1
|
Salman A, Biziaev N, Shuvalova E, Alkalaeva E. mRNA context and translation factors determine decoding in alternative nuclear genetic codes. Bioessays 2024; 46:e2400058. [PMID: 38724251 DOI: 10.1002/bies.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Gendron EMS, Qing X, Sevigny JL, Li H, Liu Z, Blaxter M, Powers TO, Thomas WK, Porazinska DL. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024; 25:615. [PMID: 38890582 PMCID: PMC11184840 DOI: 10.1186/s12864-024-10500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
Collapse
Affiliation(s)
- Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Xue Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Joseph L Sevigny
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyin Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | - Thomas O Powers
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - W Kelly Thomas
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Rozhoňová H, Martí-Gómez C, McCandlish DM, Payne JL. Robust genetic codes enhance protein evolvability. PLoS Biol 2024; 22:e3002594. [PMID: 38754362 PMCID: PMC11098591 DOI: 10.1371/journal.pbio.3002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Schmitt MA, Tittle JM, Fisk JD. Codon decoding by orthogonal tRNAs interrogates the in vivo preferences of unmodified adenosine in the wobble position. Front Genet 2024; 15:1386299. [PMID: 38706795 PMCID: PMC11066159 DOI: 10.3389/fgene.2024.1386299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/30/2024] [Indexed: 05/07/2024] Open
Abstract
The in vivo codon decoding preferences of tRNAs with an authentic adenosine residue at position 34 of the anticodon, the wobble position, are largely unexplored because very few unmodified A34 tRNA genes exist across the three domains of life. The expanded wobble rules suggest that unmodified adenosine pairs most strongly with uracil, modestly with cytosine, and weakly with guanosine and adenosine. Inosine, a modified adenosine, on the other hand, pairs strongly with both uracil and cytosine and to a lesser extent adenosine. Orthogonal pair directed sense codon reassignment experiments offer a tool with which to interrogate the translational activity of A34 tRNAs because the introduced tRNA can be engineered with any anticodon. Our fluorescence-based screen utilizes the absolute requirement of tyrosine at position 66 of superfolder GFP for autocatalytic fluorophore formation. The introduced orthogonal tRNA competes with the endogenous translation machinery to incorporate tyrosine in response to a codon typically assigned another meaning in the genetic code. We evaluated the codon reassignment efficiencies of 15 of the 16 possible orthogonal tRNAs with A34 anticodons. We examined the Sanger sequencing chromatograms for cDNAs from each of the reverse transcribed tRNAs for evidence of inosine modification. Despite several A34 tRNAs decoding closely-related C-ending codons, partial inosine modification was detected for only three species. These experiments employ a single tRNA body with a single attached amino acid to interrogate the behavior of different anticodons in the background of in vivo E. coli translation and greatly expand the set of experimental measurements of the in vivo function of A34 tRNAs in translation. For the most part, unmodified A34 tRNAs largely pair with only U3 codons as the original wobble rules suggest. In instances with GC pairs in the first two codon positions, unmodified A34 tRNAs decode the C- and G-ending codons as well as the expected U-ending codon. These observations support the "two-out-of-three" and "strong and weak" codon hypotheses.
Collapse
Affiliation(s)
| | | | - John D. Fisk
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
5
|
Wesp V, Theißen G, Schuster S. Statistical analysis of synonymous and stop codons in pseudo-random and real sequences as a function of GC content. Sci Rep 2023; 13:22996. [PMID: 38151539 PMCID: PMC10752896 DOI: 10.1038/s41598-023-49626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Knowledge of the frequencies of synonymous triplets in protein-coding and non-coding DNA stretches can be used in gene finding. These frequencies depend on the GC content of the genome or parts of it. An example of interest is provided by stop codons. This is relevant for the definition of Open Reading Frames. A generic case is provided by pseudo-random sequences, especially when they code for complex proteins or when they are non-coding and not subject to selection pressure. Here, we calculate, for such sequences and for all 25 known genetic codes, the frequency of each amino acid and stop codon based on their set of codons and as a function of GC content. The amino acids can be classified into five groups according to the GC content where their expected frequency reaches its maximum. We determine the overall Shannon information based on groups of synonymous codons and show that it becomes maximum at a percent GC of 43.3% (for the standard code). This is in line with the observation that in most fungi, plants, and animals, this genomic parameter is in the range from 35 to 50%. By analysing natural sequences, we show that there is a clear bias for triplets corresponding to stop codons near the 5'- and 3'-splice sites in the introns of various clades.
Collapse
Affiliation(s)
- Valentin Wesp
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
6
|
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, Richards TA, Hall N, Swarbreck D. Identification of a non-canonical ciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 2023; 19:e1010913. [PMID: 37796765 PMCID: PMC10553269 DOI: 10.1371/journal.pgen.1010913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Elisabet Alacid
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Seanna McTaggart
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Sally D. Warring
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
7
|
Wagner A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 2023; 14:3624. [PMID: 37336901 PMCID: PMC10279741 DOI: 10.1038/s41467-023-39321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Can evolvability-the ability to produce adaptive heritable variation-itself evolve through adaptive Darwinian evolution? If so, then Darwinian evolution may help create the conditions that enable Darwinian evolution. Here I propose a framework that is suitable to address this question with available experimental data on adaptive landscapes. I introduce the notion of an evolvability-enhancing mutation, which increases the likelihood that subsequent mutations in an evolving organism, protein, or RNA molecule are adaptive. I search for such mutations in the experimentally characterized and combinatorially complete fitness landscapes of a protein and an RNA molecule. I find that such evolvability-enhancing mutations indeed exist. They constitute a small fraction of all mutations, which shift the distribution of fitness effects of subsequent mutations towards less deleterious mutations, and increase the incidence of beneficial mutations. Evolving populations which experience such mutations can evolve significantly higher fitness. The study of evolvability-enhancing mutations opens many avenues of investigation into the evolution of evolvability.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
8
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
9
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Hoffmann SA, Diggans J, Densmore D, Dai J, Knight T, Leproust E, Boeke JD, Wheeler N, Cai Y. Safety by design: Biosafety and biosecurity in the age of synthetic genomics. iScience 2023; 26:106165. [PMID: 36895643 PMCID: PMC9988571 DOI: 10.1016/j.isci.2023.106165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Technologies to profoundly engineer biology are becoming increasingly affordable, powerful, and accessible to a widening group of actors. While offering tremendous potential to fuel biological research and the bioeconomy, this development also increases the risk of inadvertent or deliberate creation and dissemination of pathogens. Effective regulatory and technological frameworks need to be developed and deployed to manage these emerging biosafety and biosecurity risks. Here, we review digital and biological approaches of a range of technology readiness levels suited to address these challenges. Digital sequence screening technologies already are used to control access to synthetic DNA of concern. We examine the current state of the art of sequence screening, challenges and future directions, and environmental surveillance for the presence of engineered organisms. As biosafety layer on the organism level, we discuss genetic biocontainment systems that can be used to created host organisms with an intrinsic barrier against unchecked environmental proliferation.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - James Diggans
- Twist Bioscience, 681 Gateway Boulevard, South San Francisco, CA 9408, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tom Knight
- Ginkgo Bioworks, 27 Drydock Avenue, Boston, MA 02210, USA
| | - Emily Leproust
- Twist Bioscience, 681 Gateway Boulevard, South San Francisco, CA 9408, USA
| | - Jef D Boeke
- Institute for Systems Genetics, and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, 435 East 30th Street, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Nicole Wheeler
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
11
|
Shulgina Y, Eddy SR. Codetta: predicting the genetic code from nucleotide sequence. Bioinformatics 2023; 39:6895099. [PMID: 36511586 PMCID: PMC9825746 DOI: 10.1093/bioinformatics/btac802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
SUMMARY Codetta is a Python program for predicting the genetic code table of an organism from nucleotide sequences. Codetta can analyze an arbitrary nucleotide sequence and needs no sequence annotation or taxonomic placement. The most likely amino acid decoding for each of the 64 codons is inferred from alignments of profile hidden Markov models of conserved proteins to the input sequence. AVAILABILITY AND IMPLEMENTATION Codetta 2.0 is implemented as a Python 3 program for MacOS and Linux and is available from http://eddylab.org/software/codetta/codetta2.tar.gz and at http://github.com/kshulgina/codetta. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
12
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
13
|
Yarus M. A crescendo of competent coding (c3) contains the Standard Genetic Code. RNA (NEW YORK, N.Y.) 2022; 28:1337-1347. [PMID: 35868841 PMCID: PMC9479743 DOI: 10.1261/rna.079275.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Standard Genetic Code (SGC) can arise by fusion of partial codes evolved in different individuals, perhaps for differing prior tasks. Such code fragments can be unified into an SGC after later evolution of accurate third-position Crick wobble. Late wobble advent fills in the coding table, leaving only later development of translational initiation and termination to reach the SGC in separated domains of life. This code fusion mechanism is computationally implemented here. Late Crick wobble after C3 fusion (c3-lCw) is tested for its ability to evolve the SGC. Compared with previously studied isolated coding tables, or with increasing numbers of parallel, but nonfusing codes, c3-lCw reaches the SGC sooner, is successful in a smaller population, and presents accurate and complete codes more frequently. Notably, a long crescendo of SGC-like codes is exposed for selection of superior translation. c3-lCw also effectively suppresses varied disordered assignments, thus converging on a unified code. Such merged codes closely approach the SGC, making its selection plausible. For example: Under routine conditions, ≈1 of 22 c3-lCw environments evolves codes with ≥20 assignments and ≤3 differences from the SGC, notably including codes identical to the Standard Genetic Code.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
14
|
Crapitto AJ, Campbell A, Harris AJ, Goldman AD. A consensus view of the proteome of the last universal common ancestor. Ecol Evol 2022; 12:e8930. [PMID: 35784055 PMCID: PMC9165204 DOI: 10.1002/ece3.8930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
The availability of genomic and proteomic data from across the tree of life has made it possible to infer features of the genome and proteome of the last universal common ancestor (LUCA). A number of studies have done so, all using a unique set of methods and bioinformatics databases. Here, we compare predictions across eight such studies and measure both their agreement with one another and with the consensus predictions among them. We find that some LUCA genome studies show a strong agreement with the consensus predictions of the others, but that no individual study shares a high or even moderate degree of similarity with any other individual study. From these observations, we conclude that the consensus among studies provides a more accurate depiction of the core proteome of the LUCA and its functional repertoire. The set of consensus LUCA protein family predictions between all of these studies portrays a LUCA genome that, at minimum, encoded functions related to protein synthesis, amino acid metabolism, nucleotide metabolism, and the use of common, nucleotide-derived organic cofactors.
Collapse
Affiliation(s)
| | - Amy Campbell
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Aaron D. Goldman
- Department of BiologyOberlin CollegeOberlinOhioUSA
- Blue Marble Space Institute of ScienceSeattleWashingtonUSA
| |
Collapse
|
15
|
Borges AL, Lou YC, Sachdeva R, Al-Shayeb B, Penev PI, Jaffe AL, Lei S, Santini JM, Banfield JF. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat Microbiol 2022; 7:918-927. [PMID: 35618772 PMCID: PMC9197471 DOI: 10.1038/s41564-022-01128-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) are obligate parasites that use host bacterial translation machinery to produce viral proteins. However, some phages have alternative genetic codes with reassigned stop codons that are predicted to be incompatible with bacterial translation systems. We analysed 9,422 phage genomes and found that stop-codon recoding has evolved in diverse clades of phages that infect bacteria present in both human and animal gut microbiota. Recoded stop codons are particularly over-represented in phage structural and lysis genes. We propose that recoded stop codons might function to prevent premature production of late-stage proteins. Stop-codon recoding has evolved several times in closely related lineages, which suggests that adaptive recoding can occur over very short evolutionary timescales.
Collapse
Affiliation(s)
- Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Yue Clare Lou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
Probing the Role of Cysteine Thiyl Radicals in Biology: Eminently Dangerous, Difficult to Scavenge. Antioxidants (Basel) 2022; 11:antiox11050885. [PMID: 35624747 PMCID: PMC9137623 DOI: 10.3390/antiox11050885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Thiyl radicals are exceptionally interesting reactive sulfur species (RSS), but rather rarely considered in a biological or medical context. We here review the reactivity of protein thiyl radicals in aqueous and lipid phases and provide an overview of their most relevant reaction partners in biological systems. We deduce that polyunsaturated fatty acids (PUFAs) are their preferred reaction substrates in lipid phases, whereas protein side chains arguably prevail in aqueous phases. In both cellular compartments, a single, dominating thiyl radical-specific antioxidant does not seem to exist. This conclusion is rationalized by the high reaction rate constants of thiyl radicals with several highly concentrated substrates in the cell, precluding effective interception by antioxidants, especially in lipid bilayers. The intractable reactivity of thiyl radicals may account for a series of long-standing, but still startling biochemical observations surrounding the amino acid cysteine: (i) its global underrepresentation on protein surfaces, (ii) its selective avoidance in aerobic lipid bilayers, especially the inner mitochondrial membrane, (iii) the inverse correlation between cysteine usage and longevity in animals, (iv) the mitochondrial synthesis and translational incorporation of cysteine persulfide, and potentially (v) the ex post introduction of selenocysteine into the genetic code.
Collapse
|
17
|
Shi N, Yang Q, Zhang H, Lu J, Lin H, Yang X, Abulimiti A, Cheng J, Wang Y, Tong L, Wang T, Zhang X, Chen H, Xia Q. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Eng 2022; 6:195-206. [PMID: 34341535 DOI: 10.1038/s41551-021-00774-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 11% of monogenic diseases involve nonsense mutations that are caused by premature termination codons. These codons can in principle be read-through via the site-specific incorporation of unnatural amino acids to generate full-length proteins with minimal loss of function. Here we report that aminoacyl-tRNA-synthase-tRNA pairs specific for the desired unnatural amino acids can be used to read through a nonsense mutation in the dystrophin gene. We show partial restoration of dystrophin expression in differentiated primary myoblasts (from a mdx mouse model and a patient with Duchenne muscular dystrophy), and restoration of muscle function in two mouse models: mdx mice, via viral delivery of the engineered tRNA-synthase-tRNA pair intraperitoneally or intramuscularly and of the associated unnatural amino acid intraperitoneally; and mice produced by crossing mdx mice and transgenic mice with a chromosomally integrated pair, via intraperitoneal delivery of the unnatural amino acid. The incorporation of unnatural amino acids to restore endogenous protein expression could be explored for therapeutic use.
Collapse
Affiliation(s)
- Ningning Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haishuang Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Aikedan Abulimiti
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Le Tong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianchang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaodong Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongmin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
18
|
Formation of the Codon Degeneracy during Interdependent Development between Metabolism and Replication. Genes (Basel) 2021; 12:genes12122023. [PMID: 34946975 PMCID: PMC8701183 DOI: 10.3390/genes12122023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Nirenberg's genetic code chart shows a profound correspondence between codons and amino acids. The aim of this article is to try to explain the primordial formation of the codon degeneracy. It remains a puzzle how informative molecules arose from the supposed prebiotic random sequences. If introducing an initial driving force based on the relative stabilities of triplex base pairs, the prebiotic sequence evolution became innately nonrandom. Thus, the primordial assignment of the 64 codons to the 20 amino acids has been explained in detail according to base substitutions during the coevolution of tRNAs with aaRSs; meanwhile, the classification of aaRSs has also been explained.
Collapse
|
19
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
20
|
Abstract
Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments. Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models of the standard genetic code.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| |
Collapse
|
21
|
Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S, Hancock AM, Brazendale S, Cavicchioli R. Genome Analysis of a Verrucomicrobial Endosymbiont With a Tiny Genome Discovered in an Antarctic Lake. Front Microbiol 2021; 12:674758. [PMID: 34140946 PMCID: PMC8204192 DOI: 10.3389/fmicb.2021.674758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Organic Lake in Antarctica is a marine-derived, cold (−13∘C), stratified (oxic-anoxic), hypersaline (>200 gl–1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron–sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Bezerra AR, Oliveira C, Correia I, Guimarães AR, Sousa G, Carvalho MJ, Moura G, Santos MAS. The role of non-standard translation in Candida albicans pathogenesis. FEMS Yeast Res 2021; 21:6280978. [PMID: 34021562 PMCID: PMC8178436 DOI: 10.1093/femsyr/foab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans typically resides in the human gastrointestinal tract and mucosal membranes as a commensal organism. To adapt and cope with the host immune system, it has evolved a variety of mechanisms of adaptation such as stress-induced mutagenesis and epigenetic regulation. Niche-specific patterns of gene expression also allow the fungus to fine-tune its response to specific microenvironments in the host and switch from harmless commensal to invasive pathogen. Proteome plasticity produced by CUG ambiguity, on the other hand is emerging as a new layer of complexity in C. albicans adaptation, pathogenesis, and drug resistance. Such proteome plasticity is the result of a genetic code alteration where the leucine CUG codon is translated mainly as serine (97%), but maintains some level of leucine (3%) assignment. In this review, we dissect the link between C. albicans non-standard CUG translation, proteome plasticity, host adaptation and pathogenesis. We discuss published work showing how this pathogen uses the fidelity of protein synthesis to spawn novel virulence traits.
Collapse
Affiliation(s)
- Ana Rita Bezerra
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Oliveira
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês Correia
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita Guimarães
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Sousa
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Carvalho
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Moura
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021; 113:1416-1427. [PMID: 33722656 DOI: 10.1016/j.ygeno.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA; Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Barbhuiya PA, Uddin A, Chakraborty S. Understanding the codon usage patterns of mitochondrial CO genes among Amphibians. Gene 2021; 777:145462. [PMID: 33515725 DOI: 10.1016/j.gene.2021.145462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
A universal phenomenon of using synonymous codons unequally in coding sequences known as codon usage bias (CUB) is observed in all forms of life. Mutation and natural selection drive CUB in many species but the relative role of evolutionary forces varies across species, genes and genomes. We studied the CUB in mitochondrial (mt) CO genes from three orders of Amphibia using bioinformatics approach as no work was reported yet. We observed that CUB of mt CO genes of Amphibians was weak across different orders. Order Caudata had higher CUB followed by Gymnophiona and Anura for all genes and CUB also varied across genes. Nucleotide composition analysis showed that CO genes were AT-rich. The AT content in Caudata was higher than that in Gymnophiona while Anura showed the least content. Multiple investigations namely nucleotide composition, correspondence analysis, parity plot analysis showed that the interplay of mutation pressure and natural selection caused CUB in these genes. Neutrality plot suggested the involvement of natural selection was more than the mutation pressure. The contribution of natural selection was higher in Anura than Gymnophiona and the lowest in Caudata. The codons CGA, TGA, AAA were found to be highly favoured by nature across all genes and orders.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India.
| |
Collapse
|
25
|
Singh T, Yadav SK, Vainstein A, Kumar V. Genome recoding strategies to improve cellular properties: mechanisms and advances. ABIOTECH 2021; 2:79-95. [PMID: 34377578 PMCID: PMC7675020 DOI: 10.1007/s42994-020-00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
The genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase-tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
26
|
Moosmann B. Redox Biochemistry of the Genetic Code. Trends Biochem Sci 2020; 46:83-86. [PMID: 33250285 DOI: 10.1016/j.tibs.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
New findings on the chemistry of the amino acids, their role in protein folding, and their sequential primordial introduction have uncovered concealed causalities in genetic code evolution. The genetically encoded amino acids successively provided (i) membrane anchors, (ii) halophilic protein folds, (iii) mesophilic protein folds, (iv) metal ligation, and (v) antioxidation.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
27
|
Barbhuiya PA, Uddin A, Chakraborty S. Codon usage pattern and evolutionary forces of mitochondrial ND genes among orders of class Amphibia. J Cell Physiol 2020; 236:2850-2868. [PMID: 32960450 DOI: 10.1002/jcp.30050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
In this study, we used a bioinformatics approach to analyze the nucleotide composition and pattern of synonymous codon usage in mitochondrial ND genes in three amphibian groups, that is, orders Anura, Caudata, and Gymnophiona to identify the commonality and the differences of codon usage as no research work was reported yet. The high value of the effective number of codons revealed that the codon usage bias (CUB) was low in mitochondrial ND genes among the orders. Nucleotide composition analysis suggested that for each gene, the compositional features differed among Anura, Caudata, and Gymnophiona and the GC content was lower than AT content. Furthermore, a highly significant difference (p < .05) for GC content was found in each gene among the orders. The heat map showed contrasting patterns of codon usage among different ND genes. The regression of GC12 on GC3 suggested a narrow range of GC3 distribution and some points were located in the diagonal, indicating both mutation pressure and natural selection might influence the CUB. Moreover, the slope of the regression line was less than 0.5 in all ND genes among orders, indicating natural selection might have played the dominant role whereas mutation pressure had played a minor role in shaping CUB of ND genes across orders.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
28
|
Barbhuiya RI, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors for mitochondrial CO genes among different classes of Arthropoda. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:313-326. [PMID: 32755341 DOI: 10.1080/24701394.2020.1800661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Analysis of codon usage bias (CUB) is very much important in perceiving the knowledge of molecular biology, the discovery of a new gene, designing of transgenes and evolution of gene. In this study, we analyzed compositional features and codon usage of MT-CO (COI, COII and COIII) genes among the classes of Arthropoda to explore the pattern of CUB as no research work was reported yet. Nucleotide composition analysis in CO genes suggested that the genes were AT-rich in all the four classes of Arthropoda. CUB was low in all the classes of Arthropoda for MT-CO genes as revealed from a high effective number of codons (ENC). We also found that the evolutionary forces namely mutation pressure and natural selection were the key influencing factors in CUB among MT-CO genes as revealed by correlation analysis between overall nucleotide composition and nucleotide composition at the 3rd codon position. Correspondence analysis suggested that the pattern of CUB was different among the classes of Arthropoda. Further, it was revealed from the neutrality plot that natural selection had a dominant role while mutation pressure exhibited a minor role in structuring the pattern of codon usage in all the classes of Arthropoda across COI, COII and COIII genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, M. H. C. M. Science College, Hailakandi, India
| | | |
Collapse
|
29
|
Žihala D, Salamonová J, Eliáš M. Evolution of the genetic code in the mitochondria of Labyrinthulea (Stramenopiles). Mol Phylogenet Evol 2020; 152:106908. [PMID: 32702525 DOI: 10.1016/j.ympev.2020.106908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial translation often exhibits departures from the standard genetic code, but the full spectrum of these changes has certainly not yet been described and the molecular mechanisms behind the changes in codon meaning are rarely studied. Here we report a detailed analysis of the mitochondrial genetic code in the stramenopile group Labyrinthulea (Labyrinthulomycetes) and their relatives. In the genus Aplanochytrium, UAG is not a termination codon but encodes tyrosine, in contrast to the unaffected meaning of the UAA codon. This change is evolutionarily independent of the reassignment of both UAG and UAA as tyrosine codons recently reported from two uncultivated labyrinthuleans (S2 and S4), which we show are not thraustochytrids as proposed before, but represent the clade LAB14 previously recognised in environmental 18S rRNA gene surveys. We provide rigorous evidence that the UUA codon in the mitochondria of all labyrinthuleans serves as a termination codon instead of encoding leucine, and propose that a sense-to-stop reassignment has also affected the AGG and AGA codons in the LAB14 clade. The distribution of the different forms of sense-to-stop and stop-to-sense reassignments correlates with specific modifications of the mitochondrial release factor mtRF2a in different subsets of labyrinthuleans, and with the unprecedented loss of mtRF1a in Aplanochytrium and perhaps also in the LAB14 clade, pointing towards a possible mechanistic basis of the code changes observed. Curiously, we show that labyrinthulean mitochondria also exhibit a sense-to-sense codon reassignment, manifested as AUA encoding methionine instead of isoleucine. Furthermore, we show that this change evolved independently in the uncultivated stramenopile lineage MAST8b, together with the reassignment of the AGR codons from arginine to serine. Altogether, our study has uncovered novel variants of the mitochondrial genetic code and previously unknown modifications of the mitochondrial translation machinery, further enriching our understanding of the rules governing the evolution of one of the central molecular process in the cell.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Jana Salamonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
30
|
Sun J, Ren C, Huang Y, Chao W, Xie F. The effects of synonymous codon usages on genotypic formation of open reading frames in hepatitis E virus. INFECTION GENETICS AND EVOLUTION 2020; 85:104450. [PMID: 32629045 DOI: 10.1016/j.meegid.2020.104450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) infection has emerged as an important public health issue. As a zoonotic RNA virus, new strains are continuously discovered from human or various animal species. However, the capability of cross-species infection varies largely among different strains. Because the classical nucleotide-based genotyping system provides little functional insight, this study aimed to comprehensively investigate codon usage of the HEV coding regions for better understanding the evolutional orientation, virus-host interaction and cross-species transmission. We observed significant differences of the four nucleotide usages in the three open reading frames, indicating that the evolutional tendency of HEV caused by mutation pressure is modified by the evolutional dynamic related to positive selection. Furthermore, significant differences of nucleotide usages were found among HEV isolated from different host species, suggesting an important role of natural selection related to the host. Analysis of effective number of codons revealed distinct degrees of biased codon usage caused by mutation pressure or the host. Finally, we have mapped the similarity levels of the overall codon usage between the virus and the host to assess the potential of cross-species infection. Thus, this study has provided a novel aspect for better understanding the HEV genetic orientation and the zoonotic nature.
Collapse
Affiliation(s)
- Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Caiqin Ren
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Ying Huang
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Wenhan Chao
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Fuqiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China.
| |
Collapse
|
31
|
A search for the physical basis of the genetic code. Biosystems 2020; 195:104148. [DOI: 10.1016/j.biosystems.2020.104148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
|
32
|
Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal ROS Challenges: Timing is of the Essence. mBio 2020; 11:mBio.00955-20. [PMID: 32430475 PMCID: PMC7240161 DOI: 10.1128/mbio.00955-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
When trying to reconstruct the evolutionary trajectories during early eukaryogenesis, one is struck by clear differences in the developments of two organelles of endosymbiotic origin: the mitochondrion and the chloroplast. From a symbiogenic perspective, eukaryotic development can be interpreted as a process in which many of the defining eukaryotic characteristics arose as a result of mutual adaptions of both prokaryotes (an archaeon and a bacterium) involved. This implies that many steps during the bacterium-to-mitochondrion transition trajectory occurred in an intense period of dramatic and rapid changes. In contrast, the subsequent cyanobacterium-to-chloroplast development in a specific eukaryotic subgroup, leading to the photosynthetic lineages, occurred in a full-fledged eukaryote. The commonalities and differences in the two trajectories shed an interesting light on early, and ongoing, eukaryotic evolutionary driving forces, especially endogenous reactive oxygen species (ROS) formation. Differences between organellar ribosomes, changes to the electron transport chain (ETC) components, and mitochondrial codon reassignments in nonplant mitochondria can be understood when mitochondrial ROS formation, e.g., during high energy consumption in heterotrophs, is taken into account.IMPORTANCE The early eukaryotic evolution was deeply influenced by the acquisition of two endosymbiotic organelles - the mitochondrion and the chloroplast. Here we discuss the possibly important role of reactive oxygen species in these processes.
Collapse
|
33
|
Schwark DG, Schmitt MA, Biddle W, Fisk JD. The Influence of Competing tRNA Abundance on Translation: Quantifying the Efficiency of Sense Codon Reassignment at Rarely Used Codons. Chembiochem 2020; 21:2274-2286. [PMID: 32203635 DOI: 10.1002/cbic.202000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Indexed: 11/07/2022]
Abstract
A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.
Collapse
Affiliation(s)
- David G Schwark
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Margaret A Schmitt
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Wil Biddle
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - John D Fisk
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| |
Collapse
|
34
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
35
|
Žihala D, Eliáš M. Evolution and Unprecedented Variants of the Mitochondrial Genetic Code in a Lineage of Green Algae. Genome Biol Evol 2020; 11:2992-3007. [PMID: 31617565 PMCID: PMC6821328 DOI: 10.1093/gbe/evz210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria of diverse eukaryotes have evolved various departures from the standard genetic code, but the breadth of possible modifications and their phylogenetic distribution are known only incompletely. Furthermore, it is possible that some codon reassignments in previously sequenced mitogenomes have been missed, resulting in inaccurate protein sequences in databases. Here we show, considering the distribution of codons at conserved amino acid positions in mitogenome-encoded proteins, that mitochondria of the green algal order Sphaeropleales exhibit a diversity of codon reassignments, including previously missed ones and some that are unprecedented in any translation system examined so far, necessitating redefinition of existing translation tables and creating at least seven new ones. We resolve a previous controversy concerning the meaning the UAG codon in Hydrodictyaceae, which beyond any doubt encodes alanine. We further demonstrate that AGG, sometimes together with AGA, encodes alanine instead of arginine in diverse sphaeroplealeans. Further newly detected changes include Arg-to-Met reassignment of the AGG codon and Arg-to-Leu reassignment of the CGG codon in particular species. Analysis of tRNAs specified by sphaeroplealean mitogenomes provides direct support for and molecular underpinning of the proposed reassignments. Furthermore, we point to unique mutations in the mitochondrial release factor mtRF1a that correlate with changes in the use of termination codons in Sphaeropleales, including the two independent stop-to-sense UAG reassignments, the reintroduction of UGA in some Scenedesmaceae, and the sense-to-stop reassignment of UCA widespread in the group. Codon disappearance seems to be the main drive of the dynamic evolution of the mitochondrial genetic code in Sphaeropleales.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
36
|
Schultz DT, Eizenga JM, Corbett-Detig RB, Francis WR, Christianson LM, Haddock SH. Conserved novel ORFs in the mitochondrial genome of the ctenophore Beroe forskalii. PeerJ 2020; 8:e8356. [PMID: 32025367 PMCID: PMC6991124 DOI: 10.7717/peerj.8356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
To date, five ctenophore species' mitochondrial genomes have been sequenced, and each contains open reading frames (ORFs) that if translated have no identifiable orthologs. ORFs with no identifiable orthologs are called unidentified reading frames (URFs). If truly protein-coding, ctenophore mitochondrial URFs represent a little understood path in early-diverging metazoan mitochondrial evolution and metabolism. We sequenced and annotated the mitochondrial genomes of three individuals of the beroid ctenophore Beroe forskalii and found that in addition to sharing the same canonical mitochondrial genes as other ctenophores, the B. forskalii mitochondrial genome contains two URFs. These URFs are conserved among the three individuals but not found in other sequenced species. We developed computational tools called pauvre and cuttlery to determine the likelihood that URFs are protein coding. There is evidence that the two URFs are under negative selection, and a novel Bayesian hypothesis test of trinucleotide frequency shows that the URFs are more similar to known coding genes than noncoding intergenic sequence. Protein structure and function prediction of all ctenophore URFs suggests that they all code for transmembrane transport proteins. These findings, along with the presence of URFs in other sequenced ctenophore mitochondrial genomes, suggest that ctenophores may have uncharacterized transmembrane proteins present in their mitochondria.
Collapse
Affiliation(s)
- Darrin T. Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Jordan M. Eizenga
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Warren R. Francis
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
37
|
Schmidt M. A metric space for semantic containment: Towards the implementation of genetic firewalls. Biosystems 2019; 185:104015. [PMID: 31408698 DOI: 10.1016/j.biosystems.2019.104015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Analysing or engineering the genetic code has mainly been considered as an approach to reduce or increase the mutational robustness of the genetic code, i.e. the error tolerance in DNA mutations, or to enable the incorporation of non-canonical amino acids. The approach of "semantic containment", however, is less interested in altering the mutational tolerance of the standard code, but to create synthetic alternative genetic codes that limit or all together impede horizontal gene transfer between a natural and genomically recoded organisms (GRO). A major claim or conjecture of semantic containment is: "the farther, the safer", meaning, the less similarity there is between two codes, the less chance of a horizontal gene transfer, and the stronger the genetic firewall. So far, no metrics were available to measure and quantify the "genetic distance" between different genetic codes. Such a metric, however, is iis paramount to allow the experimental testing and evaluation of the validity of semantic biocontainment for the first time. Here, we introduce a metric space to measure exactly the distance (dissimilarity) between different genetic codes, in order to provide a framework to evaluate the relation between distance and strength of a genetic firewall. Results are presented that incorporate bespoken metrics when producing alternative genetic codes according to predefined goals, specifications and limitations. Finally, as an outlook, implications and challenges for genetic firewall(s) are discussed for dual- and multi-code systems.
Collapse
|
38
|
Wichmann S, Ardern Z. Optimality in the standard genetic code is robust with respect to comparison code sets. Biosystems 2019; 185:104023. [DOI: 10.1016/j.biosystems.2019.104023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
|
39
|
Wang R, Liu J, Di Giuseppe G, Liang A. UAA and UAG may Encode Amino Acid in Cathepsin B Gene of Euplotes octocarinatus. J Eukaryot Microbiol 2019; 67:144-149. [PMID: 31419839 DOI: 10.1111/jeu.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022]
Abstract
The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo-CTSB) which containing several in-frame stop codons throughout the coding sequence. We provide evidences, based on 3'-RACE method and Western blot, that the Eo-CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo-CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.
Collapse
Affiliation(s)
- Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jingni Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | | | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
40
|
Silva JK, Marques LM, Timenetsky J, de Farias ST. Ureaplasma diversum protein interaction networks: evidence of horizontal gene transfer and evolution of reduced genomes among Mollicutes. Can J Microbiol 2019; 65:596-612. [PMID: 31018106 DOI: 10.1139/cjm-2018-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ureaplasma diversum is a member of the Mollicutes class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of U. diversum and compared it with the networks of other members of the Mollicutes class. We also investigated horizontal gene transfer events in subnetworks of interest involved in purine and pyrimidine metabolism and urease function, chosen because of their intrinsic importance for host colonization and virulence. We identified horizontal gene transfer events among Mollicutes and from Ureaplasma to Staphylococcus aureus and Corynebacterium, bacterial groups that colonize the urogenital niche. The overall tendency of genome reduction and simplification in the Mollicutes is echoed in their protein interaction networks, which tend to be more generalized and less selective. Our data suggest that the process was permitted (or enabled) by an increase in host dependence and the available gene repertoire in the urogenital tract shared via horizontal gene transfer.
Collapse
Affiliation(s)
- Joana Kästle Silva
- a Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas Miranda Marques
- b Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
41
|
Noutahi E, Calderon V, Blanchette M, El-Mabrouk N, Lang BF. Rapid Genetic Code Evolution in Green Algal Mitochondrial Genomes. Mol Biol Evol 2019; 36:766-783. [PMID: 30698742 PMCID: PMC6551751 DOI: 10.1093/molbev/msz016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic code deviations involving stop codons have been previously reported in mitochondrial genomes of several green plants (Viridiplantae), most notably chlorophyte algae (Chlorophyta). However, as changes in codon recognition from one amino acid to another are more difficult to infer, such changes might have gone unnoticed in particular lineages with high evolutionary rates that are otherwise prone to codon reassignments. To gain further insight into the evolution of the mitochondrial genetic code in green plants, we have conducted an in-depth study across mtDNAs from 51 green plants (32 chlorophytes and 19 streptophytes). Besides confirming known stop-to-sense reassignments, our study documents the first cases of sense-to-sense codon reassignments in Chlorophyta mtDNAs. In several Sphaeropleales, we report the decoding of AGG codons (normally arginine) as alanine, by tRNA(CCU) of various origins that carry the recognition signature for alanine tRNA synthetase. In Chromochloris, we identify tRNA variants decoding AGG as methionine and the synonymous codon CGG as leucine. Finally, we find strong evidence supporting the decoding of AUA codons (normally isoleucine) as methionine in Pycnococcus. Our results rely on a recently developed conceptual framework (CoreTracker) that predicts codon reassignments based on the disparity between DNA sequence (codons) and the derived protein sequence. These predictions are then validated by an evaluation of tRNA phylogeny, to identify the evolution of new tRNAs via gene duplication and loss, and structural modifications that lead to the assignment of new tRNA identities and a change in the genetic code.
Collapse
Affiliation(s)
- Emmanuel Noutahi
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Virginie Calderon
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, McConnell Engineering Bldg., Montréal, QC H3A 0E9, Canada
- McGill Centre for Bioinformatics, McGill University, Montréal, QC, Canada
| | - Nadia El-Mabrouk
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Bernd Franz Lang
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| |
Collapse
|
42
|
BłaŻej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. The influence of different types of translational inaccuracies on the genetic code structure. BMC Bioinformatics 2019; 20:114. [PMID: 30841864 PMCID: PMC6404327 DOI: 10.1186/s12859-019-2661-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The standard genetic code is a recipe for assigning unambiguously 21 labels, i.e. amino acids and stop translation signal, to 64 codons. However, at early stages of the translational machinery development, the codons did not have to be read unambiguously and the early genetic codes could have contained some ambiguous assignments of codons to amino acids. Therefore, the goal of this work was to obtain the genetic code structures which could have evolved assuming different types of inaccuracy of the translational machinery starting from unambiguous assignments of codons to amino acids. RESULTS We developed a theoretical model assuming that the level of uncertainty of codon assignments can gradually decrease during the simulations. Since it is postulated that the standard code has evolved to be robust against point mutations and mistranslations, we developed three simulation scenarios assuming that such errors can influence one, two or three codon positions. The simulated codes were selected using the evolutionary algorithm methodology to decrease coding ambiguity and increase their robustness against mistranslation. CONCLUSIONS The results indicate that the typical codon block structure of the genetic code could have evolved to decrease the ambiguity of amino acid to codon assignments and to increase the fidelity of reading the genetic information. However, the robustness to errors was not the decisive factor that influenced the genetic code evolution because it is possible to find theoretical codes that minimize the reading errors better than the standard genetic code.
Collapse
Affiliation(s)
- Paweł BłaŻej
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Małgorzata Wnetrzak
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Dorota Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Paweł Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| |
Collapse
|
43
|
Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J Theor Biol 2019; 464:21-32. [DOI: 10.1016/j.jtbi.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
|
44
|
Fraga JS, Sárkány Z, Silva A, Correia I, Pereira PJB, Macedo-Ribeiro S. Genetic code ambiguity modulates the activity of a C. albicans MAP kinase linked to cell wall remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:654-661. [PMID: 30797104 DOI: 10.1016/j.bbapap.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.
Collapse
Affiliation(s)
- Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Zsuzsa Sárkány
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Correia
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
45
|
Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci U S A 2019; 116:934-943. [PMID: 30598433 PMCID: PMC6338844 DOI: 10.1073/pnas.1816822116] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The two Balanophora plastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thus Balanophora plastids must import all tRNAs needed for translation. Balanophora plastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of all cis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, the Balanophora genomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes in Balanophora consist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used by Balanophora plastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, the Balanophora plastome must be functional because all examined genes are transcribed, its only intron is correctly trans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.
Collapse
Affiliation(s)
- Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, 100 Taipei, Taiwan
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Samuel S Jones
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| | - Julia Naumann
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | | | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, 106 Taipei, Taiwan
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802;
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
46
|
Li Y, Kocot KM, Tassia MG, Cannon JT, Bernt M, Halanych KM. Mitogenomics Reveals a Novel Genetic Code in Hemichordata. Genome Biol Evol 2019; 11:29-40. [PMID: 30476024 PMCID: PMC6319601 DOI: 10.1093/gbe/evy254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The diverse array of codon reassignments demonstrate that the genetic code is not universal in nature. Exploring mechanisms underlying codon reassignment is critical for understanding the evolution of the genetic code during translation. Hemichordata, comprising worm-like Enteropneusta and colonial filter-feeding Pterobranchia, is the sister taxon of echinoderms and is more distantly related to chordates. However, only a few hemichordate mitochondrial genomes have been sequenced, hindering our understanding of mitochondrial genome evolution within Deuterostomia. In this study, we sequenced four mitochondrial genomes and two transcriptomes, including representatives of both major hemichordate lineages and analyzed together with public available data. Contrary to the current understanding of the mitochondrial genetic code in hemichordates, our comparative analyses suggest that UAA encodes Tyr instead of a "Stop" codon in the pterobranch lineage Cephalodiscidae. We also predict that AAA encodes Lys in pterobranch and enteropneust mitochondrial genomes, contradicting the previous assumption that hemichordates share the same genetic code with echinoderms for which AAA encodes Asn. Thus, we propose a new mitochondrial genetic code for Cephalodiscus and a revised code for enteropneusts. Moreover, our phylogenetic analyses are largely consistent with previous phylogenomic studies. The only exception is the phylogenetic position of the enteropneust Stereobalanus, whose placement as sister to all other described enteropneusts. With broader taxonomic sampling, we provide evidence that evolution of mitochondrial gene order and genetic codes in Hemichordata are more dynamic than previously thought and these findings provide insights into mitochondrial genome evolution within this clade.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Kevin M Kocot
- Department of Biological Sciences & Alabama Museum of Natural History, The University of Alabama
| | - Michael G Tassia
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Johanna T Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara
| | - Matthias Bernt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| |
Collapse
|
47
|
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation. Genes (Basel) 2018; 10:genes10010017. [PMID: 30597824 PMCID: PMC6356944 DOI: 10.3390/genes10010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. Here, we present the strategies that have been utilized to fundamentally alter the genetic code in its decoding rules or its molecular representation and anticipate future avenues in the pursuit of robust biocontainment.
Collapse
|
48
|
Hines HN, Onsbring H, Ettema TJ, Esteban GF. Molecular Investigation of the Ciliate Spirostomum semivirescens, with First Transcriptome and New Geographical Records. Protist 2018; 169:875-886. [DOI: 10.1016/j.protis.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022]
|
49
|
Uddin A, Mazumder TH, Chakraborty S. Understanding molecular biology of codon usage in mitochondrial complex IV genes of electron transport system: Relevance to mitochondrial diseases. J Cell Physiol 2018; 234:6397-6413. [DOI: 10.1002/jcp.27375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Arif Uddin
- Department of Zoology Moinul Hoque Choudhury Memorial Science College Hailakandi Assam India
| | | | | |
Collapse
|
50
|
Ma NJ, Hemez CF, Barber KW, Rinehart J, Isaacs FJ. Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue. eLife 2018; 7:34878. [PMID: 30375330 PMCID: PMC6207430 DOI: 10.7554/elife.34878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organisms possessing genetic codes with unassigned codons raise the question of how cellular machinery resolves such codons and how this could impact horizontal gene transfer. Here, we use a genomically recoded Escherichia coli to examine how organisms address translation at unassigned UAG codons, which obstruct propagation of UAG-containing viruses and plasmids. Using mass spectrometry, we show that recoded organisms resolve translation at unassigned UAG codons via near-cognate suppression, dramatic frameshifting from at least −3 to +19 nucleotides, and rescue by ssrA-encoded tmRNA, ArfA, and ArfB. We then demonstrate that deleting tmRNA restores expression of UAG-ending proteins and propagation of UAG-containing viruses and plasmids in the recoded strain, indicating that tmRNA rescue and nascent peptide degradation is the cause of impaired virus and plasmid propagation. The ubiquity of tmRNA homologs suggests that genomic recoding is a promising path for impairing horizontal gene transfer and conferring genetic isolation in diverse organisms. Usually, DNA passes from parent to offspring, vertically down the generations. But not always. In some cases, it can move directly from one organism to another by a process called horizontal gene transfer. In bacteria, this happens when DNA segments pass through a bacterium’s cell wall, which can then be picked up by another bacterium. Because the vast majority of organisms share the same genetic code, the bacteria can read this DNA with ease, as it is in the same biological language. Horizontal gene transfer helps bacteria adapt and evolve to their surroundings, letting them swap and share genetic information that could be useful. The process also poses a threat to human health because the DNA that bacteria share can help spread antibiotic resistance. However, some organisms use an alternative genetic code, which obstructs horizontal gene transfer. They cannot read the DNA transmitted to them, because it is in a different ‘biological language’. The mechanism of how this language barrier works has been poorly understood until now. Ma, Hemez, Barber et al. investigated this using Escherichia coli bacteria with an artificially alternated genetic code. In this E. coli, one of the three-letter DNA ‘words’ in the sequence is a blank – it does not exist in the bacterium’s biological language. This three-letter DNA word normally corresponds to a particular protein building block. Using a technique called mass spectrometry, Ma et al. analyzed the proteins this E. coli forms. The results showed that it has several strategies to deal with DNA transmitted horizontally into the bacterium. One method is destroying the proteins that are half-created from the DNA, using molecules called tmRNAs. These are part of a rescue system that intervenes when protein translation stalls on the blank word. The tmRNAs help to add a tag to half-formed proteins, marking them for destruction. This mechanism creates a ‘genetic firewall’ that prevents horizontal gene transfer. In organisms engineered to work from an altered genetic code, this helps to isolate them from outside interference. The findings could have applications in creating engineered bacteria that are safer for use in fields such as medicine and biofuel production.
Collapse
Affiliation(s)
- Natalie Jing Ma
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Colin F Hemez
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Karl W Barber
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| |
Collapse
|