1
|
Maldonado MDM, Gracia-Hernandez M, Le LH, Iida M, Gulley JL, Donahue RN, Palena C, Schlom J, Hamilton DH. Combination of a therapeutic cancer vaccine targeting the endogenous retroviral envelope protein ERVMER34-1 with immune-oncology agents facilitates expansion of neoepitope-specific T cells and promotes tumor control. J Immunother Cancer 2025; 13:e011378. [PMID: 40360436 PMCID: PMC12163335 DOI: 10.1136/jitc-2024-011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs) are remnants of retrovirus germline infections that occurred over the course of evolution and constitute between 5% and 8% of the human genome. While ERVs tend to be epigenetically silenced in normal adult human tissues, they are often overexpressed in carcinomas and may represent novel immunotherapeutic targets. This study characterizes the ERV envelope protein ERVMER34-1 as a target for a therapeutic cancer vaccine. METHODS The expression of ERVMER34-1 in multiple healthy adult and cancer tissues was assessed, as was its immunogenicity, to ascertain whether specific T cells could lyse human carcinoma cell lines expressing ERVMER34-1. Furthermore, the ability of a rationally designed ERVMER34-1-targeted therapeutic vaccine to induce tumor clearance in two murine carcinoma models expressing ERVMER34-1 was examined either as a monotherapy or in combination with anti-programmed cell death protein-1/programmed death-ligand 1 monoclonal antibody (mAb) or the interleukin-15 superagonist N-803. RESULTS The ERVMER34-1 protein was shown to be overexpressed in 232/376 of human carcinomas analyzed while being absent in most healthy adult tissues. High levels of ERVMER34-1 RNA expression associate with decreased survival in uveal melanoma, adenoid cystic, and head and neck carcinomas. ERVMER34-1-specific T cells were detected in peripheral blood mononuclear cells (PBMCs) of patients with cancer but not healthy donors following an overnight stimulation. However, reactive T cells are readily expanded from both healthy donor and patient with cancer PBMCs following a 7- day in vitro stimulation. Furthermore, ERVMER34-1-specific T cells selectively kill human carcinoma cell lines expressing ERVMER34-1. A novel, rationally designed, therapeutic cancer vaccine targeting ERVMER34-1 mediated tumor control in established syngeneic murine tumors expressing the full-length ERVMER34-1 protein. When combined with checkpoint blockade, the vaccine promoted expansion of neoepitope-reactive T cells whose function was further enhanced when combined with N-803. This expansion of neoepitope-reactive T cells was associated with tumor control. CONCLUSIONS This study reveals the potential of a vaccine that targets the retroviral envelope protein ERVMER34-1 and supports its continued development toward clinical testing as a new class of therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Gracia-Hernandez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Loc Huu Le
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Masafumi Iida
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kang YK, Min B, Eom J, Park JS, Jang J, Jeong S. Emergence of CpG-cluster blanket methylation in aged tissues: a novel signature of epigenomic aging. Nucleic Acids Res 2025; 53:gkaf354. [PMID: 40347138 PMCID: PMC12065108 DOI: 10.1093/nar/gkaf354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/20/2025] [Accepted: 05/07/2025] [Indexed: 05/12/2025] Open
Abstract
Aging is accompanied by widespread DNA methylation changes across the genome. While age-related methylation studies typically focus on individual CpGs, cluster analysis provides more robust data and improved interpretation. We characterized age-associated CpG-cluster methylation changes in mouse spleens, peripheral blood mononuclear cells, and livers. We identified a novel signature termed blanket methylations (BMs), fully methylated CpG clusters absent in young tissues but appearing in aged tissues. BM formation was locus- and cell-dependent, with minimal overlap among tissues. Statistical analysis, heterogeneity assessment, and random modeling demonstrated that BMs arise through nonrandom mechanisms and correlate with accelerated aging. Notably, BMs appeared in chronologically young mice with progeroid or disease-driven aging, including in 4-month-old Zmpste24-/- (lifespan ∼5 months) and 3-month-old Huntington's disease model mice (lifespan ∼4 months). The detection of BMs in purified CD4+ T cells demonstrated that their occurrence is intrinsic to aging cells rather than a result of infiltration from other tissues. Further investigation revealed age-related downregulation of zinc-finger-CxxC-domain genes, including Tet1 and Tet3, which protect CpG islands from methylation. Importantly, TET1 or TET3 depletion induced BM formation, linking their loss to age-associated methylation drift. These findings establish BMs as a robust marker of epigenomic aging, providing insight into age-related methylation changes.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Byungkuk Min
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaemin Eom
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Jung Sun Park
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaewoong Jang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sangkyun Jeong
- Genomics Department, Keyomics Co. Ltd, 17 Techno4-ro, Yuseong-gu, Daejeon 34013, South Korea
| |
Collapse
|
3
|
Zuo Q, Wu RB, Sun LN, Ren TY, Fan Z, Wang LY, Tan B, Luo B, Irfan M, Huang Q, Shen YJ, Zhang ZS. Genomic and Methylomic Signatures Associated With the Maintenance of Genome Stability and Adaptive Evolution in Two Closely Allied Wolf Spiders. Mol Ecol Resour 2025; 25:e14071. [PMID: 39831349 DOI: 10.1111/1755-0998.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P. agraria. Both species' genomes show a notable expansion of helitron transposable elements, which contributes to their large genome sizes. Methylome analysis indicates that P. laura has higher overall DNA methylation levels compared to P. agraria. DNA methylation may not only aids in transposable element-driven genome expansion but also positively affects the three-dimensional organisation of P. laura after transposon amplification, thereby potentially enhancing genome stability. Genes associated with hyper-differentially methylated regions in P. laura (compared to P. agraria) are enriched in functions related to mRNA processing and energy production. Furthermore, combined transcriptome and methylome profiling has uncovered a complex regulatory interplay between DNA methylation and gene expression, emphasising the important role of gene body methylation in the regulation of gene expression. Comparative genomic analysis shows a significant expansion of cuticle protein and detoxification-related gene families in P. laura, which may improve its adaptability to various habitats. This study provides essential genomic and methylomic insights, offering a deeper understanding of the relationship between transposable elements and genome stability, and illuminating the adaptive evolution and species differentiation among allied spiders.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Run-Biao Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Li-Na Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Tian-Yu Ren
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zheng Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Lu-Yu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Bing Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Bin Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Irfan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qian Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Yan-Jun Shen
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhi-Sheng Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Steadman CR, Small EM, Banerjee S, Gonzalez-Esquer CR, Pacheco S, Twary SN. Best practices for methylome characterization in novel species: a case study in the microalgae Microchloropsis. Commun Biol 2025; 8:648. [PMID: 40269108 PMCID: PMC12019312 DOI: 10.1038/s42003-025-08027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Microalgae remain an important feedstock in the circular bioeconomy. The discovery of new species combined with advanced biotechnology drives optimization of performance predicated on deep knowledge of algal genomics and phenotype. Understanding the contribution of epigenetic processes to algal function provides insight and better approaches for achieving production goals. Here, we provide a methodological framework for investigating epigenetic modifications in new species, including analysis of state-of-the-art techniques, and best practices for discerning novel modifications, focusing on variants of DNA methylation. Further, we demonstrate that specific forms of DNA methylation are overlooked by traditional epigenetic analysis strategies. Using high-throughput, lower cost techniques, we provide several pieces of evidence demonstrating Microchloropsis gaditana and M. salina (formerly Nannochloropsis), two candidate feedstock species, lack the most ubiquitous forms of eukaryotic DNA methylation (5mC and 5hmC) and instead employ N6-adenine methylation (6mA), commonly found in bacteria, in their genomes. Interestingly, transcriptionally diverse physiological conditions do not elicit differential 6mA methylation, suggesting the presence of 6mA may provide stability and protection of the genome. These collective discoveries illuminate not only an exciting avenue for improving feedstock genetic drift, stability, and culture health for bioproduction but also an ideal model species to study other epigenetic processes in microalgae.
Collapse
Affiliation(s)
- Christina R Steadman
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Eric M Small
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shounak Banerjee
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Sara Pacheco
- Microbial & Biome Science Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Scott N Twary
- Microbial & Biome Science Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
6
|
Jeong MR, Hwang JW, Choi M, Seok SH. MHC class II + macrophage differentiation is impaired in metastasized lungs via PGE 2 receptor EP2. Cell Rep 2025; 44:115574. [PMID: 40232933 DOI: 10.1016/j.celrep.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Monocytes differentiate into macrophages (Mφs) to facilitate lung metastasis, but the monocyte-to-Mφ transition during this process is not well understood. To investigate, we performed bulk RNA sequencing on Mφs isolated from the lungs of mice bearing Lewis lung carcinoma tumors and from naive lungs. Our results showed impaired differentiation of monocytes into major histocompatibility complex (MHC) class II+ Mφs, with an upregulation of PGE2-inducible genes, including Arg1, in tumor-associated Mφs (TAMs). In vitro experiments confirmed that prostaglandin E2 (PGE2) inhibits the differentiation of MHC class II+ Mφs while promoting Arg1+ Mφs via the E prostanoid 2 (EP2) receptor, accompanied by DNA methylation. Whole-genome bisulfite sequencing revealed that PGE2-EP2 signaling drives the hypermethylation and downregulation of gene sets related to myeloid cells in non-neoplastic tissues. Our study highlights PGE2-EP2-driven DNA methylation in the monocyte-to-TAM transition, suggesting potential therapeutic avenues for lung metastasis.
Collapse
Affiliation(s)
- Mi Reu Jeong
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Woo Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
7
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
8
|
Sepulveda H, Li X, Arteaga-Vazquez LJ, López-Moyado IF, Brunelli M, Hernández-Espinosa L, Yue X, Angel JC, Brown C, Dong Z, Jansz N, Puddu F, Modat A, Scotcher J, Creed P, Kennedy PH, Manriquez-Rodriguez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. Nat Struct Mol Biol 2025:10.1038/s41594-025-01505-9. [PMID: 40155743 DOI: 10.1038/s41594-025-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAc transferase (OGT) interacts robustly with all three mammalian TET methylcytosine dioxygenases. Here we show that deletion of the Ogt gene in mouse embryonic stem (mES) cells results in a widespread increase in the TET product 5-hydroxymethylcytosine in both euchromatic and heterochromatic compartments, with a concomitant reduction in the TET substrate 5-methylcytosine at the same genomic regions. mES cells treated with an OGT inhibitor also displayed increased 5-hydroxymethylcytosine, and attenuating the TET1-OGT interaction in mES cells resulted in a genome-wide decrease of 5-methylcytosine, indicating that OGT restrains TET activity and limits inappropriate DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by derepression of transposable elements predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in transposable element expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and aging.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Leo J Arteaga-Vazquez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Melina Brunelli
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lot Hernández-Espinosa
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Brown
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhen Dong
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Natasha Jansz
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | | | - Páidí Creed
- biomodal, Chesterford Research Park, Cambridge, UK
| | - Patrick H Kennedy
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cindy Manriquez-Rodriguez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Myers
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Cipriani C, Camaioni A, Tartaglione AM, Giudice M, Conti A, Petrone V, Miele MT, Matteucci C, Garaci E, Calamandrei G, Toschi N, Sinibaldi-Vallebona P, Ricceri L, Balestrieri E. Activation of endogenous retroviruses characterizes the maternal-fetal interface in the BTBR mouse model of autism spectrum disorder. Sci Rep 2025; 15:8271. [PMID: 40065061 PMCID: PMC11894120 DOI: 10.1038/s41598-025-91541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Endogenous retroviruses (ERVs) are genetic elements derived from a process of germline infection by exogenous retroviruses. Some ERVs have been co-opted for physiological functions, and their activation has been associated with complex diseases, including Autism Spectrum Disorder (ASD). We have already demonstrated an abnormal expression of ERVs in the BTBR T + tf/J (BTBR) mouse model of ASD during intrauterine life till adulthood. Thus, starting from the assumptions that ERVs may contribute to the derailment of neurodevelopment and that ASD has fetal origins as a consequence of adverse intrauterine conditions, the present study aims to characterize the transcriptional activity of selected ERVs (MusD, IAP, Syn-A, Syn-B, ARC and GLN), LINE-1, inflammatory mediators (IL-6, IL-10, IL-11 CXCL-1) at the maternal-fetal interface and in dissected embryos from BTBR mice. Our results highlight the deregulation of ERVs and inflammatory mediators at the maternal-fetal interface, and in cephalic and non-cephalic embryonic tissues from BTBR compared to C57BL/6 J. Several correlations among ERV expression levels emerged in different tissues from C57BL/6 J mice while, in BTBR mice, no correlations were found, suggesting that in this model, the acquisition of autistic-like traits might be linked to the dysregulation of ERV activity occurring during intra-uterine life.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Gemma Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| |
Collapse
|
10
|
Yan Z, Cao F, Shao T, Liao B, Wang G, Tang X, Luo H, Zhu F, Liao Y, Zhang F, Li X, Wang J, Liu Z, Zhuang S. Epigenetics in autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167652. [PMID: 39753194 DOI: 10.1016/j.bbadis.2024.167652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression. Consequently, exploring epigenetic regulatory mechanisms presents a valuable pathway for developing novel therapeutic strategies and diagnostic biomarkers aimed at slowing or preventing ADPKD progression. This review systematically examines existing studies on epigenetic alterations-including DNA methylation, histone modification, and non-coding RNA regulation-in ADPKD patients, providing insights into gene expression changes and functions, and identifying potential drug targets for ADPKD treatment. CLINICAL SIGNIFICANCE: Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, causing significant morbidity, increasing patient mortality, and weakening the healthcare system. Further study on ADPKD has revealed that epigenetics plays an important role in the pathophysiological process of ADPKD. Epigenetics has a significant impact on the formation and progression of ADPKD through a variety of processes including DNA methylation, histone modification, and non-coding RNA. In addition to boosting cyst formation and proliferation, it induces cystic fibrosis and inflammatory cell infiltration, ultimately leading to a poor prognosis. This review summarizes the current understanding of the associated alterations in gene expression and function produced by epigenetic regulation in ADPKD, as well as potential treatment targets.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Feng Cao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Tingting Shao
- Department of Emergency, the Second Affiliated Hospital of Nanchang University, China
| | - Bingqing Liao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Guoping Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Xianhu Tang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Hongwen Luo
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Fengjuan Zhu
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Yunqiang Liao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Fengxia Zhang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Xiaosheng Li
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Jian Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Zhenzhen Liu
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell 2024; 187:7414-7432.e26. [PMID: 39476839 DOI: 10.1016/j.cell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 12/29/2024]
Abstract
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soo Jin Kim
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Ericka S Humphrey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Richa Nayak
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, UT MD Anderson Cancer Center, Houston, TX, USA; Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Virginia Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Rehman H Hassan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa P Deliu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Abajorga M, Yurkovetskiy L, Luban J. piRNA Defense Against Endogenous Retroviruses. Viruses 2024; 16:1756. [PMID: 39599869 PMCID: PMC11599104 DOI: 10.3390/v16111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21-35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter.
Collapse
Affiliation(s)
- Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
14
|
Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat Struct Mol Biol 2024; 31:1543-1556. [PMID: 38834915 PMCID: PMC11479940 DOI: 10.1038/s41594-024-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Collapse
Affiliation(s)
- Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Laura Castilla Vallmanya
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Dias Mirandela M, Zoch A, Leismann J, Webb S, Berrens RV, Valsakumar D, Kabayama Y, Auchynnikava T, Schito M, Chowdhury T, MacLeod D, Xiang X, Zou J, Rappsilber J, Allshire RC, Voigt P, Cook AG, Barau J, O'Carroll D. Two-factor authentication underpins the precision of the piRNA pathway. Nature 2024; 634:979-985. [PMID: 39294378 PMCID: PMC11499256 DOI: 10.1038/s41586-024-07963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway guides the DNA methylation of young, active transposons during germline development in male mice1. piRNAs tether the PIWI protein MIWI2 (PIWIL4) to the nascent transposon transcript, resulting in DNA methylation through SPOCD1 (refs. 2-5). Transposon methylation requires great precision: every copy needs to be methylated but off-target methylation must be avoided. However, the underlying mechanisms that ensure this precision remain unknown. Here, we show that SPOCD1 interacts directly with SPIN1 (SPINDLIN1), a chromatin reader that primarily binds to H3K4me3-K9me3 (ref. 6). The prevailing assumption is that all the molecular events required for piRNA-directed DNA methylation occur after the engagement of MIWI2. We find that SPIN1 expression precedes that of both SPOCD1 and MIWI2. Furthermore, we demonstrate that young LINE1 copies, but not old ones, are marked by H3K4me3, H3K9me3 and SPIN1 before the initiation of piRNA-directed DNA methylation. We generated a Spocd1 separation-of-function allele in the mouse that encodes a SPOCD1 variant that no longer interacts with SPIN1. We found that the interaction between SPOCD1 and SPIN1 is essential for spermatogenesis and piRNA-directed DNA methylation of young LINE1 elements. We propose that piRNA-directed LINE1 DNA methylation requires a developmentally timed two-factor authentication process. The first authentication is the recruitment of SPIN1-SPOCD1 to the young LINE1 promoter, and the second is MIWI2 engagement with the nascent transcript. In summary, independent authentication events underpin the precision of piRNA-directed LINE1 DNA methylation.
Collapse
Affiliation(s)
- Madeleine Dias Mirandela
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rebecca V Berrens
- IDRM, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tamoghna Chowdhury
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David MacLeod
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Xinyu Xiang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Joan Barau
- Institute of Molecular Biology, Mainz, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Dai L, Johnson-Buck A, Walter NG. Mechanistic model for epigenetic maintenance by methyl-CpG-binding domain proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614380. [PMID: 39386650 PMCID: PMC11463468 DOI: 10.1101/2024.09.22.614380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA methylation is a fundamental element of epigenetic regulation that is governed by the MBD protein superfamily, a group of "readers" that share a highly conserved methyl-CpG-binding domain (MBD) and mediate chromatin remodeler recruitment, transcription regulation, and coordination of DNA and histone modification. Previous work has characterized the binding affinity and sequence selectivity of MBD-containing proteins toward palindromes of 5-methylcytosine (5mC) containing 5mCpG dinucleotides, often referred to as single symmetrically methylated CpG sites. However, little is known about how MBD binding is influenced by the prototypical local clustering of methylated CpG sites and the presence of DNA structural motifs encountered, e.g., during DNA replication and transcription. Here, we use Single-Molecule Kinetics through Equilibrium Poisson Sampling (SiMKEPS) to measure precise binding and dissociation rate constants of the MBD of human protein MBD1 to DNAs with varying patterns of multiple methylated CpG sites and diverse structural motifs. MBD binding is promoted by two major properties of its DNA substrates: 1) tandem (consecutive) symmetrically methylated CpG sites in double-stranded DNA and secondary structures in single-stranded DNA; and 2) DNA forks. Based on our findings, we propose a mechanistic model for how MBD proteins contribute to epigenetic boundary maintenance between transcriptionally silenced and active genome regions.
Collapse
Affiliation(s)
- Liuhan Dai
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
18
|
Liu H, Ma L, Cao Z. DNA methylation and its potential roles in common oral diseases. Life Sci 2024; 351:122795. [PMID: 38852793 DOI: 10.1016/j.lfs.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Oral diseases are among the most common diseases worldwide and are associated with systemic illnesses, and the rising occurrence of oral diseases significantly impacts the quality of life for many individuals. It is crucial to detect and treat these conditions early to prevent them from advancing. DNA methylation is a fundamental epigenetic process that contributes to a variety of diseases including various oral diseases. Taking advantage of its reversibility, DNA methylation becomes a viable therapeutic target by regulating various cellular processes. Understanding the potential role of this DNA alteration in oral diseases can provide significant advances and more opportunities for diagnosis and therapy. This article will review the biology of DNA methylation, and then mainly discuss the key findings on DNA methylation in oral cancer, periodontitis, endodontic disease, oral mucosal disease, and clefts of the lip and/or palate in the background of studies on global DNA methylation and gene-specific DNA methylation.
Collapse
Affiliation(s)
- Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
21
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
22
|
Lu J, Guo Y, Yin J, Chen J, Wang Y, Wang GG, Song J. Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations. Nat Commun 2024; 15:3111. [PMID: 38600075 PMCID: PMC11006857 DOI: 10.1038/s41467-024-47398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
23
|
Zoch A, Konieczny G, Auchynnikava T, Stallmeyer B, Rotte N, Heep M, Berrens RV, Schito M, Kabayama Y, Schöpp T, Kliesch S, Houston B, Nagirnaja L, O'Bryan MK, Aston KI, Conrad DF, Rappsilber J, Allshire RC, Cook AG, Tüttelmann F, O'Carroll D. C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line. Mol Cell 2024; 84:1021-1035.e11. [PMID: 38359823 PMCID: PMC10960678 DOI: 10.1016/j.molcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Gabriela Konieczny
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Rebecca V Berrens
- Institute for Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford OX37TY, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Brendan Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I Aston
- Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
24
|
Mahana Y, Ariyoshi M, Nozawa RS, Shibata S, Nagao K, Obuse C, Shirakawa M. Structural evidence for protein-protein interaction between the non-canonical methyl-CpG-binding domain of SETDB proteins and C11orf46. Structure 2024; 32:304-315.e5. [PMID: 38159574 DOI: 10.1016/j.str.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular β-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.
Collapse
Affiliation(s)
- Yutaka Mahana
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryu-Suke Nozawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachiko Shibata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
25
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
26
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
28
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
29
|
Zhang XJ, Han BB, Shao ZY, Yan R, Gao J, Liu T, Jin ZY, Lai W, Xu ZM, Wang CH, Zhang F, Gu C, Wang Y, Wang H, Walsh CP, Guo F, Xu GL, Du YR. Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation. Nat Struct Mol Biol 2024; 31:42-53. [PMID: 38177668 DOI: 10.1038/s41594-023-01125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/14/2023] [Indexed: 01/06/2024]
Abstract
DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-Bin Han
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Yu Shao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Juan Gao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Liu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zi-Yang Jin
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Mei Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Han Wang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengjuan Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chan Gu
- Changping Laboratory, Beijing, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guo-Liang Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China.
| | - Ya-Rui Du
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
31
|
Irwin RE, Scullion C, Thursby SJ, Sun M, Thakur A, Hilman L, Callaghan B, Thompson PD, McKenna DJ, Rothbart SB, Xu G, Walsh CP. The UHRF1 protein is a key regulator of retrotransposable elements and innate immune response to viral RNA in human cells. Epigenetics 2023; 18:2216005. [PMID: 37246786 PMCID: PMC10228402 DOI: 10.1080/15592294.2023.2216005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/14/2023] [Indexed: 05/30/2023] Open
Abstract
While epigenetic mechanisms such as DNA methylation and histone modification are known to be important for gene suppression, relatively little is still understood about the interplay between these systems. The UHRF1 protein can interact with both DNA methylation and repressive chromatin marks, but its primary function in humans has been unclear. To determine what that was, we first established stable UHRF1 knockdowns (KD) in normal, immortalized human fibroblasts using targeting shRNA, since CRISPR knockouts (KO) were lethal. Although these showed a loss of DNA methylation across the whole genome, transcriptional changes were dominated by the activation of genes involved in innate immune signalling, consistent with the presence of viral RNA from retrotransposable elements (REs). We confirmed using mechanistic approaches that 1) REs were demethylated and transcriptionally activated; 2) this was accompanied by activation of interferons and interferon-stimulated genes and 3) the pathway was conserved across other adult cell types. Restoring UHRF1 in either transient or stable KD systems could abrogate RE reactivation and the interferon response. Notably, UHRF1 itself could also re-impose RE suppression independent of DNA methylation, but not if the protein contained point mutations affecting histone 3 with trimethylated lysine 9 (H3K9me3) binding. Our results therefore show for the first time that UHRF1 can act as a key regulator of retrotransposon silencing independent of DNA methylation.
Collapse
Affiliation(s)
- RE Irwin
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - C Scullion
- Biomedical Sciences, Ulster University, Coleraine, UK
- Precision Nanosystems Inc, Vancouver, BC, Canada
| | - SJ Thursby
- Biomedical Sciences, Ulster University, Coleraine, UK
- State Key Laboratory of Molecular Biology, Shanghai Institutes of Biological Sciences, Shanghai, China
| | - M Sun
- Cellular and Molecular Medicine Program, Division of Oncology, Johns Hopkins School of Medicine, St., Baltimore, MD, USA
| | - A Thakur
- Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - L Hilman
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - B Callaghan
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - PD Thompson
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - DJ McKenna
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - SB Rothbart
- Nutrition Innovation Centre for Food and Health, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Guoliang Xu
- Cellular and Molecular Medicine Program, Division of Oncology, Johns Hopkins School of Medicine, St., Baltimore, MD, USA
| | - CP Walsh
- Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
32
|
Djihinto OY, Meacci D, Medjigodo AA, Bernardini F, Djogbénou LS. Relative expression of key genes involved in nucleic acids methylation in Anopheles gambiae sensu stricto. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:754-766. [PMID: 37417368 DOI: 10.1111/mve.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
In vertebrates, enzymes responsible for DNA methylation, one of the epigenetic mechanisms, are encoded by genes falling into the cytosine methyltransferases genes family (Dnmt1, Dnmt3a,b and Dnmt3L). However, in Diptera, only the methyltransferase Dnmt2 was found, suggesting that DNA methylation might act differently for species in this order. Moreover, genes involved in epigenetic dynamics, such as Ten-eleven Translocation dioxygenases (TET) and Methyl-CpG-binding domain (MBDs), present in vertebrates, might play a role in insects. This work aimed at investigating nucleic acids methylation in the malaria vector Anopheles gambiae (Diptera: Culicidae) by analysing the expression of Dnmt2, TET2 and MBDs genes using quantitative real-time polymerase chain reaction (qRT-PCR) at pre-immature stages and in reproductive tissues of adult mosquitoes. In addition, the effect of two DNA methylation inhibitors on larval survival was evaluated. The qPCR results showed an overall low expression of Dnmt2 at all developmental stages and in adult reproductive tissues. In contrast, MBD and TET2 showed an overall higher expression. In adult mosquito reproductive tissues, the expression level of the three genes in males' testes was significantly higher than that in females' ovaries. The chemical treatments did not affect larval survival. The findings suggest that mechanisms other than DNA methylation underlie epigenetic regulation in An. gambiae.
Collapse
Affiliation(s)
- Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dario Meacci
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Adandé A Medjigodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
33
|
Wang C, Lei B, Liu Y. An Analysis of a Transposable Element Expression Atlas during 27 Developmental Stages in Porcine Skeletal Muscle: Unveiling Molecular Insights into Pork Production Traits. Animals (Basel) 2023; 13:3581. [PMID: 38003198 PMCID: PMC10668843 DOI: 10.3390/ani13223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development and growth of porcine skeletal muscle determine pork quality and yield. While genetic regulation of porcine skeletal muscle development has been extensively studied using various omics data, the role of transposable elements (TEs) in this context has been less explored. To bridge this gap, we constructed a comprehensive atlas of TE expression throughout the developmental stages of porcine skeletal muscle. This was achieved by integrating porcine TE genomic coordinates with whole-transcriptome RNA-Seq data from 27 developmental stages. We discovered that in pig skeletal muscle, active Tes are closely associated with active epigenomic marks, including low levels of DNA methylation, high levels of chromatin accessibility, and active histone modifications. Moreover, these TEs include 6074 self-expressed TEs that are significantly enriched in terms of muscle cell development and myofibril assembly. Using the TE expression data, we conducted a weighted gene co-expression network analysis (WGCNA) and identified a module that is significantly associated with muscle tissue development as well as genome-wide association studies (GWAS) of the signals of pig meat and carcass traits. Within this module, we constructed a TE-mediated gene regulatory network by adopting a unique multi-omics integration approach. This network highlighted several established candidate genes associated with muscle-relevant traits, including HES6, CHRNG, ACTC1, CHRND, MAMSTR, and PER2, as well as novel genes like ENSSSCG00000005518, ENSSSCG00000033601, and PIEZO2. These novel genes hold promise for regulating muscle-related traits in pigs. In summary, our research not only enhances the TE-centered dissection of the genetic basis underlying pork production traits, but also offers a general approach for constructing TE-mediated regulatory networks to study complex traits or diseases.
Collapse
Affiliation(s)
- Chao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bowen Lei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
34
|
Tam PLF, Leung D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int J Mol Sci 2023; 24:16418. [PMID: 38003607 PMCID: PMC10671454 DOI: 10.3390/ijms242216418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons are invasive genetic elements that constitute substantial portions of mammalian genomes. They have the potential to influence nearby gene expression through their cis-regulatory sequences, reverse transcription machinery, and the ability to mold higher-order chromatin structures. Due to their multifaceted functions, it is crucial for host fitness to maintain strict regulation of these parasitic sequences to ensure proper growth and development. This review explores how subsets of retrotransposons have undergone evolutionary exaptation to enhance the complexity of mammalian genomes. It also highlights the significance of regulating these elements, drawing on recent studies conducted in human and murine systems.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
35
|
Garza R, Atacho DA, Adami A, Gerdes P, Vinod M, Hsieh P, Karlsson O, Horvath V, Johansson PA, Pandiloski N, Matas-Fuentes J, Quaegebeur A, Kouli A, Sharma Y, Jönsson ME, Monni E, Englund E, Eichler EE, Gale Hammell M, Barker RA, Kokaia Z, Douse CH, Jakobsson J. LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. SCIENCE ADVANCES 2023; 9:eadh9543. [PMID: 37910626 PMCID: PMC10619931 DOI: 10.1126/sciadv.adh9543] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.
Collapse
Affiliation(s)
- Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Meghna Vinod
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Vivien Horvath
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Pia A. Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Jon Matas-Fuentes
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical Neurosciences, University of Cambridge and Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Antonina Kouli
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge CB2 0PY, UK
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Molly Gale Hammell
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institute for Systems Genetics, Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge CB2 0PY, UK
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| | - Christopher H. Douse
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
36
|
Schöpp T, Prigozhin DM, Douse C, Kaji K, Cook AG, O'Carroll D. The DUF3715 domain has a conserved role in RNA-directed transposon silencing. RNA (NEW YORK, N.Y.) 2023; 29:1471-1480. [PMID: 37433650 PMCID: PMC10578480 DOI: 10.1261/rna.079693.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
RNA-directed transposon silencing operates in the mammalian soma and germline to safeguard genomic integrity. The piRNA pathway and the HUSH complex identify active transposons through recognition of their nascent transcripts, but mechanistic understanding of how these distinct pathways evolved is lacking. TASOR is an essential component of the HUSH complex. TASOR's DUF3715 domain adopts a pseudo-PARP structure and is required for transposon silencing in a manner independent of complex assembly. TEX15, an essential piRNA pathway factor, also contains the DUF3715 domain. Here, we show that TASOR's and TEX15's DUF3715 domain share extensive structural homology. We found that the DUF3715 domain arose in early eukaryotes and that in vertebrates it is restricted to TEX15, TASOR, and TASORB orthologs. While TASOR-like proteins are found throughout metazoa, TEX15 is vertebrate-specific. The branching of TEX15 and the TASOR-like DUF3715 domain likely occurred in early metazoan evolution. Remarkably, despite this vast evolutionary distance, the DUF3715 domain from divergent TEX15 sequences can functionally substitute the DUF3715 domain of TASOR and mediates transposon silencing. We have thus termed this domain of unknown function as the RNA-directed pseudo-PARP transposon silencing (RDTS) domain. In summary, we show an unexpected functional link between these critical transposon silencing pathways.
Collapse
Affiliation(s)
- Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Daniil M Prigozhin
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher Douse
- Lab of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Keisuke Kaji
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
37
|
Bona N, Crossan GP. Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development. Nat Struct Mol Biol 2023; 30:1434-1445. [PMID: 37580626 PMCID: PMC10584689 DOI: 10.1038/s41594-023-01067-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Long interspersed nuclear element 1 (LINE-1) is the only autonomous retrotransposon in humans and new integrations are a major source of genetic variation between individuals. These events can also lead to de novo germline mutations, giving rise to heritable genetic diseases. Recently, a role for DNA repair in regulating these events has been identified. Here we find that Fanconi anemia (FA) DNA crosslink repair factors act in a common pathway to prevent retrotransposition. We purify recombinant SLX4-XPF-ERCC1, the crosslink repair incision complex, and find that it cleaves putative nucleic acid intermediates of retrotransposition. Mice deficient in upstream crosslink repair signaling (FANCA), a downstream component (FANCD2) or the nuclease XPF-ERCC1 show increased LINE-1 retrotransposition in vivo. Organisms limit retrotransposition through transcriptional silencing but this protection is attenuated during early development leaving the zygote vulnerable. We find that during this window of vulnerability, DNA crosslink repair acts as a failsafe to prevent retrotransposition. Together, our results indicate that the FA DNA crosslink repair pathway acts together to protect against mutation by restricting LINE-1 retrotransposition.
Collapse
|
38
|
Viswanathan R, Cheruba E, Wong PM, Yi Y, Ngang S, Chong DQ, Loh YH, Tan IB, Cheow LF. DARESOME enables concurrent profiling of multiple DNA modifications with restriction enzymes in single cells and cell-free DNA. SCIENCE ADVANCES 2023; 9:eadi0197. [PMID: 37713482 PMCID: PMC10881072 DOI: 10.1126/sciadv.adi0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the most abundant DNA modifications that have important roles in gene regulation. Detailed studies of these different epigenetic marks aimed at understanding their combined effects and dynamic interconversion are, however, hampered by the inability of current methods to simultaneously measure both modifications, particularly in samples with limited quantities. We present DNA analysis by restriction enzyme for simultaneous detection of multiple epigenomic states (DARESOME), an assay based on modification-sensitive restriction digest and sequential tag ligation that can concurrently perform quantitative profiling of unmodified cytosine, 5mC, and 5hmC in CCGG sites genome-wide. DARESOME reveals the opposing roles of 5mC and 5hmC in gene expression regulation as well as their interconversion during aging in mouse brain. Implementation of DARESOME in single cells demonstrates pronounced 5hmC strand bias that reflects the semiconservative replication of DNA. Last, we showed that DARESOME enables integrative genomic, 5mC, and 5hmC profiling of cell-free DNA that uncovered multiomics cancer signatures in liquid biopsy.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Pui-Mun Wong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yao Yi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Shaun Ngang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Dawn Qingqing Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
39
|
Hay AD, Kessler NJ, Gebert D, Takahashi N, Tavares H, Teixeira FK, Ferguson-Smith AC. Epigenetic inheritance is unfaithful at intermediately methylated CpG sites. Nat Commun 2023; 14:5336. [PMID: 37660134 PMCID: PMC10475082 DOI: 10.1038/s41467-023-40845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.
Collapse
Affiliation(s)
- Amir D Hay
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hugo Tavares
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Felipe K Teixeira
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
40
|
Kanholm T, Rentia U, Hadley M, Karlow JA, Cox OL, Diab N, Bendall ML, Dawson T, McDonald JI, Xie W, Crandall KA, Burns KH, Baylin SB, Easwaran H, Chiappinelli KB. Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci. Cancer Res 2023; 83:2584-2599. [PMID: 37249603 PMCID: PMC10527578 DOI: 10.1158/0008-5472.can-22-3485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.
Collapse
Affiliation(s)
- Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jennifer A. Karlow
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Olivia L. Cox
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tyson Dawson
- The Institute for Biomedical Sciences at the George Washington University
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - James I. McDonald
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Wenbing Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Keith A. Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Kathleen H. Burns
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Stephen B. Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Hari Easwaran
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Katherine B. Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| |
Collapse
|
41
|
Jeong S, Cho S, Yang SK, Oh SA, Kang YK. Parallel shift of DNA methylation and gene expression toward the mean in mouse spleen with aging. Aging (Albany NY) 2023; 15:6690-6709. [PMID: 37494662 PMCID: PMC10415566 DOI: 10.18632/aging.204903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Age-associated DNA-methylation drift (AMD) manifests itself in two ways in mammals: global decrease (hypomethylation) and local increase of DNA methylation (hypermethylation). To comprehend the principle behind this bidirectional AMD, we studied methylation states of spatially clustered CpG dinucleotides in mouse splenic DNA using reduced-representation-bisulfite-sequencing (RRBS). The mean methylation levels of whole CpGs declined with age. Promoter-resident CpGs, generally weakly methylated (<5%) in young mice, became hypermethylated in old mice, whereas CpGs in gene-body and intergenic regions, initially moderately (~33%) and extensively (>80%) methylated, respectively, were hypomethylated in the old. Chromosome-wise analysis of methylation revealed that inter-individual heterogeneities increase with age. The density of nearby CpGs was used to classify individual CpGs, which found hypermethylation in CpG-rich regions and hypomethylation in CpG-poor regions. When genomic regions were grouped by methylation level, high-methylation regions tended to become hypomethylated whereas low-methylation regions tended to become hypermethylated, regardless of genomic structure/function. Data analysis revealed that while methylation level and CpG density were interdependent, methylation level was a better predictor of the AMD pattern representing a shift toward the mean. Further analysis of gene-expression data showed a decrease in the expression of highly-expressed genes and an increase in the expression of lowly-expressed genes with age. This shift towards the mean in gene-expression changes was correlated with that of methylation changes, indicating a potential link between the two age-associated changes. Our findings suggest that age-associated hyper- and hypomethylation events are stochastic and attributed to malfunctioning intrinsic mechanisms for methylation maintenance in low- and high-methylation regions, respectively.
Collapse
Affiliation(s)
- Sangkyun Jeong
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Sunwha Cho
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Seung Kyoung Yang
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Soo A. Oh
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
42
|
Pal D, Patel M, Boulet F, Sundarraj J, Grant OA, Branco MR, Basu S, Santos SDM, Zabet NR, Scaffidi P, Pradeepa MM. H4K16ac activates the transcription of transposable elements and contributes to their cis-regulatory function. Nat Struct Mol Biol 2023; 30:935-947. [PMID: 37308596 PMCID: PMC10352135 DOI: 10.1038/s41594-023-01016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.
Collapse
Affiliation(s)
- Debosree Pal
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manthan Patel
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanny Boulet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jayakumar Sundarraj
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Bhabha Atomic Research Centre, Mumbai, India
| | - Olivia A Grant
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Srinjan Basu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Nicolae Radu Zabet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paola Scaffidi
- Francis Crick Institute, London, UK
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Madapura M Pradeepa
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
43
|
Maksimov MO, Wu C, Ashbrook DG, Villani F, Colonna V, Mousavi N, Ma N, Lu L, Pritchard JK, Goren A, Williams RW, Palmer AA, Gymrek M. A novel quantitative trait locus implicates Msh3 in the propensity for genome-wide short tandem repeat expansions in mice. Genome Res 2023; 33:689-702. [PMID: 37127331 PMCID: PMC10317118 DOI: 10.1101/gr.277576.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Short tandem repeats (STRs) are a class of rapidly mutating genetic elements typically characterized by repeated units of 1-6 bp. We leveraged whole-genome sequencing data for 152 recombinant inbred (RI) strains from the BXD family of mice to map loci that modulate genome-wide patterns of new mutations arising during parent-to-offspring transmission at STRs. We defined quantitative phenotypes describing the numbers and types of germline STR mutations in each strain and performed quantitative trait locus (QTL) analyses for each of these phenotypes. We identified a locus on Chromosome 13 at which strains inheriting the C57BL/6J (B) haplotype have a higher rate of STR expansions than those inheriting the DBA/2J (D) haplotype. The strongest candidate gene in this locus is Msh3, a known modifier of STR stability in cancer and at pathogenic repeat expansions in mice and humans, as well as a current drug target against Huntington's disease. The D haplotype at this locus harbors a cluster of variants near the 5' end of Msh3, including multiple missense variants near the DNA mismatch recognition domain. In contrast, the B haplotype contains a unique retrotransposon insertion. The rate of expansion covaries positively with Msh3 expression-with higher expression from the B haplotype. Finally, detailed analysis of mutation patterns showed that strains carrying the B allele have higher expansion rates, but slightly lower overall total mutation rates, compared with those with the D allele, particularly at tetranucleotide repeats. Our results suggest an important role for inherited variants in Msh3 in modulating genome-wide patterns of germline mutations at STRs.
Collapse
Affiliation(s)
- Mikhail O Maksimov
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Cynthia Wu
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Vincenza Colonna
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Institute of Genetics and Biophysics, National Research Council, Naples 80111, Italy
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Nichole Ma
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Abraham A Palmer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Psychiatry, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Melissa Gymrek
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Biomedical Informatics
| |
Collapse
|
44
|
Sharif J, Koseki H, Parrish NF. Bridging multiple dimensions: roles of transposable elements in higher-order genome regulation. Curr Opin Genet Dev 2023; 80:102035. [PMID: 37028152 DOI: 10.1016/j.gde.2023.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/09/2023]
Abstract
Transposable elements (TEs) such as endogenous retroviruses (ERVs), long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs) occupy nearly half of typical mammalian genomes. Previous studies show that these parasitic elements, especially LINEs and ERVs, provide important activities promoting host germ cell and placental development, preimplantation embryogenesis, and maintenance of pluripotent stem cells. Despite being the most numerically abundant type of TEs in the genome, the consequences of SINEs on host genome regulation are less well characterized than those of ERVs and LINEs. Interestingly, recent findings reveal that SINEs recruit the key architectural protein CTCF (CCCTC-binding factor), indicating a role of these elements for 3D genome regulation. Higher-order nuclear structures are linked with important cellular functions such as gene regulation and DNA replication. SINEs and other TEs, therefore, may mediate distinct physiological processes with benefits to the host by modulating the 3D genome.
Collapse
Affiliation(s)
- Jafar Sharif
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan.
| |
Collapse
|
45
|
Boehm T, Morimoto R, Trancoso I, Aleksandrova N. Genetic conflicts and the origin of self/nonself-discrimination in the vertebrate immune system. Trends Immunol 2023; 44:372-383. [PMID: 36941153 DOI: 10.1016/j.it.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/22/2023]
Abstract
Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates. The evolutionarily recent lymphoid lineage is uniquely sensitive to mutations of the DNA maintenance methylase, which is an orphaned distant relative of prokaryotic restriction-modification systems. We discuss how the emergence of adaptive immunity gave rise to higher order genetic conflicts between genetic parasites and their vertebrate host.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Ryo Morimoto
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Inês Trancoso
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
46
|
Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol Cell 2023; 83:787-802.e9. [PMID: 36758546 DOI: 10.1016/j.molcel.2023.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Collapse
Affiliation(s)
- Elisa Kreibich
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarah Kaspar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arnaud R Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
47
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Iqbal W, Zhou W. Computational Methods for Single-cell DNA Methylome Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:48-66. [PMID: 35718270 PMCID: PMC10372927 DOI: 10.1016/j.gpb.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
Dissecting intercellular epigenetic differences is key to understanding tissue heterogeneity. Recent advances in single-cell DNA methylome profiling have presented opportunities to resolve this heterogeneity at the maximum resolution. While these advances enable us to explore frontiers of chromatin biology and better understand cell lineage relationships, they pose new challenges in data processing and interpretation. This review surveys the current state of computational tools developed for single-cell DNA methylome data analysis. We discuss critical components of single-cell DNA methylome data analysis, including data preprocessing, quality control, imputation, dimensionality reduction, cell clustering, supervised cell annotation, cell lineage reconstruction, gene activity scoring, and integration with transcriptome data. We also highlight unique aspects of single-cell DNA methylome data analysis and discuss how techniques common to other single-cell omics data analyses can be adapted to analyze DNA methylomes. Finally, we discuss existing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Waleed Iqbal
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Whelan R, Tönges S, Böhl F, Lyko F. Epigenetic biomarkers for animal welfare monitoring. Front Vet Sci 2023; 9:1107843. [PMID: 36713882 PMCID: PMC9874107 DOI: 10.3389/fvets.2022.1107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Biomarkers for holistic animal welfare monitoring represent a considerable unmet need in veterinary medicine. Epigenetic modifications, like DNA methylation, provide important information about cellular states and environments, which makes them highly attractive for biomarker development. Up until now, much of the corresponding research has been focused on human cancers. However, the increasing availability of animal genomes and epigenomes has greatly improved our capacity for epigenetic biomarker development. In this review, we provide an overview about animal DNA methylation patterns and the technologies that enable the analysis of these patterns. We also describe the key frameworks for compound DNA methylation biomarkers, DNA methylation clocks and environment-specific DNA methylation signatures, that allow complex, context-dependent readouts about animal health and disease. Finally, we provide practical examples for how these biomarkers could be applied for health and environmental exposure monitoring, two key aspects of animal welfare assessments. Taken together, our article provides an overview about the molecular and biological foundations for the development of epigenetic biomarkers in veterinary science and their application potential in animal welfare monitoring.
Collapse
Affiliation(s)
- Rose Whelan
- Creavis, Evonik Operations GmbH, Hanau, Germany
| | - Sina Tönges
- Innovation Management, German Cancer Research Center, Heidelberg, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany,*Correspondence: Frank Lyko ✉
| |
Collapse
|
50
|
Yazar V, Dawson VL, Dawson TM, Kang SU. DNA Methylation Signature of Aging: Potential Impact on the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:145-164. [PMID: 36710687 PMCID: PMC10041453 DOI: 10.3233/jpd-223517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of gene expression by epigenetic modifications means lasting and heritable changes in the function of genes without alterations in the DNA sequence. Of all epigenetic mechanisms identified thus far, DNA methylation has been of particular interest in both aging and age-related disease research over the last decade given the consistency of site-specific DNA methylation changes during aging that can predict future health and lifespan. An increasing line of evidence has implied the dynamic nature of DNA (de)methylation events that occur throughout the lifespan has a role in the pathophysiology of aging and age-associated neurodegenerative conditions, including Parkinson's disease (PD). In this regard, PD methylome shows, to some extent, similar genome-wide changes observed in the methylome of healthy individuals of matching age. In this review, we start by providing a brief overview of studies outlining global patterns of DNA methylation, then its mechanisms and regulation, within the context of aging and PD. Considering diverging lines of evidence from different experimental and animal models of neurodegeneration and how they combine to shape our current understanding of tissue-specific changes in DNA methylome in health and disease, we report a high-level comparison of the genomic methylation landscapes of brain, with an emphasis on dopaminergic neurons in PD and in natural aging. We believe this will be particularly useful for systematically dissecting overlapping genome-wide alterations in DNA methylation during PD and healthy aging, and for improving our knowledge of PD-specific changes in methylation patterns independent of aging process.
Collapse
Affiliation(s)
- Volkan Yazar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|