1
|
Xiong B, Cheng H, Deng Y, Imanaka T, Igarashi Y, Ma M, Du H, Wang D. Role of Methanosarcina in mercuric mercury transportation and methylation in sulfate-driven anaerobic oxidation of methane with municipal wastewater sludge. ENVIRONMENTAL RESEARCH 2025; 267:120689. [PMID: 39716678 DOI: 10.1016/j.envres.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing. Results showed that methylmercury (MeHg) concentrations and MeHg/total Hg ratios increased significantly, implying mercuric Hg [Hg(II)] methylation predominated MeHg demethylation. Desulfovibrio, Desulfobulbus and Methanosarcina dominated and thus likely played important roles in Hg(II) methylation, while Methanosarcina dominated and functioned in methane metabolism. In the presence of sulfate, differentially-expressed genes (DEGs) related to Hg transporting ATPase increased significantly, indicating Methanosarcina absorbed a large amount of Hg(II) and likely further methylated it to MeHg. No Hg response DEGs were found in the absence of sulfate, further confirming sulfate played an essential role in Hg cycle. Overall, these results suggest that controlling sulfate levels and Methanosarcina abundances in municipal wastewater could potentially mitigate MeHg risks to humans.
Collapse
Affiliation(s)
- Bingcai Xiong
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
2
|
Ghosh S, Malakar CC, Pahari P, Kumar Atta A. Amide/urea-based simple fluorometric receptors for iodide and Hg 2+ ions in aqueous medium: Aggregation induced emission and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125134. [PMID: 39321545 DOI: 10.1016/j.saa.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Herein, we report pyrene-tagged amide and urea-based sugar derivatives 1 and 2 in a simple synthetic pathway to recognize I- and Hg2+ ions. Both molecules showed absorbance and fluorescence selectivity towards iodide ions in THF/H2O (7/3, v/v) medium. The selectivity and sensitivity of 2 for iodide ions are superior to 1 due to more H-bond donors in 2. Interestingly, fluorometric receptor 2 exhibited aggregation-induced emission (AIE) at higher pH with a remarkable fluorometric color change. The AIE phenomenon might be explained by the self-association of 2 after forming imine functionality in the alkali medium. The Stern-Volmer plot showed the fluorescence quenching constant of each receptor with an iodide ion and indicated the quenching pathway. The LODs of 1 and 2 for iodide ions were evaluated as 0.84 and 0.17 µM, respectively. The 1:1 binding stoichiometry of 1 or 2 with iodide was found from the Job plot and verified by measuring the complex mass. Further, the complexes of each receptor with I- ions can detect Hg2+ ions selectively by fluorescence turn-on method with low sensitivities (LODs: 0.008 µM for 1 and 0.01 µM for 2). DFT results were used to understand the binding mode of receptors 1 and 2 with iodide ions and the quenching process in the aqueous THF medium. The real application of the receptors was established for the recovery of iodide and Hg2+ ions from natural water samples.
Collapse
Affiliation(s)
- Suprava Ghosh
- Department of Basic & Applied Science, National Institute of Technology, Arunachal Pradesh, Jote 791113, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Manipur 795004, India
| | - Pallab Pahari
- Chemical Science & Technology Division, CSIR-NEIST, Jorhat 785006, India
| | - Ananta Kumar Atta
- Department of Chemistry, National Institute of Technology Jamshedpur, Jharkhand 831014, India.
| |
Collapse
|
3
|
Schartup AT, Choy CA. Regional variation in fish mercury. NATURE FOOD 2024; 5:807-808. [PMID: 39375578 DOI: 10.1038/s43016-024-01062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Affiliation(s)
- Amina T Schartup
- Scripps Institution of Oceanography, Scripps Center for Oceans and Human Health, University of California San Diego, La Jolla, CA, USA.
| | - C Anela Choy
- Scripps Institution of Oceanography, Scripps Center for Oceans and Human Health, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, Wang R, Liu Z, Zhang Q, Bai S, Fu M, Zhang Y. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. TOXICS 2024; 12:715. [PMID: 39453135 PMCID: PMC11511217 DOI: 10.3390/toxics12100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Collapse
Affiliation(s)
- Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Runjie Gan
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning 530025, China
| | - Bensen Xian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Tong Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Guoping Wu
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Shixin Huang
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin 541100, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
5
|
Reis J, Spencer PS. An introduction to environmental neurotoxicology: Lessons from a clinical perspective. J Neurol Sci 2024; 463:123108. [PMID: 38991324 DOI: 10.1016/j.jns.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- J Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - P S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Wang L, Liu H, Wang F, Wang Y, Xiang Y, Chen Y, Wang J, Wang D, Shen H. The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria. Front Microbiol 2024; 15:1376844. [PMID: 39015741 PMCID: PMC11249568 DOI: 10.3389/fmicb.2024.1376844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown. To address this gap, aerobic γ-Proteobacteria strains Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium escambiense CGMCC 1.3481 (DE), were used as experimental strains. The growth and methylation ability of each strain were analyzed under conditions of 500 ng·L-1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1 mM of MoO4 2-. In addition, in order to explore the metabolic specificity of aerobic strains, transcriptomic data of the facultative mercury-methylated strain B3 were further analyzed in an aerobic mercuric environment. The results indicated that: (a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited normal growth. (b) Under anaerobic conditions, in DE, the MeHg content decreased significantly with increasing molybdate concentration, while in B3, MeHg production was unaffected. Furthermore, under aerobic conditions, the MeHg productions of B3 and B4 were not influenced by the molybdate concentration. (c) The transcriptomic analysis showed several genes that were annotated as members of the molybdenum oxidoreductase family of B3 and that exhibited significant differential expression. These findings suggest that the differential expression of molybdenum-binding proteins might be related to their involvement in energy metabolism pathways that utilize nitrate and dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, rendering their growth and biomethylation abilities unaffected by molybdate.
Collapse
Affiliation(s)
- Lanjing Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hang Liu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Feng Wang
- Research Center of Biology, Southwest University, Chongqing, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yongyi Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jiwu Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing, China
- Research Center of Biology, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Chen Y, Zhang Q, Zhang L, Liu X, Li Y, Liu R, Wang Y, Song Y, Li Y, Yin Y, Cai Y. Light-induced degradation of dimethylmercury in different natural waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134113. [PMID: 38565021 DOI: 10.1016/j.jhazmat.2024.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.
Collapse
Affiliation(s)
- Yingying Chen
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, China.
| | - Lian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China; Yantai Port United General Wharf Company, Yantai 264012, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Song
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
8
|
Yu C, Peng M, Wang X, Pan X. Photochemical demethylation of methylmercury (MeHg) in aquatic systems: A review of MeHg species, mechanisms, and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123297. [PMID: 38195023 DOI: 10.1016/j.envpol.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Photodemethylation is the major pathway of methylmercury (MeHg) demethylation in surface water before uptake by the food chain, whose mechanisms and influence factors are still not completely understood. Here, we review the current knowledge on photodemethylation of MeHg and divide MeHg photolysis into three pathways: (1) direct photodemethylation, (2) free radical attack, and (3) intramolecular electron or energy transfer. In aquatic environments, dissolved organic matter is involved into all above pathways, and due to its complex compositions, properties and concentrations, DOM poses multiple functions during the PD of MeHg. DOM-MeHg complex (mainly by sulfur-containing molecules) might weaken the C-Hg bond and enhance PD through both direct and indirect pathways. In special, synergistic effects of both strong binding sites and chromophoric moieties in DOM might lead to intramolecular electron or energy transfer. Moreover, DOM might play a role of radical scavenger; while triplet state DOM, which is generated by chromophoric DOM under light, might become a source of free radicals. Apart from DOMs, transition metals, halides, NO3-, NO2-, and carbonates also act as radical initialaters or scavengers, and significantly pose effects on radical demethylation, which is generally mediated by hydroxyl radicals and singlet oxygen. Environmental factors such as pH, light wavelength, light intensity, dissolved oxygen, salinity, and suspended particles also affect the PD of MeHg. This study assessed previously published works on three major mechanisms, with the goal of providing general estimates for photodemethylation under various environment factors according to know effects, and highlighting the current uncertainties for future research directions.
Collapse
Affiliation(s)
- Chenghao Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mao Peng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Jiang N, Zhang C, Ge L, Huang S, Chen X. Unique three-dimensional ordered macroporous dealloyed gold-silver electrochemical sensing platforms for ultrasensitive mercury(II) monitoring. Analyst 2024; 149:1141-1150. [PMID: 38226552 DOI: 10.1039/d3an02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
To address the requirement of ultra-sensitive detection of trace mercury(II) (Hg2+) ions in the environment and food, we developed an electrochemical biosensor with super-sensitivity, extremely high selectivity, and reusability. This biosensor comprised two signal amplification components: a three-dimensional macroporous dealloyed (3DOMD) Au-Ag thin-film electrode and a multifunctional encoded Au@Pt nanocage (APNC). As a platform for immobilized capture DNA (cDNA), a 3DOMD Au-Ag thin film prepared by a dealloying method with an active surface area 4.8 times higher than that of 3D macroporous gold films generated by cyclic voltammetry (CV) with sulfuric acid was capable of increasing the sensing surface area while also strengthening the electron transport capacity of the sensing substrate due to its multilayered multi-porous framework. In the presence of Hg2+, probe DNA (pDNA) could be hybridized with the mismatched capture DNA (cDNA) through stable thymine-Hg2+-thymine (T-Hg2+-T) linkages, connecting thionine-APNC to the electrode surface and utilizing the large specific surface area to accomplish highly sensitive detection of Hg2+. With an extremely low Hg2+ detection limit of 2 pM and a detection range from 0.01 to 1000 nM, this technique opened up a new avenue for the ultrasensitive detection of a wider range of heavy metal ions or biomolecules.
Collapse
Affiliation(s)
- Nan Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Chengzhou Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Lingna Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Shan Huang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
10
|
Alencar Meira da Silva H, Davée Guimarães JR. Mercury cyanide complexes and their relevance as environmental contaminants. CHEMOSPHERE 2024; 350:141054. [PMID: 38160953 DOI: 10.1016/j.chemosphere.2023.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
This review addresses the formation and relevance of mercury cyanide complexes as environmental contaminants. Gold extraction is traditionally carried out through the process of mercury amalgamation (Hg) due to its simplicity and low cost. However, this process is inefficient, capturing only about 30% of the gold present in the processed material. Additionally, mercury is toxic, mobile, and capable of accumulating in aquatic ecosystems, leading to its prohibition in several countries. As an alternative, cyanidation has been widely used in gold extraction. However, the frequent combination of Hg amalgamation with cyanidation can result in the formation of mercury cyanide complexes, which can be released into local water bodies, potentially impacting human health and the environment. This article reviews the existing knowledge of these complexes and highlights the remaining gaps in understanding their environmental behavior. It also emphasizes the need to address concerns related to the formation of these complexes and seek solutions to minimize their negative impacts. Furthermore, the article highlights the lack of updates in the literature regarding the impacts of cyanidation and the limited availability of comprehensive information on the topic. It is essential to conduct updated research in this area to advance knowledge and promote safer and more responsible practices in the mining industry.
Collapse
Affiliation(s)
- Henrique Alencar Meira da Silva
- Laboratório de Traçadores, IBCCF, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373, CEP, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Jean Remy Davée Guimarães
- Laboratório de Traçadores, IBCCF, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373, CEP, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Takaoka S. [Responses to "A Review of the Book 'Minamata Disease and the Responsibility of Medical Authorities'"]. Nihon Eiseigaku Zasshi 2024; 79:n/a. [PMID: 39198194 DOI: 10.1265/jjh.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Drs. Futatsuka, Eto, and Uchino expressed their opinions in the Journal of the Japanese Society for Hygiene in the form of a review of my book, "Minamata Disease and the Responsibility of Medicine." (The reviewers translated it as "Responsibility of Medical Authorities," but for my purposes in writing this book, I believe it should be translated as "Responsibility of Medicine.") The nine major comments of the three reviewers described in this book review were reviewed from the basic perspective of toxicology, epidemiology, and neuroscience. This book review is fraught with either medical, logical, or ethical problems in all the nine points as follows: (1) the inadequate way in which exposure and health hazards are considered from the toxicological perspective, (2) problems in interpreting epidemiological information, (3) the failure to consider recent achievements in methylmercury toxicosis studies, (4) presenting the reviewers' own theories without regard to the content of my book while calling it a "book review," (5) presenting and criticizing what Takaoka does not claim as if he does, and (6) making claims that are inconsistent with the three reviewers' own views. The problems with this book review will become even clearer when you read "Minamata Disease and the Responsibility of Medicine" itself.
Collapse
|
12
|
Kim DY, Jeon H, Shin HS. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods 2023; 12:3750. [PMID: 37893647 PMCID: PMC10606903 DOI: 10.3390/foods12203750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The purpose of this study is to quantify several heavy metals (Pb, Cd, Hg, Me-Hg, and metalloid arsenic) contained in Korean fishery products (seven categories, 1186 samples) and assess their health risk. Heavy metals quantification was conducted using inductively coupled plasma mass spectrometry (ICP-MS) and a direct mercury analysis (DMA). The good linearity (R2 > 0.999), limits of detection (1.0-3.2 µg/kg), limits of quantification (3.1-9.6 µg/kg), accuracy (88.14-113.80%), and precision (0.07-6.02%) of the five heavy metals were obtained, and these results meet the criteria recommended by the AOAC. The average heavy metal concentrations of fishery products were in the following order: As > Cd > Pb > Hg > Me-Hg for sea algae, crustaceans, mollusks, and echinoderms, As > Hg > Me-Hg > Pb > Cd for freshwater fish and marine fish, and As > Pb > Cd > Hg > Me-Hg for tunicates. Heavy metal concentrations were lower than MFDS, EU, CODEX, and CFDA standards. In addition, the exposure, non-carcinogenic, and carcinogenic evaluation results, considering the intake of aquatic products for Koreans, were very low. It was concluded that this study will provide basic data for food safety and risk assessment.
Collapse
Affiliation(s)
| | | | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (D.-Y.K.); (H.J.)
| |
Collapse
|
13
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Wen X, Yang X, Wang T, Li Z, Ma C, Chen W, He Y, Zhang C. Photoreduction of Hg(II) by typical dissolved organic matter in paddy environments. CHEMOSPHERE 2023; 327:138437. [PMID: 36963580 DOI: 10.1016/j.chemosphere.2023.138437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The photochemical behavior of dissolved organic matter (DOM) in surface water and its effect on Hg(II) photoreduction has been extensively studied, but the contribution of DOM in paddy water to Hg(II) photoreduction is largely unknown. Herein, the effect of DOM from biochar (BCDOM), rice straw (RSDOM), and chicken manure (CMDOM) on Hg(II) photoreduction were examined. The comparable reduction efficiency of Hg(II) suggested that DOM-like fraction (62.3-63.7%) contributes more than suspended particulate matter-like fraction (17.7-23.4%) and bacteria-like fraction (13.0-20.0%) in paddy water. Under irradiation, the typical DOM significantly promoted Hg(II) photoreduction, and the reduction efficiency of BCDOM (65.5 ± 2.1%) was higher than that of CMDOM (48.3 ± 2.6%) and RSDOM (32.8 ± 2.4%) in 6 h. The quenching and kinetics experiments showed that superoxide anion (O2•-) was the main reactive species for Hg(II) photoreduction. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry revealed that DOM with a higher degree of lignin/carboxy-rich acyclic molecules, condensed aromatics structures, and phenolic compounds could promote the formation of O2•-. These findings highlight the importance of DOM in Hg(II) photoreduction and provide new ideas for regulating Hg cycling and bioavailability in paddy environments.
Collapse
Affiliation(s)
- Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
15
|
Barrouilhet S, Monperrus M, Tessier E, Khalfaoui-Hassani B, Guyoneaud R, Isaure MP, Goñi-Urriza M. Effect of exogenous and endogenous sulfide on the production and the export of methylmercury by sulfate-reducing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3835-3846. [PMID: 35953752 DOI: 10.1007/s11356-022-22173-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.
Collapse
Affiliation(s)
- Sophie Barrouilhet
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Mathilde Monperrus
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Anglet, France
| | - Emmanuel Tessier
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | | | - Rémy Guyoneaud
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Marie-Pierre Isaure
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Marisol Goñi-Urriza
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France.
| |
Collapse
|
16
|
Izhar F, Imran M, Izhar H, Latif S, Hussain N, Iqbal HMN, Bilal M. Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. CHEMOSPHERE 2022; 307:135999. [PMID: 35985388 DOI: 10.1016/j.chemosphere.2022.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Highly sensitive, stable, selective, efficient, and short reaction time sensors play a substantial role in daily life/industry and are the need of the day. Due to the rising environmental issues, nanoporous carbon and metal-based materials have attracted significant attention in environmental analysis owing to their intriguing and multifunctional properties and cost-effective and rapid detection of different analytes by sensing applications. Environmental-related issues such as pollution have been a significant threat to the world. Therefore, it is necessary to fabricate highly promising performance-based sensor materials with excellent reliability, selectivity and good sensitivity for monitoring various analytes. In this regard, different methods have been employed to fabricate these sensors comprising metal, metal oxides, metal oxide carbon composites and MOFs leading to the formation of nanoporous metal and carbon composites. These composites have exceptional properties such as large surface area, distinctive porosity, and high conductivity, making them promising candidates for several versatile sensing applications. This review covers recent advances and significant studies in the sensing field of various nanoporous metal and carbon composites. Key challenges and future opportunities in this exciting field are also part of this review.
Collapse
Affiliation(s)
- Fatima Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan.
| | - Hamyal Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 53700, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
17
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
18
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
20
|
Organomercurial lyase (MerB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (MerA). Appl Environ Microbiol 2022; 88:e0001022. [PMID: 35138926 DOI: 10.1128/aem.00010-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mer operon encodes enzymes that transform and detoxify methylmercury (MeHg) and/or inorganic mercury (Hg(II)). Organomercurial lyase (MerB) and mercuric reductase (MerA) can act sequentially to demethylate MeHg to Hg(II) and reduce Hg(II) to volatile elemental mercury (Hg0) that can escape from the cell, conferring resistance to MeHg and Hg(II). Most identified mer operons encode either MerA and MerB in tandem or MerA alone, however, microbial genomes were recently identified that encode only MerB. Yet, the effects of potentially producing intracellular Hg(II) via demethylation of MeHg by MerB, independent of a mechanism to further detoxify or sequester the metal is not well understood. Here, we investigate MeHg biotransformation in Escherichia coli strains engineered to express MerA and MerB, together or separately, and characterize cell viability and Hg detoxification kinetics when these strains are grown in the presence of MeHg. Strains expressing only MerB are capable of demethylating MeHg to Hg(II). Compared to strains that express both MerA and MerB, strains expressing only MerB exhibit a lower minimum inhibitory concentration with MeHg exposure, which parallels a redistribution of Hg from the cell-associated fraction to the culture medium, consistent with cell lysis occurring. The data support a model whereby intracellular production of Hg(II), in the absence of reduction or other forms of demobilization, results in a greater cytotoxicity compared to the parent MeHg compound. Collectively, these results suggest that in the context of MeHg detoxification, MerB must be accompanied by an additional mechanism(s) to reduce, sequester, or re-distribute generated Hg(II). Importance: Mercury is a globally distributed pollutant that poses a risk to wildlife and human health. The toxicity of mercury is influenced largely by microbially mediated biotransformation between its organic (methylmercury) and inorganic (Hg(II) and Hg0) forms. Here we show in a relevant cellular context that the organomercurial lyase (MerB) enzyme is capable of MeHg demethylation without subsequent mercuric reductase (MerA)-mediated reduction of Hg(II). Demethylation of MeHg without subsequent Hg(II) reduction results in a greater cytotoxicity and increased cell lysis. Microbes carrying MerB alone have recently been identified but have yet to be characterized. Our results demonstrate that mer operons encoding MerB but not MerA put the cell at a disadvantage in the context of MeHg exposure, unless subsequent mechanisms of reduction or Hg(II) sequestration exist. These findings may help uncover the existence of alternative mechanisms of Hg(II) detoxification in addition to revealing the drivers of mer operon evolution.
Collapse
|
21
|
Lemaire J, Brischoux F, Marquis O, Mangione R, Bustamante P. Variation of Total Mercury Concentrations in Different Tissues of Three Neotropical Caimans: Implications for Minimally Invasive Biomonitoring. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:15-24. [PMID: 33899129 DOI: 10.1007/s00244-021-00846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a global environmental contaminant that affects ecosystems. It is known to biomagnify through food webs and to bioaccumulate especially in the tissues of top predators. Large-scale comparisons between taxa and geographic areas are needed to reveal critical trends related to Hg contamination and its deleterious effects on wildlife. Yet, the large variety of tissues (keratinized tissues, internal organs, blood) as well as the variability in the units used to express Hg concentrations (either in wet- or dry-tissue weight) limits straightforward comparisons between studies. In the present study, we assessed the moisture content that could influence the total Hg (THg) concentrations measured in several tissues (claws, scutes, total blood, and red blood cells) of three caiman species. We evaluated the moisture content from the different tissues to provide information on THg concentrations in various matrices. Our results show a difference of THg concentrations between the tissues and intra- and interspecific variations of moisture content, with the highest THg values found in keratinized tissues (scute keratinized layers and claws). For the three species, we found positive relationships between body size and THg concentration in keratinized tissues. In the blood, the relationship between body size and THg concentration was species-dependent. Our results emphasize the need for a standardized evaluation of THg concentration and trace elements quantification based on dry weight analytical procedures. In addition, the use of both blood and keratinized tissues offers the possibility to quantify different time scales of THg exposure by non-lethal sampling.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Olivier Marquis
- Parc Zoologique de Paris, Muséum National d'Histoire Naturelle, 53 Avenue de Saint Maurice, 75012, Paris, France
| | - Rosanna Mangione
- Haus des Meeres Aqua Terra Zoo GmbH, Fritz-Grünbaum Platz 1, 1060, Vienna, Austria
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| |
Collapse
|
22
|
Kakar A, Liem-Nguyen V, Mahmood Q, Jonsson S. Elevated concentrations of mercury and methylmercury in the Gadani shipbreaking area, Pakistan. MARINE POLLUTION BULLETIN 2021; 165:112048. [PMID: 33631481 DOI: 10.1016/j.marpolbul.2021.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Gadani shipbreaking area, Pakistan, is the world's third largest shipbreaking unit. However, to date, only a few studies on the environmental impacts of the industry, including mercury (Hg) pollution, have been conducted. To address this, concentrations of total Hg (HgT) and methylmercury (MeHg) were measured in surface sediments collected from the Gadani shipbreaking area as well as a local reference area. The highest concentrations of HgT and MeHg (median ± interquartile range) were detected in samples from the beach at the yard zone (HgT: 270 ± 230 μg kg-1, MeHg: 0.65 ± 0.69 μg kg-1), followed by sediment samples from the inter/sub-tidal zone where ships are dismantled (HgT: 20 ± 5.8 μg kg-1, MeHg: 0.043 ± 0.016 μg kg-1). These concentrations were on average 4-50 and 3-30 times greater than the concentrations of HgT and MeHg, respectively, observed in the reference area. CAPSULE: Elevated concentrations of total and methylated mercury observed in the Gadani Shipbreaking area sediments.
Collapse
Affiliation(s)
- Allauddin Kakar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Environmental Science, Stockholm University, SE-106 91, Sweden
| | - Van Liem-Nguyen
- Department of Environmental Science, Stockholm University, SE-106 91, Sweden
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91, Sweden.
| |
Collapse
|
23
|
Gochfeld M, Burger J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18407-18420. [PMID: 33507504 PMCID: PMC8026698 DOI: 10.1007/s11356-021-12361-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/02/2021] [Indexed: 05/20/2023]
Abstract
Eating fish is often recommended as part of a healthful diet. However, fish, particularly large predatory fish, can contain significant levels of the highly toxic methylmercury (MeHg). Ocean fish in general also contain high levels of selenium (Se), which is reported to confer protection against toxicity of various metals including mercury (Hg). Se and Hg have a high mutual binding affinity, and each can reduce the toxicity of the other. This is an evolving area of extensive research and controversy with variable results in the animal and epidemiologic literature. MeHg is toxic to many organ systems through high affinity for -SH (thiol) ligands on enzymes and microtubules. Hg toxicity also causes oxidative damage particularly to neurons in the brain. Hg is a potent and apparently irreversible inhibitor of the selenoenzymes, glutathione peroxidases (GPX), and thioredoxin reductases (TXNRD) that are important antioxidants, each with a selenocysteine (SeCys) at the active site. Hg binding to the SeCys inhibits these enzymes, accounting in part for the oxidative damage that is an important manifestation of Hg toxicity, particularly if there is not a pool of excess Se to synthesize new enzymes. A molar excess of Se reflected in an Se:Hg molar ratio > 1 is often invoked as evidence that the Hg content can be discounted. Some recent papers now suggest that if the Se:Hg molar ratio exceeds 1:1, the fish is safe and the mercury concentration can be ignored. Such papers suggested that the molar ratio rather than the Hg concentration should be emphasized in fish advisories. This paper examines some of the limitations of current understanding of the Se:Hg molar ratio in guiding fish consumption advice; Se is certainly an important part of the Hg toxicity story, but it is not the whole story. We examine how Hg toxicity relates also to thiol binding. We suggest that a 1:1 molar ratio cannot be relied on because not all of the Se in fish or in the fish eater is available to interact with Hg. Moreover, in some fish, Se levels are sufficiently high to warrant concern about Se toxicity.
Collapse
Affiliation(s)
- Michael Gochfeld
- Rutgers Biomedical and Health Sciences, School of Public Health, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Joanna Burger
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA
- Division of Life Science, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
24
|
Jernelöv A. What did we know and which questions did we ask with regard to environmental contaminants in the early 1970s? : This article belongs to Ambio's 50th Anniversary Collection. Theme: Environmental contaminants. AMBIO 2021; 50:519-524. [PMID: 33469825 PMCID: PMC7882670 DOI: 10.1007/s13280-020-01454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
25
|
Vasseur P, Masfaraud JF, Blaise C. Ecotoxicology, revisiting its pioneers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3852-3857. [PMID: 33073309 DOI: 10.1007/s11356-020-11236-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicology is a discipline resulting from pollution events that harmed human and environmental health by the mid-twentieth century. Environmental considerations were simply inexistent at this time, and inevitably deleterious effects and environmental disasters followed. These historical events, like Clear Lake disaster in California, will be recalled, as well as new concepts developed, and scientists involved in these findings. A special tribute is given to Professor Jean-Michel Jouany who conceptualized newly acquired knowledge into an emerging discipline, which he named "ecotoxicology" in the 1960s, and understood to be "toxicology in an ecological perspective." However, René Truhaut is considered as the "father of ecotoxicology" by posterity, while his young mentor Jouany was shadowed by the latter. It is timely to "open the book" as concerns these two exceptional personalities and their working relationships, first to set the record straight and second to give credit where credit is due.
Collapse
Affiliation(s)
- Paule Vasseur
- Université de Lorraine, CNRS, LIEC, 57070, Metz, France.
| | | | - Christian Blaise
- Aquatic Toxicology, Environment Canada, Centre Saint-Laurent, Montréal, Canada
| |
Collapse
|
26
|
Peterson BD, McDaniel EA, Schmidt AG, Lepak RF, Janssen SE, Tran PQ, Marick RA, Ogorek JM, DeWild JF, Krabbenhoft DP, McMahon KD. Mercury Methylation Genes Identified across Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15840-15851. [PMID: 33228362 PMCID: PMC9741811 DOI: 10.1021/acs.est.0c05435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into bioaccumulative, neurotoxic methylmercury (MeHg). The metabolic activity of methylating organisms is highly dependent on biogeochemical conditions, which subsequently influences MeHg production. However, our understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here, we identified potential locations of MeHg production in the anoxic, sulfidic hypolimnion of a freshwater lake. At these sites, we used shotgun metagenomics to characterize microorganisms with the Hg-methylation gene hgcA. Putative methylators were dominated by hgcA sequences divergent from those in well-studied, confirmed methylators. Using genome-resolved metagenomics, we identified organisms with hgcA (hgcA+) within the Bacteroidetes and the recently described Kiritimatiellaeota phyla. We identified hgcA+ genomes derived from sulfate-reducing bacteria, but these accounted for only 22% of hgcA+ genome coverage. The most abundant hgcA+ genomes were from fermenters, accounting for over half of the hgcA gene coverage. Many of these organisms also mediate hydrolysis of polysaccharides, likely from cyanobacterial blooms. This work highlights the distribution of the Hg-methylation genes across microbial metabolic guilds and indicate that primary degradation of polysaccharides and fermentation may play an important but unrecognized role in MeHg production in the anoxic hypolimnion of freshwater lakes.
Collapse
Affiliation(s)
- Benjamin D. Peterson
- Environmental Science & Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, WI 53706, USA
- Corresponding author:
| | - Elizabeth A. McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Anna G. Schmidt
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Ryan F. Lepak
- Environmental Science & Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, WI 53706, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sarah E. Janssen
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin - Madison, 250 N. Mills St.Madison, WI 53706, USA
| | - Robert A. Marick
- Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jacob M. Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - John F. DeWild
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - David P. Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, 1415 Engineering Drive, Madison WI 53706, USA
| |
Collapse
|
27
|
West J, Graham AM, Liem-Nguyen V, Jonsson S. Dimethylmercury Degradation by Dissolved Sulfide and Mackinawite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13731-13738. [PMID: 33078938 PMCID: PMC7660743 DOI: 10.1021/acs.est.0c04134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Potential degradation pathways of dimethylmercury (DMHg) remain as one of the critical knowledge gaps in the marine biogeochemical cycle of mercury (Hg). Although Hg is known to be highly reactive with reduced sulfur, demethylation of DMHg in the presence of sulfide has until now remained experimentally untested. Here, we provide the first experimental support for demethylation of DMHg to monomethylmercury (MMHg) in the presence of both dissolved sulfide and mackinawite (FeS(s)m). The degradation of DMHg was shown to be pH dependent, with higher demethylation rates at pH 9 than pH 5. At room temperature and environmentally relevant DMHg to sulfide molar ratios, we observed demethylation rates up to 0.05 d-1. When comparing the number of active sites available, FeS(s)m was found to have a higher capacity to demethylate DMHg, in comparison with dissolved sulfide. Our study suggests that dissolved sulfide and FeS(s)m mediated demethylation of DMHg may act as a sink for DMHg, and a potential source of MMHg, in aquatic systems.
Collapse
Affiliation(s)
- Johannes West
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andrew M Graham
- Department
of Chemistry, Grinnell College, Iowa 50112-1690, United States
| | - Van Liem-Nguyen
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sofi Jonsson
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Li L, Wang X, Fu H, Qu X, Chen J, Tao S, Zhu D. Dissolved Black Carbon Facilitates Photoreduction of Hg(II) to Hg(0) and Reduces Mercury Uptake by Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11137-11145. [PMID: 32804493 DOI: 10.1021/acs.est.0c01132] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we investigated the photoreduction of Hg(II) (Hg(NO3)2) mediated by dissolved black carbon (DBC, <0.45 μm size fraction) collected from water extracts of biochar derived by pyrolyzing crop residues (rice, soybean, and peanut). Under simulated sunlight conditions, the presence of 5 mg C/L DBC significantly facilitated the production of Hg(0) from Hg(II) (initially at 10 nmol/L) with a reduction ratio of 73 ± 4% in 5.3 h. Inhibition of photolysis-induced reactive oxygen species by a quencher or removal of dissolved oxygen indicated that Hg(II) was mainly reduced by superoxide anion (O2•-). Reduction by electrons transferred from photoexcited DBC components or by organic free radicals produced from photo-Fenton-like reactions was also proposed to play a role. Contrary to dissolved humic substances, the DBC-mediated photoreduction of Hg(II) led to unique positive mass-independent isotopic fractionation (MIF) of Hg(0) (Δ199Hg = 1.8 ± 0.3‰), which was attributed to the dominance of secondary Hg(II) reduction by O2•-. The leachate from soil amended with rice biochar at 1-5% mass ratios exhibited significantly higher photocatalytic efficiency than that from unamended soil (wherein the reduced Hg(0) increased from 27 ± 1 to 63 ± 2% in maximum), and the efficiency positively correlated with the percentage of amended biochar. Under natural illumination conditions, the total mercury and/or methylmercury uptake by roots, shoots, and leaves of lettuce (Lactuca sativa L.) grown in water extracts of rice biochar-amended soil was consistently lower (up to 70 ± 20%) than that without the biochar amendment. The findings highlight that DBC might play an important and previously unrecognized role in the biogeochemical cycle and the environmental impact of mercury.
Collapse
Affiliation(s)
- Langlang Li
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Xuejun Wang
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Fu Q, Fan X, Sun J, Tan H, Wang Y, Ouyang J, Na N. Visualizations of Mercury Methylation and Dynamic Transformations by In Vivo Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000072. [PMID: 32638515 DOI: 10.1002/smll.202000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Visualization of Hg(II) and MeHg in their native contexts is significant for examining mercury poisoning, while it is challenging because of indistinguishable fluorescent (FL) signals during FL imaging. Herein, visualizations of mercury methylation and dynamic transformations of Hg(II) and MeHg are achieved in living biological systems. Well distinguishable FL responses (blue emission for Hg(II), yellow emission for MeHg) are obtained by a double-response FL probe (DPAHB) without any interference. As demonstrated by experimental and computational studies, the distinguishable signals are attributed to selective binding with DPAHB and different inhibition of excited-state proton transfer. Through control tests for live-dead markers, mercury methylation is demonstrated to be employed in living biological systems. Therefore, the methylation and dynamic transformations of both ions are monitored in zebrafish by imaging, and these results are confirmed by traditional high-performance liquid chromatography-based methods. The methylation of Hg(II) to MeHg, dynamic transformations and final accumulations of both species in zebrafish tissues are visualized successfully. This method is also convenient for fast evaluation of detoxification reagents. This is the first visualization of in vivo mercury methylation and dynamic transformation of both species and is effective for studying pathological processes in their native contexts.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xuchan Fan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yan Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
30
|
Agarwal A, Verma AK, Yoshida M, Naik RM, Prasad S. A novel catalytic kinetic method for the determination of mercury(ii) in water samples. RSC Adv 2020; 10:25100-25106. [PMID: 35517435 PMCID: PMC9055178 DOI: 10.1039/d0ra03487h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 11/22/2022] Open
Abstract
Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium. This property of Hg(ii) has been utilized for its determination in aqueous solutions. The progress of reaction was followed spectrophotometrically by measuring the increase in absorbance of the yellow colour product, [Ru(CN)5Pz]3− at 370 nm (λmax, ε = 4.2 × 103 M−1 s−1) under the optimized reaction conditions; 5.0 × 10−5 M [Ru(CN)64−], 7.5 × 10−4 M [Pz], pH 4.00 ± 0.02, ionic strength (I) = 0.05 M (KCl) and temp. 45.0 ± 0.1 °C. The proposed method is based on the fixed time procedure under optimum reaction conditions. The linear regression (calibration) equations between the absorbance at fixed times (t = 15, 20 and 25 min) and [Hg(ii)] were established in the range of 1.0 to 30.0 × 10−6 M. The detection limit was found to be 1.5 × 10−7 M of Hg(ii). The effect of various foreign ions on the proposed method was also studied and discussed. The method was applied for the determination of Hg(ii) in different wastewater samples. The present method is simple, rapid and sensitive for the determination of Hg(ii) in trace amount in the environmental samples. Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium.![]()
Collapse
Affiliation(s)
- Abhinav Agarwal
- Department of Chemistry, University of Lucknow Lucknow 226007 India +91 9450466126
| | - Amit Kumar Verma
- Department of Chemistry, University of Lucknow Lucknow 226007 India +91 9450466126
| | - Masafumi Yoshida
- Department of Natural Sciences, Faculty of Knowledge Engineering, Tokyo City University Tokyo Japan
| | - Radhey Mohan Naik
- Department of Chemistry, University of Lucknow Lucknow 226007 India +91 9450466126
| | - Surendra Prasad
- School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific Suva Fiji +679 3232416
| |
Collapse
|
31
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
32
|
Ji X, Liu C, Zhang M, Yin Y, Pan G. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. WATER RESEARCH 2020; 173:115563. [PMID: 32059129 DOI: 10.1016/j.watres.2020.115563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O2) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication. The results indicated that after the application of O2 nanobubbles, the %MeHg (ratio of MeHg to total Hg) in the overlying water and surface sediment decreased by up to 76% and 56% respectively. In addition, the MeHg concentrations decreased from 0.54 ± 0.15 to 0.17 ± 0.01 ng L-1 in the overlying water and from 56.61 ± 9.23 to 25.48 ± 4.08 ng g-1 in the surface sediment. The decline could be attributed to the alleviation of anoxia and the decrease of labile organic matter and bioavailable Hg. In addition, hgcA gene abundances in the overlying water and surface sediment decreased by up to 69% and 44% after the addition of O2 nanobubbles, as is consistent with MeHg occurrence in such areas. Accordingly, this work proposed a promising strategy of using interfacial oxygen nanobubbles to alleviate the potentially enhanced MeHg production during algal bloom outbreaks in Hg-polluted eutrophic waters.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Meiyi Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
33
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Oliveira LF, Rodrigues LD, Cardillo GM, Nejm MB, Guimarães-Marques M, Reyes-Garcia SZ, Zuqui K, Vassallo DV, Fiorini AC, Scorza CA, Scorza FA. Deleterious effects of chronic mercury exposure on in vitro LTP, memory process, and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7559-7569. [PMID: 31885058 DOI: 10.1007/s11356-019-06625-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
Heavy metal contamination in aquatic environments plays an important role in the exposure of humans to these toxicants. Among these pollutants, mercury (Hg) is one main concern due to its high neurotoxicity and environmental persistence. Even in low concentrations, Hg bioaccumulation is a major threat to human health, with higher impact on populations whose diet has fish as chief consumption. Mercury compounds have high affinity for neuronal receptors and proteins, which gives Hg its cumulative feature and have the ability to cross cell membranes and blood-brain barrier to show their neurotoxicity. Intoxication with Hg increases levels of reactive oxygen species (ROS), thus depleting faster the resource of antioxidant proteins. To evaluate Hg-induced hippocampal ROS production, synaptic plasticity, anxiety, and memory, a total of 11 male Wistar rats were exposed to HgCl2 (Hg30 group) to produce a residual concentration of 8 ng/mL at the end of 30 days. Behavioral tests (plus-maze discriminative avoidance task), in vitro electrophysiology, and ROS assays were performed. Western blot assay showed decreased levels of antioxidant proteins GPx and SOD in Hg30 group. Increased ROS production was observed in the CA1 and CA3 regions in the Hg-exposed group. Plus-maze task detected long-term memory impairment in Hg30 group, linked to poorer in vitro long-term potentiation as compared to control group. Hg intoxication also promoted higher anxiety-like behavior in the exposed animals. In conclusion, our data suggests that low doses of HgCl2 resulted in impaired long-term memory and unbalance between decreased antioxidant protein expression and increased ROS production in the hippocampus.
Collapse
Affiliation(s)
- Leandro F Oliveira
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil
| | - Laís D Rodrigues
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil
| | | | - Mariana B Nejm
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil
| | | | - Selvin Z Reyes-Garcia
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil
- Department of Morphological Science, Faculty of Medical Sciences, National Autonomous University of Honduras, San Pedro Sula, Honduras
| | - Karolini Zuqui
- Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Dalton V Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Ana C Fiorini
- Department of Department of Speech-Language Pathology, Audiology, UNIFESP/EPM, Brazil and Pontifical Catholic University, São Paulo, Brazil
| | - Carla A Scorza
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil
| | - Fulvio A Scorza
- Department of Neurology and Neurosurgery, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
35
|
Wang Z, Sun T, Driscoll CT, Zhang H, Zhang X. Dimethylmercury in Floodwaters of Mercury Contaminated Rice Paddies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9453-9461. [PMID: 31402663 DOI: 10.1021/acs.est.8b07180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dimethyl mercury (CH3HgCH3, DMeHg) has been observed in upwelling marine environments and the deep ocean. However, little is known about the occurrence and mechanisms of DMeHg formation in freshwater environments. In this study, concentrations of dissolved gaseous DMeHg were investigated in floodwaters of rice paddies in China that have been contaminated by mercury from mining. Values of DMeHg in rice paddies were compared with measurements from nearshore surface seawater in the Bohai Gulf. High concentrations of dissolved gaseous DMeHg occurred in rice paddies. Average DMeHg concentration was 12 ± 22 pg L-1 with range of 0.39 to 91 pg L-1 in rice paddies at Shuijing, China, a site impacted by an abandoned mercury mine. These concentrations are comparable to those previously observed in the deep seawater and coastal upwelling environments (2.3-115pg L-1). An alkaline environment was found to be necessary for DMeHg formation in rice paddies. Associated incubation experiments showed that production of DMeHg in paddy soil was limited by Hg availability. Although iron amendments accelerated the production of gaseous methylmercury (MeHg) species to floodwaters, available Hg2+ is crucial for this production in flooded rice paddies. These observations are the first to demonstrate the occurrence of DMeHg and reveal factors affecting DMeHg production in rice paddies. Given the high volatility of DMeHg, these measurements also suggest a source for observations of MeHg in atmospheric deposition and advance understanding of a potentially important aspect of the biogeochemical cycling of Hg.
Collapse
Affiliation(s)
- Zhangwei Wang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ting Sun
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering , Syracuse University , 151 Link Hall, Syracuse , New York 13244 , United States
| | - Huan Zhang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
36
|
Kinetics of Enzymatic Mercury Methylation at Nanomolar Concentrations Catalyzed by HgcAB. Appl Environ Microbiol 2019; 85:AEM.00438-19. [PMID: 31028026 DOI: 10.1128/aem.00438-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/20/2019] [Indexed: 11/20/2022] Open
Abstract
Methylmercury (MeHg) is a potent bioaccumulative neurotoxin that is produced by certain anaerobic bacteria and archaea. Mercury (Hg) methylation has been linked to the gene pair hgcAB, which encodes a membrane-associated corrinoid protein and a ferredoxin. Although microbial Hg methylation has been characterized in vivo, the cellular biochemistry and the specific roles of the gene products HgcA and HgcB in Hg methylation are not well understood. Here, we report the kinetics of Hg methylation in cell lysates of Desulfovibrio desulfuricans ND132 at nanomolar Hg concentrations. The enzymatic Hg methylation mediated by HgcAB is highly oxygen sensitive, irreversible, and follows Michaelis-Menten kinetics, with an apparent Km of 3.2 nM and V max of 19.7 fmol · min-1 · mg-1 total protein for the substrate Hg(II). Although the abundance of HgcAB in the cell lysates is extremely low, Hg(II) was quantitatively converted to MeHg at subnanomolar substrate concentrations. Interestingly, increasing thiol/Hg(II) ratios did not impact Hg methylation rates, which suggests that HgcAB-mediated Hg methylation effectively competes with cellular thiols for Hg(II), consistent with the low apparent Km Supplementation of 5-methyltetrahydrofolate or pyruvate did not enhance MeHg production, while both ATP and a nonhydrolyzable ATP analog decreased Hg methylation rates in cell lysates under the experimental conditions. These studies provide insights into the biomolecular processes associated with Hg methylation in anaerobic bacteria.IMPORTANCE The concentration of Hg in the biosphere has increased dramatically over the last century as a result of industrial activities. The microbial conversion of inorganic Hg to MeHg is a global public health concern due to bioaccumulation and biomagnification of MeHg in food webs. Exposure to neurotoxic MeHg through the consumption of fish represents a significant risk to human health and can result in neuropathies and developmental disorders. Anaerobic microbial communities in sediments and periphyton biofilms have been identified as sources of MeHg in aquatic systems, but the associated biomolecular mechanisms are not fully understood. In the present study, we investigate the biochemical mechanisms and kinetics of MeHg formation by HgcAB in sulfate-reducing bacteria. These findings advance our understanding of microbial MeHg production and may help inform strategies to limit the formation of MeHg in the environment.
Collapse
|
37
|
Xu X, Bryan AL, Mills GL, Korotasz AM. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:261-270. [PMID: 30852203 DOI: 10.1016/j.scitotenv.2019.02.301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Water, sediment, and biota from two streams on the Savannah River Site were sampled to study mercury (Hg) biogeochemistry. Total and methyl- Hg (MHg) concentrations were measured for all samples, speciation models were used to explore Hg speciation in the water, and Diffusive gradients in thin films (DGT) were applied to indicate the vertical profiles of labile Hg (DGT-Hg). Trophic position (δ15N) was estimated for biota and used to establish MHg biomagnification model. The speciation model indicated Hg methylation in the water occurred on settling particles and the most bioavailable Hg species to bacteria were complexes of inorganic Hg and labile organic ligands. Correspondingly, dissolved organic carbon concentrations were positively related to MHg concentrations in the water. In the sediment, the sharp increase of DGT-Hg around the sediment water interface underscores the importance of this interface, which determines the differences in the accumulation and generation of labile Hg among different waterbodies. The positive correlation between sediment MHg and sulfate concentrations suggested possible methylation reaction by dissimilatory sulfate reducing bacteria in the sediment. The food web magnification factors of MHg were 9.6 (95% CI: 4.0-23.4) and 4.4 (95% CI: 2.5-7.7) for the two streams established with trophic data of biofilm, invertebrates, and fish. Meanwhile, DGT-Hg concentrations in the water were positively correlated to biofilm Hg concentrations, which can be combined with the MHg biomagnification model to generate a modified biomagnification model that estimate MHg bioaccumulation with only labile Hg concentrations in the water. With this approach, Hg accumulation in abiotic and biotic environmental compartments was connected and the different bioaccumulation patterns of Hg in different waterbodies were explained with both geochemical and biological factors.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA.
| | - Albert L Bryan
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| | - Gary L Mills
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| | - Alexis M Korotasz
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
38
|
Li H, Lin X, Zhao J, Cui L, Wang L, Gao Y, Li B, Chen C, Li YF. Intestinal Methylation and Demethylation of Mercury. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:597-604. [PMID: 30515547 DOI: 10.1007/s00128-018-2512-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) is a global pollutant, which is linked with different diseases. The methylation of Hg and demethylation of methylmercury (MeHg) in the environment were extensively studied and summarized; however, the transformation of Hg in the intestine is less presented. In this review, the research progress and the perspectives on the intestinal transformation of Hg were discussed. Studies found that MeHg could be formed when exposed to inorganic Hg by the gut microbiota in aquatic organisms, terrestrial invertebrates, and mammals, etc. hgcAB genes could be used as indicators for predicting Hg methylation potential. In vitro studies using fecal specimen, intestinal contents, and the isolated intestinal microbes confirmed the intestinal demethylation of MeHg. The investigation on the effects of Hg exposure to the abundance and diversity of intestinal microbes and their metabolites could shed light on the mechanism of the toxicity of Hg, especially the neurotoxicity of MeHg, which deserves further study.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Cui
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
The Draft Genome Sequence of Pseudomonas putida Strain TGRB4, an Aerobic Bacterium Capable of Producing Methylmercury. Curr Microbiol 2019; 77:522-527. [DOI: 10.1007/s00284-019-01670-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
|
40
|
Nogara PA, Oliveira CS, Schmitz GL, Piquini PC, Farina M, Aschner M, Rocha JBT. Methylmercury's chemistry: From the environment to the mammalian brain. Biochim Biophys Acta Gen Subj 2019; 1863:129284. [PMID: 30659885 DOI: 10.1016/j.bbagen.2019.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to -S(e)H with another free -S(e)H group (R1S(e)-HgMe + R2-S(e)H ↔ R1S(e)H + R2-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the "Rabenstein's Reaction". The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from -S(e)-Hg- bonds to free -S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.
Collapse
Affiliation(s)
- Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia S Oliveira
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela L Schmitz
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, CCNE, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
41
|
Regnell O, Watras CJ. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4-19. [PMID: 30525497 DOI: 10.1021/acs.est.8b02709] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant of concern because it biomagnifies in aquatic food webs and poses a health hazard to aquatic biota, piscivorous wildlife and humans. The dominant source of MeHg to freshwater systems is the methylation of inorganic Hg (IHg) by anaerobic microorganisms; and it is widely agreed that in situ rates of Hg methylation depend on two general factors: the activity of Hg methylators and their uptake of IHg. A large body of research has focused on the biogeochemical processes that regulate these two factors in nature; and studies conducted within the past ten years have made substantial progress in identifying the genetic basis for intracellular methylation and defining the processes that govern the cellular uptake of IHg. Current evidence indicates that all Hg methylating anaerobes possess the gene pair hgcAB that encodes proteins essential for Hg methylation. These genes are found in a large variety of anaerobes, including iron reducers and methanogens; but sulfate reduction is the metabolic process most often reported to show strong links to MeHg production. The uptake of Hg substrate prior to methylation may occur by passive or active transport, or by a combination of both. Competitive inhibition of Hg uptake by Zn speaks in favor of active transport and suggests that essential metal transporters are involved. Shortly after its formation, MeHg is typically released from cells, but the efflux mechanisms are unknown. Although methylation facilitates Hg depuration from the cell, evidence suggests that the hgcAB genes are not induced or favored by Hg contamination. Instead, high MeHg production can be linked to high Hg bioavailability as a result of the formation of Hg(SH)2, HgS nanoparticles, and Hg-thiol complexes. It is also possible that sulfidic conditions require strong essential metal uptake systems that inadvertently bring Hg into the cytoplasm of Hg methylating microbes. In comparison with freshwaters, Hg methylation in open ocean waters appears less restricted to anoxic environments. It does seem to occur mainly in oxygen deficient zones (ODZs), and possibly within anaerobic microzones of settling organic matter, but MeHg (CH3Hg+) and Me2Hg ((CH3)2Hg) have been shown to form also in surface water samples from the euphotic zone. Future studies may disclose whether several different pathways lead to Hg methylation in marine waters and explain why Me2Hg is a significant Hg species in oceans but seemingly not in most freshwaters.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology , Lund University , SE-223 62 Lund , Sweden
| | - Carl J Watras
- Bureau of Water Quality , Wisconsin Department of Natural Resources , Madison , Wisconsin 53703 , United States
- Center for Limnology , University of Wisconsin-Madison , 3110 Trout Lake Station Drive , Boulder Junction , Wisconsin 54512 , United States
| |
Collapse
|
42
|
Strohmidel P, Sperling M, Karst U. Investigations on the binding of ethylmercury from thiomersal to proteins in influenza vaccines. J Trace Elem Med Biol 2018; 50:100-104. [PMID: 30262265 DOI: 10.1016/j.jtemb.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/07/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
This study investigates the binding of ethylmercury (EtHg+) released from the preservative thiomersal by hydrolysis to proteins in influenza vaccines via ultrafiltration and subsequent total reflection x-ray fluorescence (TXRF) analysis as well as size exclusion chromatography (SEC) hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS). Binding of EtHg+ to the protein fraction was shown by means of ultrafiltration and TXRF in a qualitative matter. SEC/ICP-MS was applied to gain more information about the molecular weight of the bound protein and quantitative information. First experiments showed the necessity of a rinsing step during elution with a thiol-containing compound to prevent unspecific binding or mercury species to the chromatographic system. Adduct formation of EtHg+ and a high-molecular compound could be observed for different concentrations of EtHg+ applied. The mercury-containing fraction was larger than 133 kDa, indicating binding to hemagglutinin, which is the active ingredient in influenza vaccines. The applied SEC/ICP-MS method allowed for external calibration with EtHg+ and a binding of 141 μg L-1 Hg was shown for a vaccine solution that was incubated with EtHg+ (25 mg L-1 Hg).
Collapse
Affiliation(s)
- Philipp Strohmidel
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Mendelstr. 11, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
43
|
Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, He JZ, Gu B. Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13110-13118. [PMID: 30335986 DOI: 10.1021/acs.est.8b03052] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Alexander Johs
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Hang-Wei Hu
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Dan Sun
- Ocean College , Zhejiang University , Zhejiang , 310058 , China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
44
|
Rudd JWM, Bodaly RA, Fisher NS, Kelly CA, Kopec D, Whipple C. Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1340-1352. [PMID: 30045514 DOI: 10.1016/j.scitotenv.2018.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Fifty years ago, the Penobscot Estuary was contaminated by mercury discharged from the chlor-alkali plant located in Orrington, Maine, USA. Almost all of the mercury was discharged from the plant during the late 1960s and early 1970s. Despite the much lower mercury discharges in recent decades, present-day concentrations in surface sediment remain high (averaging 350-1100 ng/g dw) and are still high in blood of marsh birds (up to 10.5 μg/g), black duck muscle (0.8 μg/g), and lobster muscle (0.4 μg/g). Methyl mercury (MeHg) concentrations in marsh birds exceed levels that impair reproduction. There are health advisories for duck hunters and closures of shellfish fisheries. These continuing high mercury concentrations are caused by the trapping of legacy mercury in a mobile pool of sediment that is retained in the upper estuary above a tidally forced salinity front, which travels up and down the estuary each tidal cycle - slowing the transport of particulate mercury to Penobscot Bay. The trapped legacy mercury continues to be available for methylation 50 years after it first entered the estuary. This is demonstrated by the fact that rates of MeHg production are positively related to the inorganic mercury concentration in parts of the estuary with elevated concentrations of legacy mercury. Thus, remediation measures that would lower the THg concentration in surface sediment would lower the MeHg in birds, fish and shellfish. All of this new information leads us to recommend two remediation options. Addition of mercury binding agents may lower mercury concentrations in birds in some wetland areas. System-wide, we also recommend Enhanced Natural Recovery (ENR), a novel approach that involves the partial removal of the contaminated mobile sediment pool followed by replacement with clean-clay particulates to dilute inorganic mercury concentrations, which would lower methylation rates and mercury concentrations in biota.
Collapse
Affiliation(s)
- John W M Rudd
- R&K Research Inc., 675 Mount Belcher Heights, Salt Spring Island, B.C. V8K 2J3, Canada.
| | - R A Bodaly
- Penobscot River Mercury Study, 115 Oystercatcher Place, Salt Spring Island, B.C. V8K 2W5, Canada.
| | - Nicholas S Fisher
- School of School of Marine and Atmospheric Sciences, Stony Brook University, NY 11794-5000, USA.
| | - C A Kelly
- R&K Research Inc., 675 Mount Belcher Heights, Salt Spring Island, B.C. V8K 2J3, Canada.
| | - Dianne Kopec
- Penobscot River Mercury Study, 479 Beechwood Avenue, Old Town, ME 04468, USA.
| | | |
Collapse
|
45
|
Turner RR, Kopec AD, Charette MA, Henderson PB. Current and historical rates of input of mercury to the Penobscot River, Maine, from a chlor-alkali plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1175-1186. [PMID: 29801211 DOI: 10.1016/j.scitotenv.2018.05.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Mercury inputs by surface and ground water sources to Penobscot River from a defunct Hg-cell chlor-alkali plant were measured in 2009-10 and estimated for the entire period of operation of this facility. Over the measured interval (422 days) approximately 2.3 kg (5.4 g day-1) of mercury was discharged to the Penobscot River by the two surface streams that drain the site, with most of the combined loading (1.8 kg Hg, 78%) associated with a single storm with rainfall in excess of 100 mm. Groundwater seepage rates from the site, as estimated from both a radon tracer and seepage meter methods were in the range of 3 to 4 cm day-1 and, when combined with a best estimate of the area of groundwater discharge (11,000 m2) and average seepage/porewater mercury concentration (242 ng L-1, UCL95), yielded a loading of 0.11 g day-1 for site groundwater. None of the municipal or other industrial point sources of mercury to the river between Veazie and Bucksport, Maine exceeded 1 g day-1 individually, nor was the aggregate loading of all such sources >3 g day-1 (based on State of Maine data). Mercury loadings for the three largest tributaries downstream of Veazie Dam were estimated to contribute 4.2, 3.7 and 2.5 g day-1, respectively, to the Penobscot River. Based on sampling (total Hg ~ 2 to 4 ng L-1) and historical mean discharge data (340-460 m3 s-1), the Penobscot River upstream of the plant site contributes as much as 160 g day-1 to the downstream reach depending on river discharge. Estimates of historical (1967-2012) mercury loading using both generic emission factors and measured releases ranged from 2.6 to 27 MT while the mass of mercury found in downstream sediments amounted to 9 MT.
Collapse
Affiliation(s)
- R R Turner
- RT Geosciences Inc., 3398 Kingburne Dr., Cobble Hill, B.C. V0R 1L5, Canada.
| | - A D Kopec
- Penobscot River Mercury Study, 479 Beechwood Ave., Old Town, ME 04468, USA.
| | - M A Charette
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA.
| | - P B Henderson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA.
| |
Collapse
|
46
|
Evidence of Mercury Methylation and Demethylation by the Estuarine Microbial Communities Obtained in Stable Hg Isotope Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102141. [PMID: 30274240 PMCID: PMC6210349 DOI: 10.3390/ijerph15102141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Microbial activity is a critical factor controlling methylmercury formation in aquatic environments. Microbial communities were isolated from sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and differentiated according to their dependence on oxygen into three groups: aerobic, anaerobic, and sulphate-reducing microbial communities. Their potential to methylate mercury and demethylate methylmercury was evaluated through incubation with isotope-enriched Hg species (199HgCl and CH3201HgCl). The results showed that the isolated microbial communities are actively involved in methylation and demethylation processes. The production of CH3199Hg was positively correlated with sulphate-reducing microbial communities, methylating up to 0.07% of the added 199Hg within 48 h of incubation. A high rate of CH3201Hg degradation was observed and >20% of CH3201Hg was transformed. Mercury removal of inorganic forms was also observed. The results prove the simultaneous occurrence of microbial methylation and demethylation processes and indicate that microorganisms are mainly responsible for methylmercury formation and accumulation in the polluted Tagus Estuary.
Collapse
|
47
|
Bouchet S, Goñi-Urriza M, Monperrus M, Guyoneaud R, Fernandez P, Heredia C, Tessier E, Gassie C, Point D, Guédron S, Achá D, Amouroux D. Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms and Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9758-9767. [PMID: 30037219 DOI: 10.1021/acs.est.8b01885] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or μmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Marisol Goñi-Urriza
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Mathilde Monperrus
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Rémy Guyoneaud
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Pablo Fernandez
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Carlos Heredia
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Claire Gassie
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - David Point
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| | - Stéphane Guédron
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre , 38000 Grenoble , France
- Laboratorio de Hidroquímica , Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota , casilla 3161 , 00000 La Paz , Bolivia
| | - Dario Achá
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| |
Collapse
|
48
|
Lemaire J, Bustamante P, Olivier A, Lourdais O, Michaud B, Boissinot A, Galán P, Brischoux F. Determinants of mercury contamination in viperine snakes, Natrix maura, in Western Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:20-25. [PMID: 29660722 DOI: 10.1016/j.scitotenv.2018.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of Hg contamination are presumably widespread across the components of aquatic ecosystems, but investigations have been mainly focused on freshwater fish, because this biota represents a major source of Hg for human populations. Yet, the possible bioaccumulation of Hg on other freshwater meso- and apex-predators (e.g., amphibians, reptiles) has been largely overlooked, especially in Western Europe. In this study, the determinants of Hg concentrations were assessed for the viperine snake (Natrix maura) across 6 populations (>130 individuals sampled in 2016 and 2017) in France and Spain. Specifically, body size, sex, and diet were compared with Hg concentrations measured in ventral scales. Overall, N. maura accumulated Hg in their scales. Sex did not seem to influence Hg concentrations in this species. Significant differences in Hg concentrations were observed between study sites, and these differences were likely to be mediated by site-specific diet. Frog-eating individuals were characterized not only by lower mean values of Hg (0.194±0.018μg·g-1 versus 0.386±0.032μg·g-1 for piscivorous individuals), but also by weaker slopes of the body size-Hg relationship as compared to fish-eating snakes, suggesting strong differences in accumulation rates due to food resources. Importantly, the highest slope of the body size-Hg relationship and the highest values of Hg were found in individuals foraging on trout raised by a fish farm, suggesting that fish farming may contribute to Hg contamination in inland freshwater systems. Finally, our results are compared with data on Hg concentrations in other species of aquatic snakes, in order to provide a comparative point for future studies.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France; Réserve Naturelle Nationale de Chérine, Maison de la Nature et de la Réserve, 36290 Saint-Michel-en-Brenne, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Anthony Olivier
- Institut de recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France
| | - Alexandre Boissinot
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France
| | - Pedro Galán
- Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultad de Ciencias, Universidad de A Coruña, Campus da Zapateira, s/n., 15071 A Coruña, Spain
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France.
| |
Collapse
|
49
|
Renedo M, Amouroux D, Pedrero Z, Bustamante P, Cherel Y. Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation. Sci Rep 2018; 8:8865. [PMID: 29891979 PMCID: PMC5995893 DOI: 10.1038/s41598-018-27079-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
Seabirds are widely used as bioindicators of mercury (Hg) contamination in marine ecosystems and the investigation of their foraging strategies is of key importance to better understand methylmercury (MeHg) exposure pathways and environmental sources within the different ecosystems. Here we report stable isotopic composition for both Hg mass-dependent (e.g. δ202Hg) and mass-independent (e.g. Δ199Hg) fractionation (proxies of Hg sources and transformations), carbon (δ13C, proxy of foraging habitat) and nitrogen (δ15N, proxy of trophic position) in blood of four species of sympatric penguins breeding at the subantarctic Crozet Islands (Southern Indian Ocean). Penguins have species-specific foraging strategies, from coastal to oceanic waters and from benthic to pelagic dives, and feed on different prey. A progressive increase to heavier Hg isotopic composition (δ202Hg and Δ199Hg, respectively) was observed from benthic (1.45 ± 0.12 and 1.41 ± 0.06‰) to epipelagic (1.93 ± 0.18 and 1.77 ± 0.13‰) penguins, indicating a benthic-pelagic gradient of MeHg sources close to Crozet Islands. The relative variations of MeHg concentration, δ202Hg and Δ199Hg with pelagic penguins feeding in Polar Front circumpolar waters (1.66 ± 0.11 and 1.54 ± 0.06‰) support that different MeHg sources occur at large scales in Southern Ocean deep waters.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France. .,CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France.
| | - David Amouroux
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Zoyne Pedrero
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-Université de La Rochelle, 79360, Villiers-en-Bois, France.
| |
Collapse
|
50
|
Xiang Y, Wang Y, Zhang C, Shen H, Wang D. Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. J Environ Sci (China) 2018; 68:206-217. [PMID: 29908740 DOI: 10.1016/j.jes.2018.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Reservoirs tend to have enhanced methylmercury (MeHg) concentrations compared to natural lakes and rivers, and water level fluctuations can promote MeHg production. Until now, little research has been conducted on the effects of microorganisms in soils for the formation of MeHg during different drying and flooding alternating conditions in the Three Gorges Reservoir (TGR). This study aimed to understand how water level fluctuations affect soil microbial composition and mercury concentrations, and if such microbial variations are related to Hg methylation. The results showed that MeHg concentrations and the ratios of MeHg to THg (MeHg%) in soils were higher in the seasonally drying and flooding alternating areas (DFAs, 175-155m) than those in the non-inundated (NIAs, >175m) and inundated areas (IAs, <145m). However, MeHg% in all samples was less than 1%, indicating that the Hg methylation activity in the soils of the TGR was under a low level. 454 high-throughput sequencing of 16S rRNA gene amplicons showed that soil bacterial abundance and diversity were relatively higher in DFA compared to those in NIA and IA, and microbial community composition varied in these three areas. At the family level, those groups in Deltaproteobacteria and Methanomicrobia that might have many Hg methylators were also showed a higher relative abundance in DFA, which might be the reason for the higher MeHg production in these areas. Overall, our results suggested that seasonally water level fluctuations can enhance the microbial abundance and diversity, as well as MeHg production in the TGR.
Collapse
Affiliation(s)
- Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China.
| |
Collapse
|