1
|
Bogacheva PO, Potapova DA, Gaydukov AE. Sortilin and L-type Calcium Channels May be Involved in the Unusual Mechanism of proBDNF Signaling in Regenerating Mouse Neuromuscular Junctions. Neurochem Res 2025; 50:104. [PMID: 39998597 DOI: 10.1007/s11064-025-04360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
proBDNF and its main proteolytic product BDNF play crucial roles in maturation of neuromuscular junctions during development or reinnervation. We investigated the mechanisms of acute proBDNF effects on synaptic transmission in mouse motor synapses regenerating after nerve crush. The cleavage-resistant proBDNF mimicked the previously shown effect of cleavable proBDNF- GIRK-mediated decrease in the miniature endplate potential (MEPP) frequency accompanied by slight hyperpolarization of postsynaptic membrane. Remarkably, this effect did not utilize canonical proBDNF signaling pathway since inhibition of either p75 receptors with LM11A-31 or sortilin with AF38469 was not able to prevent it. Without sortilin activity, proBDNF downregulated the quantal content of multiquantal endplate potentials (EPP). This non-canonical action of proneurotrophin via TrkB receptors highlights the important role of sortilin as a safeguard preventing the spread of the negative effect of proBDNF on the evoked neurotransmitter release in regenerating motor synapses. In the absence of sortilin activity L-type calcium channels emerged as the key players providing proBDNF-induced decrease of EPP quantal content, while they were not involved in proBDNF-induced decrease of MEPP frequency. Sortilin-independent but TrkB- and GIRK-mediated inhibition of spontaneous release by proBDNF was not associated with the activity of acetylcholine (M2) or purinergic (A1 and P2Y13) metabotropic receptors. We propose that depending on sortilin involvement, proBDNF selectively affects spontaneous or evoked quantal neurotransmitter release via different branches of signaling pathway that ensure the presynaptic activation of GIRK or L-type calcium channels, respectively.
Collapse
Affiliation(s)
- P O Bogacheva
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - D A Potapova
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - A E Gaydukov
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
2
|
Mitrokhin V, Hadzi-Petrushev N, Kazanski V, Schileyko S, Kamkina O, Rodina A, Zolotareva A, Zolotarev V, Kamkin A, Mladenov M. The Role of K ACh Channels in Atrial Fibrillation. Cells 2024; 13:1014. [PMID: 38920645 PMCID: PMC11201540 DOI: 10.3390/cells13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
This manuscript explores the intricate role of acetylcholine-activated inward rectifier potassium (KACh) channels in the pathogenesis of atrial fibrillation (AF), a common cardiac arrhythmia. It delves into the molecular and cellular mechanisms that underpin AF, emphasizing the vital function of KACh channels in modulating the atrial action potential and facilitating arrhythmogenic conditions. This study underscores the dual nature of KACh activation and its genetic regulation, revealing that specific variations in potassium channel genes, such as Kir3.4 and K2P3.1, significantly influence the electrophysiological remodeling associated with AF. Furthermore, this manuscript identifies the crucial role of the KACh-mediated current, IKACh, in sustaining arrhythmia through facilitating shorter re-entry circuits and stabilizing the re-entrant circuits, particularly in response to vagal nerve stimulation. Experimental findings from animal models, which could not induce AF in the absence of muscarinic activation, highlight the dependency of AF induction on KACh channel activity. This is complemented by discussions on therapeutic interventions, where KACh channel blockers have shown promise in AF management. Additionally, this study discusses the broader implications of KACh channel behavior, including its ubiquitous presence across different cardiac regions and species, contributing to a comprehensive understanding of AF dynamics. The implications of these findings are profound, suggesting that targeting KACh channels might offer new therapeutic avenues for AF treatment, particularly in cases resistant to conventional approaches. By integrating genetic, cellular, and pharmacological perspectives, this manuscript offers a holistic view of the potential mechanisms and therapeutic targets in AF, making a significant contribution to the field of cardiac arrhythmia research.
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Viktor Kazanski
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Stanislav Schileyko
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Olga Kamkina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Anastasija Rodina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Alexandra Zolotareva
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Valentin Zolotarev
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Andre Kamkin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Mitko Mladenov
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
3
|
Moura RR, Brandão L, Moltrasio C, Agrelli A, Tricarico PM, Maronese CA, Crovella S, Marzano AV. Different molecular pathways are disrupted in Pyoderma gangrenosum patients and are associated with the severity of the disease. Sci Rep 2023; 13:4919. [PMID: 36966241 PMCID: PMC10039684 DOI: 10.1038/s41598-023-31914-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
Pyoderma gangrenosum (PG) is a rare inflammatory skin disease classified within the spectrum of neutrophilic dermatoses. The pathophysiology of PG is yet incompletely understood but a prominent role of genetics facilitating immune dysregulation has been proposed. This study investigated the potential contribution of disrupted molecular pathways in determining the susceptibility and clinical severity of PG. Variant Enrichment Analysis, a bioinformatic pipeline applicable for Whole Exome Sequencing data was performed in unrelated PG patients. Eleven patients were enrolled, including 5 with unilesional and 6 with multilesional PG. Fourteen pathways were exclusively enriched in the "multilesional" group, mainly related to immune system (i.e., type I interferon signaling pathway), cell metabolism and structural functions. In the "unilesional" group, nine pathways were found to be exclusively enriched, mostly related to cell signaling and cell metabolism. Genetically altered pathways involved in immune system biology and wound repair appear to be nodal pathogenic drivers in PG pathogenesis.
Collapse
Affiliation(s)
- Ronald Rodrigues Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Center for Strategic Technologies Northeastern (CETENE), Av. Prof. Luís Freire, 1-Cidade Universitária, Recife, 50740-545, Brazil
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università Degli Studi Di Milano, Via Pace 9, 20122, Milan, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Physiopathology and Transplantation, Università Degli Studi Di Milano, Via Pace 9, 20122, Milan, Italy.
| |
Collapse
|
4
|
Ningoo M, Plant LD, Greka A, Logothetis DE. PIP 2 regulation of TRPC5 channel activation and desensitization. J Biol Chem 2021; 296:100726. [PMID: 33933453 PMCID: PMC8191310 DOI: 10.1016/j.jbc.2021.100726] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 10/27/2022] Open
Abstract
Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as focal segmental glomerular sclerosis. TRPC5 channels are activated not only by elevated levels of extracellular Ca2+or lanthanide ions but also by G protein (Gq/11) stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipase C enzymes leads to PKC-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity, remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Employing whole-cell patch-clamp, we used an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition and the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity and illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.
Collapse
Affiliation(s)
- Mehek Ningoo
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Abstract
Ion channel are embedded in the lipid bilayers of biological membranes. Membrane phospholipids constitute a barrier to ion movement, and they have been considered for a long time as a passive environment for channel proteins. Membrane phospholipids, however, do not only serve as a passive amphipathic environment, but they also modulate channel activity by direct specific lipid-protein interactions. Phosphoinositides are quantitatively minor components of biological membranes, and they play roles in many cellular functions, including membrane traffic, cellular signaling and cytoskeletal organization. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is mainly found in the inner leaflet of the plasma membrane. Its role as a potential ion channel regulator was first appreciated over two decades ago and by now this lipid is a well-established cofactor or regulator of many different ion channels. The past two decades witnessed the steady development of techniques to study ion channel regulation by phosphoinositides with progress culminating in recent cryoEM structures that allowed visualization of how PI(4,5)P2 opens some ion channels. This chapter will provide an overview of the methods to study regulation by phosphoinositides, focusing on plasma membrane ion channels and PI(4,5)P2.
Collapse
|
7
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
8
|
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Séguéla P, Ruthazer ES, Kennedy TE. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain 2020; 13:56. [PMID: 32264905 PMCID: PMC7137442 DOI: 10.1186/s13041-020-00597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada
| | - Edwin W Wong
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Greta Thompson-Steckel
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Nathalie Marcal
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada. .,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada. .,Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
9
|
Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. J Biol Chem 2019; 294:18934-18948. [PMID: 31659119 DOI: 10.1074/jbc.ra119.010047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels belong to the inward-rectifier K+ (Kir) family, are abundantly expressed in the heart and the brain, and require that phosphatidylinositol bisphosphate is present so that intracellular channel-gating regulators such as Gβγ and Na+ ions can maintain the channel-open state. However, despite high-resolution structures (GIRK2) and a large number of functional studies, we do not have a coherent picture of how Gβγ and Na+ ions control gating of GIRK2 channels. Here, we utilized computational modeling and all-atom microsecond-scale molecular dynamics simulations to determine which gates are controlled by Na+ and Gβγ and how each regulator uses the channel domain movements to control gate transitions. We found that Na+ ions control the cytosolic gate of the channel through an anti-clockwise rotation, whereas Gβγ stabilizes the transmembrane gate in the open state through a rocking movement of the cytosolic domain. Both effects alter the way in which the channel interacts with phosphatidylinositol bisphosphate and thereby stabilizes the open states of the respective gates. These studies of GIRK channel dynamics present for the first time a comprehensive structural model that is consistent with the great body of literature on GIRK channel function.
Collapse
Affiliation(s)
- Dailin Li
- Key Laboratory of Environmental Biotechnology, Fujian Province University, Xiamen University of Technology, Xiamen, 361024 China; Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115.
| | - Taihao Jin
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115.
| |
Collapse
|
10
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
11
|
Tateyama M, Kubo Y. Gi/o-coupled muscarinic receptors co-localize with GIRK channel for efficient channel activation. PLoS One 2018; 13:e0204447. [PMID: 30240440 PMCID: PMC6150519 DOI: 10.1371/journal.pone.0204447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channel regulates cellular excitability upon activation of Gi/o-coupled receptors. In Gi/o-coupled muscarinic M2R, the intracellular third loop (i3) is known as a key domain for Gi/o coupling, because replacement of i3 of Gq-coupled muscarinic M1R with that of M2R enables the chimeric receptor (MC9) to activate the GIRK channel. In the present study, we showed that MC9, but not M1R, co-localizes with the GIRK channel and Gαi1 by Förster resonance energy transfer (FRET) analysis. When M1R was forced to stay adjacent to the channel through ligation with short linkers, M1R activated the GIRK channel. FRET analysis further suggested that the efficacy of channel activation is correlated with the linker length between M1R and the GIRK channel. The results show that co-localization is an important factor for activating the GIRK channel. In contrast, for MC9 and M2R, the GIRK channel was activated even when they were connected by long linkers, suggesting the formation of a molecular complex even in the absence of a linker. We also observed that replacement of 13 amino acid residues at the N-terminal end of i3 of MC9 with those of M1R impaired the co-localization with the GIRK channel as well as channel activation. These results show that localization of the receptor near the GIRK channel is a key factor in efficiently activating the channel and that the N-terminal end of i3 of M2R plays an important role in co-localization.
Collapse
Affiliation(s)
- Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
- * E-mail:
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
12
|
Inanobe A, Itamochi H, Kurachi Y. Kir Channel Blockages by Proflavine Derivatives via Multiple Modes of Interaction. Mol Pharmacol 2018; 93:592-600. [PMID: 29650538 DOI: 10.1124/mol.117.111377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
Abstract
Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K+ (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors.
Collapse
Affiliation(s)
- Atsushi Inanobe
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Hideaki Itamochi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Harraz OF, Longden TA, Dabertrand F, Hill-Eubanks D, Nelson MT. Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP 2 depletion. Proc Natl Acad Sci U S A 2018; 115:E3569-E3577. [PMID: 29581272 PMCID: PMC5899484 DOI: 10.1073/pnas.1800201115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain capillaries play a critical role in sensing neural activity and translating it into dynamic changes in cerebral blood flow to serve the metabolic needs of the brain. The molecular cornerstone of this mechanism is the capillary endothelial cell inward rectifier K+ (Kir2.1) channel, which is activated by neuronal activity-dependent increases in external K+ concentration, producing a propagating hyperpolarizing electrical signal that dilates upstream arterioles. Here, we identify a key regulator of this process, demonstrating that phosphatidylinositol 4,5-bisphosphate (PIP2) is an intrinsic modulator of capillary Kir2.1-mediated signaling. We further show that PIP2 depletion through activation of Gq protein-coupled receptors (GqPCRs) cripples capillary-to-arteriole signal transduction in vitro and in vivo, highlighting the potential regulatory linkage between GqPCR-dependent and electrical neurovascular-coupling mechanisms. These results collectively show that PIP2 sets the gain of capillary-initiated electrical signaling by modulating Kir2.1 channels. Endothelial PIP2 levels would therefore shape the extent of retrograde signaling and modulate cerebral blood flow.
Collapse
Affiliation(s)
- Osama F Harraz
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Thomas A Longden
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Fabrice Dabertrand
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - David Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Mark T Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405;
- Institute of Cardiovascular Sciences, University of Manchester, M13 9PL Manchester, United Kingdom
| |
Collapse
|
14
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Heijman J, Kirchner D, Kunze F, Chrétien EM, Michel-Reher MB, Voigt N, Knaut M, Michel MC, Ravens U, Dobrev D. Muscarinic type-1 receptors contribute to I K,ACh in human atrial cardiomyocytes and are upregulated in patients with chronic atrial fibrillation. Int J Cardiol 2017; 255:61-68. [PMID: 29290419 DOI: 10.1016/j.ijcard.2017.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Basal and acetylcholine-gated inward-rectifier K+-currents (IK1 and IK,ACh, respectively) are altered in atrial fibrillation (AF). Gi-protein-coupled muscarinic (M) receptors type-2 are considered the predominant receptors activating IK,ACh. Although a role for Gq-coupled non-M2-receptor subtypes has been suggested, the precise regulation of IK,ACh by multiple M-receptor subtypes in the human atrium is unknown. Here, we investigated M1-receptor-mediated IK,ACh regulation and its remodeling in chronic AF (cAF). METHODS AND RESULTS M1-receptor mRNA and protein abundance were increased in atrial cardiomyocyte fractions and atrial homogenates from cAF patients, whereas M2-receptor levels were unchanged. The regulation of IK,ACh by M1-receptors was investigated in right-atrial cardiomyocytes using two applications of the M-receptor agonist carbachol (CCh, 2μM), with pharmacological interventions during the second application. CCh application produced a rapid current increase (Peak-IK,ACh), which declined to a quasi-steady-state level (Qss-IK,ACh). In sinus rhythm (Ctl) the selective M1-receptor antagonists pirenzepine (10nM) and muscarinic toxin-7 (MT-7, 10nM) significantly inhibited CCh-activated Peak-IK,ACh, whereas in cAF they significantly reduced both Peak- and Qss-IK,ACh, with no effects on basal inward-rectifier currents in either group. Conversely, the selective M1-receptor agonist McN-A-343 (100μM) induced a current similar to the CCh-activated current in Ctl atrial cardiomyocytes pretreated with pertussis toxin to inhibit M2-receptor-mediated Gi-protein signaling, which was abolished by MT-7. Computational modeling indicated that M1- and M2-receptors redundantly activate IK,ACh to abbreviate APD, albeit with predominant effects of M2-receptors. CONCLUSION Our data suggest that Gq-coupled M1-receptors also regulate human atrial IK,ACh and that their relative contribution to IK,ACh activation is increased in cAF patients. We provide novel insights about the role of non-M2-receptors in human atrial cardiomyocytes, which may have important implications for understanding AF pathophysiology.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dorit Kirchner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Franziska Kunze
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Eva Maria Chrétien
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | | | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Michael Knaut
- Heart Surgery, Heart Center Dresden, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
16
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
17
|
Kramer PF, Williams JT. Calcium Release from Stores Inhibits GIRK. Cell Rep 2017; 17:3246-3255. [PMID: 28009293 DOI: 10.1016/j.celrep.2016.11.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Synaptic transmission is mediated by ionotropic and metabotropic receptors that together regulate the rate and pattern of action potential firing. Metabotropic receptors can activate ion channels and modulate other receptors and channels. The present paper examines the interaction between group 1 mGluR-mediated calcium release from stores and GABAB/D2-mediated GIRK currents in rat dopamine neurons of the Substantia Nigra. Transient activation of mGluRs decreased the GIRK current evoked by GABAB and D2 receptors, although less efficaciously for D2. The mGluR-induced inhibition of GIRK current peaked in 1 s and recovered to baseline after 5 s. The inhibition was dependent on release of calcium from stores, was larger for transient than for tonic currents, and was unaffected by inhibitors of PLC, PKC, PLA2, or calmodulin. This inhibition of GABAB IPSCs through release of calcium from stores is a postsynaptic mechanism that may broadly reduce GIRK-dependent inhibition of many central neurons.
Collapse
Affiliation(s)
- Paul F Kramer
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Correa AMB, Guimarães JDS, Dos Santos E Alhadas E, Kushmerick C. Control of neuronal excitability by Group I metabotropic glutamate receptors. Biophys Rev 2017; 9:835-845. [PMID: 28836161 PMCID: PMC5662043 DOI: 10.1007/s12551-017-0301-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu1 and mGlu5. Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gαq, which can activate PLCβ, leading initially to the formation of IP3 and diacylglycerol. IP3 can release Ca2+ from cellular stores resulting in activation of Ca2+-dependent ion channels. Intracellular Ca2+, together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Ana Maria Bernal Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Christopher Kushmerick
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Departamento de Fisiologia e Biofísica - ICB, UFMG, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
19
|
Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T. Inhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits. eLife 2017; 6. [PMID: 28829742 PMCID: PMC5593506 DOI: 10.7554/elife.26147] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/28/2017] [Indexed: 11/26/2022] Open
Abstract
Transient receptor potential melastatin 3 (TRPM3) channels are activated by heat, and chemical ligands such as pregnenolone sulphate (PregS) and CIM0216. Here, we show that activation of receptors coupled to heterotrimeric Gi/o proteins inhibits TRPM3 channels. This inhibition was alleviated by co-expression of proteins that bind the βγ subunits of heterotrimeric G-proteins (Gβγ). Co-expression of Gβγ, but not constitutively active Gαi or Gαo, inhibited TRPM3 currents. TRPM3 co-immunoprecipitated with Gβ, and purified Gβγ proteins applied to excised inside-out patches inhibited TRPM3 currents, indicating a direct effect. Baclofen and somatostatin, agonists of Gi-coupled receptors, inhibited Ca2+ signals induced by PregS and CIM0216 in mouse dorsal root ganglion (DRG) neurons. The GABAB receptor agonist baclofen also inhibited inward currents induced by CIM0216 in DRG neurons, and nocifensive responses elicited by this TRPM3 agonist in mice. Our data uncover a novel signaling mechanism regulating TRPM3 channels. DOI:http://dx.doi.org/10.7554/eLife.26147.001
Collapse
Affiliation(s)
- Doreen Badheka
- New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
| | - Yevgen Yudin
- New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
| | - Istvan Borbiro
- New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
| | - Cassandra M Hartle
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Aysenur Yazici
- New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Tibor Rohacs
- New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
| |
Collapse
|
20
|
Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep 2017; 7:4592. [PMID: 28676630 PMCID: PMC5496853 DOI: 10.1038/s41598-017-04681-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of G protein-gated inwardly rectifying potassium (GIRK) channels leads to a hyperpolarization of the neuron’s membrane potential, providing an important component of inhibition in the brain. In addition to the canonical G protein-activation pathway, GIRK channels are activated by small molecules but less is known about the underlying gating mechanisms. One drawback to previous studies has been the inability to control intrinsic and extrinsic factors. Here we used a reconstitution strategy with highly purified mammalian GIRK2 channels incorporated into liposomes and demonstrate that cholesterol or intoxicating concentrations of ethanol, i.e., >20 mM, each activate GIRK2 channels directly, in the absence of G proteins. Notably, both activators require the membrane phospholipid PIP2 but appear to interact independently with different regions of the channel. Elucidating the mechanisms underlying G protein-independent pathways of activating GIRK channels provides a unique strategy for developing new types of neuronal excitability modulators.
Collapse
|
21
|
Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel. Proc Natl Acad Sci U S A 2017; 114:E869-E878. [PMID: 28096388 DOI: 10.1073/pnas.1612622114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition.
Collapse
|
22
|
Leitner MG, Michel N, Behrendt M, Dierich M, Dembla S, Wilke BU, Konrad M, Lindner M, Oberwinkler J, Oliver D. Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. Br J Pharmacol 2016; 173:2555-69. [PMID: 27328745 DOI: 10.1111/bph.13538] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122-sensitive ion channels. EXPERIMENTAL APPROACH We performed detailed biophysical analysis of the U73122-induced currents in frequently used cell lines. KEY RESULTS At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca(2+) . U73122 also potentiated Ca(2) (+) -dependent TRPM4 currents in human Jurkat T-cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. CONCLUSIONS AND IMPLICATIONS Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology.
Collapse
Affiliation(s)
- Michael G Leitner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Niklas Michel
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Marc Behrendt
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Marlen Dierich
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sandeep Dembla
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Bettina U Wilke
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik Konrad
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Johannes Oberwinkler
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
23
|
Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels. Proc Natl Acad Sci U S A 2016; 113:E3290-9. [PMID: 27217553 DOI: 10.1073/pnas.1606348113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na(+)/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several "physiological" manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells.
Collapse
|
24
|
Abstract
UNLABELLED Inwardly rectifying potassium channels enforce tight control of resting membrane potential in excitable cells. The Kir3.2 channel, a member of the Kir3 subfamily of G-protein-activated potassium channels (GIRKs), plays several roles in the nervous system, including key responsibility in the GABAB pathway of inhibition, in pain perception pathways via opioid receptors, and is also involved in alcoholism. PKC phosphorylation acts on the channel to reduce activity, yet the mechanism is incompletely understood. Using the heterologous Xenopus oocyte system combined with molecular dynamics simulations, we show that PKC modulation of channel activity is dependent on Ser-196 in Kir3.2 such that, when this site is phosphorylated, the channel is less sensitive to PKC inhibition. This reduced inhibition is dependent on an interaction between phospho-Ser (SEP)-196 and Arg-201, reducing Arg-201 interaction with the sodium-binding site Asp-228. Neutralization of either SEP-196 or Arg-201 leads to a channel with reduced activity and increased sensitivity to PKC inhibition. This study clarifies the role of Ser-196 as an allosteric modulator of PKC inhibition and suggests that the SEP-196/Arg-201 interaction is critical for maintaining maximal channel activity. SIGNIFICANCE STATEMENT The inwardly rectifying potassium 3.2 (Kir3.2) channel is found principally in neurons that regulate diverse brain functions, including pain perception, alcoholism, and substance addiction. Activation or inhibition of this channel leads to changes in neuronal firing and chemical message transmission. The Kir3.2 channel is subject to regulation by intracellular signals including sodium, G-proteins, ethanol, the phospholipid phosphatidylinositol bis-phosphate, and phosphorylation by protein kinases. Here, we take advantage of the recently published structure of Kir3.2 to provide an in-depth molecular view of how phosphorylation of a specific residue previously thought to be the target of PKC promotes channel gating and acts as an allosteric modulator of PKC-mediated inhibition.
Collapse
|
25
|
Baki L, Fribourg M, Younkin J, Eltit JM, Moreno JL, Park G, Vysotskaya Z, Narahari A, Sealfon SC, Gonzalez-Maeso J, Logothetis DE. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells. Pflugers Arch 2016; 468:775-93. [PMID: 26780666 DOI: 10.1007/s00424-015-1780-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011-1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca(2+) responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25-30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex.
Collapse
Affiliation(s)
- Lia Baki
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason Younkin
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jose Miguel Eltit
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jose L Moreno
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gyu Park
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Zhanna Vysotskaya
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Adishesh Narahari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Nagi K, Charfi I, Pineyro G. Kir3 channels undergo arrestin-dependant internalization following delta opioid receptor activation. Cell Mol Life Sci 2015; 72:3543-57. [PMID: 25900661 PMCID: PMC11113637 DOI: 10.1007/s00018-015-1899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Kir3 channels control excitability in the nervous system and the heart. Their surface expression is strictly regulated, but mechanisms responsible for channel removal from the membrane remain incompletely understood. Using transfected cells, we show that Kir3.1/3.2 channels and delta opioid receptors (DORs) associate in a complex which persists during receptor activation, behaving as a scaffold that allows beta-arrestin (βarr) to interact with both signaling partners. This organization favored co-internalization of DORs and Kir3 channels in a βarr-dependent manner via a clathrin/dynamin-mediated endocytic path. Taken together, these findings identify a new way of modulating Kir3 channel availability at the membrane and assign a putatively novel role for βarrs in regulating canonical effectors for G protein-coupled receptors.
Collapse
Affiliation(s)
- Karim Nagi
- Sainte-Justine Hospital Research Center, 3175 Cote Ste-Catherine, Montreal, QC H3T 1C5 Canada
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4 Canada
| | - Iness Charfi
- Sainte-Justine Hospital Research Center, 3175 Cote Ste-Catherine, Montreal, QC H3T 1C5 Canada
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4 Canada
| | - Graciela Pineyro
- Sainte-Justine Hospital Research Center, 3175 Cote Ste-Catherine, Montreal, QC H3T 1C5 Canada
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4 Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4 Canada
| |
Collapse
|
27
|
Hatcher-Solis C, Fribourg M, Spyridaki K, Younkin J, Ellaithy A, Xiang G, Liapakis G, Gonzalez-Maeso J, Zhang H, Cui M, Logothetis DE. G protein-coupled receptor signaling to Kir channels in Xenopus oocytes. Curr Pharm Biotechnol 2015; 15:987-95. [PMID: 25374032 DOI: 10.2174/1389201015666141031111916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/04/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Abstract
Kir3 (or GIRK) channels have been known for nearly three decades to be activated by direct interactions with the βγ subunits of heterotrimeric G (Gαβγ) proteins in a membrane-delimited manner. Gα also interacts with GIRK channels and since PTX-sensitive Gα subunits show higher affinity of interaction they confer signaling specificity to G Protein- Coupled Receptors (GPCRs) that normally couple to these G protein subunits. In heterologous systems, overexpression of non PTX-sensitive Gα subunits scavenges the available Gβγ and biases GIRK activation through GPCRs that couple to these Gα subunits. Moreover, all Kir channels rely on their direct interactions with the phospholipid PIP2 to maintain their activity. Thus, signals that activate phospholipase C (e.g. through Gq signaling) to hydrolyze PIP2 result in inhibition of Kir channel activity. In this review, we illustrate with experiments performed in Xenopus oocytes that Kir channels can be used efficiently as reporters of GPCR function through Gi, Gs or Gq signaling. The membrane-delimited nature of this expression system makes it highly efficient for constructing dose-response curves yielding highly reproducible apparent affinities of different ligands for each GPCR tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Sanger Hall 3-038a, Virginia Commonwealth University, School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298-0551, USA.
| |
Collapse
|
28
|
Logothetis DE, Mahajan R, Adney SK, Ha J, Kawano T, Meng XY, Cui M. Unifying Mechanism of Controlling Kir3 Channel Activity by G Proteins and Phosphoinositides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:1-26. [PMID: 26422981 DOI: 10.1016/bs.irn.2015.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The question that started with the pioneering work of Otto Loewi in the 1920s, to identify how stimulation of the vagus nerve decreased heart rate, is approaching its 100th year anniversary. In the meantime, we have learned that the neurotransmitter acetylcholine acting through muscarinic M2 receptors activates cardiac potassium (Kir3) channels via the βγ subunits of G proteins, an important effect that contributes to slowing atrial pacemaker activity. Concurrent stimulation of M1 or M3 receptors hydrolyzes PIP2, a signaling phospholipid essential to maintaining Kir3 channel activity, thus causing desensitization of channel activity and protecting the heart from overinhibition of pacemaker activity. Four mammalian members of the Kir3 subfamily, expressed in heart, brain, endocrine organs, etc., are modulated by a plethora of stimuli to regulate cellular excitability. With the recent great advances in ion channel structural biology, three-dimensional structures of Kir3 channels with PIP2 and the Gβγ subunits are now available. Mechanistic insights have emerged that explain how modulatory control of activity feeds into a core mechanism of channel-PIP2 interactions to regulate the conformation of channel gates. This complex but beautiful system continues to surprise us for almost 100 years with an apparent wisdom in its intricate design.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Rahul Mahajan
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Scott K Adney
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junghoon Ha
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Takeharu Kawano
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuan-Yu Meng
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Meng Cui
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
29
|
Kubo T, Ding WG, Toyoda F, Fujii Y, Omatsu-Kanbe M, Matsuura H. Phosphatidylinositol4-phosphate 5-kinase prevents the decrease in the HERG potassium current induced by Gq protein-coupled receptor stimulation. J Pharmacol Sci 2015; 127:127-34. [PMID: 25704028 DOI: 10.1016/j.jphs.2014.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022] Open
Abstract
The human ether-a-go-go-related gene (HERG) potassium current (IHERG) has been shown to decrease in amplitude following stimulation with Gq protein-coupled receptors (GqRs), such as α1-adrenergic and M1-muscarinic receptors (α1R and M1R, respectively), at least partly via the reduction of membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The present study was designed to investigate the modulation of HERG channels by PI(4,5)P2 and phosphatidylinositol4-phosphate 5-kinase (PI(4)P5-K), a synthetic enzyme of PI(4,5)P2. Whole-cell patch-clamp recordings were used to examine the activity of HERG channels expressed heterologously in Chinese Hamster Ovary cells. The stimulation of α1R with phenylephrine or M1R with acetylcholine decreased the amplitude of IHERG accompanied by a significant acceleration of deactivation kinetics and the effects on IHERG were significantly attenuated in cells expressing PI(4)P5-K. The density of IHERG in cells expressing GqRs alone was significantly increased by the coexpression of PI(4)P5-K without significant differences in the voltage dependence of activation and deactivation kinetics. The kinase-deficient substitution mutant, PI(4)P5-K-K138A did not have these counteracting effects on the change in IHERG by M1R stimulation. These results suggest that the current density of IHERG is closely dependent on the membrane PI(4,5)P2 level, which is regulated by PI(4)P5-K and GqRs and that replenishing PI(4,5)P2 by PI(4)P5-K recovers IHERG.
Collapse
Affiliation(s)
- Taeko Kubo
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan; Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd, Osaka 554-0022, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yusuke Fujii
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan.
| |
Collapse
|
30
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
31
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Schreier B, Rabe S, Winter S, Ruhs S, Mildenberger S, Schneider B, Sibilia M, Gotthardt M, Kempe S, Mäder K, Grossmann C, Gekle M. Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor. Sci Rep 2014; 4:7430. [PMID: 25503263 PMCID: PMC4262830 DOI: 10.1038/srep07430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showed that EGFR is required for physiological homeostasis and function of heart and arteries in adult animals. We hypothesize that moderate high aldosterone/NaCl, at normal blood pressure, affects the cardiovascular system depending on cardiovascular EGFR. Therefore we performed an experimental series in male and female animals each, using a recently established mouse model with EGFR knockout in vascular smooth muscle cells and cardiomyocytes and determined the effects of a mild-high aldosterone-to-NaCl constellation on a.o. marker gene expression, heart size, systolic blood pressure, impulse conduction and heart rate. Our data show that (i) cardiac tissue of male but not of female mice is sensitive to mild aldosterone/NaCl treatment, (ii) EGFR knockout induces stronger cardiac disturbances in male as compared to female animals and (iii) mild aldosterone/NaCl treatment requires the EGFR in order to disturb cardiac tissue homeostasis whereas beneficial effects of aldosterone seem to be independent of EGFR.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sabrina Winter
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Bettina Schneider
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Sabine Kempe
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Angiopoietin-1 blocks neurotoxic zinc entry into cortical cells via PIP2 hydrolysis-mediated ion channel inhibition. Neurobiol Dis 2014; 81:203-13. [PMID: 25447223 DOI: 10.1016/j.nbd.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/06/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022] Open
Abstract
Excessive entry of zinc ions into the soma of neurons and glial cells results in extensive oxidative stress and necrosis of cortical cells, which underlies acute neuronal injury in cerebral ischemia and epileptic seizures. Here, we show that angiopoietin-1 (Ang1), a potent angiogenic ligand for the receptor tyrosine kinase Tie2 and integrins, inhibits the entry of zinc into primary mouse cortical cells and exerts a substantial protective effect against zinc-induced neurotoxicity. The neuroprotective effect of Ang1 was mediated by the integrin/focal adhesion kinase (FAK) signaling axis, as evidenced by the blocking effects of a pan-integrin inhibitory RGD peptide and PF-573228, a specific chemical inhibitor of FAK. Notably, blockade of zinc-permeable ion channels by Ang1 was attributable to phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate. Collectively, these data reveal a novel role of Ang1 in regulating the activity of zinc-permeable ion channels, and thereby protecting cortical cells against zinc-induced neurotoxicity.
Collapse
|
34
|
Mori MX, Inoue R. New experimental trends for phosphoinositides research on ion transporter/channel regulation. J Pharmacol Sci 2014; 126:186-97. [PMID: 25367262 DOI: 10.1254/jphs.14r14cp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Phosphoinositides(4,5)-bisphosphates [PI(4,5)P2] critically controls membrane excitability, the disruption of which leads to pathophysiological states. PI(4,5)P2 plays a primary role in regulating the conduction and gating properties of ion channels/transporters, through electrostatic and hydrophobic interactions that allow direct associations. In recent years, the development of many molecular tools have brought deep insights into the mechanisms underlying PI(4,5)P2-mediated regulation. This review summarizes the methods currently available to manipulate the cell membrane PI(4,5)P2 level including pharmacological interventions as well as newly designed molecular tools. We concisely introduce materials and experimental designs suitable for the study of PI(4,5)P2-mediated regulation of ion-conducting molecules, in order to assist researchers who are interested in this area. It is our further hope that the knowledge introduced in this review will help to promote our understanding about the pathology of diseases such as cardiac arrhythmias, bipolar disorders, and Alzheimer's disease which are somehow associated with a disruption of PI(4,5)P2 metabolism.
Collapse
Affiliation(s)
- Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University, Japan
| | | |
Collapse
|
35
|
Charpentier TH, Waldo GL, Barrett MO, Huang W, Zhang Q, Harden TK, Sondek J. Membrane-induced allosteric control of phospholipase C-β isozymes. J Biol Chem 2014; 289:29545-57. [PMID: 25193662 PMCID: PMC4207972 DOI: 10.1074/jbc.m114.586784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/13/2014] [Indexed: 11/06/2022] Open
Abstract
All peripheral membrane proteins must negotiate unique constraints intrinsic to the biological interface of lipid bilayers and the cytosol. Phospholipase C-β (PLC-β) isozymes hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors. PLC-β isozymes are autoinhibited, and several proteins, including Gαq, Gβγ, and Rac1, directly engage distinct regions of these phospholipases to release autoinhibition. To understand this process, we used a novel, soluble analog of PIP2 that increases in fluorescence upon cleavage to monitor phospholipase activity in real time in the absence of membranes or detergents. High concentrations of Gαq or Gβ1γ2 did not activate purified PLC-β3 under these conditions despite their robust capacity to activate PLC-β3 at membranes. In addition, mutants of PLC-β3 with crippled autoinhibition dramatically accelerated the hydrolysis of PIP2 in membranes without an equivalent acceleration in the hydrolysis of the soluble analog. Our results illustrate that membranes are integral for the activation of PLC-β isozymes by diverse modulators, and we propose a model describing membrane-mediated allosterism within PLC-β isozymes.
Collapse
Affiliation(s)
| | | | | | - Weigang Huang
- the Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Qisheng Zhang
- the Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599
| | | | - John Sondek
- From the Departments of Pharmacology and Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
36
|
Harayama N, Kayano T, Moriya T, Kitamura N, Shibuya I, Tanaka-Yamamoto K, Uezono Y, Ueta Y, Sata T. Analysis of G-protein-activated inward rectifying K(+) (GIRK) channel currents upon GABAB receptor activation in rat supraoptic neurons. Brain Res 2014; 1591:1-13. [PMID: 25451091 DOI: 10.1016/j.brainres.2014.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/03/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
While magnocellular neurons in the supraoptic nucleus (SON) possess rich Gi/o-mediated mechanisms, molecular and cellular properties of G-protein-activated inwardly rectifying K(+) (GIRK) channels have been controversial. Here, properties of GIRK channels are examined by RT-PCR and whole-cell patch-clamp techniques in rat SON neurons. Patch clamp experiments showed that the selective GABAB agonist, baclofen, enhanced currents in a high K(+) condition. The baclofen-enhanced currents exhibited evident inward rectification and were blocked by the selective GABAB antagonist, CGP55845A, the IRK channel blocker, Ba(2+), and the selective GIRK channel blocker, tertiapin, indicating that baclofen activates GIRK channels via GABAB receptors. The GIRK currents were abolished by N-ethylmaleimide pretreatment, and prolonged by GTPγS inclusion in the patch pipette, suggesting that Gi/o proteins are involved. RT-PCR analysis revealed mRNAs for all four GIRK 1-4 channels and for both GABABR1 and GABABR2 receptors in rat SON. However, the concentration-dependency of the baclofen-induced activation of GIRK currents had an EC50 of 110 µM, which is about 100 times higher than that of baclofen-induced inhibition of voltage-dependent Ca(2+) channels. Moreover, baclofen caused no significant changes in the membrane potential and the firing rate. These results suggest that although GIRK channels can be activated by GABAB receptors via the Gi/o pathway, this occurs at high agonist concentrations, and thus may not be a physiological mechanism regulating the function of SON neurons. This property that the membrane potential receives little influence from GIRK currents seems to be uncommon for CNS neurons possessing rich Gi/o-coupled receptors, and could be a special feature of rat SON neurons.
Collapse
Affiliation(s)
- Nobuya Harayama
- Critical Care Medicine, University Hospital, University of Occupational and Environmental Health, Kitakyushu 807-8556, Japan
| | - Tomohiko Kayano
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Taiki Moriya
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Naoki Kitamura
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Izumi Shibuya
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Yasuhito Uezono
- Division of cancer pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takeyoshi Sata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
37
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Short-term desensitization of muscarinic K+ current in the heart. Biophys J 2014; 105:1515-25. [PMID: 24048003 DOI: 10.1016/j.bpj.2013.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/10/2023] Open
Abstract
Acetylcholine (ACh) rapidly increases cardiac K(+) currents (IKACh) by activating muscarinic K(+) (KACh) channels followed by a gradual amplitude decrease within seconds. This phenomenon is called short-term desensitization and its precise mechanism and physiological role are still unclear. We constructed a mathematical model for IKACh to examine the conditions required to reconstitute short-term desensitization. Two conditions were crucial: two distinct muscarinic receptors (m2Rs) with different affinities for ACh, which conferred an IKACh response over a wide range of ACh concentrations, and two distinct KACh channels with different affinities for the G-protein βγ subunits, which contributed to reconstitution of the temporal behavior of IKACh. Under these conditions, the model quantitatively reproduced several unique properties of short-term desensitization observed in myocytes: 1), the peak and quasi-steady states with 0.01-100 μM [ACh]; 2), effects of ACh preperfusion; and 3), recovery from short-term desensitization. In the presence of 10 μM ACh, the IKACh model conferred recurring spontaneous firing after asystole of 8.9 s and 10.7 s for the Demir and Kurata sinoatrial node models, respectively. Therefore, two different populations of KACh channels and m2Rs may participate in short-term desensitization of IKACh in native myocytes, and may be responsible for vagal escape at nodal cells.
Collapse
|
39
|
Vakalopoulos C. The EEG as an index of neuromodulator balance in memory and mental illness. Front Neurosci 2014; 8:63. [PMID: 24782698 PMCID: PMC3986529 DOI: 10.3389/fnins.2014.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/18/2014] [Indexed: 11/24/2022] Open
Abstract
There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.
Collapse
|
40
|
Jiang CY, Fujita T, Kumamoto E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol 2014; 111:991-1007. [DOI: 10.1152/jn.00609.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at −70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPβS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca2+-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K+, or around 0 mV. The oxytocin current was depressed in high-K+, low-Na+ or Ba2+-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg8]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K+ and/or Na+, which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca2+-release.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | | |
Collapse
|
41
|
Xu JX, Si M, Zhang HR, Chen XJ, Zhang XD, Wang C, Du XN, Zhang HL. Phosphoinositide kinases play key roles in norepinephrine- and angiotensin II-induced increase in phosphatidylinositol 4,5-bisphosphate and modulation of cardiac function. J Biol Chem 2014; 289:6941-6948. [PMID: 24448808 DOI: 10.1074/jbc.m113.527952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIβ, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIβ and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.
Collapse
Affiliation(s)
- Jia-Xi Xu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Man Si
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hui-Ran Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xing-Juan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xi-Dong Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chuan Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Na Du
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hai-Lin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
42
|
Structural basis of PI(4,5)P2-dependent regulation of GluA1 by phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP5K2A). Pflugers Arch 2014; 466:1885-97. [PMID: 24389605 PMCID: PMC4159565 DOI: 10.1007/s00424-013-1424-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 12/19/2022]
Abstract
Ionotropic glutamate receptors are the most important excitatory receptors in the central nervous system, and their impairment can lead to multiple neuronal diseases. Here, we show that glutamate-induced currents in oocytes expressing GluA1 are increased by coexpression of the schizophrenia-associated phosphoinositide kinase PIP5K2A. This effect was due to enhanced membrane abundance and was blunted by a point mutation (N251S) in PIP5K2A. An increase in GluA1 currents was also observed upon acute injection of PI(4,5)P2, the main product of PIP5K2A. By expression of wild-type and mutant PIP5K2A in human embryonic kidney cells, we were able to provide evidence of impaired kinase activity of the mutant PIP5K2A. We defined the region K813–K823 of GluA1 as critical for the PI(4,5)P2 effect by performing an alanine scan that suggested PI(4,5)P2 binding to this area. A PIP strip assay revealed PI(4,5)P2 binding to the C-terminal GluA1 peptide. The present observations disclose a novel mechanism in the regulation of GluA1.
Collapse
|
43
|
Constitutive Activity of the Acetylcholine-Activated Potassium Current IK,ACh in Cardiomyocytes. ADVANCES IN PHARMACOLOGY 2014; 70:393-409. [DOI: 10.1016/b978-0-12-417197-8.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Rusinova R, Hobart EA, Koeppe RE, Andersen OS. Phosphoinositides alter lipid bilayer properties. ACTA ACUST UNITED AC 2013; 141:673-90. [PMID: 23712549 PMCID: PMC3664701 DOI: 10.1085/jgp.201310960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
45
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
46
|
Bernier LP, Ase AR, Séguéla P. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Front Cell Neurosci 2013; 7:226. [PMID: 24324400 PMCID: PMC3838964 DOI: 10.3389/fncel.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023] Open
Abstract
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Department of Psychiatry, Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
47
|
Niescierowicz K, Caro L, Cherezov V, Vivaudou M, Moreau CJ. Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter. Structure 2013; 22:149-55. [PMID: 24268646 DOI: 10.1016/j.str.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 01/06/2023]
Abstract
Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain.
Collapse
Affiliation(s)
- Katarzyna Niescierowicz
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; Le Centre National de la Recherche Scientifique (CNRS), IBS, LabEx ICST, F-38027 Grenoble, France; Direction des Sciences du Vivant du Comissariat à l'Energie Atomique (CEA), F-38027 Grenoble, France
| | - Lydia Caro
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; Le Centre National de la Recherche Scientifique (CNRS), IBS, LabEx ICST, F-38027 Grenoble, France; Direction des Sciences du Vivant du Comissariat à l'Energie Atomique (CEA), F-38027 Grenoble, France
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michel Vivaudou
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; Le Centre National de la Recherche Scientifique (CNRS), IBS, LabEx ICST, F-38027 Grenoble, France; Direction des Sciences du Vivant du Comissariat à l'Energie Atomique (CEA), F-38027 Grenoble, France
| | - Christophe J Moreau
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; Le Centre National de la Recherche Scientifique (CNRS), IBS, LabEx ICST, F-38027 Grenoble, France; Direction des Sciences du Vivant du Comissariat à l'Energie Atomique (CEA), F-38027 Grenoble, France.
| |
Collapse
|
48
|
Lyon AM, Tesmer JJG. Structural insights into phospholipase C-β function. Mol Pharmacol 2013; 84:488-500. [PMID: 23880553 PMCID: PMC3781385 DOI: 10.1124/mol.113.087403] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/23/2013] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C (PLC) enzymes convert phosphatidylinositol-4,5-bisphosphate into the second messengers diacylglycerol and inositol-1,4,5-triphosphate. The production of these molecules promotes the release of intracellular calcium and activation of protein kinase C, which results in profound cellular changes. The PLCβ subfamily is of particular interest given its prominent role in cardiovascular and neuronal signaling and its regulation by G protein-coupled receptors, as PLCβ is the canonical downstream target of the heterotrimeric G protein Gαq. However, this is not the only mechanism regulating PLCβ activity. Extensive structural and biochemical evidence has revealed regulatory roles for autoinhibitory elements within PLCβ, Gβγ, small molecular weight G proteins, and the lipid membrane itself. Such complex regulation highlights the central role that this enzyme plays in cell signaling. A better understanding of the molecular mechanisms underlying the control of its activity will greatly facilitate the search for selective small molecule modulators of PLCβ.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
49
|
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom;
| |
Collapse
|
50
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|