Tyrone D. Cannon
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
4
|
Associations between long-term psychosis risk, probabilistic category learning, and attenuated psychotic symptoms with cortical surface morphometry. Brain Imaging Behav 2021; 16:91-106. [PMID: 34218406 DOI: 10.1007/s11682-021-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Neuroimaging studies have consistently found structural cortical abnormalities in individuals with schizophrenia, especially in structural hubs. However, it is unclear what abnormalities predate psychosis onset and whether abnormalities are related to behavioral performance and symptoms associated with psychosis risk. Using surface-based morphometry, we examined cortical volume, gyrification, and thickness in a psychosis risk group at long-term risk for developing a psychotic disorder (n = 18; i.e., extreme positive schizotypy plus interview-rated attenuated psychotic symptoms [APS]) and control group (n = 19). Overall, the psychosis risk group exhibited cortical abnormalities in multiple structural hub regions, with abnormalities associated with poorer probabilistic category learning, a behavioral measure strongly associated with psychosis risk. For instance, the psychosis risk group had hypogyria in a right posterior midcingulate cortical hub and left superior parietal cortical hub, as well as decreased volume in a right pericalcarine hub. Morphometric measures in all of these regions were also associated with poorer probabilistic category learning. In addition to decreased right pericalcarine volume, the psychosis risk group exhibited a number of other structural abnormalities in visual network structural hub regions, consistent with previous evidence of visual perception deficits in psychosis risk. Further, severity of APS hallucinations, delusional ideation, and suspiciousness/persecutory ideas were associated with gyrification abnormalities, with all domains associated with hypogyria of the right lateral orbitofrontal cortex. Thus, current results suggest that structural abnormalities, especially in structural hubs, are present in psychosis risk and are associated both with poor learning on a psychosis risk-related task and with APS severity.
Collapse
|
5
|
Reinforcement learning abnormalities in the attenuated psychosis syndrome and first episode psychosis. Eur Neuropsychopharmacol 2021; 47:11-19. [PMID: 33819817 PMCID: PMC8197752 DOI: 10.1016/j.euroneuro.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022]
Abstract
Prior studies indicate that chronic schizophrenia (SZ) is associated with a specific profile of reinforcement learning abnormalities. These impairments are characterized by: 1) reductions in learning rate, and 2) impaired Go learning and intact NoGo learning. Furthermore, each of these deficits are associated with greater severity of negative symptoms, consistent with theoretical perspectives positing that avolition and anhedonia are associated with impaired value representation. However, it is unclear whether these deficits extend to earlier phases of psychotic illness and when individuals are unmedicated. Two studies were conducted to examine reinforcement learning deficits in earlier phases of psychosis and in high risk patients. In study 1, participants included 35 participants with first episode psychosis (FEP) with limited antipsychotic medication exposure and 25 healthy controls (HC). Study 2 included 17 antipsychotic naïve individuals who were at clinical high-risk for psychosis (CHR) (i.e., attenuated psychosis syndrome) and 18 matched healthy controls (HC). In both studies, participants completed the Temporal Utility Integration Task, a measure of probabilistic reinforcement learning that contained Go and NoGo learning blocks. FEP displayed impaired Go and NoGo learning. In contrast, CHR did not display impairments in Go or NoGo learning. Impaired Go learning was not significantly associated with clinical outcomes in the CHR or FEP samples. Findings provide new evidence for areas of spared and impaired reinforcement learning in early phases of psychosis.
Collapse
|
6
|
Millman ZB, Gallagher K, Demro C, Schiffman J, Reeves GM, Gold JM, Rakhshan PJ, Fitzgerald J, Andorko N, Redman S, Buchanan R, Rowland L, Waltz JA. Evidence of reward system dysfunction in youth at clinical high-risk for psychosis from two event-related fMRI paradigms. Schizophr Res 2020; 226:111-119. [PMID: 30995969 PMCID: PMC6801019 DOI: 10.1016/j.schres.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Abnormal reward processing is thought to play an important role in the development of psychosis, but relatively few studies have examined reward prediction errors, reinforcement learning (RL), and the reward circuitry that subserves these interconnected processes among individuals at clinical high-risk (CHR) for the disorder. Here, we present behavioral and functional neuroimaging results of two experimental tasks designed to measure overlapping aspects of reward processing among individuals at CHR (n = 22) and healthy controls (n = 19). We found no group differences in response times to positive, negative, or neutral outcome-signaling cues, and no significant differences in brain activation during reward anticipation or receipt. Youth at CHR, however, displayed clear RL impairments, as well as attenuated responses to rewards and blunted prediction error signals in the ventral striatum, dorsal anterior cingulate cortex (dACC), and ventromedial prefrontal cortex (vmPFC). Greater contrasts for cue valence (gain-loss) and outcome magnitude (large-small) in the vmPFC were associated with more severe negative symptoms, and deficits in dACC signaling during RL were associated with more depressive symptoms. Our results provide evidence for RL deficits and abnormal prediction error signaling in the brain's reward circuitry among individuals at CHR, while also suggesting that reward motivation may be relatively preserved at this stage in development. Longitudinal studies, medication-free participants, and comparison of neurobehavioral measures against both healthy and clinical controls are needed to better understand the role of reward system abnormalities in the development of psychosis.
Collapse
Affiliation(s)
- Zachary B. Millman
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Keith Gallagher
- Department of Psychiatry, University of Maryland, Baltimore, 701 W. Pratt Street, Baltimore MD 21201 USA
| | - Caroline Demro
- Department of Psychiatry, University of Minnesota Medical School, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MD, 55454
| | - Jason Schiffman
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Gloria M. Reeves
- Department of Psychiatry, University of Maryland, Baltimore, 701 W. Pratt Street, Baltimore MD 21201 USA
| | - James M. Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Ave, Catonsville, MD, 21228
| | - Pamela J. Rakhshan
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - John Fitzgerald
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nicole Andorko
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Samantha Redman
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Robert Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Ave, Catonsville, MD, 21228
| | - Laura Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Ave, Catonsville, MD, 21228
| | - James A. Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Ave, Catonsville, MD, 21228
| |
Collapse
|
7
|
Straub KT, Hua JPY, Karcher NR, Kerns JG. Psychosis risk is associated with decreased white matter integrity in limbic network corticostriatal tracts. Psychiatry Res Neuroimaging 2020; 301:111089. [PMID: 32442837 PMCID: PMC7293570 DOI: 10.1016/j.pscychresns.2020.111089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It is thought that altered connectivity between the striatum and the cortex could contribute to psychosis. However, whether psychosis risk is associated with altered white matter connectivity between the striatum and any cortical region is still unclear. Further, no previous study has directly examined whether psychosis risk is associated with altered striatal connectivity with specific cortical networks. The current study examined the integrity of corticostriatal white matter tracts in psychosis risk (n=18) and in non-psychosis risk comparison participants (n=19). We used probabilistic tractography to identify white matter tracts connecting each of four different striatal subregions with their most functionally connected cortical network: limbic, default mode, frontoparietal, and motor networks. We then compared groups on fractional anisotropy in these four tracts. Psychosis risk was associated with decreased fractional anisotropy in white matter tracts connecting the limbic striatum with the limbic cortical network, especially in an anterior right external capsule segment and in tracts specifically connected to the right prefrontal cortex. In contrast, psychosis risk was not associated with decreased white matter integrity in other corticostriatal tracts. Hence, the current research suggests that psychosis risk is especially associated with decreased corticostriatal white matter integrity involved in processing emotional and personally relevant information.
Collapse
Affiliation(s)
- Kelsey T Straub
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica P Y Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
What you want may not be what you like: A test of the aberrant salience hypothesis in schizophrenia risk. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:873-887. [PMID: 32638159 DOI: 10.3758/s13415-020-00807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Motivational abnormalities represent a key area of dysfunction in individuals with, or at risk for, schizophrenia and severely limit broad domains of functioning in these populations. The aberrant salience hypothesis posits that motivational abnormalities are the result of an over-attribution of salience to nonpleasurable stimuli but an under-attribution of salience to pleasurable ones. Consequently, people "want" what they do not "like" but do not "want" what they "like." However, it is unclear how this hypothesis manifests in schizophrenia risk beyond monetary rewards. The current research provided a multimodal investigation of the aberrant salience hypothesis in people with elevated psychotic-like experiences (PLEs) who are at risk for developing psychosis. Study 1 examined the link between liking and incentive salience using a neurobiological indicator of incentive salience (contingent negative variation/CNV) in 23 PLEs and 21 Control participants. The PLEs group showed diminished CNV reactivity to pleasant (vs. neutral) social images, which was driven by an augmented response to neutral stimuli. Study 2 examined liking, incentive salience, and conscious wanting experience using a psychological indicator of incentive salience (positive spontaneous thoughts/PSTs) in 38 PLEs and 246 Control participants. The PLEs group showed diminished correspondence between liking, PSTs, and conscious wanting across diverse reward contexts. Collectively, individuals with PLEs over-attribute salience to neutral stimuli and, to a lesser degree, under-attribute salience to rewards. Findings of the current research support abnormal salience attribution as a trait-like feature implicated in the pathophysiology and development of schizophrenia and provide valuable insights on research and treatment of this illness.
Collapse
|
9
|
Seiler N, Nguyen T, Yung A, O'Donoghue B. Terminology and assessment tools of psychosis: A systematic narrative review. Psychiatry Clin Neurosci 2020; 74:226-246. [PMID: 31846133 DOI: 10.1111/pcn.12966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
AIM Phenomena within the psychosis continuum that varies in frequency/duration/intensity have been increasingly identified. Different terms describe these phenomena, however there is no standardization within the terminology. This review evaluated the definitions and assessment tools of seven terms - (i) 'psychotic experiences'; (ii) 'psychotic-like experiences'; (iii) 'psychotic-like symptoms'; (iv) 'attenuated psychotic symptoms'; (v) 'prodromal psychotic symptoms'; (vi) 'psychotic symptomatology'; and (vii) 'psychotic symptoms'. METHODS EMBASE, MEDLINE, and CINAHL were searched during February-March 2019. Inclusion criteria included 1989-2019, full text, human, and English. Papers with no explicit definition or assessment tool, duplicates, conference abstracts, systematic reviews, meta-analyses, or no access were excluded. RESULTS A total of 2238 papers were identified and of these, 627 were included. Definitions and assessment tools varied, but some trends were found. Psychotic experiences and psychotic-like experiences were transient and mild, found in the general population and those at-risk. Psychotic-like symptoms were subthreshold and among at-risk populations and non-psychotic mental disorders. Attenuated psychotic symptoms were subthreshold but associated with distress, risk, and help-seeking. Prodromal psychotic symptoms referred to the prodrome of psychotic disorders. Psychotic symptomatology included delusions and hallucinations within psychotic disorders. Psychotic symptoms was the broadest term, encompassing a range of populations but most commonly involving hallucinations, delusions, thought disorder, and disorganization. DISCUSSION A model for conceptualizing the required terms is proposed and future directions needed to advance this field of research are discussed.
Collapse
Affiliation(s)
- Natalie Seiler
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,The University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Tony Nguyen
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,The University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Alison Yung
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Brian O'Donoghue
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| |
Collapse
|
10
|
Striatum-related functional activation during reward- versus punishment-based learning in psychosis risk. Neuropsychopharmacology 2019; 44:1967-1974. [PMID: 31272104 PMCID: PMC6784983 DOI: 10.1038/s41386-019-0455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023]
Abstract
Psychosis is strongly related to increased striatal dopamine. However, the neural consequences of increased striatal dopamine in psychosis risk are still not fully understood. Consistent with an increase in striatal dopamine, in previous research, psychosis risk has been associated with neural EEG evidence of a greater response to unexpected reward than unexpected punishment feedback on a reversal-learning task. However, previous research has not directly examined whether psychosis risk is associated with altered striatal activation when receiving unexpected feedback on this task. There were two groups of participants: an antipsychotic medication-naive psychosis risk group (n = 21) who had both (a) extreme levels of self-reported psychotic-like beliefs and experiences and (b) interview-rated current-attenuated psychotic symptoms; and a comparison group (n = 20) who had average levels of self-reported psychotic-like beliefs and experiences. Participants completed a reversal-leaning task during fMRI scanning. As expected, in both ROI and whole-brain analyses, the psychosis risk group exhibited greater striatal activation (for whole-brain analyses, the peak was located in the right caudate) to unexpected reward than unexpected punishment feedback relative to the comparison group. These results indicate that psychosis risk is associated with a relatively increased neural sensitivity to unexpected reward than unexpected punishment outcomes and appears consistent with increased striatal dopamine. The results may help us better understand and detect striatal dysfunction in psychosis risk.
Collapse
|
11
|
Hua JPY, Karcher NR, Merrill AM, O'Brien KJ, Straub KT, Trull TJ, Kerns JG. Psychosis risk is associated with decreased resting-state functional connectivity between the striatum and the default mode network. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:998-1011. [PMID: 30756347 PMCID: PMC6690819 DOI: 10.3758/s13415-019-00698-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Psychosis is linked to aberrant salience or to viewing neutral stimuli as self-relevant, suggesting a possible impairment in self-relevance processing. Psychosis is also associated with increased dopamine in the dorsal striatum, especially the anterior caudate (Kegeles et al., 2010). Critically, the anterior caudate is especially connected to (a) the cortical default mode network (DMN), centrally involved in self-relevance processing, and (b) to a lesser extent, the cortical frontoparietal network (FPN; Choi, Yeo, & Buckner, 2012). However, no previous study has directly examined striatal-cortical DMN connectivity in psychosis risk. In Study 1, we examined resting-state functional connectivity in psychosis risk (n = 18) and control (n = 19) groups between (a) striatal DMN and FPN subregions and (b) cortical DMN and FPN. The psychosis risk group exhibited decreased connectivity between the striatal subregions and the cortical DMN. In contrast, the psychosis risk group exhibited intact connectivity between the striatal subregions and the cortical FPN. Additionally, recent distress was also associated with decreased striatal-cortical DMN connectivity. In Study 2, to determine whether the decreased striatal-cortical DMN connectivity was specific to psychosis risk or was related to recent distress more generally, we examined the relationship between connectivity and distress in individuals diagnosed with nonpsychotic emotional distress disorders (N = 25). In contrast to Study 1, here we found that distress was associated with evidence of increased striatal-cortical DMN connectivity. Overall, the present results suggest that decreased striatal-cortical DMN connectivity is associated with psychosis risk and could contribute to aberrant salience.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Merrill
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Kathleen J O'Brien
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey T Straub
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Timothy J Trull
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Martin EA, Hua JPY, Straub KT, Kerns JG. Explicit and Implicit Affect and Judgment in Schizotypy. Front Psychol 2019; 10:1491. [PMID: 31312158 PMCID: PMC6613436 DOI: 10.3389/fpsyg.2019.01491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Although emotion deficits in schizotypy have been reported, the exact nature of these deficits is now well understood. Specifically, for social anhedonia (SocAnh), there are questions about whether any decrease in positive affect only reflects an explicit bias not observed in other measures (e.g., implicit affect measure). At the same time, for individuals with elevated levels of perceptual aberrations or magical ideation (PerMag), there is some evidence of an increased influence of affect on judgment. It is also possible that the influence of implicit affect on judgment might be especially pronounced in PerMag; however, this has not been previously examined. The current study involved people with elevated levels of SocAnh (n = 95), elevated levels of PerMag (n = 62), and people with average or lower levels of both (n = 246). We found that SocAnh was associated with decreases in both explicit and implicit positive affect. We also found that PerMag was related to stronger relationships between implicit affect, both positive and negative, and a judgment task. These results suggest that decreased positive affect is a core feature of SocAnh and that a heightened influence of affect could be related to the development of peculiar beliefs/experiences associated with PerMag.
Collapse
Affiliation(s)
- Elizabeth A. Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Jessica P. Y. Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - Kelsey T. Straub
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - John G. Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Li LY, Karcher NR, Kerns JG, Fung CK, Martin EA. The subjective-objective deficit paradox in schizotypy extends to emotion regulation and awareness. J Psychiatr Res 2019; 111:160-168. [PMID: 30772760 DOI: 10.1016/j.jpsychires.2019.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/15/2018] [Accepted: 01/30/2019] [Indexed: 01/22/2023]
Abstract
There is an emerging subjective-objective deficit paradox in schizotypy. Individuals with schizotypy report severe subjective complaints in several key functional domains commensurate with that of individuals with schizophrenia. However, objective assessments of the same domains show relatively intact performance. We examined whether this subjective-objective deficit paradox extends to two closely linked affective processes: emotion regulation and awareness. Individuals with elevated social anhedonia (SocAnh; n = 61) and elevated perceptual aberration/magical ideation (PerMag; n = 73) were compared to control participants (n = 81) on subjective and objective measures of emotion regulation and awareness. Subjective measures included self-report questionnaires assessing regulatory ability, attention to emotion, and emotional clarity. Implicit emotion regulation was assessed by the Emotion Regulation-Implicit Association Test (ER-IAT) while objective emotional awareness was assessed by the Levels of Emotional Awareness Scale (LEAS), a performance-based test. Results showed that both SocAnh and PerMag groups reported notable deficits in almost all subjective measures relative to controls (composite ds > 0.55). In contrast, performance on ER-IAT and LEAS was very similar to controls (composite ds < 0.11). The current study suggests that the subjective-objective deficit paradox extends to emotion regulation and awareness, highlighting the importance of higher-order cognitive bias in understanding emotional abnormalities in schizotypy.
Collapse
Affiliation(s)
- Lilian Yanqing Li
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Nicole R Karcher
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Christie K Fung
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Karcher NR, Hua JPY, Kerns JG. Probabilistic Category Learning and Striatal Functional Activation in Psychosis Risk. Schizophr Bull 2019; 45:396-404. [PMID: 29590478 PMCID: PMC6403050 DOI: 10.1093/schbul/sby033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Psychosis risk is associated with striatal dysfunction, including a previous behavioral study that found that psychosis risk is associated with impaired performance on a probabilistic category learning task (PCLT; ie, the Weather Prediction Task), a task strongly associated with striatal activation. The current study examined whether psychosis risk based on symptom levels was associated with both poor behavioral performance and task-related physiological dysfunction in specific regions of the striatum while performing the PCLT. METHODS There were 2 groups of participants: psychosis risk (n = 21) who had both (a) extreme levels of self-reported psychotic-like beliefs and experiences and (b) interview-rated current attenuated psychotic symptoms (APS); and a comparison group (n = 20) who had average levels of self-reported psychotic-like beliefs and experiences. Participants completed the PCLT during fMRI scanning. RESULTS The current research replicated previous work finding behavioral PCLT deficits at the end of the task in psychosis risk. Furthermore, as expected, the psychosis risk group exhibited decreased striatal activation on the task, especially in the associative striatum. The psychosis risk group also displayed decreased activation in a range of cortical regions connected to the associative striatum. In contrast, the psychosis risk group exhibited greater activation predominantly in cortical regions not connected to the associative striatum. CONCLUSIONS Psychosis risk was associated with both behavioral and striatal dysfunction during performance on the PCLT, suggesting that behavioral and imaging measures using this task could be a marker for psychosis risk.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, Columbia, MO,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO,To whom correspondence should be addressed; Department of Psychological Sciences, University of Missouri, 214 McAlester Hall, Columbia, MO 65211; tel: 573-882-8846, fax: 573-882-7710, e-mail:
| | - Jessica P Y Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
15
|
Docherty AR, Fonseca-Pedrero E, Debbané M, Chan RCK, Linscott RJ, Jonas KG, Cicero DC, Green MJ, Simms LJ, Mason O, Watson D, Ettinger U, Waszczuk M, Rapp A, Grant P, Kotov R, DeYoung CG, Ruggero CJ, Eaton NR, Krueger RF, Patrick C, Hopwood C, O’Neill FA, Zald DH, Conway CC, Adkins DE, Waldman ID, van Os J, Sullivan PF, Anderson JS, Shabalin AA, Sponheim SR, Taylor SF, Grazioplene RG, Bacanu SA, Bigdeli TB, Haenschel C, Malaspina D, Gooding DC, Nicodemus K, Schultze-Lutter F, Barrantes-Vidal N, Mohr C, Carpenter WT, Cohen AS. Enhancing Psychosis-Spectrum Nosology Through an International Data Sharing Initiative. Schizophr Bull 2018; 44:S460-S467. [PMID: 29788473 PMCID: PMC6188505 DOI: 10.1093/schbul/sby059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The latent structure of schizotypy and psychosis-spectrum symptoms remains poorly understood. Furthermore, molecular genetic substrates are poorly defined, largely due to the substantial resources required to collect rich phenotypic data across diverse populations. Sample sizes of phenotypic studies are often insufficient for advanced structural equation modeling approaches. In the last 50 years, efforts in both psychiatry and psychological science have moved toward (1) a dimensional model of psychopathology (eg, the current Hierarchical Taxonomy of Psychopathology [HiTOP] initiative), (2) an integration of methods and measures across traits and units of analysis (eg, the RDoC initiative), and (3) powerful, impactful study designs maximizing sample size to detect subtle genomic variation relating to complex traits (the Psychiatric Genomics Consortium [PGC]). These movements are important to the future study of the psychosis spectrum, and to resolving heterogeneity with respect to instrument and population. The International Consortium of Schizotypy Research is composed of over 40 laboratories in 12 countries, and to date, members have compiled a body of schizotypy- and psychosis-related phenotype data from more than 30000 individuals. It has become apparent that compiling data into a protected, relational database and crowdsourcing analytic and data science expertise will result in significant enhancement of current research on the structure and biological substrates of the psychosis spectrum. The authors present a data-sharing infrastructure similar to that of the PGC, and a resource-sharing infrastructure similar to that of HiTOP. This report details the rationale and benefits of the phenotypic data collective and presents an open invitation for participation.
Collapse
Affiliation(s)
- Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT,Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA,To whom correspondence should be addressed; Department of Psychiatry, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, UT 84110, US; tel: +1-801-213-6905, fax: +1-801-581-7109, e-mail:
| | | | - Martin Debbané
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK,Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | - Katherine G Jonas
- Department of Psychiatry, Stony Brook School of Medicine, Stony Brook, NY
| | - David C Cicero
- Department of Psychology, University of Hawaii at Manoa, Honolulu, HI
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Leonard J Simms
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY
| | - Oliver Mason
- Department of Psychology, University of Surrey, Guildford, UK
| | - David Watson
- Department of Psychology, University of Notre Dame, Notre Dame, IN
| | | | - Monika Waszczuk
- Department of Psychiatry, Stony Brook School of Medicine, Stony Brook, NY
| | - Alexander Rapp
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Phillip Grant
- Department of Psychology, Justus-Liebig-University Giessen, Giessen, Germany,Technische Hochschule Mittelhessen, University of Applied Sciences, Giessen, Germany
| | - Roman Kotov
- Department of Psychiatry, Stony Brook School of Medicine, Stony Brook, NY
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | | | - Nicolas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | | | | | - F Anthony O’Neill
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Belfast, UK
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN,Department of Psychiatry, Vanderbilt University, Nashville, TN
| | | | - Daniel E Adkins
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT,Department of Sociology, University of Utah, Salt Lake City, UT
| | | | - Jim van Os
- Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands,King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, UK,Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center, Utrecht, The Netherlands
| | - Patrick F Sullivan
- Department of Psychiatry, University of North Carolina—Chapel Hill, Chapel Hill, NC,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John S Anderson
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT
| | - Scott R Sponheim
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | | | | | - Silviu A Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Tim B Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA,Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, UK
| | | | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Diane C Gooding
- Department of Psychology, University of Wisconsin—Madison, Madison, WI
| | - Kristin Nicodemus
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Heinrich-Heine University, Dusseldorf, Germany
| | - Neus Barrantes-Vidal
- Department of Clinical Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain,Centre for Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC,Sant Pere Claver—Fundació Sanitària, Barcelona, Spain
| | - Christine Mohr
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
16
|
Hua JPY, Kerns JG. Differentiating positive schizotypy and mania risk scales and their associations with spontaneous eye blink rate. Psychiatry Res 2018; 264:58-66. [PMID: 29627698 DOI: 10.1016/j.psychres.2018.03.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/05/2023]
Abstract
Positive schizotypy and mania risk scales are strongly correlated, and both are linked to alterations in striatal dopamine. Previous research has not examined whether these risk scales form distinct factors or whether they are differentially related to other measures of psychopathology risk or striatal dopamine. In the current study (N = 596), undergraduate students completed both positive schizotypy and mania risk scales as well as scales assessing related psychopathology (i.e., negative and disorganized schizotypy; self-reported manic-like episodes). Additionally, we measured spontaneous eye blink rate, which has been consistently associated with striatal dopamine levels. Positive schizotypy and mania risk factors were strongly correlated (factor correlation = 0.73). However, a two-factor model with positive schizotypy and mania risk as separate factors fit significantly better than a one-factor risk model. After removing shared variance, only positive schizotypy was positively associated with both negative and disorganized schizotypy, and only mania risk was related to self-reported manic-like episodes. Furthermore, positive schizotypy was associated with decreased spontaneous eye blink rate, and mania risk was associated with increased spontaneous eye blink rate. Overall, these results suggest that positive schizotypy and mania risk can be distinguished as separate factors and that they might be differentially associated with striatal dopamine measures.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
17
|
|
18
|
Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression. Dev Psychopathol 2017; 28:1177-1208. [PMID: 27739396 DOI: 10.1017/s0954579416000754] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.
Collapse
|
19
|
Fung CK, Moore MM, Karcher NR, Kerns JG, Martin EA. Emotional word usage in groups at risk for schizophrenia-spectrum disorders: An objective investigation of attention to emotion. Psychiatry Res 2017; 252:29-37. [PMID: 28242515 PMCID: PMC5438895 DOI: 10.1016/j.psychres.2017.01.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/06/2016] [Accepted: 01/21/2017] [Indexed: 01/21/2023]
Abstract
Both extreme levels of social anhedonia (SocAnh) and extreme levels of perceptual aberration/magical ideation (PerMag) indicate increased risk for schizophrenia-spectrum disorders and are associated with emotional deficits. For SocAnh, there is evidence of self-reported decreased trait positive affect and abnormalities in emotional attention. For PerMag, there is evidence of increased trait negative affect and increased attention to negative emotion. Yet, the nature of more objective emotional abnormalities in these groups is unclear. The goal of this study was to assess attention to emotions more objectively in a SocAnh, PerMag, and control group by using a positive (vs. neutral) mood induction procedure followed by a free writing period. Linguistic analyses revealed that the SocAnh group used fewer positive emotion words than the control group, with the PerMag group falling in between the others. In addition, both at-risk groups used more negative emotion words than the control group. Also, for the control group only, those in the positive mood induction used more positive emotion words, suggesting their emotions influenced their linguistic expression. Overall, SocAnh is associated with decreased positive emotional expression and at-risk groups are associated with increased negative emotional expression and a decreased influence of emotions on linguistic expression.
Collapse
Affiliation(s)
- Christie K Fung
- Department of Psychology and Social Behavior, University of California, Irvine, Irvine, CA, USA
| | - Melody M Moore
- Department of Psychology and Social Behavior, University of California, Irvine, Irvine, CA, USA
| | - Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Elizabeth A Martin
- Department of Psychology and Social Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
20
|
Associations between Electrophysiological Evidence of Reward and Punishment-Based Learning and Psychotic Experiences and Social Anhedonia in At-Risk Groups. Neuropsychopharmacology 2017; 42:925-932. [PMID: 27629367 PMCID: PMC5312063 DOI: 10.1038/npp.2016.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
Both positive psychotic symptoms and anhedonia are associated with striatal functioning, but few studies have linked risk for psychotic disorders to a neural measure evoked during a striatal dopamine-related reward and punishment-based learning task, such as a reversal learning task (RLT; Cools et al, 2009). The feedback-related negativity (FRN) is a neural response that in part reflects striatal dopamine functioning. We recorded EEG during the RLT in three groups: (a) people with psychotic experiences (PE; n=20) at increased risk for psychotic disorders; (b) people with extremely elevated social anhedonia (SocAnh; n=22); and (c) controls (n=20). Behaviorally, consistent with increased striatal dopamine, the PE group exhibited better behavioral learning (ie, faster responses) after unexpected reward than after unexpected punishment. Moreover, although the control and SocAnh groups showed a larger FRN to punishment than reward, the PE group showed similar FRNs to punishment and reward, with a numerically larger FRN to reward than punishment (with similar results on these trials also found for a P3a component). These results are among the first to link a neural response evoked by a reward and punishment-based learning task specifically with elevated psychosis risk.
Collapse
|
21
|
Martin EA, Karcher NR, Bartholow BD, Siegle GJ, Kerns JG. An electrophysiological investigation of emotional abnormalities in groups at risk for schizophrenia-spectrum personality disorders. Biol Psychol 2017; 124:119-132. [PMID: 28174121 DOI: 10.1016/j.biopsycho.2017.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/20/2022]
Abstract
Both extreme levels of social anhedonia (SocAnh) and perceptual aberration/magical ideation (PerMag) are associated with risk for schizophrenia-spectrum disorders and with emotional abnormalities. Yet, the nature of any psychophysiological-measured affective abnormality, including the role of automatic/controlled processes, is unclear. We examined the late positive potential (LPP) during passive viewing (to assess automatic processing) and during cognitive reappraisal (to assess controlled processing) in three groups: SocAnh, PerMag, and controls. The SocAnh group exhibited an increased LPP when viewing negative images. Further, SocAnh exhibited greater reductions in the LPP for negative images when told to use strategies to alter negative emotion. Similar to SocAnh, PerMag exhibited an increased LPP when viewing negative images. However, PerMag also exhibited an increased LPP when viewing positive images as well as an atypical decreased LPP when increasing positive emotion. Overall, these results suggest that at-risk groups are associated with shared and unique automatic and controlled abnormalities.
Collapse
Affiliation(s)
- Elizabeth A Martin
- Department of Psychology and Social Behavior, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697, United States.
| | - Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, United States
| | - Bruce D Bartholow
- Department of Psychological Sciences, University of Missouri, United States
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, United States
| |
Collapse
|