1
|
Yang X, Lu W, Alves de Souza RW, Mao Q, Baram D, Tripathi R, Wang G, Otterbein LE, Wang B. Metal-Free CO Prodrugs Activated by Molecular Oxygen Protect against Doxorubicin-Induced Cardiomyopathy in Mice. J Med Chem 2024. [PMID: 39417235 DOI: 10.1021/acs.jmedchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carbon monoxide has been extensively studied for its various therapeutic activities in cell cultures and animal models. Great efforts have been made to develop noninhalational approaches for easy and controlled CO delivery. Herein, we introduce a novel metal-free CO prodrug approach that releases CO under near-physiological conditions. CO from the quinone-derived CO prodrugs is initiated by general acid/base-catalyzed tautomerization followed by oxidation by molecular oxygen to form the key norbornadienone intermediate, leading to cheletropic CO release only in an aerobic environment. Representative CO prodrug analog QCO-105 showed marked anti-inflammatory effects and HO-1 induction activity in RAW264.7 macrophages. In a mouse model of doxorubicin-induced cardiomyopathy, we show for the first time that the CO prodrug QCO-105 prevented cardiomyocyte injury, consistent with the known organ-protective effects of HO-1 and CO. Overall, such a new CO prodrug design serves as the starting point for developing CO-based therapy in attenuating the cardiotoxicity of doxorubicin.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wen Lu
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Qiyue Mao
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dipak Baram
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gangli Wang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Binghe Wang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Schwoerer AP, Biermann D, Ehmke H. Ventricular unloading causes prolongation of the QT interval and induces ventricular arrhythmias in rat hearts. Front Physiol 2024; 15:1346093. [PMID: 39022307 PMCID: PMC11251997 DOI: 10.3389/fphys.2024.1346093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ventricular unloading during prolonged bed rest, mechanical circulatory support or microgravity has repeatedly been linked to potentially life-threatening arrhythmias. It is unresolved, whether this arrhythmic phenotype is caused by the reduction in cardiac workload or rather by underlying diseases or external stimuli. We hypothesized that the reduction in cardiac workload alone is sufficient to impair ventricular repolarization and to induce arrhythmias in hearts. Methods Rat hearts were unloaded using the heterotopic heart transplantation. The ECG of unloaded and of control hearts were telemetrically recorded over 56 days resulting in >5 × 106 cardiac cycles in each heart. Long-term electrical remodeling was analyzed using a novel semi-automatic arrhythmia detection algorithm. Results 56 days of unloading reduced left ventricular weight by approximately 50%. While unloading did not affect average HRs, it markedly prolonged the QT interval by approximately 66% and induced a median tenfold increase in the incidence of ventricular arrhythmias in comparison to control hearts. Conclusion The current study provides direct evidence that the previously reported hypertrophic phenotype of repolarization during cardiac unloading translates into an impaired ventricular repolarization and ventricular arrhythmias in vivo. This supports the concept that the reduction in cardiac workload is a causal driver of the development of arrhythmias during ventricular unloading.
Collapse
Affiliation(s)
- Alexander Peter Schwoerer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Daniel Biermann
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Congenital and Pediatric Heart Surgery, Children’s Heart Clinic, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
3
|
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, Szibor M. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart. PNAS NEXUS 2024; 3:pgae210. [PMID: 38881840 PMCID: PMC11179111 DOI: 10.1093/pnasnexus/pgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Collapse
Affiliation(s)
- Juliana Heidler
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Jan-Niklas Tomczak
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany
| | - Dirk Henze
- Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
4
|
Khalilimeybodi A, Saucerman JJ, Rangamani P. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. Comput Biol Med 2024; 175:108499. [PMID: 38677172 PMCID: PMC11175993 DOI: 10.1016/j.compbiomed.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.
Collapse
Affiliation(s)
- A Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America.
| |
Collapse
|
5
|
Alves de Souza RW, Voltarelli V, Gallo D, Shankar S, Tift MS, Young M, Gomperts E, Gomperts A, Otterbein LE. Beneficial Effects of Oral Carbon Monoxide on Doxorubicin-Induced Cardiotoxicity. J Am Heart Assoc 2024; 13:e032067. [PMID: 38700010 PMCID: PMC11179858 DOI: 10.1161/jaha.123.032067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 05/05/2024]
Abstract
BACKGROUND Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.
Collapse
Affiliation(s)
| | - Vanessa Voltarelli
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - David Gallo
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - Sidharth Shankar
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - Michael S. Tift
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNCUSA
| | - Mark Young
- Hillhurst Biopharmaceuticals, lncMontroseCAUSA
| | | | | | - Leo E. Otterbein
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
6
|
Luo J, Farris SD, Helterline D, Stempien-Otero A. Cardiomyocyte nuclear remodeling after mechanical unloading. Am J Physiol Heart Circ Physiol 2023; 325:H244-H251. [PMID: 37204870 PMCID: PMC10393327 DOI: 10.1152/ajpheart.00545.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023]
Abstract
Cardiomyocytes increase DNA content in response to stress in humans. DNA content is reported to decrease in association with increased markers of proliferation in cardiomyocytes following left ventricular assist device (LVAD) unloading. However, cardiac recovery resulting in LVAD explant is rare. Thus, we sought to test the hypothesis that changes in DNA content with mechanical unloading occurs independent of cardiomyocyte proliferation by quantifying cardiomyocyte nuclear number, cell size, DNA content, and the frequency of cell-cycling markers using a novel imaging flow cytometry methodology comparing human subjects undergoing LVAD implantation or primary transplantation. We found that cardiomyocyte size was 15% smaller in unloaded versus loaded samples without differences in the percentage of mono-, bi-, or multinuclear cells. DNA content per nucleus was significantly decreased in unloaded hearts versus loaded controls. Cell-cycle markers, Ki67 and phospho-histon3 (H3P), were not increased in unloaded samples. In conclusion, unloading of failing hearts is associated with decreased DNA content of nuclei independent of nucleation state within the cell. As these changes were associated with a trend to decreased cell size but not increased cell-cycle markers, they may represent a regression of hypertrophic nuclear remodeling and not proliferation.NEW & NOTEWORTHY Our data suggest that increases in DNA content that occur with cardiomyocyte hypertrophy in heart failure may reverse with mechanical unloading.
Collapse
Affiliation(s)
- Jun Luo
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Stephen D Farris
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Deri Helterline
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - April Stempien-Otero
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
7
|
Spurrell CH, Barozzi I, Kosicki M, Mannion BJ, Blow MJ, Fukuda-Yuzawa Y, Slaven N, Afzal SY, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Lee EA, Garvin TH, Pham QT, Kronshage AN, Lisgo S, Bristow J, Cappola TP, Morley MP, Margulies KB, Pennacchio LA, Dickel DE, Visel A. Genome-wide fetalization of enhancer architecture in heart disease. Cell Rep 2022; 40:111400. [PMID: 36130500 PMCID: PMC9534044 DOI: 10.1016/j.celrep.2022.111400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Heart disease is associated with re-expression of key transcription factors normally active only during prenatal development of the heart. However, the impact of this reactivation on the regulatory landscape in heart disease is unclear. Here, we use RNA-seq and ChIP-seq targeting a histone modification associated with active transcriptional enhancers to generate genome-wide enhancer maps from left ventricle tissue from up to 26 healthy controls, 18 individuals with idiopathic dilated cardiomyopathy (DCM), and five fetal hearts. Healthy individuals have a highly reproducible epigenomic landscape, consisting of more than 33,000 predicted heart enhancers. In contrast, we observe reproducible disease-associated changes in activity at 6,850 predicted heart enhancers. Combined analysis of adult and fetal samples reveals that the heart disease epigenome and transcriptome both acquire fetal-like characteristics, with 3,400 individual enhancers sharing fetal regulatory properties. We also provide a comprehensive data resource (http://heart.lbl.gov) for the mechanistic exploration of DCM etiology.
Collapse
Affiliation(s)
- Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Blow
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Neil Slaven
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sarah Y Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Lee
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Quan T Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne N Kronshage
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Bristow
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas P Cappola
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
8
|
Jyothidasan A, Sunny S, Murugesan S, Quiles JM, Challa AK, Dalley B, Cinghu SK, Nanda V, Rajasekaran NS. Transgenic Expression of Nrf2 Induces a Pro-Reductive Stress and Adaptive Cardiac Remodeling in the Mouse. Genes (Basel) 2022; 13:1514. [PMID: 36140682 PMCID: PMC9498410 DOI: 10.3390/genes13091514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Nuclear factor, erythroid 2 like 2 (Nfe2l2 or Nrf2), is a transcription factor that protects cells by maintaining a homeostatic redox state during stress. The constitutive expression of Nrf2 (CaNrf2-TG) was previously shown to be pathological to the heart over time. We tested a hypothesis that the cardiac-specific expression of full length Nrf2 (mNrf2-TG) would moderately increase the basal antioxidant defense, triggering a pro-reductive environment leading to adaptive cardiac remodeling. Transgenic and non-transgenic (NTG) mice at 7−8 months of age were used to analyze the myocardial transcriptome, structure, and function. Next generation sequencing (NGS) for RNA profiling and qPCR-based validation of the NGS data, myocardial redox levels, and imaging (echocardiography) were performed. Transcriptomic analysis revealed that out of 14,665 identified mRNAs, 680 were differently expressed (DEG) in TG hearts. Of 680 DEGs, 429 were upregulated and 251 were downregulated significantly (FC > 2.0, p < 0.05). Gene set enrichment analysis revealed that the top altered pathways were (a) Nrf2 signaling, (b) glutathione metabolism and (c) ROS scavenging. A comparative analysis of the glutathione redox state in the hearts demonstrated significant differences between pro-reductive vs. hyper-reductive conditions (233 ± 36.7 and 380 ± 68.7 vs. 139 ± 8.6 µM/mg protein in mNrf2-TG and CaNrf2-TG vs. NTG). Genes involved in fetal development, hypertrophy, cytoskeletal rearrangement, histone deacetylases (HDACs), and GATA transcription factors were moderately increased in mNrf2-TG compared to CaNrf2-TG. Non-invasive echocardiography analysis revealed an increase in systolic function (ejection fraction) in mNrf2-TG, suggesting an adaptation, as opposed to pathological remodeling in CaNrf2-TG mice experiencing a hyper-reductive stress, leading to reduced survival (40% at 60 weeks). The effects of excess Nrf2-driven antioxidant transcriptome revealed a pro-reductive condition in the myocardium leading to an adaptive cardiac remodeling. While pre-conditioning the myocardial redox with excess antioxidants (i.e., pro-reductive state) could be beneficial against oxidative stress, a chronic pro-reductive environment in the myocardium might transition the adaptation to pathological remodeling.
Collapse
Affiliation(s)
- Arun Jyothidasan
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sini Sunny
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saravanakumar Murugesan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Justin M. Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Anil Kumar Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Dalley
- Huntsman Cancer Center-Genomic Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Senthil Kumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivek Nanda
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Namakkal-Soorappan Rajasekaran
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Center for Free Radical Biology (CFRB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Ashraf S, Taegtmeyer H, Harmancey R. Prolonged cardiac NR4A2 activation causes dilated cardiomyopathy in mice. Basic Res Cardiol 2022; 117:33. [PMID: 35776225 PMCID: PMC9249728 DOI: 10.1007/s00395-022-00942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Transcription factors play a fundamental role in cardiovascular adaptation to stress. Nuclear receptor subfamily 4 group A member 2 (NR4A2; NURR1) is an immediate-early gene and transcription factor with a versatile role throughout many organs. In the adult mammalian heart, and particularly in cardiac myocytes, NR4A2 is strongly up-regulated in response to beta-adrenergic stimulation. The physiologic implications of this increase remain unknown. In this study, we aimed to interrogate the consequences of cardiac NR4A2 up-regulation under normal conditions and in response to pressure overload. In mice, tamoxifen-dependent, cardiomyocyte-restricted overexpression of NR4A2 led to cardiomyocyte hypertrophy, left ventricular dilation, heart failure, and death within 40 days. Chronic NR4A2 induction also precipitated cardiac decompensation during transverse aortic constriction (TAC)-induced pressure overload. Mechanistically, NR4A2 caused adult cardiac myocytes to return to a fetal-like phenotype, with a switch to glycolytic metabolism and disassembly of sarcomeric structures. NR4A2 also re-activated cell cycle progression and stimulated DNA replication and karyokinesis but failed to induce cytokinesis, thereby promoting multinucleation of cardiac myocytes. Activation of cell cycle checkpoints led to induction of an apoptotic response which ultimately resulted in excessive loss of cardiac myocytes and impaired left ventricular contractile function. In summary, myocyte-specific overexpression of NR4A2 in the postnatal mammalian heart results in increased cell cycle re-entry and DNA replication but does not result in cardiac myocyte division. Our findings expose a novel function for the nuclear receptor as a critical regulator in the self-renewal of the cardiac myocyte and heart regeneration.
Collapse
Affiliation(s)
- Sadia Ashraf
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Heart Failure and Drug Therapies: A Metabolic Review. Int J Mol Sci 2022; 23:ijms23062960. [PMID: 35328390 PMCID: PMC8950643 DOI: 10.3390/ijms23062960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality globally with at least 26 million people worldwide living with heart failure (HF). Metabolism has been an active area of investigation in the setting of HF since the heart demands a high rate of ATP turnover to maintain homeostasis. With the advent of -omic technologies, specifically metabolomics and lipidomics, HF pathologies have been better characterized with unbiased and holistic approaches. These techniques have identified novel pathways in our understanding of progression of HF and potential points of intervention. Furthermore, sodium-glucose transport protein 2 inhibitors, a drug that has changed the dogma of HF treatment, has one of the strongest types of evidence for a potential metabolic mechanism of action. This review will highlight cardiac metabolism in both the healthy and failing heart and then discuss the metabolic effects of heart failure drugs.
Collapse
|
11
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
12
|
Zhong G, Zhao D, Li J, Liu Z, Pan J, Yuan X, Xing W, Zhao Y, Ling S, Li Y. WWP1 Deficiency Alleviates Cardiac Remodeling Induced by Simulated Microgravity. Front Cell Dev Biol 2021; 9:739944. [PMID: 34733849 PMCID: PMC8558417 DOI: 10.3389/fcell.2021.739944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.
Collapse
Affiliation(s)
- Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zifan Liu
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Junjie Pan
- Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinglong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
13
|
With a grain of salt: Sodium elevation and metabolic remodelling in heart failure. J Mol Cell Cardiol 2021; 161:106-115. [PMID: 34371034 PMCID: PMC7611640 DOI: 10.1016/j.yjmcc.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Elevated intracellular Na (Nai) and metabolic impairment are interrelated pathophysiological features of the failing heart (HF). There have been a number of studies showing that myocardial sodium elevation subtly affects mitochondrial function. During contraction, mitochondrial calcium (Camito) stimulates a variety of TCA cycle enzymes, thereby providing reducing equivalents to maintain ATP supply. Nai elevation has been shown to impact Camito; however, whether metabolic remodelling in HF is caused by increased Nai has only been recently demonstrated. This novel insight may help to elucidate the contribution of metabolic remodelling in the pathophysiology of HF, the lack of efficacy of current HF therapies and a rationale for the development of future metabolism-targeting treatments. Here we review the relationship between Na pump inhibition, elevated Nai, and altered metabolic profile in the context of HF and their link to metabolic (in)flexibility and mitochondrial reprogramming.
Collapse
|
14
|
Davogustto GE, Salazar RL, Vasquez HG, Karlstaedt A, Dillon WP, Guthrie PH, Martin JR, Vitrac H, De La Guardia G, Vela D, Ribas-Latre A, Baumgartner C, Eckel-Mahan K, Taegtmeyer H. Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. J Mol Cell Cardiol 2021; 158:115-127. [PMID: 34081952 DOI: 10.1016/j.yjmcc.2021.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
RATIONALE The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown. OBJECTIVE To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart. METHODS AND RESULTS We developed a mouse model of inducible, cardiac-specific sustained mTORC1 activation (mTORC1iSA) through deletion of Tsc2. Prior to hypertrophy, rates of glucose uptake and oxidation, as well as protein and enzymatic activity of glucose 6-phosphate isomerase (GPI) were decreased, while intracellular levels of glucose 6-phosphate (G6P) were increased. Subsequently, hypertrophy developed. Transcript levels of the fetal gene program and pathways of exercise-induced hypertrophy increased, while hypertrophy did not progress to heart failure. We therefore examined the hearts of wild-type mice subjected to voluntary physical activity and observed early changes in GPI, followed by hypertrophy. Rapamycin prevented these changes in both models. CONCLUSION Activation of mTORC1 in the adult heart triggers the development of a non-specific form of hypertrophy which is preceded by changes in cardiac glucose metabolism.
Collapse
Affiliation(s)
- Giovanni E Davogustto
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rebecca L Salazar
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hernan G Vasquez
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anja Karlstaedt
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William P Dillon
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick H Guthrie
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph R Martin
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Gina De La Guardia
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Laboratory, Texas Heart Institute at CHI St. Luke's Health, and the Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aleix Ribas-Latre
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Corrine Baumgartner
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Alanazi WA, Al-Harbi NO, Imam F, Ansari MA, Alhoshani A, Alasmari AF, Alasmari F, Alanazi MM, Ali N. Role of carnitine in regulation of blood pressure (MAP/SBP) and gene expression of cardiac hypertrophy markers (α/β-MHC) during insulin-induced hypoglycaemia: Role of oxidative stress. Clin Exp Pharmacol Physiol 2021; 48:478-489. [PMID: 33368625 DOI: 10.1111/1440-1681.13455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and β-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Ventricular assist device-promoted recovery and technical aspects of explant. JTCVS Tech 2021; 7:182-188. [PMID: 34318239 PMCID: PMC8311694 DOI: 10.1016/j.xjtc.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
|
17
|
Ruiz M, Khairallah M, Dingar D, Vaniotis G, Khairallah RJ, Lauzier B, Thibault S, Trépanier J, Shi Y, Douillette A, Hussein B, Nawaito SA, Sahadevan P, Nguyen A, Sahmi F, Gillis MA, Sirois MG, Gaestel M, Stanley WC, Fiset C, Tardif JC, Allen BG. MK2-Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. J Am Heart Assoc 2021; 10:e017791. [PMID: 33533257 PMCID: PMC7955338 DOI: 10.1161/jaha.120.017791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Mitogen‐activated protein kinase–activated protein kinase‐2 (MK2) is a protein serine/threonine kinase activated by p38α/β. Herein, we examine the cardiac phenotype of pan MK2‐null (MK2−/−) mice. Methods and Results Survival curves for male MK2+/+ and MK2−/− mice did not differ (Mantel‐Cox test, P=0.580). At 12 weeks of age, MK2−/− mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R‐R interval and P‐R segment durations were prolonged in MK2‐deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2−/− mice. MK2−/− mice had lower body temperature and an age‐dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2−/− mice. For equivalent respiration rates, mitochondria from MK2−/− hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2−/− mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2−/− mice. Finally, the pressure overload–induced decrease in systolic function was attenuated in MK2−/− mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Maya Khairallah
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Dharmendra Dingar
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - George Vaniotis
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Simon Thibault
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Joëlle Trépanier
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Yanfen Shi
- Montreal Heart Institute Montréal Québec Canada
| | | | | | - Sherin Ali Nawaito
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada.,Department of Physiology Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Albert Nguyen
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Martin G Sirois
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical School Hannover Germany
| | | | - Céline Fiset
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Jean-Claude Tardif
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Bruce G Allen
- Department of Medicine Université de Montréal Québec Canada.,Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| |
Collapse
|
18
|
A long noncoding RNA CHAIR protects the heart from pathological stress. Clin Sci (Lond) 2021; 134:1843-1857. [PMID: 32643756 DOI: 10.1042/cs20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Mammalian genomes have been found to be extensively transcribed. In addition to classic protein coding genes, a large numbers of long noncoding genes (lncRNAs) have been identified, while their functions, especially in heart diseases, remain to be established. We hypothesized that heart failure progression is controlled by tissue-specific lncRNAs. In the present study, we found that the cardiac-enriched lncRNA 4632428C04Rik, named as cardiomyocyte hypertrophic associated inhibitory RNA (CHAIR), is dynamically regulated during heart development, is expressed at low levels in embryonic hearts and accumulated at high levels in adult hearts. More interestingly, the lncRNA was down-regulated during cardiac hypertrophy and failure both in mice and humans. Importantly, loss of lncRNA CHAIR has no effects on normal hearts, whereas it results in accelerated heart function decline, increased hypertrophy, and exacerbated heart failure in response to stress. In contrast, restoring the expression of lncRNA CHAIR rescued the hearts from hypertrophy and failure. DNMT3A was recruited to CHAIR promoter during heart failure to suppress its expression. Reciprocally, CHAIR interacted with DNMT3A to inhibit its DNA-binding activity. Taken together, our data revealed a new cardioprotective lncRNA that represses heart failure through an epigenetic mechanism.
Collapse
|
19
|
van der Pol A, Hoes MF, de Boer RA, van der Meer P. Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart. J Intern Med 2020; 288:491-506. [PMID: 32557939 PMCID: PMC7687159 DOI: 10.1111/joim.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
As the heart matures during embryogenesis from its foetal stages, several structural and functional modifications take place to form the adult heart. This process of maturation is in large part due to an increased volume and work load of the heart to maintain proper circulation throughout the growing body. In recent years, it has been observed that these changes are reversed to some extent as a result of cardiac disease. The process by which this occurs has been characterized as cardiac foetal reprogramming and is defined as the suppression of adult and re-activation of a foetal genes profile in the diseased myocardium. The reasons as to why this process occurs in the diseased myocardium are unknown; however, it has been suggested to be an adaptive process to counteract deleterious events taking place during cardiac remodelling. Although still in its infancy, several studies have demonstrated that targeting foetal reprogramming in heart failure can lead to substantial improvement in cardiac functionality. This is highlighted by a recent study which found that by modulating the expression of 5-oxoprolinase (OPLAH, a novel cardiac foetal gene), cardiac function can be significantly improved in mice exposed to cardiac injury. Additionally, the utilization of angiotensin receptor neprilysin inhibitors (ARNI) has demonstrated clear benefits, providing important clinical proof that drugs that increase natriuretic peptide levels (part of the foetal gene programme) indeed improve heart failure outcomes. In this review, we will highlight the most important aspects of cardiac foetal reprogramming and will discuss whether this process is a cause or consequence of heart failure. Based on this, we will also explain how a deeper understanding of this process may result in the development of novel therapeutic strategies in heart failure.
Collapse
Affiliation(s)
- A van der Pol
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Perioperative Inflammation and Infection Group, Department of Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - M F Hoes
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R A de Boer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - P van der Meer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Affiliation(s)
- P Christian Schulze
- Department of Internal Medicine I (Cardiology, Angiology and Intensive Medical Care), University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Jasmine M F Wu
- Department of Internal Medicine I (Cardiology, Angiology and Intensive Medical Care), University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
21
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
22
|
Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165579. [PMID: 31678200 PMCID: PMC7586321 DOI: 10.1016/j.bbadis.2019.165579] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Fatty acids and glucose are the main substrates for myocardial energy provision. Under physiologic conditions, there is a distinct and finely tuned balance between the utilization of these substrates. Using the non-ischemic heart as an example, we discuss that upon stress this substrate balance is upset resulting in an over-reliance on either fatty acids or glucose, and that chronic fuel shifts towards a single type of substrate appear to be linked with cardiac dysfunction. These observations suggest that interventions aimed at re-balancing a tilted substrate preference towards an appropriate mix of substrates may result in restoration of cardiac contractile performance. Examples of manipulating cellular substrate uptake as a means to re-balance fuel supply, being associated with mended cardiac function underscore this concept. We also address the molecular mechanisms underlying the apparent need for a fatty acid-glucose fuel balance. We propose that re-balancing cellular fuel supply, in particular with respect to fatty acids and glucose, may be an effective strategy to treat the failing heart.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
23
|
Liu C, Zhong G, Zhou Y, Yang Y, Tan Y, Li Y, Gao X, Sun W, Li J, Jin X, Cao D, Yuan X, Liu Z, Liang S, Li Y, Du R, Zhao Y, Xue J, Zhao D, Song J, Ling S, Li Y. Alteration of calcium signalling in cardiomyocyte induced by simulated microgravity and hypergravity. Cell Prolif 2020; 53:e12783. [PMID: 32101357 PMCID: PMC7106961 DOI: 10.1111/cpr.12783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Cardiac Ca2+ signalling plays an essential role in regulating excitation‐contraction coupling and cardiac remodelling. However, the response of cardiomyocytes to simulated microgravity and hypergravity and the effects on Ca2+ signalling remain unknown. Here, we elucidate the mechanisms underlying the proliferation and remodelling of HL‐1 cardiomyocytes subjected to rotation‐simulated microgravity and 4G hypergravity. Materials and Methods The cardiomyocyte cell line HL‐1 was used in this study. A clinostat and centrifuge were used to study the effects of microgravity and hypergravity, respectively, on cells. Calcium signalling was detected with laser scanning confocal microscopy. Protein and mRNA levels were detected by Western blotting and real‐time PCR, respectively. Wheat germ agglutinin (WGA) staining was used to analyse cell size. Results Our data showed that spontaneous calcium oscillations and cytosolic calcium concentration are both increased in HL‐1 cells after simulated microgravity and 4G hypergravity. Increased cytosolic calcium leads to activation of calmodulin‐dependent protein kinase II/histone deacetylase 4 (CaMKII/HDAC4) signalling and upregulation of the foetal genes ANP and BNP, indicating cardiac remodelling. WGA staining indicated that cell size was decreased following rotation‐simulated microgravity and increased following 4G hypergravity. Moreover, HL‐1 cell proliferation was increased significantly under hypergravity but not rotation‐simulated microgravity. Conclusions Our study demonstrates for the first time that Ca2+/CaMKII/HDAC4 signalling plays a pivotal role in myocardial remodelling under rotation‐simulated microgravity and hypergravity.
Collapse
Affiliation(s)
- Caizhi Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | | | | | - Yingjun Tan
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xingcheng Gao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Zizhong Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shuai Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Youyou Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jianqi Xue
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Dingsheng Zhao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jinping Song
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
24
|
Ventricular arrhythmias in patients with biventricular assist devices. J Interv Card Electrophysiol 2019; 58:243-252. [PMID: 31838665 PMCID: PMC7293581 DOI: 10.1007/s10840-019-00682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Ventricular arrhythmias (VAs) are common in patients after left ventricular assist device (LVAD) implant and are associated with worse outcomes. However, the prevalence and impact of VA in patients with durable biventricular assist device (BIVAD) is unknown. We performed a retrospective cohort study of patients with BIVADs to evaluate the prevalence of VA and their clinical outcomes. METHODS Consecutive patients who received a BIVAD between June 2014 and July 2017 at our medical center were included. The prevalence of VA, defined as sustained ventricular tachycardia or fibrillation requiring defibrillation or ICD therapy, was compared between BIVAD patients and a propensity-matched population of patients with LVAD from our center. The occurrence of adverse clinical events was compared between BIVAD patients with and without VA. RESULTS Of the 13 patients with BIVADs, 6 patients (46%) experienced clinically significant VA, similar to a propensity-matched LVAD population (38%, p = 1.00). There were no differences in baseline characteristics between the two cohorts, except patients in the non-VA group who had worse hemodynamics (mitral regurgitation and right-sided indices), had less history of VA, and were younger. BIVAD patients with VA had a higher incidence of major bleeding (MR 3.05 (1.07-8.66), p = 0.036) and worse composite outcomes (log-rank test, p = 0.046). The presence of VA was associated with worse outcomes in both LVAD and BIVAD groups. CONCLUSIONS Ventricular arrhythmias are common in patients with BIVADs and are associated with worse outcomes. Future work should assess whether therapies such as ablation improve the outcome of BIVAD patients with VA.
Collapse
|
25
|
Karlstaedt A, Khanna R, Thangam M, Taegtmeyer H. Glucose 6-Phosphate Accumulates via Phosphoglucose Isomerase Inhibition in Heart Muscle. Circ Res 2019; 126:60-74. [PMID: 31698999 DOI: 10.1161/circresaha.119.315180] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Metabolic and structural remodeling is a hallmark of heart failure. This remodeling involves activation of the mTOR (mammalian target of rapamycin) signaling pathway, but little is known on how intermediary metabolites are integrated as metabolic signals. OBJECTIVE We investigated the metabolic control of cardiac glycolysis and explored the potential of glucose 6-phosphate (G6P) to regulate glycolytic flux and mTOR activation. METHODS AND RESULTS We developed a kinetic model of cardiomyocyte carbohydrate metabolism, CardioGlyco, to study the metabolic control of myocardial glycolysis and G6P levels. Metabolic control analysis revealed that G6P concentration is dependent on phosphoglucose isomerase (PGI) activity. Next, we integrated ex vivo tracer studies with mathematical simulations to test how changes in glucose supply and glycolytic flux affect mTOR activation. Nutrient deprivation promoted a tight coupling between glucose uptake and oxidation, G6P reduction, and increased protein-protein interaction between hexokinase II and mTOR. We validated the in silico modeling in cultured adult mouse ventricular cardiomyocytes by modulating PGI activity using erythrose 4-phosphate. Inhibition of glycolytic flux at the level of PGI caused G6P accumulation, which correlated with increased mTOR activation. Using click chemistry, we labeled newly synthesized proteins and confirmed that inhibition of PGI increases protein synthesis. CONCLUSIONS The reduction of PGI activity directly affects myocyte growth by regulating mTOR activation.
Collapse
Affiliation(s)
- Anja Karlstaedt
- From the Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (A.K., H.T.)
| | | | - Manoj Thangam
- Department of Cardiology, Washington University School of Medicine in St. Louis, MO (M.T.)
| | - Heinrich Taegtmeyer
- From the Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (A.K., H.T.)
| |
Collapse
|
26
|
Devabhaktuni SR, Shirazi JT, Miller JM. Mapping and Ablation of Ventricle Arrhythmia in Patients with Left Ventricular Assist Devices. Card Electrophysiol Clin 2019; 11:689-697. [PMID: 31706475 DOI: 10.1016/j.ccep.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ventricular arrhythmias (VA) constitute well-known problems in patients with left ventricular assist devices (LVADs), with incidence ranging from 18% to as high as 52%. Catheter ablation has become a common therapeutic intervention to treat drug-refractory VA, particularly with the increase and more widespread use of durable LVADs to bridge patients to transplantation or as destination therapy. In this article, we focus on etiology, mechanisms, periprocedural management, and mapping and ablation techniques in patients with LVADs and VA.
Collapse
|
27
|
Romanick SS, Ferguson BS. The nonepigenetic role for small molecule histone deacetylase inhibitors in the regulation of cardiac function. Future Med Chem 2019; 11:1345-1356. [PMID: 31161804 PMCID: PMC6714070 DOI: 10.4155/fmc-2018-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Eight million US adults are projected to suffer from heart failure (HF) by 2030. Of concern, 5-year mortality rates following HF diagnosis approximate 40%. Small molecule histone deacetylase (HDAC) inhibitors have demonstrated efficacy for the treatment and reversal of HF. Historically, HDACs were studied as regulators of nucleosomal histones, in which lysine deacetylation on histone tails changed DNA-histone protein electrostatic interactions, leading to chromatin condensation and changes in gene expression. However, recent proteomics studies have demonstrated that approximately 4500 proteins can be acetylated in various tissues; the function of most of these remains unknown. This Review will focus on the nonepigenetic role for lysine acetylation in the heart, with a focus on nonepigenetic actions for HDAC inhibitors on cardiac function.
Collapse
Affiliation(s)
- Samantha S Romanick
- Department of Pharmacology, University of Nevada Reno, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
28
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
29
|
de Oliveira G, Freire PP, Omoto ACM, Cury SS, Fuziwara CS, Kimura ET, Dal-Pai-Silva M, Carvalho RF. Osteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblasts. Gene 2018; 676:9-15. [PMID: 29990505 DOI: 10.1016/j.gene.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023]
Abstract
Several studies have demonstrated dysregulated cardiac microRNAs (miRNAs) following cardiac stress and development of cardiac hypertrophy and failure. miRNAs are also differentially expressed in the inflammation that occurs in heart failure and, among these inflammatory-related miRNAs, the miR-155 has been implicated in the regulation of cardiac hypertrophy. Despite these data showing the role of miRNA-155 in cardiomyocyte hypertrophy under a hypertrophic stimulus, it is also important to understand the endogenous regulation of this miRNA without a hypertrophic stimulus to fully appreciate its function in this cell type. The first aim of the present study was to determine whether, without a hypertrophic stimulus, miR-155 overexpression induces H9c2 cardiac cells hypertrophy in vitro. The second objective was to determine whether osteoglycin (Ogn), a key regulator of heart mass in rats, mice, and humans, is post-transcriptionally regulated by miR-155 with a potential role in inducing H9c2 cells hypertrophy. Here, we show that, without a hypertrophic stimulus, miR-155 significantly repressed Ogn protein levels, but induce neither alteration in morphological phenotype nor in the expression of the molecular markers that fully characterize pathological hypertrophy of H9c2 cells. However, most importantly, Ogn silencing in H9c2 cells mimicked the effects of miR-155 overexpression in inducing cellular architecture changes that were characterized by a transition of the cell shape from fusiform to rounded. This is a new role of the post-transcriptional regulation of Ogn by miR-155 in the maintenance of the cardiac cell morphology in physiological and pathological conditions.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Ana Carolina Mieko Omoto
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
30
|
Catheter Ablation of Ventricular Tachycardia in Patients With a Ventricular Assist Device: A Systematic Review of Procedural Characteristics and Outcomes. JACC Clin Electrophysiol 2018; 5:39-51. [PMID: 30678785 DOI: 10.1016/j.jacep.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES This is a systematic review summarizing the procedural characteristics and outcomes of ventricular assist device (VAD)-related ventricular tachycardia (VT) ablation. BACKGROUND Drug-refractory VT refractory commonly develops post-VAD implantation. Procedural and outcome data come from small series or case reports. METHODS An electronic search was performed using major databases. Primary outcomes were VT recurrence, mortality, and cardiac transplantation. Secondary endpoints were acute procedural success and procedural complications. RESULTS Eighteen studies were included, with a total of 110 patients (mean age 59.6 ± 11 years, 89% men; VT storm 34%). Scar-related re-entry was the predominant mechanism of VT (90.3%) and cannula-related VT in 19.3% cases. Electroanatomical mapping interference occurred in 1.8% of cases; there were no reports of catheter entrapment. Noninducibility of clinical VT was achieved in 77.9%; procedural complications occurred in 9.4%. At a mean follow-up of 263.5 ± 267.0 days, VT recurred in 43.6%, 23.4% underwent cardiac transplant, and 48.1% died. There were no procedural-related deaths and no death was directly related to ventricular arrhythmia. In follow-up, there was a significant reduction in implantable cardioverter-defibrillator therapies or shocks (57.1% vs. 23.8%). Ablation allowed VT storm termination in 90% of patients. CONCLUSIONS VAD-related VT is predominantly related to pre-existing intrinsic myocardial scar rather than inflow cannula site insertion. Catheter ablation is a reasonable treatment strategy, albeit with expectedly high rate of recurrence, transplantation, and mortality related to severe underlying disease.
Collapse
|
31
|
Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018; 2018:1247857. [PMID: 30034478 PMCID: PMC6035836 DOI: 10.1155/2018/1247857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Heart development in mammals is followed by a postnatal decline in cell proliferation and cell renewal from stem cell populations. A better understanding of the developmental changes in cardiac microenvironments occurring during heart maturation will be informative regarding the loss of adult regenerative potential. We reevaluate the adult heart's mitotic potential and the reported adult cardiac stem cell populations, as these are two topics of ongoing debate. The heart's early capacity for cell proliferation driven by progenitors and reciprocal signalling is demonstrated throughout development. The mature heart architecture and environment may be more restrictive on niches that can host progenitor cells. The engraftment issues observed in cardiac stem cell therapy trials using exogenous stem cells may indicate a lack of supporting stem cell niches, while tissue injury adds to a hostile microenvironment for transplanted cells. Engraftment may be improved by preconditioning the cultured stem cells and modulating the microenvironment to host these cells. These prospective areas of further research would benefit from a better understanding of cardiac progenitor interactions with their microenvironment throughout development and may lead to enhanced cardiac niche support for stem cell therapy engraftment.
Collapse
|
32
|
Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci Rep 2018; 8:5599. [PMID: 29618792 PMCID: PMC5884778 DOI: 10.1038/s41598-018-23669-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is one of the characteristic features of cancer. In this study, we establish a suitable model to study breast cancer-induced cardiomyopathy in mice. We used Ehrlich Ascites Carcinoma cells to induce subcutaneous tumor in 129/SvJ mice and studied its effect on heart function. In Ehrlich Ascites Carcinoma bearing mice, we found significant reduction in left ventricle wall thickness, ejection fraction, and fractional shortening increase in left ventricle internal diameter. We found higher muscle atrophy, degeneration, fibrosis, expression of cell-adhesion molecules and cell death in tumor-bearing mice hearts. As observed in cancer patients, we found that mTOR, a key signalling molecule responsible for maintaining cell growth and autophagy was suppressed in this model. Tumor bearing mice hearts show increased expression and nuclear localization of TFEB and FoxO3a transcription factors, which are involved in the upregulation of muscle atrophy genes, lysosomal biogenesis genes and autophagy genes. We propose that Ehrlich Ascites Carcinoma induced tumor can be used as a model to identify potential therapeutic targets for the treatment of heart failure in patients suffering from cancer-induced cardiomyopathy. This model can also be used to test the adverse consequences of cancer chemotherapy in heart.
Collapse
|
33
|
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, Červenková L, Maxová H, Melenovský V, Šochman J, Sadowski J, Červenka L. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res 2018; 67:13-30. [PMID: 29137478 DOI: 10.33549/physiolres.933637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present experiments were performed to evaluate if increased heart tissue concentration of fatty acids, specifically myristic, palmitic and palmitoleic acids that are believed to promote physiological heart growth, can attenuate the progression of unloading-induced cardiac atrophy in rats with healthy and failing hearts. Heterotopic abdominal heart transplantation (HT(x)) was used as a model for heart unloading. Cardiac atrophy was assessed from the ratio of the native- to-transplanted heart weight (HW). The degree of cardiac atrophy after HT(x) was determined on days 7, 14, 21 and 28 after HT(x) in recipients of either healthy or failing hearts. HT(x) of healthy hearts resulted in 23+/-3, 46+/-3, 48+/-4 and 46+/-4 % HW loss at the four time-points. HT(x) of the failing heart resulted in even greater HW losses, of 46+/-4, 58+/-3, 66+/-2 and 68+/-4 %, respectively (P<0.05). Activation of "fetal gene cardiac program" (e.g. beta myosin heavy chain gene expression) and "genes reflecting cardiac remodeling" (e.g. atrial natriuretic peptide gene expression) after HT(x) was greater in failing than in healthy hearts (P<0.05 each time). Exposure to isocaloric high sugar diet caused significant increases in fatty acid concentrations in healthy and in failing hearts. However, these increases were not associated with any change in the course of cardiac atrophy, similarly in healthy and post-HT(x) failing hearts. We conclude that increasing heart tissue concentrations of the fatty acids allegedly involved in heart growth does not attenuate the unloading-induced cardiac atrophy.
Collapse
Affiliation(s)
- M Pokorný
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ling S, Li Y, Zhong G, Zheng Y, Xu Q, Zhao D, Sun W, Jin X, Li H, Li J, Sun H, Cao D, Song J, Liu C, Yuan X, Wu X, Zhao Y, Liu Z, Li Q, Li Y. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling. Front Physiol 2018; 9:40. [PMID: 29422872 PMCID: PMC5788970 DOI: 10.3389/fphys.2018.00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023] Open
Abstract
Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG) and wild type mice were hindlimb-suspended (HU) to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.
Collapse
Affiliation(s)
- Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yongjun Zheng
- Medical Administration Division, The 261th Hospital of PLA, Beijing, China
| | - Qing Xu
- Core Facility Center, Capital Medical University, Beijing, China
| | - Dingsheng Zhao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongxing Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jianwei Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Huiyuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Jinping Song
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Wu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zizhong Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
35
|
Kadado AJ, Akar JG, Hummel JP. Arrhythmias after left ventricular assist device implantation: Incidence and management. Trends Cardiovasc Med 2018; 28:41-50. [DOI: 10.1016/j.tcm.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
36
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
37
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
38
|
Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res 2017; 113:1474-1485. [DOI: 10.1093/cvr/cvx160] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023] Open
|
39
|
Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017; 101:498-505. [PMID: 27906830 DOI: 10.1097/tp.0000000000001585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heterotopic abdominal rat heart transplantation has been extensively used to investigate ischemic-reperfusion injury, immunological consequences during heart transplantations and also to study remodeling of the myocardium due to volume unloading. We provide a unique review on the latter and present a summary of the experimental studies on rat heart transplantation to illustrate changes that occur to the myocardium due to volume unloading. We divided the literature based on whether normal or failing rat heart models were used. This analysis may provide a basis to understand the physiological effects of mechanical circulatory support therapy.
Collapse
|
40
|
Eduardo Rame J. Hemodynamic unloading and the molecular-functional phenotype dissociation in myocardial recovery. J Heart Lung Transplant 2017; 36:715-717. [PMID: 28377152 DOI: 10.1016/j.healun.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022] Open
Affiliation(s)
- J Eduardo Rame
- Cardiovascular Division, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Desai M, Mathur B, Eblimit Z, Vasquez H, Taegtmeyer H, Karpen S, Penny DJ, Moore DD, Anakk S. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology 2017; 65:189-201. [PMID: 27774647 PMCID: PMC5299964 DOI: 10.1002/hep.28890] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/07/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term cholecardia. Farnesoid X receptor; Small Heterodimer Partner double knockout mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, double knockout mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of proliferator-activated receptor-γ coactivator 1α, a key regulator of fatty acid metabolism, and that proliferator-activated receptor-γ coactivator 1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the double knockout mice. CONCLUSIONS Decreased proliferator-activated receptor-γ coactivator 1α expression contributes to the metabolic dysfunction in cholecardia so that reducing serum bile acid concentrations may be beneficial against the metabolic and pathological changes in the heart. (Hepatology 2017;65:189-201).
Collapse
Affiliation(s)
- Moreshwar Desai
- Section of Pediatric Critical Care, Baylor College of Medicine, Houston, TX
| | - Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Zeena Eblimit
- Section of Pediatric Critical Care, Baylor College of Medicine, Houston, TX
| | - Hernan Vasquez
- Dept. of Cardiology University of Texas Health Sciences Center, Houston, TX
| | | | - Saul Karpen
- Pediatric Gastroenterology, Emory School of Medicine, Atlanta, GA
| | - Daniel J. Penny
- Department of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
42
|
Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4081638. [PMID: 28044126 PMCID: PMC5164897 DOI: 10.1155/2016/4081638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
Abstract
Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.
Collapse
Affiliation(s)
- Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Institute for Regenerative Medicine (IREM), Wyss Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander P. Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- James Worth Bagley College of Engineering and College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, USA
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
43
|
Evaristi MF, Caubère C, Harmancey R, Desmoulin F, Peacock WF, Berry M, Turkieh A, Barutaut M, Galinier M, Dambrin C, Polidori C, Miceli C, Chamontin B, Koukoui F, Roncalli J, Massabuau P, Smih F, Rouet P. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension: A cross-sectional study. Medicine (Baltimore) 2016; 95:e4965. [PMID: 27861330 PMCID: PMC5120887 DOI: 10.1097/md.0000000000004965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the H NMR spectral data. From the H NMR-based metabolomic profiling, signals coming from methylene (-CH2-) and methyl (-CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The -CH2-/-CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P < 0.001) in the LVH group than in the hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value < 0.001). We propose the -CH2-/-CH3 ratio from plasma aliphatic lipid chains as a biomarker for the diagnosis of left ventricular remodeling in hypertension.
Collapse
Affiliation(s)
- Maria Francesca Evaristi
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- University of Camerino, Camerino, Italy
| | - Céline Caubère
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Romain Harmancey
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Franck Desmoulin
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | | | - Matthieu Berry
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Annie Turkieh
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Manon Barutaut
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Michel Galinier
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Toulouse University Hospital, Toulouse
| | - Camille Dambrin
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Toulouse University Hospital, Toulouse
| | | | | | | | - François Koukoui
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | | | - Pierre Massabuau
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Toulouse University Hospital, Toulouse
| | - Fatima Smih
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Spartacus-Biomed, Clermont le Fort, France
| | - Philippe Rouet
- UMR UT3 CNRS 5288 Evolutionary Medicine, Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| |
Collapse
|
44
|
Fu X, Segiser A, Carrel TP, Tevaearai Stahel HT, Most H. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front Cardiovasc Med 2016; 3:34. [PMID: 27807535 PMCID: PMC5069686 DOI: 10.3389/fcvm.2016.00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Unloading of the failing left ventricle in order to achieve myocardial reverse remodeling and improvement of contractile function has been developed as a strategy with the increasing frequency of implantation of left ventricular assist devices in clinical practice. But, reverse remodeling remains an elusive target, with high variability and exact mechanisms still largely unclear. The small animal model of heterotopic heart transplantation (hHTX) in rodents has been widely implemented to study the effects of complete and partial unloading on cardiac failing and non-failing tissue to better understand the structural and molecular changes that underlie myocardial recovery. We herein review the current knowledge on the effects of volume unloading the left ventricle via different methods of hHTX in rats, differentiating between changes that contribute to functional recovery and adverse effects observed in unloaded myocardium. We focus on methodological aspects of heterotopic transplantation, which increase the correlation between the animal model and the setting of the failing unloaded human heart. Last, but not least, we describe the late use of sophisticated techniques to acquire data, such as small animal MRI and catheterization, as well as ways to assess unloaded hearts under "reloaded" conditions. While giving regard to certain limitations, heterotopic rat heart transplantation certainly represents the crucial model to mimic unloading-induced changes in the heart and as such the intricacies and challenges deserve highest consideration. Careful translational research will further improve our knowledge of the reverse remodeling process and how to potentiate its effect in order to achieve recovery of contractile function in more patients.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | - Adrian Segiser
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | - Thierry P Carrel
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | | | - Henriette Most
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| |
Collapse
|
45
|
Abstract
The heart is a biological pump that converts chemical to mechanical energy. This process of energy conversion is highly regulated to the extent that energy substrate metabolism matches energy use for contraction on a beat-to-beat basis. The biochemistry of cardiac metabolism includes the biochemistry of energy transfer, metabolic regulation, and transcriptional, translational as well as posttranslational control of enzymatic activities. Pathways of energy substrate metabolism in the heart are complex and dynamic, but all of them conform to the First Law of Thermodynamics. The perspectives expand on the overall idea that cardiac metabolism is inextricably linked to both physiology and molecular biology of the heart. The article ends with an outlook on emerging concepts of cardiac metabolism based on new molecular models and new analytical tools. © 2016 American Physiological Society. Compr Physiol 6:1675-1699, 2016.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Truong Lam
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Giovanni Davogustto
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| |
Collapse
|
46
|
Partial inhibition of activin receptor-like kinase 4 attenuates pressure overload-induced cardiac fibrosis and improves cardiac function. J Hypertens 2016; 34:1766-77. [DOI: 10.1097/hjh.0000000000001020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A 2016; 113:10436-41. [PMID: 27582470 DOI: 10.1073/pnas.1601650113] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematologic malignancies are frequently associated with cardiac pathologies. Mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a subset of acute myeloid leukemia patients, causing metabolic and epigenetic derangements. We have now discovered that altered metabolism in leukemic cells has a profound effect on cardiac metabolism. Combining mathematical modeling and in vivo as well as ex vivo studies, we found that increased amounts of the oncometabolite d-2-hydroxyglutarate (D2-HG), produced by IDH2 mutant leukemic cells, cause contractile dysfunction in the heart. This contractile dysfunction is associated with impaired oxidative decarboxylation of α-ketoglutarate, a redirection of Krebs cycle intermediates, and increased ATP citrate lyase (ACL) activity. Increased availability of D2-HG also leads to altered histone methylation and acetylation in the heart. We propose that D2-HG promotes cardiac dysfunction by impairing α-ketoglutarate dehydrogenase and induces histone modifications in an ACL-dependent manner. Collectively, our results highlight the impact of cancer cell metabolism on function and metabolism of the heart.
Collapse
|
48
|
Liu R, Kenney JW, Manousopoulou A, Johnston HE, Kamei M, Woelk CH, Xie J, Schwarzer M, Garbis SD, Proud CG. Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling. Mol Cell Proteomics 2016; 15:3170-3189. [PMID: 27512079 PMCID: PMC5054342 DOI: 10.1074/mcp.m115.054312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 01/16/2023] Open
Abstract
Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory properties, so this finding indicates it may be involved in metabolic remodeling and also serve as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly those two candidates were not up-regulated in pregnancy or exercise induced CH, indicating PKM2 and eEF1 were pathological CH specific markers. We anticipate that the methodologies described here will be valuable for other researchers studying protein synthesis in primary cells.
Collapse
Affiliation(s)
- Rui Liu
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Justin W Kenney
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Antigoni Manousopoulou
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Harvey E Johnston
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Makoto Kamei
- §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Christopher H Woelk
- ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jianling Xie
- §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Michael Schwarzer
- **Department of Cardiovascular Surgery, Jena University Hospital-Friedrich Schiller University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Spiros D Garbis
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK;
| | - Christopher G Proud
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA5005, Australia
| |
Collapse
|
49
|
Abstract
Cardiovascular PET provides exquisite measurements of key aspects of the cardiovascular system and as a consequence it plays central role in cardiovascular investigation. Moreover, PET is now playing an ever increasing role in the management of the cardiac patient. Central to the success of PET is the development and use of novel radiotracers that permit measurements of key aspects of cardiovascular health such as myocardial perfusion, metabolism, and neuronal function. Moreover, the development of molecular imaging radiotracers is now permitting the interrogation of cellular and sub cellular processes. This article highlights these various radiotracers and their role in both cardiovascular research and potential clinical applications.
Collapse
Affiliation(s)
- Robert J Gropler
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Byrne NJ, Levasseur J, Sung MM, Masson G, Boisvenue J, Young ME, Dyck JRB. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 2016; 110:249-57. [PMID: 26968698 DOI: 10.1093/cvr/cvw051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. METHODS AND RESULTS Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. CONCLUSIONS The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery.
Collapse
Affiliation(s)
- Nikole J Byrne
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jamie Boisvenue
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|