1
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
2
|
Niu B, Tian T, Wang L, Tian Y, Tian T, Guo Y, Zhou H, Zhang Z. CCL9/CCR1 axis-driven chemotactic nanovesicles for attenuating metastasis of SMAD4-deficient colorectal cancer by trapping TGF- β. Acta Pharm Sin B 2024; 14:3711-3729. [PMID: 39220887 PMCID: PMC11365421 DOI: 10.1016/j.apsb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
SMAD4 deficiency in colorectal cancer (CRC) is highly correlated with liver metastasis and high mortality, yet there are few effective precision therapies available. Here, we show that CCR1+-granulocytic myeloid-derived suppressor cells (G-MDSCs) are highly infiltrated in SMAD4-deficient CRC via CCL15/CCR1 and CCL9/CCR1 axis in clinical specimens and mouse models, respectively. The excessive TGF-β, secreted by tumor-infiltrated CCR1+-G-MDSCs, suppresses the immune response of cytotoxic T lymphocytes (CTLs), thus facilitating metastasis. Hereby, we develop engineered nanovesicles displaying CCR1 and TGFBR2 molecules (C/T-NVs) to chemotactically target the tumor driven by CCL9/CCR1 axis and trap TGF-β through TGF-β-TGFBR2 specific binding. Chemotactic C/T-NVs counteract CCR1+-G-MDSC infiltration through competitive responding CCL9/CCR1 axis. C/T-NVs-induced intratumoral TGF-β exhaustion alleviates the TGF-β-suppressed immune response of CTLs. Collectively, C/T-NVs attenuate liver metastasis of SMAD4-deficient CRC. In further exploration, high expression of programmed cell death ligand-1 (PD-L1) is observed in clinical specimens of SMAD4-deficient CRC. Combining C/T-NVs with anti-PD-L1 antibody (aPD-L1) induces tertiary lymphoid structure formation with sustained activation of CTLs, CXCL13+-CD4+ T, CXCR5+-CD20+ B cells, and enhanced secretion of cytotoxic cytokine interleukin-21 and IFN-γ around tumors, thus eradicating metastatic foci. Our strategy elicits pleiotropic antimetastatic immunity, paving the way for nanovesicle-mediated precision immunotherapy in SMAD4-deficient CRC.
Collapse
Affiliation(s)
- Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Wan M, Yu H, Zhai H. Suppression of JAK2/STAT3 Pathway by Notoginsenoside R1 Reduces Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01136-3. [PMID: 38565774 DOI: 10.1007/s12033-024-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
It has bene reported that a novel saponin-notoginsenoside R1 (NGR1) possesses strong anti-tumor activities. This study aimed to investigate the role and mechanism of NGR1 in non-small cell lung cancer (NSCLC). NSCLC cell viability, proliferation, migration, and invasiveness were assessed using the ex vivo assays. NSCLC xenograft mouse models were constructed to confirm the role of NGR1 in vivo. Epithelial-mesenchymal transition (EMT)-related proteins and key markers in the JAK2/STAT3 pathway were examined using immunoblotting and immunohistochemistry analyses. NGR1 treatment suppressed NSCLC cell growth ex vivo and in vivo. It also decreased the migratory and invasive capacities of NSCLC cells. Additionally, NGR1 increased E-cadherin expression and reduced N-cadherin, vimentin, and snail expression in TGF-β1-treated NSCLC cells and xenograft tumors. JAK2/STAT3 pathway was inhibited by NGR1. Moreover, a specific inhibitor of JAK2, AG490, or STAT3 silencing significantly enhanced the effects of NGR1 against the EMT process in NSCLC cells. NGR1 restrains EMT process in NSCLC by inactivating JAK2/STAT3 signaling, suggesting the potential of NGR1 in anti-NSCLC therapy.
Collapse
Affiliation(s)
- Min Wan
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Hong Yu
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Haoqing Zhai
- Department of Oncology Hematology, Qianjiang Central Hospital, No.22 Zhanghua Road, Qianjiang, 433100, Hubei, China.
| |
Collapse
|
5
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K, Kundu CN, Patil C. Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 2024:1-13. [PMID: 38433403 DOI: 10.1080/07391102.2024.2318655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-β plays a significant role in the progression and severity of IPF. The TGF-β receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-β1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-β1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Biswajit Das
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Anoop Kumar
- Department of Pharmacology, DPSRU, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ajay Sharma
- Department of Pharmacognosy, DPSRU, New Delhi, India
| | - Madhu Gupta
- Department of Pharmaceutics, DPSRU, New Delhi, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | | | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Chandragouda Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
7
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
8
|
Wang JD, Zhang JS, Li XX, Wang KJ, Li M, Mao YY, Wan XH. Knockout of TGF-β receptor II by CRISPR/Cas9 delays mesenchymal transition of Lens epithelium and posterior capsule opacification. Int J Biol Macromol 2024; 259:129290. [PMID: 38199534 DOI: 10.1016/j.ijbiomac.2024.129290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Posterior capsule opacification (PCO) is the most common postoperative complication of cataract surgery. Transforming growth factor-β (TGF-β) is related to epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) that is proven to induce PCO formation in clinical and experimental studies. In this study, CRISPR sequences targeting exon of TGF-βRII were knocked out with lentiviral transfection in LECs. Rabbits' PCO model was established and recombinant adeno-associated virus (AAV) for transferring the gRNA of TGF βRII were intravitreally injected. SgRNA inhibited TGF-βRII expression and human LECs proliferation. In TGF-βRII knockout group, LECs motility and migration were suppressed, N-cadherin and vimentin expressions were significantly decreased, whereas E-cadherin was increased. The animal model showed that TGF-βRII knockout in vivo was effective in suppressing PCO. The current study suggested that the CRISPR/Cas9 endonuclease system could suppress TGF-βRII secretion, which participates in the EMT procedure of LECs in vitro and PCO in vivo. These findings might provide a new gene-editing approach and insight into a novel therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Jin Da Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jing Shang Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiao Xia Li
- Department of Ophthalmology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - Kai Jie Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Meng Li
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Ying Yan Mao
- Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Xiu Hua Wan
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China.
| |
Collapse
|
9
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
10
|
Wang MY, Liu WJ, Wu LY, Wang G, Zhang CL, Liu J. The Research Progress in Transforming Growth Factor-β2. Cells 2023; 12:2739. [PMID: 38067167 PMCID: PMC10706148 DOI: 10.3390/cells12232739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Wen-Juan Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Gang Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| |
Collapse
|
11
|
Akhurst RJ. From shape-shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition. Semin Cancer Biol 2023; 96:100-114. [PMID: 37852342 PMCID: PMC10883734 DOI: 10.1016/j.semcancer.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma. At the cellular level, EMT is defined as the transformation of epithelial cells towards a mesenchymal phenotype and is marked by attenuation of expression of epithelial markers and de novo expression of mesenchymal markers. This process is induced by extracellular factors and can be reversible, resulting in mesenchymal-to-epithelial transformation (MET). It is now clear that a cell can simultaneously express properties of both epithelia and mesenchyme, and that such transitional cell-types drive tumor cell heterogeneity, an important aspect of cancer progression, development of a stem-like cell state, and drug resistance. Here we review some of the earliest studies demonstrating the existence of EMT during embryogenesis and discuss the discovery of the extracellular factors and intracellular signaling pathways that contribute to this process, with components of the TGFβ signaling superfamily playing a prominent role. We mention early controversies surrounding in vivo EMT during embryonic development and in adult diseased states, and the maturation of the field to a stage wherein targeting EMT to control disease states is an aspirational goal.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and UCSF Helen Diller Family Comprehensive Cancer Center, USA
| |
Collapse
|
12
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
13
|
Ma L, Gonzalez-Junca A, Chou W, Barcellos-Hoff MH. Monitoring TGFβ signaling in irradiated tumors. Methods Cell Biol 2023; 180:49-67. [PMID: 37890932 DOI: 10.1016/bs.mcb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Transforming growth factor β (TGFβ) is exquisitely regulated under physiological conditions but its activity is highly dysregulated in cancer. All cells make TGFβ and have receptors for the ligand, which is sequestered in the extracellular matrix in a latent form. Ionizing radiation elicits rapid release of TGFβ from these stores, so-called activation, over a wide range of doses and exposures, including low dose (<1Gy) whole-body irradiation, creating an extraordinarily potent signal in the irradiated tissue or tumor. Hence, accurate evaluation of TGFβ activity is complicated because of its ubiquitous distribution as a latent complex. Here we describe conditions for assays that reveal TGFβ activity in situ using either tissue preparations or functional imaging.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Alba Gonzalez-Junca
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - William Chou
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
14
|
TGF-β-3 Induces Different Effects from TGF-β-1 and -2 on Cellular Metabolism and the Spatial Properties of the Human Trabecular Meshwork Cells. Int J Mol Sci 2023; 24:ijms24044181. [PMID: 36835591 PMCID: PMC9960590 DOI: 10.3390/ijms24044181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
To compare the effects among three TGF-β isoforms (TGF-β-1, TGF-β-2, and TGF-β-3) on the human trabecular meshwork (HTM), two-dimensional (2D) and three-dimensional (3D) cultures of commercially available certified immortalized HTM cells were used, and the following analyses were conducted: (1) trans-endothelial electrical resistance (TEER) and FITC dextran permeability measurements (2D); (2) a real-time cellular metabolic analysis (2D); (3) analysis of the physical property of the 3D HTM spheroids; and (4) an assessment of the gene expression levels of extracellular matrix (ECM) components (2D and 3D). All three TGF-β isoforms induced a significant increase in TEER values and a relative decrease in FITC dextran permeability in the 2D-cultured HTM cells, but these effects were the most potent in the case of TGF-β-3. The findings indicated that solutions containing 10 ng/mL of TGF-β-1, 5 ng/mL of TGF-β-2, and 1 ng/mL of TGF-β-3 had nearly comparable effects on TEER measurements. However, a real-time cellular metabolic analysis of the 2D-cultured HTM cells under these concentrations revealed that TGF-3-β induced quite different effects on the metabolic phenotype, with a decreased ATP-linked respiration, increased proton leakage, and decreased glycolytic capacity compared with TGF-β-1 and TGF-β-2. In addition, the concentrations of the three TGF-β isoforms also caused diverse effects on the physical properties of 3D HTM spheroids and the mRNA expression of ECMs and their modulators, in many of which, the effects of TGF-β-3 were markedly different from TGF-β-1 and TGF-β-2. The findings presented herein suggest that these diverse efficacies among the TGF-β isoforms, especially the unique action of TGF-β-3 toward HTM, may induce different effects within the pathogenesis of glaucoma.
Collapse
|
15
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Inflammageing and Cardiovascular System: Focus on Cardiokines and Cardiac-Specific Biomarkers. Int J Mol Sci 2023; 24:ijms24010844. [PMID: 36614282 PMCID: PMC9820990 DOI: 10.3390/ijms24010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The term "inflammageing" was introduced in 2000, with the aim of describing the chronic inflammatory state typical of elderly individuals, which is characterized by a combination of elevated levels of inflammatory biomarkers, a high burden of comorbidities, an elevated risk of disability, frailty, and premature death. Inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and rapid progression to heart failure. The great experimental and clinical evidence accumulated in recent years has clearly demonstrated that early detection and counteraction of inflammageing is a promising strategy not only to prevent cardiovascular disease, but also to slow down the progressive decline of health that occurs with ageing. It is conceivable that beneficial effects of counteracting inflammageing should be most effective if implemented in the early stages, when the compensatory capacity of the organism is not completely exhausted. Early interventions and treatments require early diagnosis using reliable and cost-effective biomarkers. Indeed, recent clinical studies have demonstrated that cardiac-specific biomarkers (i.e., cardiac natriuretic peptides and cardiac troponins) are able to identify, even in the general population, the individuals at highest risk of progression to heart failure. However, further clinical studies are needed to better understand the usefulness and cost/benefit ratio of cardiac-specific biomarkers as potential targets in preventive and therapeutic strategies for early detection and counteraction of inflammageing mechanisms and in this way slowing the progressive decline of health that occurs with ageing.
Collapse
|
17
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
18
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Venkatesan M, Semper C, Skrivergaard S, Di Leo R, Mesa N, Rasmussen MK, Young JF, Therkildsen M, Stogios PJ, Savchenko A. Recombinant production of growth factors for application in cell culture. iScience 2022; 25:105054. [PMID: 36157583 PMCID: PMC9489951 DOI: 10.1016/j.isci.2022.105054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Culturing eukaryotic cells has widespread applications in research and industry, including the emerging field of cell-cultured meat production colloquially referred to as “cellular agriculture”. These applications are often restricted by the high cost of growth medium necessary for cell growth. Mitogenic protein growth factors (GFs) are essential components of growth medium and account for upwards of 90% of the total costs. Here, we present a set of expression constructs and a simplified protocol for recombinant production of functionally active GFs, including FGF2, IGF1, PDGF-BB, and TGF-β1 in Escherichia coli. Using this E. coli expression system, we produced soluble GF orthologs from species including bovine, chicken, and salmon. Bioactivity analysis revealed orthologs with improved performance compared to commercially available alternatives. We estimated that the production cost of GFs using our methodology will significantly reduce the cost of cell culture medium, facilitating low-cost protocols tailored for cultured meat production and tissue engineering. Developed methodology for low-cost production of soluble, bioactive GFs Purified GFs were active on NIH-3T3 and bovine satellite cells Some GF orthologs outperformed commercially sourced GFs Production of GFs using these methods can foster significant cost savings
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | | | | | | | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
20
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
TGFβ-induced changes in membrane curvature influence Ras oncoprotein membrane localization. Sci Rep 2022; 12:13486. [PMID: 35931724 PMCID: PMC9356053 DOI: 10.1038/s41598-022-17482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
In the course of cancer progression tumor cells undergo morphological changes that lead to increased motility and invasiveness thus promoting formation of metastases. This process called epithelial to mesenchymal transition (EMT) is triggered by transforming growth factor (TGFβ) but for gaining the full invasive potential an interplay between signaling of TGFβ and Ras GTPases is required. Ras proteins possess a lipidated domain that mediates Ras association with the plasma membrane, which is essential for Ras biological functions. Type and number of the lipid anchors are the main difference among three Ras variants—H-ras, N-ras and K-ras. The lipid anchors determine membrane partitioning of lipidated proteins into membrane areas of specific physico-chemical properties and curvature. In this study, we investigated the effect of TGFβ treatment on the subcellular localization of H-ras and K-ras. We show that TGFβ increases positive plasma membrane curvature, which is subsequently sensed by H-ras, leading to its elevated plasma membrane localization and activation. This observation suggests the existence of a novel positive feedback loop whereby the increased level of plasma membrane curvature during TGFβ induced EMT attracts more Ras molecules to the plasma membrane resulting in increased Ras activity which in turn promotes further EMT and thus ultimately enables the acquisition of full invasive potential.
Collapse
|
22
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Chakrabarti M, Bhattacharya A, Gebere MG, Johnson J, Ayub ZA, Chatzistamou I, Vyavahare NR, Azhar M. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:770065. [PMID: 35928937 PMCID: PMC9343688 DOI: 10.3389/fcvm.2022.770065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Aims Calcific aortic valve disease (CAVD) is a progressive heart disease that is particularly prevalent in elderly patients. The current treatment of CAVD is surgical valve replacement, but this is not a permanent solution, and it is very challenging for elderly patients. Thus, a pharmacological intervention for CAVD may be beneficial. In this study, we intended to rescue aortic valve (AV) calcification through inhibition of TGFβ1 and SMAD3 signaling pathways. Methods and Results The klotho gene, which was discovered as an aging-suppressor gene, has been observed to play a crucial role in AV calcification. The klotho knockout (Kl–/–) mice have shorter life span (8–12 weeks) and develop severe AV calcification. Here, we showed that increased TGFβ1 and TGFβ-dependent SMAD3 signaling were associated with AV calcification in Kl–/– mice. Next, we generated Tgfb1- and Smad3-haploinsufficient Kl–/– mice to determine the contribution of TGFβ1 and SMAD3 to the AV calcification in Kl–/– mice. The histological and morphometric evaluation suggested a significant reduction of AV calcification in Kl–/–; Tgfb1± mice compared to Kl–/– mice. Smad3 heterozygous deletion was observed to be more potent in reducing AV calcification in Kl–/– mice compared to the Kl–/–; Tgfb1± mice. We observed significant inhibition of Tgfb1, Pai1, Bmp2, Alk2, Spp1, and Runx2 mRNA expression in Kl–/–; Tgfb1± and Kl–/–; Smad3± mice compared to Kl–/– mice. Western blot analysis confirmed that the inhibition of TGFβ canonical and non-canonical signaling pathways were associated with the rescue of AV calcification of both Kl–/–; Tgfb1± and Kl–/–; Smad3± mice. Conclusion Overall, inhibition of the TGFβ1-dependent SMAD3 signaling pathway significantly blocks the development of AV calcification in Kl–/– mice. This information is useful in understanding the signaling mechanisms involved in CAVD.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Aniket Bhattacharya
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mengistu G. Gebere
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - John Johnson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Zeeshan A. Ayub
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | | | - Mohamad Azhar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- William Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
- *Correspondence: Mohamad Azhar,
| |
Collapse
|
24
|
Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022; 13:900491. [PMID: 35770077 PMCID: PMC9235922 DOI: 10.3389/fphar.2022.900491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects. Hitherto, many Chinese herbal medicine studies have emerged to improve renal interstitial fibrosis. This paper reviews the mechanisms of renal interstitial fibrosis and recent studies on the disease intervention with Chinese herbal medicine through literature search, intend to reveal the importance of Chinese herbal medicine in renal interstitial fibrosis. The results show that Chinese herbal medicine can improve renal interstitial fibrosis, and the effects of Chinese herbal medicine on specific pathological mechanisms underlying renal interstitial fibrosis have been explored. Additionally, the limitations and advantages of Chinese herbal medicine in the treatment of renal interstitial fibrosis, possible research directions, and new targets of Chinese herbal medicine are discussed to provide a basis for studies of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xu-Bin Zhang
- Department of Orthopaedic, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ya-Feng Zhao
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Xiao-Yong Yu,
| |
Collapse
|
25
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
26
|
Zhang Y, Ma P, Duan Z, Liu Y, Mi Y, Fan D. Ginsenoside Rh4 Suppressed Metastasis of Lung Adenocarcinoma via Inhibiting JAK2/STAT3 Signaling. Int J Mol Sci 2022; 23:ijms23042018. [PMID: 35216134 PMCID: PMC8879721 DOI: 10.3390/ijms23042018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Lung adenocarcinoma (LAC) is a common lung cancer with a high malignancy that urgently needs to be treated with effective drugs. Ginsenoside Rh4 exhibits outstanding antitumor activities. However, few studies reported its effects on growth, metastasis and molecular mechanisms in LAC. Here, Rh4 is certified to show a strong anti-LAC efficiency in vitro and in vivo. Results of flow cytometry and Western blot are obtained to exhibited that Rh4 markedly restrained cellular proliferation and colony formation by arresting the cell cycle in the G1 phase. Results from a wound healing assay and transwell assays demonstrated that Rh4 is active in the antimigration and anti-invasion of LAC. The analysis of Western blot, immunofluorescence and RT-qPCR confirmed that Rh4 reverses the epithelial–mesenchymal transition (EMT) through upregulating the gene expression of E-cadherin and downregulating that of snail, N-cadherin and vimentin. In vivo results from immunohistochemistry show consistent trends with cellular studies. Furthermore, Rh4 suppresses the Janus kinases2/signal transducer and activator of the transcription3 (JAK2/STAT3) signaling pathway stimulated by TGF-β1. Silencing the STAT3 signal or co-treating with AG490 both enhanced the EMT attenuation caused by Rh4, which revealed that Rh4 suppressed EMT via inhibiting the JAK2/STAT3 signaling pathway. These findings explore the capacity and mechanism of Rh4 on the antimetastasis of LAC, providing evidence for Rh4 to LAC therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-8830-5118 (D.F.)
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-8830-5118 (D.F.)
| |
Collapse
|
27
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
28
|
Identification and characterization of genetic variants of TGFB1 in patients with congenital heart disease. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Ye Y, Zheng S. Successful Immunotherapy for Pancreatic Cancer in a Patient With TSC2 and SMAD4 Mutations: A Case Report. Front Immunol 2021; 12:785400. [PMID: 34880877 PMCID: PMC8645965 DOI: 10.3389/fimmu.2021.785400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic cancer has a poor prognosis, and it is traditionally treated with chemotherapy. Fortunately, immunotherapy has rapidly changed the landscape of solid tumor treatment, and improving the survival of cancer patients. However, pancreatic cancer is non-immunogenic, and single agent immunotherapies are unfavorable to its prognosis. Case Presentation Here, we report a case of stage IV pancreatic cancer in a patient with TSC2 and SMAD4 mutations treated with immunotherapy when the disease progressed after multi-line chemotherapy. Next generation sequencing (NGS) confirmed the presence of TSC2 and SMAD4 mutations and microsatellite stability (MSS). When the disease progressed after chemotherapy, a combination strategy was devised consisting of chemotherapy (S-1) and sintilimab. The patient had a partial response to therapy with this regimen, the lesions were significantly reduced and nearly disappeared. In metastatic pancreatic cancer, responses of this magnitude are rarely seen. Conclusions This outcome reveals that this combination can be effective in treating metastatic pancreatic cancer, especially in pancreatic cancer patients with SMAD4 and TSC2 mutations. This may help increase the use of this therapy in large-scale clinical research.
Collapse
Affiliation(s)
- Yanghui Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Zheng
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Yang Y, Shi K, Patel DM, Liu F, Wu T, Chai Z. How to inhibit transforming growth factor beta safely in diabetic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:115-122. [PMID: 33229911 DOI: 10.1097/mnh.0000000000000663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is a leading cause of mortality and morbidity in diabetes. This review aims to discuss the major features of DKD, to identify the difficult barrier encountered in developing a therapeutic strategy and to provide a potentially superior novel approach to retard DKD. RECENT FINDINGS Renal inflammation and fibrosis are prominent features of DKD. Transforming growth factor beta (TGFβ) with its activity enhanced in DKD plays a key pathological profibrotic role in promoting renal fibrosis. However, TGFβ is a difficult drug target because it has multiple important physiological functions, such as immunomodulation. These physiological functions of TGFβ can be interrupted as a result of complete blockade of the TGFβ pathway if TGFβ is directly targeted, leading to catastrophic side-effects, such as fulminant inflammation. Cell division autoantigen 1 (CDA1) is recently identified as an enhancer of profibrotic TGFβ signaling and inhibitor of anti-inflammatory SIRT1. Renal CDA1 expression is elevated in human DKD as well as in rodent models of DKD. Targeting CDA1, by either genetic approach or pharmacological approach in mice, leads to concurrent attenuation of renal fibrosis and inflammation without any deleterious effects observed. SUMMARY Targeting CDA1, instead of directly targeting TGFβ, represents a superior approach to retard DKD.
Collapse
Affiliation(s)
- Yuxin Yang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Pathology, Zunyi maternity and Child Healthcare Hospital, Zunyi
| | - Kexin Shi
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devang M Patel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Tieqiao Wu
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Varricchio L, Iancu-Rubin C, Upadhyaya B, Zingariello M, Martelli F, Verachi P, Clementelli C, Denis JF, Rahman AH, Tremblay G, Mascarenhas J, Mesa RA, O'Connor-McCourt M, Migliaccio AR, Hoffman R. TGFβ1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight 2021; 6:e145651. [PMID: 34383713 PMCID: PMC8492354 DOI: 10.1172/jci.insight.145651] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-β plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-β1 than TGF-β2 and TGF-β3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-β1/TGF-β3 protein trap, to block the excessive TGF-β signaling. Treatment of human mesenchymal stromal cells with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGF-β1 to induce collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PCs) with WT JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PCs was attributed to its ability to block TGF-β1–induced p57Kip2 expression and SMAD2 activation, thereby allowing normal rather than MF PCs to preferentially proliferate and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1lo mice, a murine model of MF, were treated with AVID200, resulting in the reduction in BM fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short-term and long-term HSCs. Collectively, these data provide the rationale for TGF-β1 blockade, with AVID200 as a therapeutic strategy for patients with MF.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Camelia Iancu-Rubin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Bhaskar Upadhyaya
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Cara Clementelli
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adeeb H Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ruben A Mesa
- Hematology Oncology, Mays Cancer Center, San Antonio, United States of America
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
32
|
Abstract
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
34
|
Adu-Gyamfi EA, Ding YB, Wang YX. Regulation of placentation by the transforming growth factor beta superfamily†. Biol Reprod 2021; 102:18-26. [PMID: 31566220 DOI: 10.1093/biolre/ioz186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, there is increased expression of some cytokines at the fetal-maternal interface; and the clarification of their roles in trophoblast-endometrium interactions is crucial to understanding the mechanism of placentation. This review addresses the up-to-date reported mechanisms by which the members of the transforming growth factor beta superfamily regulate trophoblast proliferation, differentiation, and invasion of the decidua, which are the main phases of placentation. The available information shows that these cytokines regulate placentation in somehow a synergistic and an antagonistic manner; and that dysregulation of their levels can lead to aberrant placentation. Nevertheless, prospective studies are needed to reconcile some conflicting reports; and identify some unknown mediators involved in the actions of these cytokines before their detailed mechanistic regulation of human placentation could be fully characterized. The TGF beta superfamily are expressed in the placenta, and regulate the process of placentation through the activation of several signaling pathways.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Zhu G, Fang C, Mo C, Wang Y, Huang Y, Li J. Transcriptomic analysis of granulosa cell populations proximal and distal to the germinal disc of chicken preovulatory follicles. Sci Rep 2021; 11:4683. [PMID: 33633274 PMCID: PMC7907084 DOI: 10.1038/s41598-021-84140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/19/2021] [Indexed: 01/28/2023] Open
Abstract
Within the oocytes of chicken preovulatory follicles, the engulfed yolk constitutes 99% of the oocyte content, while the small germinal disc (GD) (which contains the nucleus and 99% ooplasm) occupies only less than 1%. Relative to the position of the GD, the single granulosa cell layer surrounding the oocyte can be sub-divided into two sub-populations: granulosa cells proximal (named Gp cells) and distal (Gd cells) to the GD. It was reported that Gp cells and Gd cells differ in their morphology, proliferative rate and steroidogenic capacity, however, the underlying mechanism controlling granulosa cell heterogeneity remains unclear. Here we analyzed the transcriptomes of Gd and Gp cells of preovulatory (F5 and F1) follicles in chicken ovaries. We found that: (1) genes associated with cell cycle and DNA replication (CDK1, CCNB3 etc.) have comparatively higher expression levels in Gp cells than in Gd cells, while genes associated with steroidogenesis (CYP51A1, DHCR24) are highly expressed in Gd cells, indicating that Gp cells are likely more mitotic and less steroidogenic than Gd cells; (2) genes associated with extracellular matrix remodeling, cell adhesion and sperm binding (ZP3, ZP2) are differentially expressed in Gp and Gd cells; (3) Furthermore, signaling molecules (WNT4/IHH) and receptors for NGF (NGFR), epidermal growth factor (EGFR), gonadotropins (FSHR/LHR) and prostaglandin (PTGER3) are abundantly but differentially expressed in Gp and Gd cells. Taken together, our data strongly supports the notion that Gp and Gd cells of preovulatory follicles differ in their proliferation rate, steroidogenic activity, ECM organization and sperm binding capacity, which are likely controlled by gonadotropins and local ovarian factors, such as GD-derived factors.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao Fang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chunheng Mo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yan Huang
- The China Conservation and Research Center for the Giant Panda, Wolong, People's Republic of China.
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
36
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
37
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
38
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
39
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
40
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
41
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
42
|
Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res 2020; 40:195-200. [PMID: 32054379 DOI: 10.1080/10799893.2020.1726952] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern and the most commonly diagnosed chronic liver manifestation among 25% worldwide population. Obesity, insulin resistance, accumulation of toxic lipid free radicals, generation of oxidative stress, overconsumption of fat containing dietary meals and lack of exercise are the paramount factors accountable for the development of NAFLD. During NAFLD, increased oxidative stress and production of enormous number of toxic free radicals activates a number of pro-inflammatory and inflammatory pathways. TGF-β signaling mechanisms play a central role in maintaining the normal homeostasis of liver. TGF-β1, one of the three isoforms of TGF-β family has significant role in different stages of chronic liver conditions. TGF-β1 promotes HSC activation and extracellular matrix production (ECM), which further contributes in the progression of NAFLD. In this review, we outline the role of TGF-β1 in different phases of progressive NAFLD along with the signaling mechanism.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, India
| |
Collapse
|
43
|
Fathi E, Valipour B, Sanaat Z, Nozad Charoudeh H, Farahzadi R. Interleukin-6, -8, and TGF-β Secreted from Mesenchymal Stem Cells Show Functional Role in Reduction of Telomerase Activity of Leukemia Cell Via Wnt5a/β-Catenin and P53 Pathways. Adv Pharm Bull 2020; 10:307-314. [PMID: 32373501 PMCID: PMC7191235 DOI: 10.34172/apb.2020.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: The effect of mesenchymal stem cells (MSCs) on the immortality features of malignant cells, such as hematologic cancerous cells, are controversial, and the associated mechanisms are yet to be well understood. The aim of the present study was to investigate the in vitro effect of bone marrow-derived MSCs (BMSCs) on the chronic myeloid leukemia cell line K562 through telomere length measurements, telomerase activity assessments, and hTERT gene expression. The possible signaling pathways involved in this process, including Wnt-5a/β-catenin and P53, were also evaluated. Methods: Two cell populations (BMSCs and K562 cell line) were co-cultured on transwell plates for 7 days. Next, K562 cells were collected and subjected to quantitative real-time PCR, PCR-ELISA TRAP assay, and the ELISA sandwich technique for telomere length, hTERT gene expression, telomerase activity assay, and cytokine measurement, respectively. Also, the involvement of the mentioned signaling pathways in this process was reported by real-time PCR and Western blotting through gene and protein expression, respectively. Results: The results showed that BMSCs caused significant decreases in telomere length, telomerase activity, and the mRNA level of hTERT as a regulator of telomerase activity. The significant presence of interleukin (IL)-6, IL-8, and transforming growth factor beta (TGF-β) was obvious in the co-cultured media. Also, BMSCs significantly decreased and increased the gene and protein expression of β-catenin and P53, respectively. Conclusion: It was concluded that the mentioned effects of IL-6, IL-8, and TGF-β cytokines secreted from MSCs on K562 cells as therapeutic agents were applied by Wnt-5a/β-catenin and P53 pathways
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Kumar S, Lakshmi Devi H, Singh Jalmeria N, Punetha M, Pandey Y, Samad HA, Singh G, Sarkar M, Chouhan VS. Expression and functional role of bone morphogenetic proteins (BMPs) in placenta during different stages of pregnancy in water buffalo (Bubalus bubalis). Gen Comp Endocrinol 2020; 285:113249. [PMID: 31445010 DOI: 10.1016/j.ygcen.2019.113249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
Abstract
The objective of this study was to document the expression and functional role of BMPs in the placental (caruncle; CAR, cotyledon; COT) during different stages of pregnancy in water buffalo. Samples collected from Early pregnancy 1 (EP1); Early pregnancy 2 (EP2), Mid pregnancy (MP), Late pregnancy (LP) while the third stage of oestrus cycle (NP) was taken as control. Also, the synergistic role of BMP4/BMP7 or combination on mRNA expression of vWF, PCNA, StAR, CYP11A1, 3βHSD, and BAX were studied in trophoblast cells cultured (TCC) during an early stage. The qPCR and immunoblotting studies revealed that BMP2, BMPR1A, BMPR1B, and BMPR2 mRNA level was significantly (p < 0.05) upregulated during early pregnancy in COTs while in CARs it was significantly upregulated (p < 0.05) during all the stages of pregnancy.BMP4 mRNA level was significantly upregulated (p < 0.05) during early pregnancy in COTs as well as in CARs. BMP6 expression was significantly upregulated (p < 0.05) during early and late stages of pregnancy. BMP7 mRNA level was upregulated (p < 0.05) during the late stage of pregnancy in COTs. At 100 ng/ml, the BMP4 maximally stimulated the transcripts of StAR, CYP11A1, and 3βHSD while BMP7 maximally stimulated the transcripts of 3βHSD that paralleled with P4 accretion in the media (P < 0.05). BMP4 as well as BMP7 upregulated the transcripts of PCNA, vWF, and downregulated BAX in the TCC (P < 0.05). In conclusion, BMPs are expressed in a regulated manner with stage-specific differences in the placenta and promotes the angiogenesis, proliferation, cell survivability, and steroidogenesis thereby regulating placental function in an autocrine/paracrine manner in water buffalo.
Collapse
Affiliation(s)
- Sheelendra Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - H Lakshmi Devi
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - N Singh Jalmeria
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Punetha
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Yogesh Pandey
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - H A Samad
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V S Chouhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
45
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
46
|
Devi HL, Kumar S, Konyak YY, Bharati J, Bhimte A, Pandey Y, Kumar K, Paul A, Kala A, Samad HA, Verma MR, Singh G, Bag S, Sarkar M, Chouhan VS. Expression and functional role of fibroblast growth factors (FGF) in placenta during different stages of pregnancy in water buffalo (Bubalus bubalis). Theriogenology 2019; 143:98-112. [PMID: 31864010 DOI: 10.1016/j.theriogenology.2019.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
The present study documented the expression and functional role of Fibroblast growth factors (FGFs) family and their receptors (Fibroblast growth factor receptor, FGFRs) in placenta (Cotyledon; COT, Caruncle; CAR) during different stages of pregnancy in water buffalo. Samples were collected from Early pregnancy 1 (EP1); Early pregnancy 2 (EP2); Mid pregnancy (MP) and Late pregnancy (LP) while diestrus stage of oestrus cycle (NP) was taken as control. In addition, modulatory role of FGF2 on mRNA expression of von Willebrand factor (vWF), Proliferating cell nuclear antigen (PCNA), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), 3β-hydroxysteroid dehydrogenase (3βHSD) and BCL2 Associated X (BAX) were studied in cultured trophoblast cells (TCC), obtained from EP2. Real-time PCR (qPCR), Western blot, and immunohistochemistry were applied to investigate mRNA and protein expressions, and the localization of examined factors whereas, P4 secretion was assessed by RIA. The mRNA and protein expression of FGFs and its receptors were maximum (P < 0.05) during EP (EP1 and EP2) in COT. However, FGFR1 and FGFR4 were upregulated (P < 0.05) during EP2 and MP in COT. Similarly, the mRNA and protein expression of FGFs and its receptors were upregulated (P < 0.05) during all stages of pregnancy in CAR. FGF family members were localized in the cytoplasm of trophoblast cells as well as in fetal blood vessels. At 100 ng/ml dosage, FGF2 stimulated the transcript of vWF maximally (P < 0.05). P4 secretion in trophoblast cells treated with FGF2 was maximum with the highest dose at 72 h. These findings corroborate that FGF acts locally in the trophoblast cells to modulate steroid hormone viz. progesterone synthesis, promote angiogenesis and favors cell survivability indicating that this factor may play an essential role in the regulation of placental formation and function in buffalo.
Collapse
Affiliation(s)
- H Lakshmi Devi
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Y Y Konyak
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jaya Bharati
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A Bhimte
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Y Pandey
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - K Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A Paul
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Anju Kala
- Animal Nutrition Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H A Samad
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - M R Verma
- Division of Livestock Economics, Statistics and Information Technology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Bag
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mihir Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - V S Chouhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
47
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Adu-Gyamfi EA, Lamptey J, Duan F, Wang YX, Ding YB. The transforming growth factor β superfamily as possible biomarkers of preeclampsia: a comprehensive review. Biomark Med 2019; 13:1321-1330. [PMID: 31559841 DOI: 10.2217/bmm-2019-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The etiology of preeclampsia - an abnormal placentation-mediated disease - is not fully understood; and there are very few biomarkers with which to predict and diagnose it. Early prediction and diagnosis of this pathology can lead to a significant improvement in maternal and perinatal outcomes. Since members of the transforming growth factor β superfamily influence placentation, and are released from the placenta into the maternal circulatory system, several studies have investigated the involvement of these cytokines in preeclampsia and the possibility of using their serum levels as biomarkers of the disease. In this review, we have summarized the reported relationships between the levels of this superfamily of cytokines and preeclampsia. The available information indicates that altered levels of some of these cytokines are involved in the pathogenesis and pathophysiology of preeclampsia, suggesting their likelihood of serving as predictive and diagnostic biomarkers of the disease.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fumei Duan
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
49
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 729] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
50
|
BMP6 increases TGF-β1 production by up-regulating furin expression in human granulosa-lutein cells. Cell Signal 2019; 55:109-118. [DOI: 10.1016/j.cellsig.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
|