1
|
Burkard M, Piotrowsky A, Leischner C, Detert K, Venturelli S, Marongiu L. The Antiviral Activity of Polyphenols. Mol Nutr Food Res 2025:e70042. [PMID: 40166854 DOI: 10.1002/mnfr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug-resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double-stranded linear or partially double-stranded circular DNA viruses, negative sense single-stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single-stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin-3-gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Katja Detert
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
León AN, Rodriguez AJ, Richey ST, Torrents de la Pena A, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB. Structural mapping of polyclonal IgG responses to HA after influenza virus vaccination or infection. mBio 2025; 16:e0203024. [PMID: 39912630 PMCID: PMC11898601 DOI: 10.1128/mbio.02030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing a context for future vaccine trials and emphasizing the need for further characterization of protective responses toward conserved epitopes. (201 words)IMPORTANCESeasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. The variable efficacies of traditional influenza virus vaccines and the desire to prevent pandemic influenzas have motivated work toward finding a universal flu vaccine. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin viral fusion protein. To support the further development of these stem-targeting vaccine candidates, in this study, we use negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals who were exposed to influenza antigens through traditional vaccination and/or natural infection during the 2018-2019 flu season.
Collapse
Affiliation(s)
- André Nicolás León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Alba Torrents de la Pena
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Rachael M. Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Katherine Webb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip A. Mudd
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| |
Collapse
|
3
|
Knetsch TGJ, Ubbink M. Production and compositional analysis of full-length influenza virus hemagglutinin in Nanodiscs: Insights from multi-angle light scattering. Protein Expr Purif 2025; 227:106641. [PMID: 39653304 DOI: 10.1016/j.pep.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
The global threat of pandemics highlights the urgency of developing innovative vaccine strategies. Viral spike proteins are the primary antigens recognized by the immune system and serve as key targets for vaccine development. This study reports the production of full-length Influenza A virus surface glycoprotein, hemagglutinin (HA), and its incorporation into Nanodiscs (NDs). HA was expressed in insect cells and purified using detergents, maintaining its functional integrity. Characterisation by size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) confirmed that HA could be incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) NDs as a single trimer. SEC-MALS was instrumental in analysing the composition of NDs, which included HA, membrane scaffold proteins, lipids, and glycans. These findings provide a robust framework for the production and reconstitution of glycoproteins in NDs, and offers valuable insights into the study of multi-component nanoparticles using MALS. Our work highlights the potential of NDs for studying viral glycoproteins and advances the development of well-defined recombinant ND-based vaccines.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
4
|
Ozgulbas DG, Tan TJC, Wen PC, Teo QW, Lv H, Ghaemi Z, Frank M, Wu NC, Tajkhorshid E. Probing the Role of Membrane in Neutralizing Activity of Antibodies Against Influenza Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637756. [PMID: 39990330 PMCID: PMC11844565 DOI: 10.1101/2025.02.11.637756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Influenza poses a major health issue globally. Neutralizing antibodies targeting the highly conserved stem region of hemagglutinin (HA) of the influenza virus provide considerable protection against the infection. Using an array of advanced simulation technologies, we developed a high-resolution structural model of full-length, Fab-bound HA in a native viral membrane to characterize direct membrane interactions that govern the efficacy of the antibody. We reveal functionally important residues beyond the antibody's complementary-determining regions that contribute to its membrane binding. Mutagenesis experiments and infectivity assays confirm that deactivating the membrane-binding residues of the antibody decreases its neutralization activity. Therefore, we propose that the association with the viral membrane plays a key role in the neutralization activity of these antibodies. Given the rapid evolution of the influenza virus, the developed model provides a structural framework for the rational design and development of more effective therapeutic antibodies.
Collapse
|
5
|
Alshammari AK, Maina M, Blanchard AM, Daly JM, Dunham SP. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025; 14:114. [PMID: 40005491 PMCID: PMC11857950 DOI: 10.3390/pathogens14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Influenza A virus infections are known to predispose infected individuals to bacterial infections of the respiratory tract that result in co-infection with severe disease outcomes. Co-infections involving influenza A viruses and streptococcus bacteria result in protein-protein interactions that can alter disease outcomes, promoting bacterial colonisation, immune evasion, and tissue damage. Focusing on the synergistic effects of proteins from different pathogens during co-infection, this scoping review evaluated evidence for protein-protein interactions between influenza A virus proteins and streptococcus bacterial proteins. Of the 2366 studies initially identified, only 32 satisfied all the inclusion criteria. Analysis of the 32 studies showed that viral and bacterial neuraminidases (including NanA, NanB and NanC) are key players in desialylating host cell receptors, promoting bacterial adherence and colonisation of the respiratory tract. Virus hemagglutinin modulates bacterial virulence factors, hence aiding bacterial internalisation. Pneumococcal surface proteins (PspA and PspK), bacterial M protein, and pneumolysin (PLY) enhance immune evasion during influenza co-infections thus altering disease severity. This review highlights the importance of understanding the interaction of viral and bacterial proteins during influenza virus infection, which could provide opportunities to mitigate the severity of secondary bacterial infections through synergistic mechanisms.
Collapse
Affiliation(s)
- Askar K. Alshammari
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 36388, Saudi Arabia
| | - Meshach Maina
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Adam M. Blanchard
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Stephen P. Dunham
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| |
Collapse
|
6
|
Pathak T, Gupta K, Kumar N, Banerjee I. Monitoring Influenza A Virus Entry Using Quantitative Fluorescence Microscopy. Methods Mol Biol 2025; 2890:103-123. [PMID: 39890723 DOI: 10.1007/978-1-0716-4326-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza A virus (IAV) is a major threat to global human health and is a topic of intense research. With the continuous problem of seasonal influenza and the threat of potential pandemics due to frequent emergence of new viral strains, development of new, broad-spectrum antivirals is an urgent priority. In antiviral development against influenza, the process of host cell entry of IAV is of particular interest as inhibiting the virus at the entry step should stop infection early on, blocking the downstream infection processes including viral replication and transcription. Therefore, a detailed understanding of the IAV entry processes is essential to illuminate virus-assisting host factors that can serve as potentially valuable targets for therapeutic interventions. To accelerate the identification of novel antivirals or host-directed targets that play essential role in IAV entry, quantitative assays that can be used to monitor the virus at sequential entry steps would be important for performing high-content genetic or inhibitor screens. In this chapter, we describe how IAV entry can be monitored at the sequential entry steps, spanning from the initial attachment of the virus particle to the cell surface to the transmission of the viral genome to the nucleus, by fluorescence microscopy. Further, we provide the methods to quantify the images acquired with high-content microscope for each of the major IAV entry steps. The fluorescence microscopy-based IAV entry assays and the image quantification methods described here can be used to boost our understanding of the virus-host cell interactions and can lead to the discovery of novel host-directed prophylactic or therapeutic interventions.
Collapse
Affiliation(s)
- Tejal Pathak
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, Punjab, India
| | - Kajal Gupta
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, Punjab, India
| | - Nirmal Kumar
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, Punjab, India.
| |
Collapse
|
7
|
Yong J, Lu S, Lu C, Huang R. The Development History, Structural Composition, and Functions of Influenza Viruses and the Progress of Influenza Virus Inhibitors in Clinics and Clinical Trials. Mini Rev Med Chem 2025; 25:196-207. [PMID: 39113298 DOI: 10.2174/0113895575316416240724043949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 02/25/2025]
Abstract
Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as Alphainfluenzavirus (influenza A virus, IAV), Betainfluenzavirus (influenza B virus, IBV), Gammainfluenzavirus (influenza C virus, ICV), and Deltainfluenzavirus (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins in vivo. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death. Neuraminidase (NA) is one of the most critical targets for the development of anti-influenza virus drugs, and the main drugs clinically applied for the treatment of flu are neuraminidase inhibitors. However, various mutant strains have developed resistance to these inhibitors (For example, the substrains of H274Y in H1N1, H5N1, and E119V in H3N2 have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new substrains emerge constantly, and the pandemics caused by the new substrains will break out at any time. Therefore, it is urgent to develop new and wide-spectrum influenza virus inhibitors for overcoming the emerging influenza pandemic. Here, we focus on describing the progress of influenza virus inhibitors in clinics and clinical trials to provide a comprehensive reference for the researchers.
Collapse
Affiliation(s)
- Jianping Yong
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Shaoji Lu
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Ruiwen Huang
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
8
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
9
|
Cai M, Zhang Y, Zhen J, Yang F, Ou X, Zhang J, Yu F. Trivalent oleanolic acid-glucose conjugates: Synthesis and efficacy against Influenza A virus. Eur J Med Chem 2024; 280:116977. [PMID: 39454223 DOI: 10.1016/j.ejmech.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Influenza A virus (IAV) leads to significant morbidity and mortality due to the seasonal epidemics and spread. We have demonstrated that oleanolic acid (OA) C28 glucose conjugates and OA trimers are capable of effectively blocking the recognition and interaction between the influenza virus and host cells. In this study, a series of OA-glucose trimers were designed and synthesized through the CuAAC reaction. All trimers underwent screening for anti-IAV activities in vitro. Among these, compounds 13a and 13b showed inhibitory activity against the influenza virus, with IC50 values of 0.68 μM and 0.47 μM, respectively, demonstrating greater potency than oseltamivir (IC50 = 1.36 μM). Results from the time-of-addition experiment and hemagglutination inhibition assay suggest that these OA-glucose trimers may disrupt the recognition between the HA protein of IAV and sialic acid receptors on host cells, thus blocking viral entry. Furthermore, it was found that compound 13b effectively inhibits IAV infection in BALB/c mice. This study has elucidated the structure-activity relationships of OA trimers against the influenza virus and highlighted the utility of multivalent OA conjugates for enhancing ligand-target interactions in anti-influenza virus drug design, laying a groundwork for future research into the antiviral applications of these natural products.
Collapse
Affiliation(s)
- Ming Cai
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Yuan Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jie Zhen
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Xia Ou
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jihong Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fei Yu
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China.
| |
Collapse
|
10
|
Milojević L, Si Z, Xia X, Chen L, He Y, Tang S, Luo M, Zhou ZH. Capturing intermediates and membrane remodeling in class III viral fusion. SCIENCE ADVANCES 2024; 10:eadn8579. [PMID: 39630917 PMCID: PMC11616707 DOI: 10.1126/sciadv.adn8579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Enveloped viruses enter cells by fusing their envelopes to host cell membranes. Vesicular stomatitis virus (VSV) glycoprotein (G) is a prototype for class III fusion proteins. Although structures of the stable pre- and postfusion ectodomain of G are known, its fusogenic intermediates are insufficiently characterized. Here, we incubated VSV virions with late endosome-mimicking liposomes at pH 5.5 and used cryo-electron tomography (cryo-ET) to visualize stages of VSV's membrane fusion pathway, capture refolding intermediates of G, and reconstruct a sequence of G conformational changes. We observe that the G trimer disassembles into monomers and parallel dimers that explore a broad conformational space. Extended intermediates engage target membranes and mediate fusion, resulting in viral uncoating and linearization of the ribonucleoprotein genome. These viral fusion intermediates provide mechanistic insights into class III viral fusion processes, opening avenues for future research and structure-based design of fusion inhibition-based antiviral therapeutics.
Collapse
Affiliation(s)
- Lenka Milojević
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhu Si
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xian Xia
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Lauren Chen
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Sijia Tang
- Department of Chemistry, Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Ming Luo
- Department of Chemistry, Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Department of Chemistry, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Nurmaganbetov ZS, Nurkenov OA, Khlebnikov AI, Fazylov SD, Seidakhmetova RB, Tukhmetova ZK, Takibayeva AT, Khabdolda G, Rakhimberlinova ZB, Kaldybayeva AK, Shults EE. Antiviral Activity of (1 S,9a R)-1-[(1,2,3-Triazol-1-yl)methyl]octahydro-1 H-quinolizines from the Alkaloid Lupinine. Molecules 2024; 29:5742. [PMID: 39683901 DOI: 10.3390/molecules29235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Influenza is a disease of significant morbidity and mortality. The number of anti-influenza drugs is small; many of them stimulate the appearance of resistant strains. This article presents the results of assessing the antiviral activity of 1,2,3-triazole-containing derivatives of alkaloid lupinine for their ability to suppress the reproduction of orthomyxoviruses (influenza viruses: A/Vladivostok/2/09 (H1N1) and A/Almaty/8/98 (H3N2)). The ability of (1S,9aR)-1-[(1,2,3-triazol-1-yl)-methyl]octahydro-1H-quinolizines with aryl-, 4-((4-formylphenoxy)methyl)- or 4-((3-tert-butyl-5-ethyl-2-hydroxy-benzoyloxy)methyl)- substituents at the C-4 position of the triazole ring to reduce the infectivity of the virus when processing virus-containing material was established, indicating good prospects for the studied compounds as virucidal agents affecting extracellular virions. The experimental results demonstrated that the triazolyl lupinine derivatives exhibited varying degrees of affinity for both hemagglutinin and neuraminidase proteins. Furthermore, these compounds demonstrated inhibitory effects on the replication of influenza viruses with different antigenic subtypes. The obtained biological data are in agreement with the results of molecular docking, which showed strong binding energies of the investigated compounds under study with biological targets-hemagglutinin and neuraminidase proteins. Following the evaluation of antiviral efficacy among the studied triazolyl derivatives of lupinine, four compounds have been identified for subsequent comprehensive in vitro and in vivo investigations to further elucidate their antiviral properties.
Collapse
Affiliation(s)
- Zhangeldy S Nurmaganbetov
- Laboratory of Synthesis of Biologically Active Substances, Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan
- School of Pharmacy, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Oralgazy A Nurkenov
- Laboratory of Synthesis of Biologically Active Substances, Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan
| | | | - Serik D Fazylov
- Laboratory of Synthesis of Biologically Active Substances, Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan
| | - Roza B Seidakhmetova
- Department of Clinical Pharmacology and Evidence-Based Medicine, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Zhanar K Tukhmetova
- Department of Biomedicine, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Altynaray T Takibayeva
- Department of Chemistry and Chemical Technology, A. Saginov Karaganda Technical University, Karaganda 100027, Kazakhstan
| | - Gaukhar Khabdolda
- Department of Biomedicine, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Zhanar B Rakhimberlinova
- Department of Chemistry and Chemical Technology, A. Saginov Karaganda Technical University, Karaganda 100027, Kazakhstan
| | - Aigul K Kaldybayeva
- Department of Pharmaceutical and Toxicological Chemistry, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Elvira E Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
14
|
Martinez-Sobrido L, Nogales A. Recombinant Influenza A Viruses Expressing Reporter Genes from the Viral NS Segment. Int J Mol Sci 2024; 25:10584. [PMID: 39408912 PMCID: PMC11476892 DOI: 10.3390/ijms251910584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Studying influenza A viruses (IAVs) requires secondary experimental procedures to detect the presence of the virus in infected cells or animals. The ability to generate recombinant (r)IAV using reverse genetics techniques has allowed investigators to generate viruses expressing foreign genes, including fluorescent and luciferase proteins. These rIAVs expressing reporter genes have allowed for easily tracking viral infections in cultured cells and animal models of infection without the need for secondary approaches, representing an excellent option to study different aspects in the biology of IAV where expression of reporter genes can be used as a readout of viral replication and spread. Likewise, these reporter-expressing rIAVs provide an excellent opportunity for the rapid identification and characterization of prophylactic and/or therapeutic approaches. To date, rIAV expressing reporter genes from different viral segments have been described in the literature. Among those, rIAV expressing reporter genes from the viral NS segment have been shown to represent an excellent option to track IAV infection in vitro and in vivo, eliminating the need for secondary approaches to identify the presence of the virus. Here, we summarize the status on rIAV expressing traceable reporter genes from the viral NS segment and their applications for in vitro and in vivo influenza research.
Collapse
Affiliation(s)
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, 28130 Madrid, Spain
| |
Collapse
|
15
|
Cueno ME, Kamio N, Imai K. Avian influenza A H5N1 hemagglutinin protein models have distinct structural patterns re-occurring across the 1959-2023 strains. Biosystems 2024; 246:105347. [PMID: 39349133 DOI: 10.1016/j.biosystems.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Influenza A H5N1 hemagglutinin (HA) plays a crucial role in viral pathogenesis and changes in the HA receptor binding domain (RBD) have been attributed to alterations in viral pathogenesis. Mutations often occur within the HA which in-turn results in HA structural changes that consequently contribute to protein evolution. However, the possible occurrence of mutations that results to reversion of the HA protein (going back to an ancestral protein conformation) which in-turn creates distinct HA structural patterns across the 1959-2023 H5N1 viral evolution has never been investigated. Here, we generated and verified the quality of the HA models, identified similar HA structural patterns, and elucidated the possible variations in HA RBD structural dynamics. Our results show that there are 7 distinct structural patterns occurring among the 1959-2023 H5N1 HA models which suggests that reversion of the HA protein putatively occurs during viral evolution. Similarly, we found that the HA RBD structural dynamics vary among the 7 distinct structural patterns possibly affecting viral pathogenesis.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| |
Collapse
|
16
|
Greenspan NS. Jonathan Yewdell Discusses Viral Immunology, Vaccine Development, Navigating a Scientific Career, and Offers Perspectives on Transforming Scientific Publishing and Research Education. Pathog Immun 2024; 9:94-134. [PMID: 39381058 PMCID: PMC11460944 DOI: 10.20411/pai.v9i2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
In this interview, Jonathan Yewdell talks with Pathogens and Immunity senior editor Neil Green-span about the evolution of viral immunology, highlighting his work and the contributions of other influential scientists. He emphasizes the importance of passion and collaboration in scientific research, illustrating the potential for groundbreaking discoveries through networking. He provides advice on navigating a scientific career, stressing the significance of strong mentorship. And he shares his perspective on transforming the scientific publishing industry and research education.
Collapse
|
17
|
Wang M, Chen J, Zhang ZL. Highly-Efficient Selection of Aptamers for Quantitative Fluorescence Detecting Multiple IAV Subtypes. Anal Chem 2024. [PMID: 39259665 DOI: 10.1021/acs.analchem.4c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Influenza A virus (IAV) can cause infectious respiratory diseases in humans and animals. IAVs mutate rapidly through antigenic drift and shift, resulting in the emergence of numerous IAV subtypes and significant challenges for IAV detection. Therefore, achieving the simultaneous detection of multiple IAVs is crucial. In this work, three specific aptamers targeting the hemagglutination (HA) protein of the influenza A H5N1, H7N9, and H9N2 viruses were screened using a multichannel magnetic microfluidic chip. The aptamers exhibit nanomolar affinity and excellent specificity for the HA protein of H5N1, H7N9, and H9N2 viruses. Furthermore, three specific aptamers were truncated and labeled with different fluorescence markers to realize fluorescence quantitative detection of influenza A H5N1, H7N9, and H9N2 viruses through an aptamer sandwich assay in 1 h. The limit of detection (LOD) of the developed method is 0.38 TCID50/mL for the H5N1 virus, 0.75 TCID50/mL for the H7N9 virus, and 1.14 TCID50/mL for the H9N2 virus. The detection method has excellent specificity, strong anti-interference ability, and good reproducibility. This work provides a sensitive quantitative detection method for the H5N1, H7N9, and H9N2 viruses, enabling quantitative fluorescence detection for multiple IAV subtypes.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jianjun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
18
|
Na H, Luo H, Wang J, Sun L, Gao X, Liang G, Ma Y, Meng Z. An N-terminal heptad repeat trimer-based peptide fusion inhibitor exhibits potent anti-H1N1 activity. Bioorg Med Chem 2024; 111:117865. [PMID: 39098126 DOI: 10.1016/j.bmc.2024.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Influenza viruses are susceptible to seasonal influenza, which has repeatedly caused global pandemics and jeopardized human health. Vaccines are only used as preventive medicine due to the extreme mutability of influenza viruses, and antiviral medication is the most significant clinical treatment to reduce influenza morbidity and mortality. Nevertheless, the clinical application of anti-influenza virus agents is characterized by the narrow therapeutic time window, the susceptibility to drug resistance, and relatively limited effect on severe influenza. Therefore, it is of great significance to develop novel anti-influenza virus drugs to fulfill the urgent clinical needs. Influenza viruses enter host cells through the hemagglutinin (HA) mediated membrane fusion process, and fusion inhibitors function antivirally by blocking hemagglutinin deformation, promising better therapeutic efficacy and resolving drug resistance, with targets different from marketed medicines. Previous studies have shown that unnatural peptides derived from Human Immunodeficiency Virus Type 1 (HIV-1) membrane fusion proteins exhibit anti-HIV-1 activity. Based on the similarity of the membrane fusion protein deformation process between HIV-1 and H1N1, we selected sequences derived from the gp41 subunit in the HIV-1 fusion protein, and then constructed N-trimer spatial structure through inter-helical isopeptide bond modification, to design the novel anti-H1N1 fusion inhibitors. The results showed that the novel peptides could block 6-HB formation during H1N1 membrane fusion procedure, and thus possessed significant anti-H1N1 activity, comparable to the positive control oseltamivir. Our study demonstrates the design viability of peptide fusion inhibitors based on similar membrane fusion processes among viruses, and furthermore provides an important idea for the novel anti-H1N1 inhibitors development.
Collapse
Affiliation(s)
- Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China; Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Jinlin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Lijun Sun
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Xin Gao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China; Beijing Institute of Pharmacology and Toxicology, Beijing, PR China.
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China.
| | - Zhao Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing, PR China.
| |
Collapse
|
19
|
Zhang Y, Cui P, Shi J, Zeng X, Jiang Y, Chen Y, Zhang J, Wang C, Wang Y, Tian G, Chen H, Kong H, Deng G. A broad-spectrum vaccine candidate against H5 viruses bearing different sub-clade 2.3.4.4 HA genes. NPJ Vaccines 2024; 9:152. [PMID: 39160189 PMCID: PMC11333769 DOI: 10.1038/s41541-024-00947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
The global spread of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses threatens poultry and public health. The continuous circulation of these viruses has led to their considerable genetic and antigenic evolution, resulting in the formation of eight subclades (2.3.4.4a-h). Here, we examined the antigenic sites that determine the antigenic differences between two H5 vaccine strains, H5-Re8 (clade 2.3.4.4g) and H5-Re11 (clade 2.3.4.4h). Epitope mapping data revealed that all eight identified antigenic sites were located within two classical antigenic regions, with five sites in region A (positions 115, 120, 124, 126, and 140) and three in region B (positions 151, 156, and 185). Through antigenic cartography analysis of mutants with varying numbers of substitutions, we confirmed that a combination of mutations in these eight sites reverses the antigenicity of H5-Re11 to that of H5-Re8, and vice versa. More importantly, our analyses identified H5-Re11_Q115L/R120S/A156T (H5-Re11 + 3) as a promising candidate for a broad-spectrum vaccine, positioned centrally in the antigenic map, and offering potential universal protection against all variants within the clade 2.3.4.4. H5-Re11 + 3 serum has better cross-reactivity than sera generated with other 2.3.4.4 vaccines, and H5-Re11 + 3 vaccine provided 100% protection of chickens against antigenically drifted H5 viruses from various 2.3.4.4 antigenic groups. Our findings suggest that antigenic regions A and B are immunodominant in H5 viruses, and that antigenic cartography-guided vaccine design is a promising strategy for selecting a broad-spectrum vaccine.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Cui
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianying Zeng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Congcong Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Guohua Deng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
20
|
Gonzalez KJ, Yim KC, Blanco JCG, Boukhvalova MS, Strauch EM. Systematic computer-aided disulfide design as a general strategy to stabilize prefusion class I fusion proteins. Front Immunol 2024; 15:1406929. [PMID: 39114655 PMCID: PMC11303214 DOI: 10.3389/fimmu.2024.1406929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Numerous enveloped viruses, such as coronaviruses, influenza, and respiratory syncytial virus (RSV), utilize class I fusion proteins for cell entry. During this process, the proteins transition from a prefusion to a postfusion state, undergoing substantial and irreversible conformational changes. The prefusion conformation has repeatedly shown significant potential in vaccine development. However, the instability of this state poses challenges for its practical application in vaccines. While non-native disulfides have been effective in maintaining the prefusion structure, identifying stabilizing disulfide bonds remains an intricate task. Here, we present a general computational approach to systematically identify prefusion-stabilizing disulfides. Our method assesses the geometric constraints of disulfide bonds and introduces a ranking system to estimate their potential in stabilizing the prefusion conformation. We hypothesized that disulfides restricting the initial stages of the conformational switch could offer higher stability to the prefusion state than those preventing unfolding at a later stage. The implementation of our algorithm on the RSV F protein led to the discovery of prefusion-stabilizing disulfides that supported our hypothesis. Furthermore, the evaluation of our top design as a vaccine candidate in a cotton rat model demonstrated robust protection against RSV infection, highlighting the potential of our approach for vaccine development.
Collapse
Affiliation(s)
- Karen J. Gonzalez
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
| | - Kevin C. Yim
- Sigmovir Biosystems, Inc., Rockville, MD, United States
| | | | | | - Eva-Maria Strauch
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
León AN, Rodriguez AJ, Richey ST, de la Peña AT, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB. Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601940. [PMID: 39026813 PMCID: PMC11257458 DOI: 10.1101/2024.07.08.601940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.
Collapse
Affiliation(s)
- André Nicolás León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Rachael M. Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Oregon Health & Science University, Portland, OR
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Katherine Webb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Philip A. Mudd
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| |
Collapse
|
22
|
Meisenhelter JE, Petrich NR, Blum JE, Weisen AR, Guo R, Saven JG, Pochan DJ, Kloxin CJ. Impact of Peptide Length and Solution Conditions on Tetrameric Coiled Coil Formation. Biomacromolecules 2024; 25:3775-3783. [PMID: 38717062 DOI: 10.1021/acs.biomac.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Unlike naturally derived peptides, computationally designed sequences offer programmed self-assembly and charge display. Herein, new tetrameric, coiled coil-forming peptides were computationally designed ranging from 8 to 29 amino acids in length. Experimental investigations revealed that only the sequences having three or more heptads (i.e., 21 or more amino acids) exhibited coiled coil behavior. The shortest stable coiled coil sequence had a melting temperature (Tm) of approximately 58 ± 1 °C, making it ideal for thermoreversible assembly over moderate temperatures. Effects of pH and monovalent salt were examined, revealing structural stability over a pH range of 4 to 11 and an enhancement in Tm with the addition of salt. The incorporation of the coiled coil as a hydrogel cross-linker results in a thermally and mechanically reversible hydrogel. A subsequent demonstration of the hydrogel printed through a syringe illustrated one of many potential uses from 3D printing to injectable hydrogel drug delivery.
Collapse
Affiliation(s)
- Joshua E Meisenhelter
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Nolan R Petrich
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Albree R Weisen
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Rui Guo
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Anoma S, Bhattarakosol P, Kowitdamrong E. Characteristics and evolution of hemagglutinin and neuraminidase genes of Influenza A(H3N2) viruses in Thailand during 2015 to 2018. PeerJ 2024; 12:e17523. [PMID: 38846750 PMCID: PMC11155671 DOI: 10.7717/peerj.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.
Collapse
Affiliation(s)
- Sasiprapa Anoma
- Interdisciplinary Program in Medical Microbiology, Graduated School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ekasit Kowitdamrong
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Li X, Dong Z, Li J, Dou C, Tian D, Ma Z, Liu W, Gao GF, Bi Y. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023. Virol Sin 2024; 39:520-523. [PMID: 38768710 PMCID: PMC11280127 DOI: 10.1016/j.virs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
•H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy. •Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains. •Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains. •A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses. •The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.
Collapse
Affiliation(s)
- Xuanxuan Li
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Jiaming Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Deyu Tian
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; D. H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Kitamura S, Lin TH, Lee CCD, Takamura A, Kadam RU, Zhang D, Zhu X, Dada L, Nagai E, Yu W, Yao Y, Sharpless KB, Wilson IA, Wolan DW. Ultrapotent influenza hemagglutinin fusion inhibitors developed through SuFEx-enabled high-throughput medicinal chemistry. Proc Natl Acad Sci U S A 2024; 121:e2310677121. [PMID: 38753503 PMCID: PMC11145270 DOI: 10.1073/pnas.2310677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Chang-Chun David Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Akihiro Takamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Rameshwar U. Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ding Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Lucas Dada
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Emiko Nagai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Yao Yao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Dennis W. Wolan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
26
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
27
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Yu F, Xu J, Chen H, Song S, Nie C, Hao K, Zhao Z. Proprotein convertase cleavage of Ictalurid herpesvirus 1 spike-like protein ORF46 is modulated by N-glycosylation. Virology 2024; 592:110008. [PMID: 38335866 DOI: 10.1016/j.virol.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Viral spike proteins undergo a special maturation process that enables host cell receptor recognition, membrane fusion, and viral entry, facilitating effective virus infection. Here, we investigated the protease cleavage features of ORF46, a spike-like protein in Ictalurid herpesvirus 1 (IcHV-1) sharing similarity with spikes of Nidovirales members. We noted that during cleavage, full-length ORF46 is cleaved into ∼55-kDa and ∼100-kDa subunits. Moreover, truncation or site-directed mutagenesis at the recognition sites of proprotein convertases (PCs) abolishes this spike cleavage, highlighting the crucial role of Arg506/Arg507 and Arg668/Arg671 for the cleavage modification. ORF46 cleavage was suppressed by specific N-glycosylation inhibitors or mutation of its specific N-glycosylation sites (N192, etc.), suggesting that glycoprotein ORF46 cleavage is modulated by N-glycosylation. Notably, PCs and N-glycosylation inhibitors exhibited potent antiviral effects in host cells. Our findings, therefore, suggested that PCs cleavage of ORF46, modulated by N-glycosylation, is a potent antiviral target for fish herpesviruses.
Collapse
Affiliation(s)
- Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China.
| |
Collapse
|
29
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
30
|
Zhang X, Xia Y, Li P, Wu Z, Li R, Cai J, Zhang Y, Wang G, Li Y, Tang W, Su W. Discovery of cyperenoic acid as a potent and novel entry inhibitor of influenza A virus. Antiviral Res 2024; 223:105822. [PMID: 38350497 DOI: 10.1016/j.antiviral.2024.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Influenza therapeutics with new targets and modes of action are urgently needed due to the frequent emergence of mutants resistant to currently available anti-influenza drugs. Here we report the in vitro and in vivo anti-influenza A virus activities of cyperenoic acid, a natural compound, which was isolated from a Chinese medicine Croton crassifolius Geise. Cyperenoic acid could potently suppress H1N1, H3N2 and H9N2 virus replication with IC50 values ranging from 0.12 to 15.13 μM, and showed a low cytotoxicity against MDCK cells (CC50 = 939.2 ± 60.0 μM), with selectivity index (SI) values ranging from 62 to 7823. Oral or intraperitoneal treatment of cyperenoic acid effectively protected mice against a lethal influenza virus challenge, comparable to the efficacy of Tamiflu. Additionally, cyperenoic acid also significantly reduced lung virus titers and alleviated influenza-induced acute lung injury in infected mice. Mechanism-of-action studies revealed that cyperenoic acid exhibited its anti-influenza activity during the entry stage of viral replication by inhibiting HA-mediated viral fusion. Simulation docking analyses of cyperenoic acid with the HA structures implied that cyperenoic acid binds to the stalk domain of HA in a cavity near the fusion peptide. Collectively, these results demonstrate that cyperenoic acid is a promising lead compound for the anti-influenza drug development and this research provides a useful small-molecule probe for studying the HA-mediated viral entry process.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Yiping Xia
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Zhongnan Wu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Jialiao Cai
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
32
|
Kongchanagul A, Masrinoul P, Boonarkart C, Suptawiwat O, Auewarakul P. Antibody Response to Influenza Hemagglutinin Conserved Stalk Domain after Sequential Immunization with Old Vaccine Strains. Adv Virol 2024; 2024:5691673. [PMID: 38379638 PMCID: PMC10878747 DOI: 10.1155/2024/5691673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Hemagglutinin (HA) is the major envelope glycoprotein and antigen on the surface of influenza virions. The glycoprotein comprises a globular head and a stalk region. While immunodominant epitopes on influenza HA head are highly variable, the stalk domain is conserved. The variability of the HA head causes the antigenic drift that made the requirement of annual update of vaccine strains. Induction of antibody against the stalk domain has been proposed as an approach for a broadly protective influenza vaccine strategy. Sequential exposure to influenza strains with highly diverse HA heads but conserved stalks have been shown to induce antibody to the low immunogenic stalk domain. Here, we tested this approach by using old influenza vaccine strains that are decades apart in evolution. Inactivated whole virion vaccine of influenza A/Puerto Rico/8/1934, A/USSR/92/1977, and A/Thailand/102/2009 (H1N1) was sequentially immunized into BALB/c mice in comparison to immunization using single strain (A/Thailand/102/2009 (H1N1)). The sequentially immunized mice developed higher levels of binding antibody to the stalk domain. These suggested that using old vaccine strains in sequential vaccination may be a possible approach to induce antibody to the conserved stalk domain.
Collapse
Affiliation(s)
- Alita Kongchanagul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Hinke DM, Anderson AM, Katta K, Laursen MF, Tesfaye DY, Werninghaus IC, Angeletti D, Grødeland G, Bogen B, Braathen R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat Commun 2024; 15:850. [PMID: 38346952 PMCID: PMC10861589 DOI: 10.1038/s41467-024-44889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirankumar Katta
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Demo Yemane Tesfaye
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
34
|
Matthys A, Saelens X. Promises and challenges of single-domain antibodies to control influenza. Antiviral Res 2024; 222:105807. [PMID: 38219914 DOI: 10.1016/j.antiviral.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.
Collapse
Affiliation(s)
- Arne Matthys
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
35
|
Li X, Li Y, Shang X, Kong H. A sequence-based machine learning model for predicting antigenic distance for H3N2 influenza virus. Front Microbiol 2024; 15:1345794. [PMID: 38314434 PMCID: PMC10834737 DOI: 10.3389/fmicb.2024.1345794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Seasonal influenza A H3N2 viruses are constantly changing, reducing the effectiveness of existing vaccines. As a result, the World Health Organization (WHO) needs to frequently update the vaccine strains to match the antigenicity of emerged H3N2 variants. Traditional assessments of antigenicity rely on serological methods, which are both labor-intensive and time-consuming. Although numerous computational models aim to simplify antigenicity determination, they either lack a robust quantitative linkage between antigenicity and viral sequences or focus restrictively on selected features. Methods Here, we propose a novel computational method to predict antigenic distances using multiple features, including not only viral sequence attributes but also integrating four distinct categories of features that significantly affect viral antigenicity in sequences. Results This method exhibits low error in virus antigenicity prediction and achieves superior accuracy in discerning antigenic drift. Utilizing this method, we investigated the evolution process of the H3N2 influenza viruses and identified a total of 21 major antigenic clusters from 1968 to 2022. Discussion Interestingly, our predicted antigenic map aligns closely with the antigenic map generated with serological data. Thus, our method is a promising tool for detecting antigenic variants and guiding the selection of vaccine candidates.
Collapse
Affiliation(s)
- Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Yanyan Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
36
|
Bird GH, Patten JJ, Zavadoski W, Barucci N, Godes M, Moyer BM, Owen CD, DaSilva-Jardine P, Neuberg DS, Bowen RA, Davey RA, Walensky LD. A stapled lipopeptide platform for preventing and treating highly pathogenic viruses of pandemic potential. Nat Commun 2024; 15:274. [PMID: 38177138 PMCID: PMC10766962 DOI: 10.1038/s41467-023-44361-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
The continued emergence of highly pathogenic viruses, which either thwart immune- and small molecule-based therapies or lack interventions entirely, mandates alternative approaches, particularly for prompt and facile pre- and post-exposure prophylaxis. Many highly pathogenic viruses, including coronaviruses, employ the six-helix bundle heptad repeat membrane fusion mechanism to achieve infection. Although heptad-repeat-2 decoys can inhibit viral entry by blocking six-helix bundle assembly, the biophysical and pharmacologic liabilities of peptides have hindered their clinical development. Here, we develop a chemically stapled lipopeptide inhibitor of SARS-CoV-2 as proof-of-concept for the platform. We show that our lead compound blocks infection by a spectrum of SARS-CoV-2 variants, exhibits mucosal persistence upon nasal administration, demonstrates enhanced stability compared to prior analogs, and mitigates infection in hamsters. We further demonstrate that our stapled lipopeptide platform yields nanomolar inhibitors of respiratory syncytial, Ebola, and Nipah viruses by targeting heptad-repeat-1 domains, which exhibit strikingly low mutation rates, enabling on-demand therapeutic intervention to combat viral outbreaks.
Collapse
Affiliation(s)
- Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - J J Patten
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | | | | | - Marina Godes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin M Moyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Callum D Owen
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | | | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
37
|
Verdaguer N, Ferrer-Orta C, Garriga D. X-Ray Crystallography of Viruses. Subcell Biochem 2024; 105:135-169. [PMID: 39738946 DOI: 10.1007/978-3-031-65187-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.
Collapse
Affiliation(s)
- Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Damià Garriga
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain
| |
Collapse
|
38
|
Wu NC, Ellebedy AH. Targeting neuraminidase: the next frontier for broadly protective influenza vaccines. Trends Immunol 2024; 45:11-19. [PMID: 38103991 PMCID: PMC10841738 DOI: 10.1016/j.it.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
39
|
Mas V, Melero JA. Entry of Enveloped Viruses into Host Cells: Membrane Fusion. Subcell Biochem 2024; 105:567-592. [PMID: 39738958 DOI: 10.1007/978-3-031-65187-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (1) they first bind to specific surface receptors of the target cell membrane and then (2) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps than other membrane fusions that occur, for instance, in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, releasing the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter provides an overview of the different types of viral fusogens and their mode of action, as they are currently known. Furthermore, it outlines novel strategies for vaccine development related to stabilized viral fusogens.
Collapse
Affiliation(s)
- Vicente Mas
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
| | - Jose Antonio Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
41
|
Michalski M, Setny P. Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor. J Phys Chem B 2023; 127:9450-9460. [PMID: 37877534 PMCID: PMC10641832 DOI: 10.1021/acs.jpcb.3c05257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
42
|
Khalaj-Hedayati A, Moosavi S, Manta O, Helal MH, Ibrahim MM, El-Bahy ZM, Supriyanto G. Identification and In Silico Characterization of a Conserved Peptide on Influenza Hemagglutinin Protein: A New Potential Antigen for Universal Influenza Vaccine Development. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2796. [PMID: 37887946 PMCID: PMC10609762 DOI: 10.3390/nano13202796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Antigenic changes in surface proteins of the influenza virus may cause the emergence of new variants that necessitate the reformulation of influenza vaccines every year. Universal influenza vaccine that relies on conserved regions can potentially be effective against all strains regardless of any antigenic changes and as a result, it can bring enormous public health impact and economic benefit worldwide. Here, a conserved peptide (HA288-107) on the stalk domain of hemagglutinin glycoprotein is identified among highly pathogenic influenza viruses. Five top-ranked B-cell and twelve T-cell epitopes were recognized by epitope mapping approaches and the corresponding Human Leukocyte Antigen alleles to T-cell epitopes showed high population coverage (>99%) worldwide. Moreover, molecular docking analysis indicated that VLMENERTL and WTYNAELLV epitopes have high binding affinity to the antigen-binding groove of the HLA-A*02:01 and HLA-A*68:02 molecules, respectively. Theoretical physicochemical properties of the peptide were assessed to ensure its thermostability and hydrophilicity. The results suggest that the HA288-107 peptide can be a promising antigen for universal influenza vaccine design. However, in vitro and in vivo analyses are needed to support and evaluate the effectiveness of the peptide as an immunogen for vaccine development.
Collapse
Affiliation(s)
- Atin Khalaj-Hedayati
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Seyedehmaryam Moosavi
- Department of Nanotechnology Engineering, Faculty of Advance Technology and Multidiscipline, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia;
| | - Otilia Manta
- Romanian Academy, Victor Slavescu Centre for Financial and Monetary Research, 050731 Bucharest, Romania;
- Romanian Academy, CE-MONT Mountain Economy Center, 725700 Vatra Dornei, Romania
- Research Department, Romanian American University, 012101 Bucharest, Romania
| | - Mohamed H. Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha 76413, Saudi Arabia;
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt;
| | - Ganden Supriyanto
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
43
|
Dyson HJ, Wright PE. From Immunogenic Peptides to Intrinsically Disordered Proteins. Isr J Chem 2023; 63:e202300051. [PMID: 38454968 PMCID: PMC10919381 DOI: 10.1002/ijch.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/09/2024]
Abstract
It is hard to evaluate the role of individual mentors in the genesis of important ideas. In the case of our realization that proteins do not have to be stably folded to be functional, the influence of Richard Lerner and our collaborative work in the 1980s on the conformations of immunogenic peptides provided a base level of thinking about the nature of polypeptides in water solutions that led us to formulate and develop our ideas on the importance of intrinsic disorder in proteins. This review describes how the insights gained into the behavior of peptides led directly to the realization that proteins were not only capable of being functional while disordered, but also that disorder provided a distinct functional advantage in many important cellular processes.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
44
|
Abstract
The marvel of X-ray crystallography is the beauty and precision of the atomic structures deduced from diffraction patterns. Since these patterns record only amplitudes, phases for the diffracted waves must also be evaluated for systematic structure determination. Thus, we have the phase problem as a central complication, both intellectually for the field and practically so for many analyses. Here, I discuss how we - myself, my laboratory and the diffraction community - have faced the phase problem, considering the evolution of methods for phase evaluation as structural biology developed to the present day. During the explosive growth of macromolecular crystallography, practice in diffraction analysis evolved from a universal reliance on isomorphous replacement to the eventual domination of anomalous diffraction for de novo structure determination. As the Protein Data Bank (PDB) grew and familial relationships among proteins became clear, molecular replacement overtook all other phasing methods; however, experimental phasing remained essential for molecules without obvious precedents, with multi- and single-wavelength anomalous diffraction (MAD and SAD) predominating. While the mathematics-based direct methods had proved to be inadequate for typical macromolecules, they returned to crack substantial selenium substructures in SAD analyses of selenomethionyl proteins. Native SAD, exploiting the intrinsic S and P atoms of biomolecules, has become routine. Selenomethionyl SAD and MAD were the mainstays of structural genomics efforts to populate the PDB with novel proteins. A recent dividend has been paid in the success of PDB-trained artificial intelligence approaches for protein structure prediction. Currently, molecular replacement with AlphaFold models often obviates the need for experimental phase evaluation. For multiple reasons, we are now unfazed by the phase problem. Cryo-EM analysis is an attractive alternative to crystallography for many applications faced by today's structural biologists. It simply finesses the phase problem; however, the principles and procedures of diffraction analysis remain pertinent and are adopted in single-particle cryo-EM studies of biomolecules.
Collapse
Affiliation(s)
- Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
45
|
Madeo G, Savojardo C, Manfredi M, Martelli PL, Casadio R. CoCoNat: a novel method based on deep learning for coiled-coil prediction. Bioinformatics 2023; 39:btad495. [PMID: 37540220 PMCID: PMC10425188 DOI: 10.1093/bioinformatics/btad495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
MOTIVATION Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state. RESULTS In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and refinement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a performance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent state-of-the-art methods on register annotation and prediction of oligomerization states. AVAILABILITY AND IMPLEMENTATION CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on GitHub at https://github.com/BolognaBiocomp/coconat.
Collapse
Affiliation(s)
- Giovanni Madeo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Matteo Manfredi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
46
|
McCraw DM, Myers ML, Gulati NM, Prabhakaran M, Brand J, Andrews S, Gallagher JR, Maldonado-Puga S, Kim AJ, Torian U, Syeda H, Boyoglu-Barnum S, Kanekiyo M, McDermott AB, Harris AK. Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes. PLoS Pathog 2023; 19:e1011514. [PMID: 37639457 PMCID: PMC10491405 DOI: 10.1371/journal.ppat.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/08/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold. The stem region of HA on these designed chimeric nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, mice vaccinated with H1-nanoparticles were protected from lethal challenge with H1N1 influenza virus. By using a nanoparticle library approach with this helix-A nanoparticle design, we show that this vaccine nanoparticle construct design could be applicable to different influenza HA subtypes. Importantly, antibodies elicited by H1, H5, and H7 nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity binding to different HA subtypes. Also, helix-A nanoparticle immunizations were used to isolate mouse monoclonal antibodies that demonstrated heterosubtypic cross-reactivity and provided protection to mice from viral challenge via passive-transfer. This tandem helix-A nanoparticle construct represents a novel design to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.
Collapse
Affiliation(s)
- Dustin M. McCraw
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mallory L. Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neetu M. Gulati
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Kim
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Udana Torian
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Audray K. Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
47
|
Zhang Y, Ghosh U, Xie L, Holmes D, Severin KG, Weliky DP. Lipid acyl chain protrusion induced by the influenza virus hemagglutinin fusion peptide detected by NMR paramagnetic relaxation enhancement. Biophys Chem 2023; 299:107028. [PMID: 37247572 PMCID: PMC10330521 DOI: 10.1016/j.bpc.2023.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The glycoprotein spikes of membrane-enveloped viruses include a subunit that catalyzes fusion (joining) of the viral and target cell membranes. For influenza virus, this is subunit 2 of hemagglutinin which has a ∼ 20-residue N-terminal fusion peptide (Fp) region that binds target membrane. An outstanding question is whether there are associated membrane changes important for fusion. Several computational studies have found increased "protrusion" of lipid acyl chains near Fp, i.e. one or more chain carbons are closer to the aqueous region than the headgroup phosphorus. Protrusion may accelerate initial joining of outer leaflets of the two membranes into a stalk intermediate. In this study, higher protrusion probability in membrane with vs. without Fp is convincingly detected by larger Mn2+-associated increases in chain 13C NMR transverse relaxation rates (Γ2's). Data analysis provides a ratio Γ2,neighbor/Γ2,distant for lipids neighboring vs. more distant from the Fp. The calculated ratio depends on the number of Fp-neighboring lipids and the experimentally-derived range of 4 to 24 matches the range of increased protrusion probabilities from different simulations. For samples either with or without Fp, the Γ2 values are well-fitted by an exponential decay as the 13C site moves closer to the chain terminus. The decays correlate with free-energy of protrusion proportional to the number of protruded -CH2 groups, with free energy per -CH2 of ∼0.25 kBT. The NMR data support one major fusion role of the Fp to be much greater protrusion of lipid chains, with highest protrusion probability for chain regions closest to the headgroups.
Collapse
Affiliation(s)
- Yijin Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kathryn G Severin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
48
|
Shi W, Cai Y, Zhu H, Peng H, Voyer J, Rits-Volloch S, Cao H, Mayer ML, Song K, Xu C, Lu J, Zhang J, Chen B. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. Nature 2023; 619:403-409. [PMID: 37285872 DOI: 10.1038/s41586-023-06273-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.
Collapse
Affiliation(s)
- Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- CSL Seqirus, Waltham, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jewel Voyer
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Hong Cao
- Codex BioSolutions, Rockville, MD, USA
| | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Jazmin GM, Elaheh M, Manuel Jonathan FV, Martiniano B, David ML, Alám LC, José CB. In Silico Design of an Oseltamivir Derivative with Increased Affinity against Wild-Type and Mutant Variants of Neuraminidase and Hemagglutinin of Influenza A H1N1 Virus. Chem Biodivers 2023:e202201077. [PMID: 37377353 DOI: 10.1002/cbdv.202201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir. Several efforts were conducted to develop better anti-influenza A H1N1 drugs. Our research group combined in silico methods to create a compound derived from oseltamivir to be tested in vitro against influenza A H1N1. Here we show the results of a new compound derived from oseltamivir but with specific chemical modifications, with significant affinity either on NA (in silico and in vitro assays) or HA (in silico) from influenza A H1N1 strain. We include docking and molecular dynamics (MD) simulations of the oseltamivir derivative at the binding site onto NA and HA of influenza A H1N1. Additionally, the biological experimental results show that oseltamivir derivative decreases the lytic-plaque formation on viral susceptibility assays, and it does not show cytotoxicity. Finally, oseltamivir derivative assayed on viral NA showed a concentration-dependent inhibition behavior at nM, depicting a high affinity of the compound for the enzyme, corroborated with the MD simulations results, placing our designed oseltamivir derivative as a potential antiviral against influenza A H1N1.
Collapse
Affiliation(s)
- García-Machorro Jazmin
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico., Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, México
| | - Mirzaeicheshmeh Elaheh
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico., Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, México
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Fragoso-Vázquez Manuel Jonathan
- Departamento de Química Orgánica, Escuela Nacional de Ciencias, Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomas, México City, CP 11340, México
| | - Bello Martiniano
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Méndez-Luna David
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México, 07738, México
| | - León-Cardona Alám
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Correa-Basurto José
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| |
Collapse
|
50
|
Garcia NK, Kephart SM, Benhaim MA, Matsui T, Mileant A, Guttman M, Lee KK. Structural dynamics reveal subtype-specific activation and inhibition of influenza virus hemagglutinin. J Biol Chem 2023; 299:104765. [PMID: 37121546 PMCID: PMC10220487 DOI: 10.1016/j.jbc.2023.104765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California, USA
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|